JP4839509B2 - Ceramic electronic components - Google Patents

Ceramic electronic components Download PDF

Info

Publication number
JP4839509B2
JP4839509B2 JP2000392944A JP2000392944A JP4839509B2 JP 4839509 B2 JP4839509 B2 JP 4839509B2 JP 2000392944 A JP2000392944 A JP 2000392944A JP 2000392944 A JP2000392944 A JP 2000392944A JP 4839509 B2 JP4839509 B2 JP 4839509B2
Authority
JP
Japan
Prior art keywords
barium
plating
ceramic
elution
ceramic body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000392944A
Other languages
Japanese (ja)
Other versions
JP2002194555A (en
Inventor
義広 上林
多通夫 国司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2000392944A priority Critical patent/JP4839509B2/en
Publication of JP2002194555A publication Critical patent/JP2002194555A/en
Application granted granted Critical
Publication of JP4839509B2 publication Critical patent/JP4839509B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Chemically Coating (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、アルカリ土類金属を含有するセラミック素体に無電解金めっきを施す無電解金めっき方法に関するもので、詳しくは、セラミック素体のアルカリ土類金属成分の溶出を抑制するための無電解金めっき方法に関するものである。
【0002】
【従来の技術】
無電解金めっきは、接合の信頼性の高さなどの点から、セラミック電子部品やセラミック基板の電極形成にしばしば用いられている。具体的には、セラミック電子部品の外部電極や電子部品実装様のセラミック基板の電極にニッケルめっきを施し、その上に無電解金めっき層を形成する。無電解金めっきのメカニズムは、めっき浴中の金イオンが、被めっき物上の下地金属層から電子を受け取り、下地金属が溶出すると同時に金めっき層が析出するものである。
【0003】
【発明が解決しようとする課題】
上記無電解金めっきは通常50〜95℃の高温で行われるため、電子部品のセラミック素体部分が、錯化剤等のめっき浴成分によって侵食されやすいという問題がある。セラミック素体が侵食されると電子部品の強度が劣化する他、電極との界面のセラミック素体の溶出によって電極が剥離して、容量変化等の特性劣化を引き起こすことになる。また、溶出したセラミック成分が原因となって、形成される金めっき皮膜の膜厚の低下や膜質の劣化が生じることになる。
【0004】
そこで本発明は、セラミック素体に無電解金めっきを施す際に、被めっき物であるセラミック素体の溶出を抑制することが可能な無電解金めっき方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明者らは鋭意研究の結果、アルカリ土類金属を含有するセラミック素体に無電解金めっきを施す際に、無電解金めっき浴に硫酸イオンを含有させることでセラミック素体のアルカリ土類金属成分の溶出が抑制できることを見出した。
【0007】
発明におけるセラミック電子部品は、アルカリ土類金属を含有するセラミック素体と、前記セラミック素体上に形成された電極と、前記電極上に形成された金めっき層とを有するセラミック電子部品において、前記セラミック素体の表面に、前記セラミック素体のアルカリ土類金属成分と硫酸イオンとの反応化合物層が形成されていることを特徴とする。
【0009】
アルカリ土類金属は、バリウムであることが好ましく、特に、セラミック素体は、チタン酸バリウム、ジルコン酸バリウム、チタン酸ジルコン酸バリウム、ホウ酸バリウム、ケイ酸バリウム、ホウケイ酸バリウム、アルミン酸バリウム、アルミン酸ケイ酸バリウムのいずれかを主成分として含むことが望ましい。
【0012】
【発明の実施の形態】
本発明における無電解金めっき浴は、金化合物と、金イオンの錯化剤と、金イオン錯体の安定剤と、セラミック素体の溶出抑制剤である硫酸イオンとを含み、必要に応じて金イオンの析出と同時に溶出する下地金属イオンの安定剤が添加される。
【0013】
金化合物は、金イオンを供給できるものであればよく、例えば、亜硫酸金ナトリウム、亜硫酸金カリウム、塩化金カリウム、塩化金酸、シアン化金ナトリウム、シアン化金カリウム等を用いることができる。
【0014】
金イオンの錯化剤には、亜硫酸やチオ硫酸、L‐アステルシステイン、チオシン等のイオウ化合物や、シアン化ナトリウム、シアン化カリウム等のシアン化化合物を用いることができる。これらの錯化剤の中でも、特に亜硫酸や亜硫酸化合物およびシアン化化合物が好ましい。これらの錯化剤は金イオンとの錯安定度定数が高く、めっき浴の長期安定性とめっき皮膜の析出速度が特に良好となるためである。なお、めっき浴中の錯化剤の濃度は、金イオンの濃度の2〜10倍程度とする。
【0015】
錯化剤に亜硫酸や亜硫酸化合物を用いる場合、金イオン錯体の安定剤にはアミノカルボン酸類を用いることができ、これらの中でも特にEDTA類が適している。錯化剤にシアン化化合物を用いる場合、金イオン錯体の安定剤にはアミンを用いることができ、これらの中でも特にトリエタノールアミン類が適している。
【0016】
セラミック素体の溶出抑制剤としては、硫酸と硫酸塩の少なくとも一方を添加する。具体的には、硫酸ナトリウムや硫酸カリウム、硫酸アンモニウム等を用いることができる。
【0017】
上記めっき浴に、さらにめっき皮膜の特性改善のために界面活性剤を適宜添加してもよい。界面活性剤はノニオン性、アニオン性、カチオン性、両性のいずれであってもよい。界面活性剤の添加量は、0.0005〜5g/l程度が好ましい。
【0018】
セラミック素体には、アルカリ土類金属、特にバリウムを含有するものが用いられ、具体例としては、チタン酸バリウム、ジルコン酸バリウム、チタン酸ジルコン酸バリウム、ホウ酸バリウム、ケイ酸バリウム、ホウケイ酸バリウム、アルミン酸バリウム、アルミン酸ケイ酸バリウム等が挙げられる。
【0019】
【実施例】
(第1実施例)
表1、2に示す無電解金めっき浴(実施例1〜12、比較例1、2)を作製した。比較例1、2は、溶出抑制剤である硫酸または硫酸塩を含まないめっき浴を示す。
【0020】
【表1】

Figure 0004839509
【0021】
【表2】
Figure 0004839509
【0022】
表面に金属配線およびそれに接続された電極の形成された、チタン酸バリウムを含有するセラミック基板を用意し、表1、2に示す無電解金めっき浴に浸漬して、電極上に金めっき皮膜を形成した。基板上の金属配線は、Cu、Ni、Co、Fe、Ag、Pdのいずれかを材料として用い、印刷、電解めっき、無電解めっき等の各種方法で形成した。めっき皮膜形成後の基板とめっき皮膜の状態を表3、4に示す。
【0023】
【表3】
Figure 0004839509
【0024】
【表4】
Figure 0004839509
【0025】
表3、4において、基板溶出比とめっき膜厚比は、それぞれ比較例に対する比を示しており、基板溶出比(%)={実施例の基板溶出量(mg)/比較例の基板溶出量(mg) }×100、めっき膜厚比(%)={実施例のめっき膜厚(μm)/比較例のめっき膜厚(μm)}×100、よりもとめた。なお、実施例1〜6は比較例1を、実施例7〜12は比較例2をそれぞれ基準とした。また、めっき前後の基板強度比およびめっき前後の電極強度比は、めっき前後の基板強度比(%)={めっき後の基板強度(kgf)/めっき前の基板強度(kgf) }×100、めっき前後の電極強度比(%)={めっき後の電極強度(kgf)/めっき前の電極強度(kgf) }×100、よりもとめた。
【0026】
表3、4から明らかなように、比較例1、2と比較して、硫酸ナトリウムを添加した実施例1〜12では、セラミック基板の溶出量が少なく、めっき前後の基板強度比にあまり変化がみられないことがわかる。すなわち、実施例1〜12ではセラミック基板の表面に、セラミック基板中のバリウム成分とめっき浴中の硫酸ナトリウムとが反応した硫酸バリウム層が形成されたことにより、セラミック基板の溶出が抑制されているものと考えられる。
【0027】
また、比較例1、2と比較して、実施例1〜12では、形成された金めっき被膜の膜厚が厚く、めっき前後の電極強度比にあまり変化が見られないことがわかる。すなわち、比較例1、2では、基板から溶出したセラミック成分が原因となって、形成される金めっき皮膜の膜厚の低下や膜質の劣化が生じ、また、セラミック基板の電極との界面部分の溶出によって電極の剥離が生じ、めっき後の電極強度が低下しているものと考えられる。これに対し、実施例1〜12ではセラミック基板の溶出が抑制されているため、金めっき皮膜の膜厚の低下やめっき後の電極強度の低下がほとんど見られない。
このように、実施例1〜12ではセラミック基板の溶出が抑制されているが、硫酸ナトリウムの添加量が少なく0.0001mol/lである実施例1、7では、他の実施例に比べてセラミック基板の溶出量が多く、セラミック基板の溶出が抑制効果が小さいことがわかる。一方、実施例6、12のように硫酸ナトリウムの添加量が1.0mol/lを越えた場合であっても、セラミック基板の溶出抑制効果にあまり変化はない。一方、硫酸ナトリウムの添加量が増加するにしたがって、めっき浴の粘度が高くなることから、硫酸ナトリウムの添加量が1.0mol/lを越える場合は過剰の添加となりコストアップにつながる。したがって、硫酸ナトリウムの添加量は0.001〜1.0mol/lが適当であると考えられる。また、硫酸ナトリウムのかわりに硫酸を添加した場合であっても、同一の濃度範囲でセラミック基板の溶出抑制効果が高いことが認められた。
【0028】
(第2実施例)
表5、6に示す無電解金めっき浴(実施例13〜24、比較例3、4)を作製した。比較例3、4は、溶出抑制剤である硫酸または硫酸塩を含まないめっき浴を示す。
【0029】
【表5】
Figure 0004839509
【0030】
【表6】
Figure 0004839509
【0031】
チタン酸バリウムを含有するセラミック基体の両端部に外部電極の形成された積層セラミックコンデンサを用意し、表5、6に示す無電解金めっき浴に浸漬してバレルめっきを行い、外部電極上に金めっき皮膜を形成した。外部電極は、Cu、Ni、Co、Fe、Ag、Pdのいずれかを材料とした電極上に、電解または無電解Niめっきを施したものを用いた。めっき皮膜形成後の基体とめっき皮膜の状態を表7、8に示す。
【0032】
【表7】
Figure 0004839509
【0033】
【表8】
Figure 0004839509
【0034】
表7、8において、基体溶出比とめっき膜厚比は、それぞれ比較例に対する比を示しており、基体溶出比(%)={実施例の基体溶出量(mg)/比較例の基体溶出量(mg) }×100、めっき膜厚比(%)={実施例のめっき膜厚(μm)/比較例のめっき膜厚(μm)}×100、よりもとめた。なお、実施例13〜18は比較例3を、実施例19〜24は比較例4をそれぞれ基準とした。また、めっき前後の容量変化は、セラミックコンデンサの容量の変化を測定したもので、めっき前後の電極強度比は、外部電極の強度を測定したもので、めっき前後の電極強度比(%)={めっき後の電極強度(kgf)/めっき前の電極強度(kgf) }×100、よりもとめた。
【0035】
表7、8から明らかなように、比較例3、4と比較して、硫酸ナトリウムを添加した実施例13〜24では、セラミック基体の溶出量が少なく、電極剥離、および、めっき前後の容量変化がみられないことがわかる。すなわち、実施例13〜24ではセラミック基体の表面に、セラミック基体中のバリウム成分とめっき浴中の硫酸ナトリウムとが反応した硫酸バリウム層が形成されたことにより、セラミック基体の溶出が抑制されているものと考えられる。また、セラミック基体の電極との界面部分の溶出が抑制されることにより、電極の剥離が防がれ、その結果、コンデンサの容量変化が防止されていることがわかる。
【0036】
また、比較例3、4と比較して、実施例13〜24では、形成された金めっき被膜の膜厚が厚く、めっき前後の電極強度比にあまり変化が見られないことがわかる。すなわち、比較例1、2では、基体から溶出したセラミック成分が原因となって、形成される金めっき皮膜の膜厚の低下や膜質の劣化が生じ、また、セラミック基体の電極との界面部分の溶出によって電極の剥離が生じ、めっき後の電極強度が低下しているものと考えられる。これに対し、実施例13〜24ではセラミック基体の溶出が抑制されているため、金めっき皮膜の膜厚の低下やめっき後の電極強度の低下がほとんど見られない。
【0037】
また、実施例13〜24では、実施例1〜12の場合と同様に、硫酸ナトリウムの添加量を0.001〜1.0mol/lとしたときに、セラミック基板の溶出抑制効果が高いものと考えられる。
【0038】
なお、上記第1実施例および第2実施例では、被めっき物としてチタン酸バリウムを含有するセラミック素体を用いたが、ジルコン酸バリウム、チタン酸ジルコン酸バリウム、ホウ酸バリウム、ケイ酸バリウム、ホウケイ酸バリウム、アルミン酸バリウム、アルミン酸ケイ酸バリウムを含有するセラミック素体を用いた場合であっても、同様にセラミック素体の溶出抑制効果があることが確認できた。
【0039】
【発明の効果】
このように、本発明では、アルカリ土類金属を含有するセラミック素体に無電解金めっきを施す際に、無電解金めっき浴に硫酸イオンを含有させることでセラミック素体のアルカリ土類金属成分の溶出を抑制することができた。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electroless gold plating method for performing electroless gold plating on a ceramic body containing an alkaline earth metal. The present invention relates to an electrolytic gold plating method.
[0002]
[Prior art]
Electroless gold plating is often used for forming electrodes of ceramic electronic components and ceramic substrates from the viewpoint of high bonding reliability. Specifically, nickel plating is applied to an external electrode of a ceramic electronic component or an electrode of a ceramic substrate for mounting an electronic component, and an electroless gold plating layer is formed thereon. The mechanism of electroless gold plating is such that gold ions in the plating bath receive electrons from the underlying metal layer on the object to be plated, and the gold plating layer is deposited simultaneously with the dissolution of the underlying metal.
[0003]
[Problems to be solved by the invention]
Since the electroless gold plating is usually performed at a high temperature of 50 to 95 ° C., there is a problem that the ceramic body portion of the electronic component is easily eroded by a plating bath component such as a complexing agent. When the ceramic body is eroded, the strength of the electronic component is deteriorated, and the electrode is peeled off due to the elution of the ceramic body at the interface with the electrode, causing deterioration of characteristics such as capacitance change. Moreover, due to the eluted ceramic component, the thickness of the gold plating film to be formed is reduced and the quality of the film is deteriorated.
[0004]
Therefore, an object of the present invention is to provide an electroless gold plating method capable of suppressing elution of a ceramic body that is an object to be plated when electroless gold plating is applied to a ceramic body.
[0005]
[Means for Solving the Problems]
As a result of diligent research, the inventors of the present invention have made it possible to add sulfate ions to an electroless gold plating bath when electroless gold plating is performed on a ceramic body containing an alkaline earth metal, thereby allowing the alkaline earth of the ceramic body to be contained. It has been found that elution of metal components can be suppressed.
[0007]
The ceramic electronic component in the present invention is a ceramic electronic component having a ceramic body containing an alkaline earth metal, an electrode formed on the ceramic body, and a gold plating layer formed on the electrode. A reaction compound layer of an alkaline earth metal component of the ceramic body and sulfate ions is formed on the surface of the ceramic body.
[0009]
The alkaline earth metal is preferably barium, and in particular, the ceramic body includes barium titanate, barium zirconate, barium zirconate titanate, barium borate, barium silicate, barium borosilicate, barium aluminate, It is desirable to contain any one of barium aluminate silicate as a main component.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The electroless gold plating bath according to the present invention includes a gold compound, a complexing agent for gold ions, a stabilizer for the gold ion complex, and sulfate ions that are elution inhibitors for the ceramic body. A stabilizer for base metal ions that elutes simultaneously with the precipitation of ions is added.
[0013]
The gold compound is not particularly limited as long as it can supply gold ions, and examples thereof include sodium gold sulfite, gold potassium sulfite, potassium chloride gold, chloroauric acid, sodium gold cyanide, and potassium gold cyanide.
[0014]
As the complexing agent for gold ions, sulfur compounds such as sulfurous acid, thiosulfuric acid, L-asterecysteine, and thiocin, and cyanide compounds such as sodium cyanide and potassium cyanide can be used. Among these complexing agents, sulfite, sulfite compounds and cyanide compounds are particularly preferable. This is because these complexing agents have a high complex stability constant with gold ions, and the long-term stability of the plating bath and the deposition rate of the plating film are particularly good. The concentration of the complexing agent in the plating bath is about 2 to 10 times the concentration of gold ions.
[0015]
When sulfurous acid or a sulfurous acid compound is used as the complexing agent, aminocarboxylic acids can be used as the stabilizer for the gold ion complex, and among these, EDTAs are particularly suitable. When a cyanide compound is used as the complexing agent, an amine can be used as the stabilizer of the gold ion complex, and among these, triethanolamines are particularly suitable.
[0016]
As an elution inhibitor for the ceramic body, at least one of sulfuric acid and sulfate is added. Specifically, sodium sulfate, potassium sulfate, ammonium sulfate, or the like can be used.
[0017]
A surfactant may be appropriately added to the plating bath to improve the properties of the plating film. The surfactant may be nonionic, anionic, cationic, or amphoteric. The addition amount of the surfactant is preferably about 0.0005 to 5 g / l.
[0018]
As the ceramic body, those containing an alkaline earth metal, particularly barium, are used. Specific examples include barium titanate, barium zirconate, barium zirconate titanate, barium borate, barium silicate, borosilicate. Examples thereof include barium, barium aluminate, and barium aluminate silicate.
[0019]
【Example】
(First embodiment)
Electroless gold plating baths (Examples 1 to 12, Comparative Examples 1 and 2) shown in Tables 1 and 2 were prepared. Comparative Examples 1 and 2 show plating baths that do not contain sulfuric acid or sulfate as an elution inhibitor.
[0020]
[Table 1]
Figure 0004839509
[0021]
[Table 2]
Figure 0004839509
[0022]
Prepare a ceramic substrate containing barium titanate on which metal wiring and electrodes connected to it are formed, and immerse them in the electroless gold plating bath shown in Tables 1 and 2 to form a gold plating film on the electrodes. Formed. The metal wiring on the substrate was formed by various methods such as printing, electrolytic plating, and electroless plating using any one of Cu, Ni, Co, Fe, Ag, and Pd as a material. Tables 3 and 4 show the state of the substrate and the plating film after the formation of the plating film.
[0023]
[Table 3]
Figure 0004839509
[0024]
[Table 4]
Figure 0004839509
[0025]
In Tables 3 and 4, the substrate elution ratio and the plating film thickness ratio indicate the ratio to the comparative example, respectively, and the substrate elution ratio (%) = {the substrate elution amount in the example (mg) / the substrate elution amount in the comparative example. (mg)} × 100, Plating film thickness ratio (%) = {Plating film thickness (μm) of Example / Plating film thickness (μm) of Comparative Example} × 100. Examples 1 to 6 were based on Comparative Example 1, and Examples 7 to 12 were based on Comparative Example 2. Also, the substrate strength ratio before and after plating and the electrode strength ratio before and after plating are as follows: substrate strength ratio before and after plating (%) = {substrate strength after plating (kgf) / substrate strength before plating (kgf)} × 100, plating The electrode strength ratio before and after (%) = {electrode strength after plating (kgf) / electrode strength before plating (kgf)} × 100.
[0026]
As is apparent from Tables 3 and 4, in Examples 1 to 12 in which sodium sulfate was added as compared with Comparative Examples 1 and 2, the elution amount of the ceramic substrate was small, and the substrate strength ratio before and after plating was not much changed. I can't see it. That is, in Examples 1 to 12, elution of the ceramic substrate is suppressed by forming a barium sulfate layer in which the barium component in the ceramic substrate and sodium sulfate in the plating bath are reacted on the surface of the ceramic substrate. It is considered a thing.
[0027]
Moreover, compared with the comparative examples 1 and 2, in Examples 1-12, the film thickness of the formed gold plating film is thick, and it turns out that there is not much change in the electrode strength ratio before and behind plating. That is, in Comparative Examples 1 and 2, due to the ceramic component eluted from the substrate, the thickness of the gold plating film to be formed is deteriorated and the quality of the film is deteriorated. It is considered that the electrode peels due to elution and the electrode strength after plating is lowered. On the other hand, in Examples 1-12, since the elution of a ceramic substrate is suppressed, the fall of the film thickness of a gold plating film and the fall of the electrode strength after plating are hardly seen.
As described above, in Examples 1 to 12, elution of the ceramic substrate was suppressed, but in Examples 1 and 7 in which the amount of sodium sulfate added was small and 0.0001 mol / l, the ceramics were compared with the other examples. It can be seen that the amount of elution of the substrate is large, and the elution of the ceramic substrate has a small suppression effect. On the other hand, even when the amount of sodium sulfate added exceeds 1.0 mol / l as in Examples 6 and 12, there is not much change in the elution suppression effect of the ceramic substrate. On the other hand, as the amount of sodium sulfate added increases, the viscosity of the plating bath increases, so when the amount of sodium sulfate exceeds 1.0 mol / l, excessive addition leads to an increase in cost. Therefore, it is considered that the amount of sodium sulfate added is 0.001 to 1.0 mol / l. Further, even when sulfuric acid was added instead of sodium sulfate, it was confirmed that the ceramic substrate elution suppressing effect was high in the same concentration range.
[0028]
(Second embodiment)
Electroless gold plating baths (Examples 13 to 24, Comparative Examples 3 and 4) shown in Tables 5 and 6 were prepared. Comparative Examples 3 and 4 show plating baths that do not contain sulfuric acid or sulfate as an elution inhibitor.
[0029]
[Table 5]
Figure 0004839509
[0030]
[Table 6]
Figure 0004839509
[0031]
A multilayer ceramic capacitor having external electrodes formed on both ends of a ceramic substrate containing barium titanate is prepared, immersed in an electroless gold plating bath shown in Tables 5 and 6, barrel plating is performed, and gold is deposited on the external electrodes. A plating film was formed. As the external electrode, an electrode made of any one of Cu, Ni, Co, Fe, Ag, and Pd and subjected to electrolytic or electroless Ni plating was used. Tables 7 and 8 show the state of the substrate and the plating film after the formation of the plating film.
[0032]
[Table 7]
Figure 0004839509
[0033]
[Table 8]
Figure 0004839509
[0034]
In Tables 7 and 8, the substrate elution ratio and the plating film thickness ratio indicate the ratio to the comparative example, respectively, and the substrate elution ratio (%) = {Substrate elution amount (mg) of Example / Substrate elution amount of Comparative Example] (mg)} × 100, Plating film thickness ratio (%) = {Plating film thickness (μm) of Example / Plating film thickness (μm) of Comparative Example} × 100. Examples 13 to 18 were based on Comparative Example 3, and Examples 19 to 24 were based on Comparative Example 4. The change in capacitance before and after plating is a measurement of the change in capacitance of the ceramic capacitor. The electrode strength ratio before and after plating is the measurement of the strength of the external electrode, and the electrode strength ratio before and after plating (%) = { Electrode strength after plating (kgf) / electrode strength before plating (kgf)} × 100.
[0035]
As is clear from Tables 7 and 8, in Examples 13 to 24 to which sodium sulfate was added compared to Comparative Examples 3 and 4, the amount of elution of the ceramic substrate was small, electrode peeling, and capacity change before and after plating. It turns out that is not seen. That is, in Examples 13 to 24, the elution of the ceramic base is suppressed by forming a barium sulfate layer in which the barium component in the ceramic base and the sodium sulfate in the plating bath are reacted on the surface of the ceramic base. It is considered a thing. It can also be seen that the elution at the interface portion of the ceramic substrate with the electrode is suppressed, so that the electrode is prevented from peeling off, and as a result, the capacitance change of the capacitor is prevented.
[0036]
Moreover, compared with the comparative examples 3 and 4, in Examples 13-24, the film thickness of the formed gold plating film is thick, and it turns out that there is not much change in the electrode strength ratio before and behind plating. That is, in Comparative Examples 1 and 2, due to the ceramic component eluted from the base, the thickness of the gold plating film to be formed is deteriorated and the quality of the film is deteriorated. It is considered that the electrode peels due to elution and the electrode strength after plating is lowered. On the other hand, in Examples 13-24, since the elution of a ceramic base | substrate is suppressed, the fall of the film thickness of a gold plating film and the fall of the electrode strength after plating are hardly seen.
[0037]
Further, in Examples 13 to 24, as in Examples 1 to 12, when the amount of sodium sulfate added was 0.001 to 1.0 mol / l, the elution suppression effect of the ceramic substrate was high. Conceivable.
[0038]
In the first and second examples, a ceramic body containing barium titanate was used as an object to be plated. However, barium zirconate, barium zirconate titanate, barium borate, barium silicate, Even when a ceramic body containing barium borosilicate, barium aluminate, or barium aluminate silicate was used, it was confirmed that the ceramic body had an elution suppressing effect.
[0039]
【The invention's effect】
Thus, in the present invention, when electroless gold plating is performed on a ceramic body containing an alkaline earth metal, the alkaline earth metal component of the ceramic body is obtained by adding sulfate ions to the electroless gold plating bath. Elution was suppressed.

Claims (3)

アルカリ土類金属を含有するセラミック素体と、前記セラミック素体上に形成された電極と、前記電極上に形成された金めっき層とを有するセラミック電子部品において、In a ceramic electronic component having a ceramic body containing an alkaline earth metal, an electrode formed on the ceramic body, and a gold plating layer formed on the electrode,
前記セラミック素体の表面に、前記セラミック素体のアルカリ土類金属成分と硫酸イオンとの反応化合物層が形成されていることを特徴とする、セラミック電子部品。  A ceramic electronic component, wherein a reaction compound layer of an alkaline earth metal component of the ceramic body and sulfate ions is formed on a surface of the ceramic body.
前記アルカリ土類金属は、バリウムであることを特徴とする、請求項に記載のセラミック電子部品。The ceramic electronic component according to claim 1 , wherein the alkaline earth metal is barium. 前記セラミック素体は、チタン酸バリウム、ジルコン酸バリウム、チタン酸ジルコン酸バリウム、ホウ酸バリウム、ケイ酸バリウム、ホウケイ酸バリウム、アルミン酸バリウム、アルミン酸ケイ酸バリウムのいずれかを主成分として含むことを特徴とする請求項に記載のセラミック電子部品。The ceramic body contains, as a main component, any one of barium titanate, barium zirconate, barium zirconate titanate, barium borate, barium silicate, barium borosilicate, barium aluminate, and barium aluminate silicate. The ceramic electronic component according to claim 2 .
JP2000392944A 2000-12-25 2000-12-25 Ceramic electronic components Expired - Fee Related JP4839509B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000392944A JP4839509B2 (en) 2000-12-25 2000-12-25 Ceramic electronic components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000392944A JP4839509B2 (en) 2000-12-25 2000-12-25 Ceramic electronic components

Publications (2)

Publication Number Publication Date
JP2002194555A JP2002194555A (en) 2002-07-10
JP4839509B2 true JP4839509B2 (en) 2011-12-21

Family

ID=18858850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000392944A Expired - Fee Related JP4839509B2 (en) 2000-12-25 2000-12-25 Ceramic electronic components

Country Status (1)

Country Link
JP (1) JP4839509B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5371465B2 (en) * 2009-02-09 2013-12-18 メタローテクノロジーズジャパン株式会社 Non-cyan electroless gold plating solution and conductor pattern plating method

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0616461B2 (en) * 1984-05-14 1994-03-02 京セラ株式会社 Chip type porcelain capacitor
JPH036384A (en) * 1989-06-01 1991-01-11 Shinko Electric Ind Co Ltd Electroless gold plating solution
JPH0423308A (en) * 1990-05-14 1992-01-27 Mitsubishi Materials Corp Ceramic capacitor
JPH0547592A (en) * 1991-08-09 1993-02-26 Murata Mfg Co Ltd Manufacture of ceramic electronic component
JPH05343259A (en) * 1992-06-11 1993-12-24 Tdk Corp Ceramic electronic component and its manufacture
JP3115713B2 (en) * 1992-11-04 2000-12-11 ティーディーケイ株式会社 Ceramic electronic components
JP3148428B2 (en) * 1992-11-13 2001-03-19 関東化学株式会社 Electroless gold plating solution
JP2927142B2 (en) * 1993-03-26 1999-07-28 上村工業株式会社 Electroless gold plating bath and electroless gold plating method
JP2874088B2 (en) * 1993-03-26 1999-03-24 上村工業株式会社 Electroless gold plating bath
JPH07331452A (en) * 1994-06-09 1995-12-19 C Uyemura & Co Ltd Electroless gold plating bath and electroless gold plating method
JP3474291B2 (en) * 1994-12-20 2003-12-08 日本リーロナール株式会社 Method for forming plating layer on glass or ceramic substrate
JP3409714B2 (en) * 1998-10-20 2003-05-26 株式会社村田製作所 Manufacturing method of chip-shaped electronic component
JP2000303186A (en) * 1999-04-16 2000-10-31 Murata Mfg Co Ltd Electroless plating method, electrode structural body and conductive paste used therefor

Also Published As

Publication number Publication date
JP2002194555A (en) 2002-07-10

Similar Documents

Publication Publication Date Title
KR101393477B1 (en) Electroless gold plating bath, electroless gold plating method and electronic parts
JP3892730B2 (en) Electroless gold plating solution
KR101393478B1 (en) Electroless gold plating bath, electroless gold plating method and electronic parts
JP2004510885A (en) Baths and methods for electroless plating of silver on metal surfaces
JP4792045B2 (en) Method for depositing a palladium layer and a palladium bath therefor
JP4783484B2 (en) Electroless gold plating solution and method
JP3482402B2 (en) Replacement gold plating solution
EP2711977A1 (en) Manufacture of coated copper pillars
US5391402A (en) Immersion plating of tin-bismuth solder
JP4839509B2 (en) Ceramic electronic components
JP4230813B2 (en) Gold plating solution
JP2003253454A (en) Method for plating electronic parts, and electronic parts
KR20010042625A (en) Method for coating surfaces of copper or of a copper alloy with a tin or tin alloy layer
JP6521553B1 (en) Substitution gold plating solution and substitution gold plating method
JP2004190093A (en) Displacement electroless gold plating bath
JP2003226993A (en) Gold plating solution and gold plating treatment method
JP4842620B2 (en) Method for manufacturing printed wiring board having high-density copper pattern
JP4758470B2 (en) Method for forming protruding electrode and displacement gold plating solution
JP2009179845A (en) Electroless plating method
JP3484367B2 (en) Electroless plating method and pretreatment method thereof
JP7316250B2 (en) Electroless gold plating bath and electroless gold plating method
JP2004149824A (en) Gold plating liquid, plating method using the gold plating liquid, method of producing electronic component, and electronic component
JP2004250765A (en) Gold plating liquid, and method of producing electronic component
JP2005194562A (en) Electroless nickel plating liquid, and method for producing ceramic electronic component
JPH09510411A (en) Copper bismuth coating protection

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070921

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110906

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110919

R150 Certificate of patent or registration of utility model

Ref document number: 4839509

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141014

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees