JP4825081B2 - Method for producing sintered boron nitride - Google Patents

Method for producing sintered boron nitride Download PDF

Info

Publication number
JP4825081B2
JP4825081B2 JP2006229484A JP2006229484A JP4825081B2 JP 4825081 B2 JP4825081 B2 JP 4825081B2 JP 2006229484 A JP2006229484 A JP 2006229484A JP 2006229484 A JP2006229484 A JP 2006229484A JP 4825081 B2 JP4825081 B2 JP 4825081B2
Authority
JP
Japan
Prior art keywords
boron nitride
acrylic resin
mass
sintered body
nitride sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006229484A
Other languages
Japanese (ja)
Other versions
JP2008050221A (en
Inventor
元晴 深澤
誠 保科
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2006229484A priority Critical patent/JP4825081B2/en
Publication of JP2008050221A publication Critical patent/JP2008050221A/en
Application granted granted Critical
Publication of JP4825081B2 publication Critical patent/JP4825081B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、窒化ホウ素焼結体、その製造方法及び用途に関する。 The present invention relates to a boron nitride sintered body, a manufacturing method thereof, and an application.

近年、例えば窒化ガリウム(GaN)を用いたLEDの普及が急速に進んでおり、信号機、照明、携帯カメラのライトなどに使用されている。GaNの製造には高温のアンモニアガスの使用が不可欠であるので、そのガスに対して耐食性のある例えば窒化ホウ素焼結体を治具として用いることが提案されている。しかし、窒化ホウ素焼結体の熱伝導率が大きいので、例えば炉の内壁のように、断熱を必要とする用途には適用することができなかった。窒化ホウ素を断熱材用途として用いる場合は、窒化ホウ素製繊維とするか(特許文献1)、窒化ホウ素粉体間に空気を含ませること(特許文献2)が提案されている。しかしながら、窒化ホウ素製繊維を製造することは極めて高度な技術であり、また粉体間に空気を含ませる技術には、粉末の飛散や不純物が混入しGaNに悪影響を及ぼす恐れがあった。
特開2002−212549号公報 特開2000−16873号公報
In recent years, for example, LEDs using gallium nitride (GaN) have been rapidly spread and used for traffic lights, lighting, portable camera lights, and the like. Since the use of high-temperature ammonia gas is indispensable for the production of GaN, it has been proposed to use, for example, a boron nitride sintered body having corrosion resistance against the gas as a jig. However, since the thermal conductivity of the boron nitride sintered body is large, it cannot be applied to an application requiring heat insulation, such as an inner wall of a furnace. When boron nitride is used as a heat insulating material, it is proposed to use boron nitride fiber (Patent Document 1) or to include air between boron nitride powders (Patent Document 2). However, manufacturing a boron nitride fiber is an extremely advanced technique, and the technique of including air between powders has the potential to adversely affect GaN due to powder scattering and impurities.
JP 2002-212549 A JP 2000-16873 A

本発明の目的は、高温アンモニアガスに対する耐食性に優れ、しかも耐熱性があり、低熱伝導性である窒化ホウ素焼結体と、それを用いた半導体製造装置用の断熱部材を提供するものである。 An object of the present invention is to provide a boron nitride sintered body that is excellent in corrosion resistance against high-temperature ammonia gas, has heat resistance, and has low thermal conductivity, and a heat insulating member for a semiconductor manufacturing apparatus using the boron nitride sintered body.

本発明は、窒化ホウ素粉末100質量部に対しアクリル系樹脂10〜40質量部を含む混合物を成型後、アクリル系樹脂を除去して嵩密度が0.9〜1.2g/cmIn the present invention, after molding a mixture containing 10 to 40 parts by mass of acrylic resin with respect to 100 parts by mass of boron nitride powder, the acrylic resin is removed and the bulk density is 0.9 to 1.2 g / cm. 3 の多孔質成形体とした後、常圧焼結することを特徴とする質量と外寸より算出された嵩密度が0.7〜0.9g/cmThe bulk density calculated from the mass and the outer dimension is 0.7 to 0.9 g / cm. 3 、JIS R 1611のレーザーフラッシュ法により測定された熱伝導率が20W/m・K以下である窒化ホウ素焼結体の製造方法である。, A method for producing a boron nitride sintered body having a thermal conductivity of 20 W / m · K or less measured by a laser flash method of JIS R 1611.

本発明によれば、高温アンモニアガスに対する耐食性に優れ、しかも耐熱性があり、低熱伝導性である窒化ホウ素焼結体と、それを用いた半導体製造装置用の断熱部材が提供される。 ADVANTAGE OF THE INVENTION According to this invention, the boron nitride sintered compact which is excellent in the corrosion resistance with respect to high temperature ammonia gas, is heat resistant, and is low thermal conductivity, and the heat insulation member for semiconductor manufacturing apparatuses using the same are provided.

窒化ホウ素焼結体の嵩密度が0.7g/cm未満では、窒化ホウ素焼結体の強度が小さいため、例えば半導体製造装置用断熱部材として、反応炉内壁に窒化ホウ素焼結体を貼り付ける際に、割れや欠け等が生じる恐れがあり、また保持性(断熱材の施工時から断熱材が炉壁から剥離するまでの期間)も低下する。嵩密度が0.9g/cmをこえると、閉気孔量が多くなるため、加熱と冷却の繰り返しにより、閉気孔部にクラックが入り、封入したガスが噴出する恐れがある。閉気孔部が多くなると、封入されているガス量も多くなるため、GaNの発光特性に悪影響を及ぼす恐れがある。一方、熱伝導率が20W/m・Kをこえると、半導体製造装置用断熱部材としての断熱効果が不十分となる。その結果、反応炉内の温度が低下し、発光特性に優れたGaNを得ることが困難となる。 When the bulk density of the boron nitride sintered body is less than 0.7 g / cm 3 , the boron nitride sintered body has low strength. For example, the boron nitride sintered body is attached to the inner wall of the reaction furnace as a heat insulating member for a semiconductor manufacturing apparatus. At this time, there is a risk that cracks, chips, etc. may occur, and retention (a period from when the heat insulating material is applied until the heat insulating material is peeled off from the furnace wall) also decreases. When the bulk density exceeds 0.9 g / cm 3 , the amount of closed pores increases, so that the closed pores may crack due to repeated heating and cooling, and the enclosed gas may be ejected. If the number of closed pores increases, the amount of gas enclosed increases, which may adversely affect the light emission characteristics of GaN. On the other hand, when the thermal conductivity exceeds 20 W / m · K, the heat insulating effect as a heat insulating member for a semiconductor manufacturing apparatus becomes insufficient. As a result, the temperature in the reaction furnace decreases, making it difficult to obtain GaN with excellent light emission characteristics.

嵩密度は、アクリル系樹脂の使用量を変えて焼結前の多孔質成形体の密度を制御すること、窒化ホウ素粉末中の揮発性物質量を制御すること、成型圧力を制御すること、などによって調製することができる。 The bulk density is to control the density of the porous molded body before sintering by changing the amount of acrylic resin used, to control the amount of volatile substances in the boron nitride powder, to control the molding pressure, etc. Can be prepared.

本発明に用いるアクリル系樹脂とは、アクリル酸、メタアクリル酸、アクリル酸エステル、メタアクリル酸エステルの共重合体などのことであり、これには大日本インキ社製商品名「NCB−121」、「NCB−156」、ライオン社製商品名「AQ−3300」、「AQ−2559」、日本触媒社製商品名「アクリセット」、中央理化工業社製商品名「リカボンド」、ユケン工業社製商品名「セランダー」、共栄社化学社製商品名「オリコックス」などの市販品がある。本発明において、種々ある有機結合材の中から、アクリル系樹脂を選んだ理由は、400〜500℃でほぼ完全に分解する良好な熱分解性を示すこと、樹脂そのものに分散剤としての機能があるため分散剤などを特に使用しなくても窒化ホウ素粉末との混合性が良好になること、吸湿性が少ないため乾燥後の原料粉末の取り扱いが容易であるため、などである。 The acrylic resin used in the present invention is acrylic acid, methacrylic acid, acrylic acid ester, a copolymer of methacrylic acid ester, and the like, and for this, trade name “NCB-121” manufactured by Dainippon Ink Co., Ltd. , “NCB-156”, product names “AQ-3300”, “AQ-2559” manufactured by Lion Corporation, product names “Akreset” manufactured by Nippon Shokubai Co., Ltd., product names “Rikabond” manufactured by Chuo Rika Kogyo Co., Ltd., manufactured by Yuken Industry Co., Ltd. There are commercial products such as “Serander” under the trade name and “Oricox” under the name of Kyoeisha Chemical Co. In the present invention, the reason why acrylic resin is selected from various organic binders is that it exhibits good thermal decomposability that almost completely decomposes at 400 to 500 ° C., and the resin itself has a function as a dispersant. Therefore, the mixing with the boron nitride powder is good without using a dispersant or the like, and the raw material powder after drying is easy to handle because of its low hygroscopicity.

アクリル系樹脂はそのまま用いても良いが、エマルジョン又は溶液の形態で用いることが好ましく、その場合には成型する前に溶剤を乾燥除去しておくことが望ましい。溶剤としては、水や、例えばエタノール、メタノール等のアルコールなどが使用される。アクリル系樹脂の使用量は、窒化ホウ素粉末100質量部に対し固形分として10〜40質量部、特に15〜30質量部の割合であることが好ましい。40質量部よりも多いと、窒化ホウ素焼結体の嵩密度が0.7g/cmよりも小さくなり、10質量部よりも少ないと、嵩密度が0.9g/cmよりも大きくなる。 The acrylic resin may be used as it is, but is preferably used in the form of an emulsion or a solution. In that case, it is desirable to dry and remove the solvent before molding. As the solvent, water or alcohol such as ethanol or methanol is used. The amount of the acrylic resin used is preferably 10 to 40 parts by mass, particularly 15 to 30 parts by mass as a solid content with respect to 100 parts by mass of the boron nitride powder. When the amount is more than 40 parts by mass, the bulk density of the boron nitride sintered body is smaller than 0.7 g / cm 3 , and when the amount is less than 10 parts by mass, the bulk density is larger than 0.9 g / cm 3 .

窒化ホウ素粉末は、市販品で十分であり特に制約はない。窒化ホウ素粉末中の揮発性物質の含有量が0.01〜0.3質量%であるものが好ましい。ここで、揮発性物質とは、ホウ酸、及びホウ酸化合物のことである。揮発性物質の含有量が0.01質量%未満であると、多孔質成形体の低密度化が不十分となる恐れがあり、0.3質量%をこえると窒化ホウ素焼結体にクラックやワレ等が発生する恐れがある。揮発性物質の含有量の調整は、高めたいときにはホウ酸及び/又はホウ酸化合物を添加すればよく、低めたいときには、窒素、アルゴン等の不活性雰囲気気中、800〜1500℃で加熱すればよい。 As the boron nitride powder, a commercially available product is sufficient and there is no particular limitation. The volatile substance content in the boron nitride powder is preferably 0.01 to 0.3% by mass. Here, volatile substances are boric acid and boric acid compounds. If the content of the volatile substance is less than 0.01% by mass, the density of the porous molded body may be insufficiently reduced. If the content exceeds 0.3% by mass, the boron nitride sintered body may be cracked or cracked. There is a risk of cracking. To adjust the content of volatile substances, boric acid and / or a boric acid compound may be added when it is desired to be increased, and when it is desired to be lowered, heating is performed at 800 to 1500 ° C. in an inert atmosphere such as nitrogen or argon. Good.

本発明の窒化ホウ素焼結体は、窒化ホウ素粉末とアクリル系樹脂を含む混合物を成型した後、アクリル系樹脂を除去して多孔質成形体となし、それを焼結することによって製造することができる。 The boron nitride sintered body of the present invention can be manufactured by molding a mixture containing boron nitride powder and an acrylic resin, removing the acrylic resin to form a porous molded body, and sintering the mixture. it can.

窒化ホウ素粉末とアクリル系樹脂の混合には、例えばジューサーミキサー、ヘンシェルミキサー、Vブレンダー、ボールミル等の混合装置が使用される。混合にあたっては、例えばポリエチレングリコール、グリセリン等の可塑剤、例えばポリオキシエチレンアルキルエーテル、ポリオキシエチレン脂肪酸エステル等の離型剤を、窒化ホウ素粉末100質量部に対し最大5質量部まで添加することができる。 For mixing the boron nitride powder and the acrylic resin, for example, a mixing device such as a juicer mixer, a Henschel mixer, a V blender, or a ball mill is used. In mixing, for example, a plasticizer such as polyethylene glycol or glycerin, for example, a release agent such as polyoxyethylene alkyl ether or polyoxyethylene fatty acid ester may be added up to 5 parts by mass with respect to 100 parts by mass of boron nitride powder. it can.

混合物の成型は、乾式プレス成形、冷間等方圧プレス成形法(CIP法)等が用いられる。成形圧力は、アクリル系樹脂除去後の多孔質成形体の密度を0.9〜1.2g/cmとするため、20〜50MPa、特に25〜40MPaの範囲で選択することが望ましい。成型圧力が20MPa未満では、後でアクリル系樹脂を除去した多孔質成形体の密度が0.9g/cm未満になりやすく、また50MPaをこえると、アクリル系樹脂の染みだしによって多孔質成形体の密度が1.2g/cmよりも大きくなる恐れがある。 For the molding of the mixture, a dry press molding, a cold isostatic press molding method (CIP method) or the like is used. The molding pressure is preferably selected in the range of 20 to 50 MPa, particularly 25 to 40 MPa in order to adjust the density of the porous molded body after removing the acrylic resin to 0.9 to 1.2 g / cm 3 . When the molding pressure is less than 20 MPa, the density of the porous molded body from which the acrylic resin is removed later tends to be less than 0.9 g / cm 3 , and when the molding pressure exceeds 50 MPa, the porous molded body is caused by the oozing of the acrylic resin. There is a possibility that the density of the above becomes larger than 1.2 g / cm 3 .

アクリル系樹脂の除去は、例えば窒素ガス、空気等の気流中、350〜700℃で3〜12時間加熱することによって行うことができる。アクリル系樹脂として、エマルジョン又は溶液を用いたときは、溶剤の除去と同時にアクリル系樹脂の除去を行うこともできる。この段階で密度が0.9〜1.2g/cmとの多孔質成形体となる。 The acrylic resin can be removed by heating at 350 to 700 ° C. for 3 to 12 hours in an air flow such as nitrogen gas or air. When an emulsion or a solution is used as the acrylic resin, the acrylic resin can be removed simultaneously with the removal of the solvent. At this stage, a porous molded body having a density of 0.9 to 1.2 g / cm 3 is obtained.

ついで、多孔質成形体は窒素、アルゴンなどの非酸化性雰囲気下、温度1800〜2300℃、特に1900〜2200℃で常圧焼結されて、嵩密度が0.7〜0.9g/cm、熱伝導率が20W/m・K以下の窒化ホウ素焼結体が製造される。焼結温度が1800℃未満であると、多孔質成形体中の揮発性物質を十分に除去することができなり、窒化ホウ素焼結体の嵩密度が0.9g/cmをこえる恐れがある。また、焼結温度が2300℃をこえると、窒化ホウ素が分解する恐れがある。 Next, the porous molded body is sintered under normal pressure at a temperature of 1800 to 2300 ° C., particularly 1900 to 2200 ° C. in a non-oxidizing atmosphere such as nitrogen and argon, and a bulk density of 0.7 to 0.9 g / cm 3. A boron nitride sintered body having a thermal conductivity of 20 W / m · K or less is manufactured. When the sintering temperature is less than 1800 ° C., volatile substances in the porous molded body cannot be sufficiently removed, and the bulk density of the boron nitride sintered body may exceed 0.9 g / cm 3. . Further, when the sintering temperature exceeds 2300 ° C., boron nitride may be decomposed.

熱伝導率は、窒化ホウ素粉末の粒子径、常圧焼結の保持時間などによって調整することができる。窒化ホウ素粉末の粒子径が大きくなると熱伝導率が高くなりすぎるので、例えばボールミルなどにより原料粉末をあらかじめ粉砕しておき、平均粒径を15μm以下、特に10μm以下に調整しておくことが好ましい。また、焼結温度1800〜2300℃における保持時間が長くなると、窒化ホウ素粒子の成長が過大となって熱伝導率が高くなりすぎ、一方、保持時間が短すぎると、焼結が不足し強度が低下する恐れがあるので、保持時間は1〜5時間とすることが好ましい。 The thermal conductivity can be adjusted by the particle size of the boron nitride powder, the holding time of atmospheric pressure sintering, and the like. Since the thermal conductivity becomes too high when the particle size of the boron nitride powder becomes large, it is preferable to pulverize the raw material powder in advance by, for example, a ball mill and adjust the average particle size to 15 μm or less, particularly 10 μm or less. Further, if the holding time at a sintering temperature of 1800 to 2300 ° C. becomes long, the growth of boron nitride particles becomes excessive and the thermal conductivity becomes too high. On the other hand, if the holding time is too short, the sintering becomes insufficient and the strength becomes high. Since there exists a possibility that it may fall, it is preferable that holding time shall be 1 to 5 hours.

実施例1
市販の六方晶窒化ホウ素粉末(電気化学工業社製商品名「デンカボロンナイトライド」グレード名「SGPS」、比表面積:3m/g、平均粒径:13μm、B含有量:0.01質量%)100gと、市販のアクリル樹脂エマルジョン(大日本インキ社製商品名「NCB−156」)を固形分として20gとをジューサーミキサーで混合し、120℃で10時間乾燥した00。得られた混合粉末をプレス成型機にて40MPaで成型し、空気気流中、温度450℃で6時間保持してアクリル樹脂を除去し、多孔質成形体(密度が1.1g/cm)とした。これを窒素雰囲気下、温度2000℃で3時間の常圧焼結を行った。その結果、嵩密度が0.78g/cm、熱伝導率が10.5W/m・Kの窒化ホウ素焼結体が得られた。
Example 1
Commercially available hexagonal boron nitride powder (trade name “DENCABORON NITRIDE” manufactured by Denki Kagaku Kogyo Co., Ltd., grade name “SGPS”, specific surface area: 3 m 2 / g, average particle size: 13 μm, B 2 O 3 content: 0.00 (01% by mass) 100 g and a commercially available acrylic resin emulsion (trade name “NCB-156” manufactured by Dainippon Ink Co., Ltd.) as a solid content and 20 g were mixed with a juicer mixer and dried at 120 ° C. for 10 hours 00. The obtained mixed powder was molded at 40 MPa with a press molding machine, held in an air stream at a temperature of 450 ° C. for 6 hours to remove the acrylic resin, and a porous molded body (density: 1.1 g / cm 3 ). did. This was sintered under normal pressure at a temperature of 2000 ° C. for 3 hours in a nitrogen atmosphere. As a result, a boron nitride sintered body having a bulk density of 0.78 g / cm 3 and a thermal conductivity of 10.5 W / m · K was obtained.

実施例2
アクリル樹脂エマルジョンを固形分として40gとしたこと以外は、実施例1と同様にして窒化ホウ素焼結体を製造した。その結果、嵩密度が0.71g/cm、熱伝導率が9.2W/m・Kの窒化ホウ素焼結体が得られた。
Example 2
A boron nitride sintered body was produced in the same manner as in Example 1 except that the acrylic resin emulsion was 40 g in solid content. As a result, a boron nitride sintered body having a bulk density of 0.71 g / cm 3 and a thermal conductivity of 9.2 W / m · K was obtained.

実施例3
窒化ホウ素粉末として、電気化学工業社製六方晶窒化ホウ素 商品名「デンカボロンナイトライド」グレード名「AP650」 比表面積:33m/g、平均粒径:7μm、B含有量:0.28質量%)としたこと以外は、実施例1と同様にして窒化ホウ素焼結体を製造した。その結果、嵩密度が0.85g/cm、熱伝導率が7W/m・Kであった。
Example 3
As boron nitride powder, hexagonal boron nitride manufactured by Denki Kagaku Kogyo Co., Ltd. Trade name “DENCABORON NITRIDE” Grade name “AP650” Specific surface area: 33 m 2 / g, average particle size: 7 μm, B 2 O 3 content: 0. A boron nitride sintered body was produced in the same manner as in Example 1 except that the content was 28% by mass). As a result, the bulk density was 0.85 g / cm 3 and the thermal conductivity was 7 W / m · K.

実施例4
アクリル樹脂エマルジョンの変わりに市販のアクリル樹脂の水溶液(ライオン社製商品名「AQ−3300」)を固形分として10g用いたこと以外は、実施例1と同様にして窒化ホウ素焼結体を製造した。その結果、嵩密度が0.84g/cm、熱伝導率が13.0W/m・Kであった。
Example 4
A boron nitride sintered body was produced in the same manner as in Example 1 except that 10 g of a commercially available aqueous solution of acrylic resin (trade name “AQ-3300” manufactured by Lion Corporation) was used as the solid content instead of the acrylic resin emulsion. . As a result, the bulk density was 0.84 g / cm 3 and the thermal conductivity was 13.0 W / m · K.

比較例1
アクリル樹脂エマルジョンの使用量を固形分として8g(窒化ホウ素粉末100質量部に対し8質量部)に変更したこと以外は、実施例1と同様にして窒化ホウ素焼結体を製造した。その結果、嵩密度が0.92g/cm、熱伝導率は25W/m・Kであった。
Comparative Example 1
A boron nitride sintered body was produced in the same manner as in Example 1, except that the amount of the acrylic resin emulsion used was changed to 8 g (8 parts by mass with respect to 100 parts by mass of boron nitride powder) as the solid content. As a result, the bulk density was 0.92 g / cm 3 and the thermal conductivity was 25 W / m · K.

比較例2
有機結合材の量を固形分として45gとしたこと以外は、実施例1と同様にして窒化ホウ素焼結体を製造した。その結果、窒化ホウ素焼結体は破損しており、密度は0.68g/cm。焼結体は非常に脆く、熱伝導率は測定できなかった。
Comparative Example 2
A boron nitride sintered body was produced in the same manner as in Example 1 except that the amount of the organic binder was 45 g as a solid content. As a result, the boron nitride sintered body is broken and the density is 0.68 g / cm 3 . The sintered body was very brittle and the thermal conductivity could not be measured.

比較例3
アクリル樹脂エマルジョンの変わりに一般的な有機結合材として粉末状メチルセルロース(信越化学工業社製商品名「メトローズSH」)の10gを窒化ホウ素粉末に混合し、さらに水40gに混合して用いたこと以外は、実施例1と同様にして窒化ホウ素焼結体を製造した。その結果、窒化ホウ素焼結体には直径5mm程度の空孔が多数認められ、密度は0.80g/cmであった。貫通孔が多数存在したため、熱伝導率は測定できなかった。
Comparative Example 3
Aside from using 10 g of powdered methylcellulose (trade name “Metroze SH” manufactured by Shin-Etsu Chemical Co., Ltd.) as a general organic binder instead of acrylic resin emulsion, mixed with boron nitride powder and further mixed with 40 g of water. Produced a boron nitride sintered body in the same manner as in Example 1. As a result, a large number of pores having a diameter of about 5 mm were observed in the boron nitride sintered body, and the density was 0.80 g / cm 3 . Since there were many through holes, the thermal conductivity could not be measured.

熱伝導率は、市販の測定機(真空理工社製商品名「TC−7000」)を用い、試料厚みを2mmに機械加工し、JIS R 1611に準じレーザーフラッシュ法により測定した。また、嵩密度は、窒化ホウ素焼結体の外寸をノギスにより測定して体積を求め、電子天秤で求めた質量を体積で除すことで算出した。 The thermal conductivity was measured by a laser flash method according to JIS R 1611 using a commercially available measuring machine (trade name “TC-7000” manufactured by Vacuum Riko Co., Ltd.), machining the sample thickness to 2 mm. The bulk density was calculated by measuring the outer dimension of the boron nitride sintered body with calipers to determine the volume, and dividing the mass determined by the electronic balance by the volume.

つぎに、実施例、比較例で製造された窒化ホウ素焼結体が半導体製造装置用断熱部材としての適用可能性を評価するため、環状炉内に焼結体(40mmφ×10mm)を配置し、アンモニア気流中、1400℃で1時間加熱後、室温への冷却操作を5回繰り返した。実施例1〜4の窒化ホウ素焼結体には破損は認められなかったが、比較例1の窒化ホウ素焼結体では2回目に、比較例2、3の窒化ホウ素焼結体では1回目の操作によりクラックが発生し破損した。 Next, in order to evaluate the applicability of the boron nitride sintered bodies manufactured in Examples and Comparative Examples as a heat insulating member for a semiconductor manufacturing apparatus, a sintered body (40 mmφ × 10 mm) is arranged in an annular furnace, After heating at 1400 ° C. for 1 hour in an ammonia stream, the cooling operation to room temperature was repeated 5 times. No damage was observed in the boron nitride sintered bodies of Examples 1 to 4, but the second time for the boron nitride sintered body of Comparative Example 1 and the first time for the boron nitride sintered bodies of Comparative Examples 2 and 3. The operation caused a crack and was damaged.

Claims (1)

窒化ホウ素粉末100質量部に対しアクリル系樹脂10〜40質量部を含む混合物を成型後、アクリル系樹脂を除去して嵩密度が0.9〜1.2g/cm の多孔質成形体とした後、常圧焼結することを特徴とする質量と外寸より算出された嵩密度が0.7〜0.9g/cm、JIS R 1611のレーザーフラッシュ法により測定された熱伝導率が20W/m・K以下である窒化ホウ素焼結体の製造方法。 After molding a mixture containing 10 to 40 parts by mass of acrylic resin with respect to 100 parts by mass of boron nitride powder, the acrylic resin was removed to obtain a porous molded body having a bulk density of 0.9 to 1.2 g / cm 3 . Thereafter, the bulk density calculated from the mass and the outer dimension characterized by sintering under normal pressure is 0.7 to 0.9 g / cm 3 , and the thermal conductivity measured by the laser flash method of JIS R 1611 is 20 W. The manufacturing method of the boron nitride sintered compact which is below / m * K.
JP2006229484A 2006-08-25 2006-08-25 Method for producing sintered boron nitride Active JP4825081B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006229484A JP4825081B2 (en) 2006-08-25 2006-08-25 Method for producing sintered boron nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006229484A JP4825081B2 (en) 2006-08-25 2006-08-25 Method for producing sintered boron nitride

Publications (2)

Publication Number Publication Date
JP2008050221A JP2008050221A (en) 2008-03-06
JP4825081B2 true JP4825081B2 (en) 2011-11-30

Family

ID=39234607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006229484A Active JP4825081B2 (en) 2006-08-25 2006-08-25 Method for producing sintered boron nitride

Country Status (1)

Country Link
JP (1) JP4825081B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0617270B2 (en) * 1987-04-01 1994-03-09 工業技術院長 Boron nitride atmospheric pressure sintered body
JPS6445776A (en) * 1987-08-13 1989-02-20 Kawasaki Steel Co Production of boron nitride sintered form
JPH02296772A (en) * 1989-05-09 1990-12-07 Nec Corp Support for traveling-wave tube
JPH05294736A (en) * 1992-04-10 1993-11-09 Sumitomo Metal Mining Co Ltd Ceramic substrate material and its production
JP2934120B2 (en) * 1992-07-02 1999-08-16 信越化学工業株式会社 Pyrolytic boron nitride container
JP3942288B2 (en) * 1998-10-28 2007-07-11 電気化学工業株式会社 Method for producing setter material for firing ceramics
JP4542860B2 (en) * 2004-10-04 2010-09-15 大陽日酸株式会社 Vapor growth equipment

Also Published As

Publication number Publication date
JP2008050221A (en) 2008-03-06

Similar Documents

Publication Publication Date Title
JP2007197229A (en) High-thermal conductive silicon nitride substrate and method of manufacturing the same
JP2009173502A (en) POLYCRYSTAL MgO SINTERED COMPACT, METHOD FOR PRODUCING THE SAME, AND MgO TARGET FOR SPUTTERING
JP6623173B2 (en) Method for producing silicon carbide composite
CN105246860B (en) Ceramic sintered bodies, corrosion-resistant member, filter and the antihalation component constituted with it
JP6253554B2 (en) Composite refractory and method for producing the same
JP4825081B2 (en) Method for producing sintered boron nitride
JP4713166B2 (en) Aluminum nitride powder and method for producing the same
JP2006256940A (en) Method of manufacturing aluminum nitride powder
JP7282279B1 (en) Method for manufacturing boron nitride sintered body and boron nitride sintered body
JP6349100B2 (en) Alumina sintered body and manufacturing method thereof
JP2019011216A (en) Ceramic composition and its sintered body
JP4773744B2 (en) Method for producing aluminum nitride sintered body
JP5265859B2 (en) Aluminum nitride sintered body
JP6168518B2 (en) Crucible for metal deposition
JP5164792B2 (en) Manufacturing method of resin composition for molding
JP5230361B2 (en) Manufacturing method of resin composition for molding
JP2008074678A (en) Aluminum nitride slurry, and aluminum nitride granule, aluminum nitride formed body and aluminum nitride sintered compact obtained from the same
JP6355096B2 (en) Liquid repellent composite material
JP4142556B2 (en) Aluminum nitride sintered body, manufacturing method and use thereof
RU2498957C1 (en) COMPOSITE CERAMIC MATERIAL IN SiC-Al2O3 SYSTEM FOR HIGH-TEMPERATURE USE IN OXIDATIVE MEDIA
JP5398430B2 (en) Aluminum nitride sintered body and method for producing the same
JP2006240960A (en) High specific resistance silicon carbide sintered compact
JP2005145737A (en) Hexagonal boron nitride compact, and its manufacturing method and use
JP2005119925A (en) High-resistivity silicon carbide sintered compact
JP2023020603A (en) Sintered body, and component for semiconductor-manufacturing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110823

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110909

R150 Certificate of patent or registration of utility model

Ref document number: 4825081

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250