JP4834413B2 - heatsink - Google Patents

heatsink Download PDF

Info

Publication number
JP4834413B2
JP4834413B2 JP2006030592A JP2006030592A JP4834413B2 JP 4834413 B2 JP4834413 B2 JP 4834413B2 JP 2006030592 A JP2006030592 A JP 2006030592A JP 2006030592 A JP2006030592 A JP 2006030592A JP 4834413 B2 JP4834413 B2 JP 4834413B2
Authority
JP
Japan
Prior art keywords
heat
insulator
heat radiating
radiating portion
heat sink
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006030592A
Other languages
Japanese (ja)
Other versions
JP2007214231A (en
Inventor
公昭 中野
俊行 堀内
博巳 太田
哲 佐久間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
T.RAD CO., L T D.
Original Assignee
T.RAD CO., L T D.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by T.RAD CO., L T D. filed Critical T.RAD CO., L T D.
Priority to JP2006030592A priority Critical patent/JP4834413B2/en
Publication of JP2007214231A publication Critical patent/JP2007214231A/en
Application granted granted Critical
Publication of JP4834413B2 publication Critical patent/JP4834413B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、パソコンのCPUやサイリスタや電力用コンデンサ等の電子部品を冷却するために設けられるヒートシンクに関し、特に、電子部品との間に熱伝導性を有する絶縁体が介装されているヒートシンクに関する。   The present invention relates to a heat sink provided for cooling electronic components such as a CPU, thyristor and power capacitor of a personal computer, and more particularly, to a heat sink in which an insulator having thermal conductivity is interposed between the electronic components. .

一般に、パソコンのCPU(Central Processing
Unit)、サイリスタや電力用コンデンサに代表される電子部品には、該電子部品から発生した熱を放出させるため、ヒートシンクが設けられている。そして、このヒートシンクは、放熱部の外面に電子部品を密着可能なように構成されており、この放熱部に対する電子部品の密着度がヒートシンクの冷却性能に大きな影響を与えることが知られている。
Generally, the CPU (Central Processing) of a personal computer
Unit), electronic components represented by thyristors and power capacitors are provided with a heat sink in order to release heat generated from the electronic components. And this heat sink is comprised so that an electronic component can contact | adhere to the outer surface of a thermal radiation part, and it is known that the adhesion degree of the electronic component with respect to this thermal radiation part will have big influence on the cooling performance of a heat sink.

そこで、従来、放熱部と電子部品間の密着度を高めるため、放熱部と電子部品との間に熱伝導性ラバーを介装すると共に、放熱部における熱伝導性ラバーとの接触面に凹凸部を設け、前記熱伝導性ラバーの弾性を利用して電子部品をビス等の固定部材により放熱部に加圧固定するヒートシンクが提案されている(例えば、特許文献1参照)。
特開2001−85877号公報
Therefore, conventionally, in order to increase the adhesion between the heat radiating portion and the electronic component, a heat conductive rubber is interposed between the heat radiating portion and the electronic component, and an uneven portion is formed on the contact surface of the heat radiating portion with the heat conductive rubber. There has been proposed a heat sink that pressurizes and fixes an electronic component to a heat radiating portion with a fixing member such as a screw using the elasticity of the thermally conductive rubber (see, for example, Patent Document 1).
JP 2001-85877 A

しかしながら、上記した従来のヒートシンクでは、ビス等の固定部材により電子部品を放熱部に加圧固定するようになっているため、固定部材の締め付け方次第で、放熱部と電子部品間の密着度にバラツキが生じるおそれがあり、安定した冷却性能を確保し難いといった問題があった。   However, in the above-described conventional heat sink, the electronic component is pressure-fixed to the heat radiating portion by a fixing member such as a screw. Therefore, depending on how the fixing member is tightened, the degree of adhesion between the heat radiating portion and the electronic component is increased. There is a possibility that variation may occur, and it is difficult to ensure stable cooling performance.

また、放熱部と電子部品の間に介装される熱伝導性ラバーの熱伝導率が2.5W/m・Kと低いため、冷却性能を十分に高めることができないといった問題もあった。   In addition, since the thermal conductivity of the heat conductive rubber interposed between the heat radiation part and the electronic component is as low as 2.5 W / m · K, there is a problem that the cooling performance cannot be sufficiently improved.

本発明は、上記した課題を解決すべくなされたものであり、放熱部と電子部品間の密着度を高め、冷却性能の向上を図ることのできるヒートシンクを提供することを目的とするものである。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a heat sink capable of improving the adhesion between the heat radiation part and the electronic component and improving the cooling performance. .

上記目的を達成するため、本発明は、内部に冷却流体が流通する放熱部と該放熱部により冷却される発熱体との間に熱伝導性を有する絶縁体が介装されて構成されるヒートシンクであって、前記放熱部には、凹凸部を有する受熱面が形成され、前記絶縁体には、前記受熱面に対する接触面に前記受熱面の凹凸部に整合する凹凸部が形成されており、前記放熱部の凹凸部と前記絶縁体の凹凸部とはロウ付け接合されていることを特徴とする。   In order to achieve the above object, the present invention provides a heat sink in which an insulator having thermal conductivity is interposed between a heat radiating portion through which a cooling fluid flows and a heat generating body cooled by the heat radiating portion. In the heat radiating portion, a heat receiving surface having a concavo-convex portion is formed, and in the insulator, a concavo-convex portion that matches the concavo-convex portion of the heat receiving surface is formed on a contact surface with respect to the heat receiving surface, The uneven portion of the heat radiating portion and the uneven portion of the insulator are brazed and joined.

そして、前記放熱部はアルミニウム製部材により形成され、前記絶縁体は窒化アルミニウム製部材により形成されていてもよい。   The heat radiating portion may be formed of an aluminum member, and the insulator may be formed of an aluminum nitride member.

また、前記絶縁体は、2種の金属部材を貼り合わせて形成されており、前記放熱部側の金属部材はアルミニウム製であり、前記発熱体側の金属部材は窒化アルミニウム製であってもよい。   Further, the insulator may be formed by bonding two kinds of metal members, the metal member on the heat radiating portion side may be made of aluminum, and the metal member on the heating element side may be made of aluminum nitride.

本発明によれば、放熱部と絶縁体にはそれぞれ整合する凹凸部が形成され、さらに、放熱部の凹凸部と絶縁体の凹凸部とがロウ付け接合されているため、放熱部と絶縁体の密着度を高めることができる。したがって、両部材間の接触熱抵抗を減少させることができ、ヒートシンクの冷却性能を高めることができる。   According to the present invention, the heat radiating portion and the insulator are formed with uneven portions that match each other, and the heat radiating portion and the uneven portion of the insulator are brazed and joined. The degree of adhesion can be increased. Therefore, the contact thermal resistance between both members can be reduced, and the cooling performance of the heat sink can be enhanced.

また、放熱部がアルミニウム製部材により形成され、絶縁体が窒化アルミニウム製部材により形成されている場合には、熱伝導性能の向上を図ることができるため、ヒートシンクの冷却性能をさらに高めることができる。   Further, when the heat radiating portion is formed of an aluminum member and the insulator is formed of an aluminum nitride member, the heat conduction performance can be improved, so that the heat sink cooling performance can be further enhanced. .

さらに、絶縁体が2種の金属部材を貼り合わせて形成され、放熱部側の金属部材がアルミニウム製で、発熱体側の金属部材が窒化アルミニウム製の場合には、絶縁体の凹凸部の加工が容易となると共に、放熱部の熱膨張をアルミニウムで吸収することができ、ヒートシンクの割れを防止することができる等、種々の優れた効果を得ることができる。   Furthermore, when the insulator is formed by bonding two kinds of metal members, the metal member on the heat radiating portion side is made of aluminum, and the metal member on the heat generating portion side is made of aluminum nitride, the uneven portion of the insulator is processed. While becoming easy, the thermal expansion of a thermal radiation part can be absorbed with aluminum, and various outstanding effects, such as being able to prevent the crack of a heat sink, can be acquired.

以下、図面を参照しつつ、本発明の実施の形態について説明する。ここで、図1は本実施の形態に係るヒートシンクを示す分解斜視図、図2は本実施の形態に係るヒートシンクの別の例を部分的に示す断面図である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Here, FIG. 1 is an exploded perspective view showing a heat sink according to the present embodiment, and FIG. 2 is a sectional view partially showing another example of the heat sink according to the present embodiment.

本実施の形態に係るヒートシンクは、内部に冷却流体が流通する放熱部1と、放熱部1により冷却される電子部品等の発熱体2との間に介装される電気的に絶縁された絶縁体3とから概略構成されている。   The heat sink according to the present embodiment has an electrically insulated insulation interposed between a heat radiating portion 1 in which a cooling fluid flows and a heat generating body 2 such as an electronic component cooled by the heat radiating portion 1. The body 3 is schematically configured.

放熱部1は、熱伝導率の高い(200W/m・K程度)アルミニウム製のプレート部材4,5の外周縁部6,7同士を重合し固定することにより扁平箱状に形成され、内部には冷却流体用流路8が形成されている。   The heat radiating part 1 is formed in a flat box shape by superposing and fixing the outer peripheral edge parts 6 and 7 of the aluminum plate members 4 and 5 having high thermal conductivity (about 200 W / m · K), A cooling fluid flow path 8 is formed.

一方のプレート部材4の冷却流体用流路8に接する面は放熱面9として機能し、この放熱面9には、ヘリンボーン状を成す凹凸部10が形成されている。そして、この放熱面10の一端部には、入口孔11が穿設され、入口孔11に冷却流体入口管12が接続されている。   The surface of the one plate member 4 in contact with the cooling fluid flow path 8 functions as a heat radiating surface 9, and the heat radiating surface 9 is formed with a herringbone-shaped uneven portion 10. An inlet hole 11 is formed at one end of the heat radiating surface 10, and a cooling fluid inlet pipe 12 is connected to the inlet hole 11.

また、他方のプレート部材5の冷却流体用流路8に接する面は受熱面13として機能し、この受熱面13には、放熱面9の凹凸部10と逆向きにヘリンボーン状を成す凹凸部14が形成されている。そして、この受熱面13の他端部には、出口孔(図示省略)が穿設され、該出口孔に冷却流体出口管16が接続されている。   Further, the surface of the other plate member 5 that is in contact with the cooling fluid flow path 8 functions as a heat receiving surface 13, and the heat receiving surface 13 has an uneven portion 14 having a herringbone shape opposite to the uneven portion 10 of the heat radiating surface 9. Is formed. The other end of the heat receiving surface 13 is provided with an outlet hole (not shown), and a cooling fluid outlet pipe 16 is connected to the outlet hole.

絶縁体3は、熱伝導率の高い(170〜180W/m・K程度或いはそれ以上)窒化アルミニウム製であり、複数(図1では28個)の矩形ブロックにより構成されている。そして、絶縁体3において放熱部1の受熱面13に対向する面は受熱面13に対する接触面17として機能し、この接触面17には、受熱面13の凹凸部14に整合する形状を成す凹凸部18が形成されており、この凹凸部18と受熱面13の凹凸部14とはロウ付け接合されている。また、絶縁体3の接触面17の反対側の面は電子部品等の発熱体2に対する接触面19として機能し、この接触面19は電子部品等の発熱体2が密着可能なように平坦に形成されている。   The insulator 3 is made of aluminum nitride having a high thermal conductivity (about 170 to 180 W / m · K or more), and is composed of a plurality (28 in FIG. 1) of rectangular blocks. The surface of the insulator 3 that faces the heat receiving surface 13 of the heat radiating portion 1 functions as a contact surface 17 with respect to the heat receiving surface 13, and the contact surface 17 has unevenness that forms a shape that matches the uneven portion 14 of the heat receiving surface 13. A portion 18 is formed, and the uneven portion 18 and the uneven portion 14 of the heat receiving surface 13 are brazed and joined. In addition, the surface opposite to the contact surface 17 of the insulator 3 functions as a contact surface 19 for the heating element 2 such as an electronic component, and the contact surface 19 is flat so that the heating element 2 such as an electronic component can be in close contact. Is formed.

このように構成されたヒートシンクにおいて、冷却流体は、冷却流体入口管12及び入口孔11から放熱部1の内部に流入し、凹凸部10,14により十分に攪拌されながら、冷却流体用流通路8の全域に渡って均等に流通する。そして、この冷却流体は、受熱面13に密着された絶縁体3を介して、この絶縁体3の接触面19に密着された発熱体2から熱を吸収した後、前記出口孔及び冷却流体出口管16を通って、外部に流出する。   In the heat sink configured as described above, the cooling fluid flows into the heat radiating portion 1 from the cooling fluid inlet pipe 12 and the inlet hole 11 and is sufficiently stirred by the uneven portions 10 and 14, while flowing the cooling fluid flow passage 8. It distributes evenly over the whole area. The cooling fluid absorbs heat from the heating element 2 that is in close contact with the contact surface 19 of the insulator 3 via the insulator 3 that is in close contact with the heat receiving surface 13, and then the outlet hole and the cooling fluid outlet. It flows out through the pipe 16 to the outside.

この時、放熱部1と絶縁体3が熱伝導率の高い材質から形成されていると共に、放熱部1の受熱面13と絶縁体3の接触面17とは各凹凸部14,18を介してロウ付け接合により密着し、さらに、絶縁体3の接触面19は平坦に形成されて発熱体2と密着しているため、各部材間の接触熱抵抗を減少させることができる。したがって、冷却流体は発熱体2から効率よく吸熱し、ヒートシンクの冷却性能を確実に高めることができる。   At this time, the heat dissipating part 1 and the insulator 3 are formed of a material having high thermal conductivity, and the heat receiving surface 13 of the heat dissipating part 1 and the contact surface 17 of the insulator 3 are connected via the concave and convex parts 14 and 18. Further, since the contact surface 19 of the insulator 3 is formed flat and is in close contact with the heating element 2, the contact thermal resistance between the members can be reduced. Therefore, the cooling fluid efficiently absorbs heat from the heating element 2, and the cooling performance of the heat sink can be reliably improved.

なお、上記した各実施の形態において、絶縁体3は窒化アルミニウム製としているが、これは単なる例示に過ぎず、絶縁体3は、熱伝導率の高い他の材質製であってもよく、例えば、図3に示すように、2種の金属部材20,21を貼り合わせて形成し、放熱部1側の金属部材20をアルミニウム製とし、発熱体2側の金属部材21を窒化アルミニウム製としてもよい。そして、この場合には、放熱部1側に加工性の良いアルミニウムを使用しているため、凹凸部18の加工が容易となると共に、発熱体2側に熱膨張率の小さい窒化アルミニウムを使用しているため、放熱部1の熱膨張を吸収することができ、ヒートシンクの割れを防止することができる。   In each of the above-described embodiments, the insulator 3 is made of aluminum nitride. However, this is merely an example, and the insulator 3 may be made of another material having high thermal conductivity. As shown in FIG. 3, the two metal members 20 and 21 are bonded together, the metal member 20 on the heat radiating portion 1 side is made of aluminum, and the metal member 21 on the heating element 2 side is made of aluminum nitride. Good. In this case, since aluminum having good workability is used on the heat radiating portion 1 side, the uneven portion 18 is easily processed, and aluminum nitride having a low thermal expansion coefficient is used on the heating element 2 side. Therefore, the thermal expansion of the heat radiating part 1 can be absorbed, and the heat sink can be prevented from cracking.

また、上記した実施の形態において、各プレート部材4,5の凹凸部10,14はヘリンボーン状に形成されているが、凹凸部10,14は、ディンプル形状等、他の形状を成していてもよい。   In the above-described embodiment, the uneven portions 10 and 14 of the plate members 4 and 5 are formed in a herringbone shape, but the uneven portions 10 and 14 have other shapes such as a dimple shape. Also good.

さらに、上記実施の形態では、冷却流体用流路8が1パスの場合について説明したが、例えば、プレート部材4,5の間に冷却流体通過孔を備えた中間プレートを介装し、2パスの冷却流体用流路が形成されるように構成することもできる。   Further, in the above-described embodiment, the case where the cooling fluid flow path 8 has one path has been described. For example, an intermediate plate having a cooling fluid passage hole is interposed between the plate members 4 and 5, and two paths The cooling fluid flow path can also be formed.

本発明の実施の形態に係るヒートシンクを示す分解斜視図である。It is a disassembled perspective view which shows the heat sink which concerns on embodiment of this invention. 本発明の実施の形態に係るヒートシンクを部分的に示す断面図である。It is sectional drawing which shows partially the heat sink which concerns on embodiment of this invention. 本発明の実施の形態に係るヒートシンクの別の例を部分的に示す断面図である。It is sectional drawing which shows partially another example of the heat sink which concerns on embodiment of this invention.

符号の説明Explanation of symbols

1 放熱部
2 発熱体
3 絶縁体
13 受熱面
14 凹凸部
17 接触面
18 凹凸部
20 金属部材
21 金属部材
DESCRIPTION OF SYMBOLS 1 Heat radiation part 2 Heat generating body 3 Insulator 13 Heat receiving surface 14 Irregular part 17 Contact surface 18 Irregular part 20 Metal member 21 Metal member

Claims (2)

内部に冷却流体が流通する放熱部と該放熱部により冷却される発熱体との間に熱伝導性を有する絶縁体が介装されて構成される電子部品冷却用のヒートシンクであって、
前記放熱部には、凹凸部を有する受熱面が形成され、前記絶縁体には、前記受熱面に対する接触面に前記受熱面の凹凸部に整合する凹凸部が形成されており、前記放熱部の凹凸部と前記絶縁体の凹凸部とはロウ付け接合されていることを特徴とするヒートシンク。
A heat sink for cooling an electronic component configured by interposing an insulator having thermal conductivity between a heat radiating portion in which a cooling fluid flows and a heat generating body cooled by the heat radiating portion,
The heat radiating portion is formed with a heat receiving surface having a concavo-convex portion, and the insulator is formed with a concavo-convex portion that matches the concavo-convex portion of the heat receiving surface on the contact surface with the heat receiving surface, A heat sink, wherein the uneven portion and the uneven portion of the insulator are joined by brazing.
前記放熱部はアルミニウム製部材により形成され、前記絶縁体は窒化アルミニウム製部材により形成されている請求項1に記載のヒートシンク。
The heat sink according to claim 1, wherein the heat radiating portion is formed of an aluminum member, and the insulator is formed of an aluminum nitride member.
JP2006030592A 2006-02-08 2006-02-08 heatsink Expired - Fee Related JP4834413B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006030592A JP4834413B2 (en) 2006-02-08 2006-02-08 heatsink

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006030592A JP4834413B2 (en) 2006-02-08 2006-02-08 heatsink

Publications (2)

Publication Number Publication Date
JP2007214231A JP2007214231A (en) 2007-08-23
JP4834413B2 true JP4834413B2 (en) 2011-12-14

Family

ID=38492415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006030592A Expired - Fee Related JP4834413B2 (en) 2006-02-08 2006-02-08 heatsink

Country Status (1)

Country Link
JP (1) JP4834413B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61226946A (en) * 1985-04-01 1986-10-08 Hitachi Ltd Cooling device for integrated circuit chip
JP2001237355A (en) * 2000-02-23 2001-08-31 Norio Watanabe Heat transmitting method, heat sink and manufacturing method therefor
JP2001308245A (en) * 2000-04-25 2001-11-02 Denso Corp Refrigerant cooling type both-face cooling semiconductor device
JP2002064168A (en) * 2000-08-17 2002-02-28 Toshiba Eng Co Ltd Cooling device, manufacturing method of cooling device, and semiconductor device

Also Published As

Publication number Publication date
JP2007214231A (en) 2007-08-23

Similar Documents

Publication Publication Date Title
JP4867793B2 (en) Semiconductor device
JP4945319B2 (en) Semiconductor device
US7200006B2 (en) Compliant thermal interface for electronic equipment
JP5684228B2 (en) heatsink
JP5112101B2 (en) Semiconductor package
WO2018076646A1 (en) Cooling device and manufacturing method therefor
JP2006245479A (en) Device for cooling electronic component
US20090314471A1 (en) Heat pipe type heat sink and method of manufacturing the same
TW201326719A (en) Heat-dissipating device
JP6879722B2 (en) Thermoelectric power generation system and vehicle exhaust manifold including it
JP2011091088A (en) Heat radiation structure of heating element and semiconductor device using the heat radiation structure
JP2008028283A (en) Heat conductor
TWM441144U (en) Water-cooling type heat dissipating device
JP6003109B2 (en) Power module
JPWO2016042903A1 (en) Semiconductor module
TWI745774B (en) Remote heat exchanging module and composite thin-layered heat conduction structure
JP4834413B2 (en) heatsink
JP2011018807A (en) Power module
TW201306726A (en) Heat sink assembly
US20090151908A1 (en) Cooling Module
JP2013165117A (en) Semiconductor device
TWI656828B (en) Heat sink
TWI391087B (en) Expansion card assembly and heat sink thereof
JP3107366U (en) Combined heat dissipation device
TWM636984U (en) Power generating structure using graphite composite substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110526

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110705

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110913

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110926

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees