JP2005145737A - Hexagonal boron nitride compact, and its manufacturing method and use - Google Patents
Hexagonal boron nitride compact, and its manufacturing method and use Download PDFInfo
- Publication number
- JP2005145737A JP2005145737A JP2003382630A JP2003382630A JP2005145737A JP 2005145737 A JP2005145737 A JP 2005145737A JP 2003382630 A JP2003382630 A JP 2003382630A JP 2003382630 A JP2003382630 A JP 2003382630A JP 2005145737 A JP2005145737 A JP 2005145737A
- Authority
- JP
- Japan
- Prior art keywords
- boron nitride
- hexagonal boron
- powder
- compact
- sintered body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 title claims abstract description 72
- 229910052582 BN Inorganic materials 0.000 title claims abstract description 51
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 13
- 239000002245 particle Substances 0.000 claims abstract description 16
- 238000005452 bending Methods 0.000 claims abstract description 14
- 239000013078 crystal Substances 0.000 claims abstract description 11
- 238000005245 sintering Methods 0.000 claims abstract description 11
- 239000011812 mixed powder Substances 0.000 claims abstract description 6
- 238000005087 graphitization Methods 0.000 claims description 9
- 239000011230 binding agent Substances 0.000 claims description 8
- 239000012298 atmosphere Substances 0.000 claims description 4
- 230000001590 oxidative effect Effects 0.000 claims description 4
- 238000000462 isostatic pressing Methods 0.000 claims 1
- 239000000843 powder Substances 0.000 abstract description 21
- 238000010438 heat treatment Methods 0.000 abstract description 9
- 238000000465 moulding Methods 0.000 description 11
- 238000011049 filling Methods 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- 238000012856 packing Methods 0.000 description 7
- 239000002994 raw material Substances 0.000 description 7
- 238000002156 mixing Methods 0.000 description 6
- 230000007547 defect Effects 0.000 description 5
- 238000003475 lamination Methods 0.000 description 4
- 238000003825 pressing Methods 0.000 description 4
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 238000002425 crystallisation Methods 0.000 description 3
- 230000008025 crystallization Effects 0.000 description 3
- 238000010304 firing Methods 0.000 description 3
- 238000000634 powder X-ray diffraction Methods 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910004261 CaF 2 Inorganic materials 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- 238000010298 pulverizing process Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- ZTQSAGDEMFDKMZ-UHFFFAOYSA-N Butyraldehyde Chemical compound CCCC=O ZTQSAGDEMFDKMZ-UHFFFAOYSA-N 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000012777 electrically insulating material Substances 0.000 description 1
- -1 for example Substances 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 238000001513 hot isostatic pressing Methods 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- 230000002706 hydrostatic effect Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 238000010943 off-gassing Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
Landscapes
- Ceramic Products (AREA)
- Press-Shaping Or Shaping Using Conveyers (AREA)
Abstract
Description
本発明は、六方晶窒化硼素質成形体、その製造方法及び用途に関する。詳しくは、曲部におけるワレやクラック等の発生が起こりにくい六方晶窒化硼素質焼結体を得るための六方晶窒化硼素質成形体とその製造方法に関し、更には曲部を有する六方晶窒化硼素質焼結体に関するものである。
The present invention relates to a hexagonal boron nitride molded body, a method for producing the same, and an application thereof. More specifically, the present invention relates to a hexagonal boron nitride molded body for obtaining a hexagonal boron nitride sintered body in which cracks and cracks are unlikely to occur in a curved portion, and a manufacturing method thereof, and further, a hexagonal boron nitride having a curved portion. This relates to a sintered body.
六方晶窒化硼素は、熱的、化学的に安定であり、電気的には高い絶縁性の物質である。黒鉛類似の結晶構造を有し、C軸方向の原子の結合力が弱い層状構造を取るため、摺動性があり、機械加工が容易な快削性セラミックスとして知られている。このように特徴あるセラミックスではあるが、一方で、代表的な難焼結性材料であり、焼結助剤を加えて、2000℃程度の高温で、ホットプレスまたはホットアイソスタティックプレスすることで緻密化し、焼結助剤としては、B2O3、Y2O3、Al2O3、CaF2、MgO、Si、CaB6、MgBxなどが知られている(非特許文献1)。
六方晶窒化硼素焼結体は、焼成条件が厳しいことに加えて、原料粉末が高価である点や成形し難い点も材料の普及を妨げている。すなわち、六方晶窒化硼素粒子は、C軸方向には未発達な、いわゆる鱗片状の形態を取るため、成形時に配向して特定方向の強度が低下し、ハンドリング時或いは焼成時に割れ、カケ、クラック等を生じる原因となり易い。特に、曲部のある焼結体ではこの傾向が甚だしく、原料の窒化硼素粉末や加工コスト削減が難しい。 The hexagonal boron nitride sintered body not only has severe firing conditions, but also prevents the material from spreading because the raw material powder is expensive and difficult to mold. That is, the hexagonal boron nitride particles take a so-called scale-like form that is undeveloped in the C-axis direction, so that it is oriented during molding and the strength in a specific direction decreases, and cracks, chips, cracks during handling or firing It is easy to cause. In particular, this tendency is significant in a sintered body having a curved portion, and it is difficult to reduce the raw material boron nitride powder and processing costs.
このように、六方晶窒化硼素は、緻密化し難い材料であり、熱処理によって成形体は膨張し密度が低下することもしばしばある。そのため、熱処理前の成形体は出来るだけ高密度であることが望ましく、高圧で加圧成形する手法が採られることが多い。しかしながら、その際に、加圧方向にC軸が一致する向きに粒子が配向し、ラミネーションと呼ばれる層状の剥離現象が生じる。あるいは、ラミネーションまでには至らなくとも熱処理時に鱗片状粒子の重なりが剥がれ易くなって欠陥を生じる。このような欠陥は、信頼性を著しく低下させるので、ラミネーションをなくする別の工夫が種々検討されている。 As described above, hexagonal boron nitride is a material that is difficult to be densified, and the molded body often expands and the density decreases due to heat treatment. Therefore, it is desirable that the molded body before heat treatment is as dense as possible, and a technique of pressure molding at high pressure is often employed. However, at that time, the particles are oriented in the direction in which the C-axis coincides with the pressing direction, and a layered peeling phenomenon called lamination occurs. Or even if it does not reach lamination, the overlap of the scaly particles tends to be peeled off during the heat treatment, resulting in a defect. Such defects significantly reduce the reliability, and various other devices for eliminating the lamination have been studied.
本発明の目的は、上記に鑑み、曲部におけるワレやクラックの発生が起こりにくい六方晶窒化硼素質焼結体を得るための六方晶窒化硼素質成形体とその製造方法、及びそれを焼結して得られた六方晶窒化硼素質焼結体を提供することである。 In view of the above, an object of the present invention is to provide a hexagonal boron nitride molded body for obtaining a hexagonal boron nitride sintered body in which cracks and cracks are unlikely to occur in a curved portion, a manufacturing method thereof, and a sintering method thereof. The hexagonal boron nitride sintered body thus obtained is provided.
すなわち、本発明は、六方晶窒化硼素粉又はそれを含む混合粉末を含有してなる曲部のある成形体において、該曲部に存在する一部又は全部の六方晶窒化硼素粒子を、該曲部の曲がり方向とBN結晶のC軸方向とを同一としてなることを特徴とする六方晶窒化硼素質成形体である。この場合において、六方晶窒化硼素粉が、黒鉛化指数2以下の結晶性粒子を20〜80質量%を含むものであることが好ましい。 That is, according to the present invention, in a molded body having a curved portion containing hexagonal boron nitride powder or a mixed powder containing the same, a part or all of the hexagonal boron nitride particles present in the curved portion are added to the curved portion. The hexagonal boron nitride shaped body is characterized in that the bending direction of the part is the same as the C-axis direction of the BN crystal. In this case, it is preferable that the hexagonal boron nitride powder contains 20 to 80% by mass of crystalline particles having a graphitization index of 2 or less.
また、本発明は、六方晶窒化硼素粉又はそれを含む混合粉末に、必要に応じて、有機媒体、有機バインダー、焼結助剤を存在させ、ラバープレス型にて密度0.4〜0.8g/cm3とした後、等方圧加圧成形して密度1.4〜1.7g/cm3とすることを特徴とする上記六方晶窒化硼素質成形体の製造方法である。更に、本発明は、上記六方晶窒化硼素質成形体を熱処理してなることを特徴とする六方晶窒化硼素質焼結体であり、また、上記六方晶窒化硼素質成形体を、非酸化性雰囲気下、1700〜2100℃で熱処理することを特徴とする六方晶窒化硼素質焼結体の製造方法である。 In the present invention, if necessary, an organic medium, an organic binder, and a sintering aid are present in the hexagonal boron nitride powder or the mixed powder containing the same, and a density of 0.4 to 0. after a 8 g / cm 3, a method for producing the hexagonal boron nitride membrane formed body, characterized in that the density 1.4~1.7g / cm 3 and isostatic pressure molding. Furthermore, the present invention is a hexagonal boron nitride sintered body obtained by heat-treating the hexagonal boron nitride molded body, and the hexagonal boron nitride molded body is non-oxidizing. A method for producing a hexagonal boron nitride sintered body, wherein heat treatment is performed at 1700 to 2100 ° C. in an atmosphere.
本発明によれば、成形時に高圧をかけ、比較的高密度の成形体を製造しても、ラミネーションや欠陥を生じ難い六方晶窒化硼素質成形体が得られる。その結果、これを熱処理し、曲部のある六方晶窒化硼素質焼結体を製造する際の六方晶窒化硼素質成形体のハンドリング時や焼成時の歩留まりが向上し、しかも信頼性のある六方晶窒化硼素質焼結体を製造することができる。本発明の六方晶窒化硼素質焼結体は、半導体用の各種治具をはじめ、従来から知られている六方晶窒化硼素質焼結体の用途に広く適用することができる。 According to the present invention, a hexagonal boron nitride molded body that is less prone to lamination and defects even when a relatively high density molded body is produced by applying a high pressure during molding can be obtained. As a result, this is heat treated to improve the yield during handling and firing of the hexagonal boron nitride molded body when producing a hexagonal boron nitride sintered body with a curved portion, and a reliable hexagonal A crystalline boron nitride sintered body can be produced. The hexagonal boron nitride sintered body of the present invention can be widely applied to the use of conventionally known hexagonal boron nitride sintered bodies, including various jigs for semiconductors.
本発明の六方晶窒化硼素質成形体(以下、「BN質成形体」ともいう。)は、例えばそれを熱処理して曲部を有する六方晶窒化硼素質焼結体(以下、「BN質焼結体」ともいう。)を製造するのに用いられるものである。本発明のBN質成形体は、六方晶窒化硼素粉又は六方晶窒化硼素粉と他の無機粉末とを主成分とし、必要に応じて、有機媒体、有機バインダー、焼結助剤等を含有したものである。 The hexagonal boron nitride compact (hereinafter also referred to as “BN compact”) of the present invention is, for example, a hexagonal boron nitride sintered compact (hereinafter referred to as “BN quality sintered body”) having a curved portion by heat treatment. It is also used to produce a "conjunct". The BN compact according to the present invention is mainly composed of hexagonal boron nitride powder or hexagonal boron nitride powder and other inorganic powder, and contains an organic medium, an organic binder, a sintering aid, and the like as necessary. Is.
六方晶窒化硼素粉は、難焼結性材料であり、焼結し易くするために、非晶質或いは低結晶性の原料を使用するが、これらは酸素を比較的多く含むため、加熱時に揮発するホウ酸分も多くなる。緻密なBN質成形体ほど脱ガスし難いため、発生するガス圧により、BN質焼結体に欠陥を生じ易く、甚だしい場合には、ワレやクラックの破損の原因となる。一方、結晶化が進んだ六方晶窒化硼素粉では、ガスの発生も少なく、ガス抜けも良好ではあるが、焼結体の曲げ強度等機械的特性が低くなってしまう。このように相反する特性を満足させて、使用に耐えるBN質成形体を得るために、本発明では以下の六方晶窒化硼素粉を用いることが好ましい。勿論、普通の六方晶窒化硼素粉をも用いることができる。 Hexagonal boron nitride powder is a hard-to-sinter material and uses amorphous or low-crystalline raw materials to facilitate sintering, but these contain a relatively large amount of oxygen and therefore volatilize when heated. Increases boric acid content. Since a dense BN compact is difficult to degas, the generated gas pressure tends to cause defects in the BN sintered compact. In severe cases, cracks and cracks may be damaged. On the other hand, in the hexagonal boron nitride powder that has been crystallized, the generation of gas is small and the outgassing is good, but the mechanical properties such as the bending strength of the sintered body are lowered. In order to satisfy such contradictory characteristics and obtain a BN molded body that can be used, it is preferable to use the following hexagonal boron nitride powder in the present invention. Of course, ordinary hexagonal boron nitride powder can also be used.
すなわち、本発明に用いる好適な六方晶窒化硼素粉は、黒鉛化指数2以下の結晶性粒子20〜80質量%を含むものである。黒鉛化指数(Graphite Index、しばしばG.I.値と称される)は、結晶化の度合いを表し、粉末X線回折で、(100)、(101)、(102)の各面の回折線強度I100、I101、I102を測定し、次、(黒鉛化指数)=(I100+I101)/(I102)、により算出される。この値が小さい程、黒鉛化すなわち結晶化が進んでいることを表し、理論的には完全に結晶化すると1.6になるが、粒子配向の影響もあり、実際の測定では1近い値を取る場合もある。 That is, preferred hexagonal boron nitride powder used in the present invention contains 20 to 80% by mass of crystalline particles having a graphitization index of 2 or less. The graphitization index (Graphite Index, often referred to as GI value) represents the degree of crystallization, and is a powder X-ray diffraction analysis of diffraction lines on each surface of (100), (101), (102). The strengths I 100 , I 101 , and I 102 are measured, and then calculated by (graphitization index) = (I 100 + I 101 ) / (I 102 ). The smaller this value is, the more graphitization, that is, the crystallization progresses. Theoretically, when it is completely crystallized, it becomes 1.6. May take.
黒鉛化指数が2以下とは、結晶化が進んだ状態を示し、一般的には4〜5を超えるものを低結晶性の六方晶窒化硼素とする。本発明においては、結晶化が進んだ粒子を20〜80質量%含む六方晶窒化硼素粉を用いることが好ましい。この割合が20質量%以下では機械的特性が劣り、80質量%超では、BN質焼結体の破損の原因となりやすい。好ましい含有率は25〜75質%であり、更に好ましくは30〜70質量%である。 A graphitization index of 2 or less indicates a state in which crystallization has progressed. Generally, a crystallinity index exceeding 4 to 5 is a low crystalline hexagonal boron nitride. In the present invention, it is preferable to use hexagonal boron nitride powder containing 20 to 80% by mass of the crystallized particles. If this ratio is 20% by mass or less, the mechanical properties are inferior, and if it exceeds 80% by mass, the BN sintered body tends to be damaged. A preferable content rate is 25 to 75% by mass, and more preferably 30 to 70% by mass.
他の無機粉末としては、窒化アルミニウム粉、窒化ケイ素粉、シリカ粉、アルミナ粉等から選ばれた一種又は二種以上であり、六方晶窒化硼素粉100質量部あたり0〜500質量部を用いることができる。他の無機粉末を用いないとき、BN質成形体はBN成形体となり、用いたときはBN複合成形体となる。これらの主成分の割合は、BN質成形体中、60体積%以上、特に70%体積以上であることが望ましい。残部が、必要に応じて含有させた、水、有機媒体、有機バインダー、焼結助剤等の一種又は二種以上となる。 The other inorganic powder is one or more selected from aluminum nitride powder, silicon nitride powder, silica powder, alumina powder, etc., and 0 to 500 parts by mass per 100 parts by mass of hexagonal boron nitride powder is used. Can do. When no other inorganic powder is used, the BN compact is a BN compact, and when it is used, it is a BN composite compact. The ratio of these main components is preferably 60% by volume or more, particularly 70% by volume or more in the BN molded article. The balance is one or more of water, an organic medium, an organic binder, a sintering aid, and the like that are contained as necessary.
有機媒体としては、例えばメタノール、エタノール、ブタノール、イソプロピルアルコール等のアルコール類やアセトン、トルエン等を例示することができ、その割合は、BN質成形体中5体積%以下(0を含む)である。有機バインダーとしては、例えばポリビニルアルコール、ブチラール、アクリル樹脂等を例示することができ、その割合は、BN質成形体中3体積%以下(0を含む)である。有機バインダーを使用したBN質成形体を熱処理してBN質焼結体を製造する際には、熱処理する前に脱バインダーを行う。焼結助剤としては、例えば前述のB2O3、Y2O3、Al2O3、CaF2、MgO、Si、CaB6、MgBx等を例示することができ、その割合は、BN質成形体中5体積%以下(0を含む)である。 Examples of the organic medium include alcohols such as methanol, ethanol, butanol, and isopropyl alcohol, acetone, toluene, and the like, and the ratio thereof is 5% by volume or less (including 0) in the BN compact. . Examples of the organic binder include polyvinyl alcohol, butyral, acrylic resin, and the like, and the ratio thereof is 3% by volume or less (including 0) in the BN quality molded body. When manufacturing a BN sintered body by heat-treating a BN compact using an organic binder, the binder is removed before the heat treatment. Examples of the sintering aid include the aforementioned B 2 O 3 , Y 2 O 3 , Al 2 O 3 , CaF 2 , MgO, Si, CaB 6 , MgB x and the like, and the ratio is BN 5% by volume or less (including 0) in the molded body.
本発明における曲部のある成形体とは文字通り曲部のあるものであり、その形状には制約はない。実用上、最も明確な形状は、例えば円筒形、管形等であるが、コーナーRを有するものであってもよい。Rの好ましい大きさは、10mm以上、特に15mm以上である。 In the present invention, the molded body having a curved portion literally has a curved portion, and the shape thereof is not limited. In practice, the most clear shape is, for example, a cylindrical shape or a tube shape, but may have a corner R. The preferable size of R is 10 mm or more, particularly 15 mm or more.
本発明のBN質成形体においては、曲部に存在する一部又は全部の六方晶窒化硼素粒子を、該曲部の曲がり方向とBN結晶のC軸方向とが同一(平行)となっている。BN結晶のC軸方向とは、鱗片形状の平坦面に垂直な方向、すなわち粒子の厚さ方向である。通常のBN質成形体では、BN結晶のC軸を揃えて六方晶窒化硼素粒子が配向し易いので、曲部を有するものにあっては、曲部の曲がり方向とBN結晶のC軸方向とが垂直となっている。このため、BN質成形体の特に曲部における曲げ、引っ張り強度が低くなるので、それを熱処理して製造されたBN質焼結体の信頼性が十分ではなかった。 In the BN molded article of the present invention, the bending direction of the bending portion and the C-axis direction of the BN crystal are the same (parallel) for some or all hexagonal boron nitride particles present in the bending portion. . The C-axis direction of the BN crystal is the direction perpendicular to the scaly flat surface, that is, the particle thickness direction. In an ordinary BN compact, the hexagonal boron nitride particles are easily oriented with the C axis of the BN crystal aligned. Therefore, in the case of having a bent portion, the bending direction of the bent portion and the C axis direction of the BN crystal Is vertical. For this reason, since the bending and tensile strength of the BN quality molded body, particularly at the curved portion, is low, the reliability of the BN quality sintered body produced by heat-treating it is not sufficient.
本発明において、「曲部に存在する一部又は全部の六方晶窒化硼素粒子を、該曲部の曲がり方向とBN結晶のC軸方向とが同一」、であることは、曲部における六方晶窒化硼素粒子の配向角度を粉末X線回折によって、曲部の曲がり方向に対して垂直な方向から測定して行われる。これは、広く普及した方法であって、(002)面と(100)面の回折線強度I002、I100から、式、(配向角度)=tan−1{6.25/(I002/I100)}、によって算出される。 In the present invention, “a part or all of the hexagonal boron nitride particles present in the curved portion have the same bending direction of the curved portion and the C-axis direction of the BN crystal” means that the hexagonal crystal in the curved portion is The orientation angle of the boron nitride particles is measured by powder X-ray diffraction from a direction perpendicular to the bending direction of the curved portion. This is a widely spread method. From the diffraction line intensities I 002 and I 100 of the (002) plane and the (100) plane, the expression (orientation angle) = tan −1 {6.25 / (I 002 / I 100 )}.
配向角度が45°で完全無配向となり、曲部に存在する六方晶窒化硼素粒子のBN結晶のC軸方向と曲部の曲がり方向とが完全に一致(平行)する。これに対し、配向角度が0°、90°では完全配向となり、両者の方向が完全に垂直となる。通常の六方晶窒化硼素粉末のプレス成形体は、その配向角度が10°以下である。本発明のBN質成形体においては、配向角度が20°以上は必要である。これよりも小さいと、曲部におけるワレやクラック等の発生が起こり易くなり、より信頼性のあるBN質焼結体を製造することができない。好ましい配向角度は25°以上であり、更に好ましくは30°以上である。このようなBN質成形体の製造方法については以下に説明する。 When the orientation angle is 45 °, the film is completely non-oriented, and the C-axis direction of the BN crystal of the hexagonal boron nitride particles existing in the curved part and the bending direction of the curved part are completely matched (parallel). On the other hand, when the orientation angle is 0 ° or 90 °, complete orientation is obtained, and both directions are completely perpendicular. An ordinary hexagonal boron nitride powder press-molded body has an orientation angle of 10 ° or less. In the BN molded article of the present invention, an orientation angle of 20 ° or more is necessary. If it is smaller than this, cracks and cracks are likely to occur in the curved portion, and a more reliable BN sintered body cannot be produced. A preferred orientation angle is 25 ° or more, and more preferably 30 ° or more. The manufacturing method of such a BN molded body will be described below.
本発明のBN質成形体の製造方法は、六方晶窒化硼素粉又はそれと他の無機粉末を含む混合粉末に、必要に応じて、有機媒体、有機バインダー、焼結助剤を存在させ、それを、ラバープレス型に充填して、密度0.4〜0.8g/cm3とした後、等方圧加圧成形して密度1.4〜1.7g/cm3とするものである。ラバープレス型は、粉末を等方圧加圧成形いわゆるCIP成形する際に、しばしば用いられるものであって、加圧媒体を通さないが、圧力を伝える材質でできている。通常、圧力媒体として、水、エチレングリコール水溶液、グリセリン等が選ばれ、型材としてゴムが使用される。本発明においては、このラバープレス型を用い、充填密度とCIP密度の差を利用して、上記配向角度が制御される。 In the method for producing a BN compact according to the present invention, if necessary, an organic medium, an organic binder, and a sintering aid are present in a mixed powder containing hexagonal boron nitride powder or other inorganic powder. The rubber press mold is filled to a density of 0.4 to 0.8 g / cm 3 and then isotropically pressed to a density of 1.4 to 1.7 g / cm 3 . The rubber press mold is often used when the powder is subjected to isotropic pressure pressing, so-called CIP molding, and is made of a material that transmits pressure but does not pass a pressurizing medium. Usually, water, an ethylene glycol aqueous solution, glycerin or the like is selected as the pressure medium, and rubber is used as the mold material. In the present invention, this rubber press mold is used, and the orientation angle is controlled using the difference between the packing density and the CIP density.
ラバープレス型に粉末を充填する際には、CIP密度を高くするため、通常は、出来るだけ高密度で充填する。例えば、粉末を少しづつ入れて突き固める方法や、単純な形状であれば一軸プレスによる予備成形方法などが採用される。本発明においては、粉末を型に充填した際の密度を0.4〜0.8g/cm3、好ましくは0.45〜0.75g/cm3とする。これは、充填状態としては、従来の常識に反するゆるめの充填である。0.4g/cm3未満の充填密度は、成形した際に成形体が大きく変形し、また成形体内に空隙や欠陥が残留し易くなる。一方、0.8g/cm3をこえると、配向制御の効果が小さくなる。次いで、この充填粉末をCIP成型し、成形体のCIP密度を1.4〜1.7g/cm3とする。CIP成形法については、特に制限を加えるものではないが、静水圧として50〜250MPaが適当であり、繰り返して圧力をかけるサイクリックCIP成形法はより効果的である。 When a rubber press mold is filled with powder, in order to increase the CIP density, it is usually filled as densely as possible. For example, a method of putting powders little by little, and a pre-forming method by a uniaxial press if a simple shape is employed. In the present invention, the density when the powder is filled in the mold is 0.4 to 0.8 g / cm 3 , preferably 0.45 to 0.75 g / cm 3 . This is a loose filling that is contrary to conventional common sense as a filling state. When the packing density is less than 0.4 g / cm 3 , the molded body is greatly deformed when molded, and voids and defects tend to remain in the molded body. On the other hand, if it exceeds 0.8 g / cm 3 , the effect of orientation control becomes small. Subsequently, this filling powder is CIP-molded, and the CIP density of the molded body is set to 1.4 to 1.7 g / cm 3 . The CIP molding method is not particularly limited, but a hydrostatic pressure of 50 to 250 MPa is appropriate, and the cyclic CIP molding method in which pressure is repeatedly applied is more effective.
原料粉末を混合するに際しては、混合媒体も含め、不純物の混入には十分注意すべきである。鉄をはじめとした重金属やアルカリ金属、ハロゲンの混入は、極力避けなければならない。また、粉砕も同時に行う混合の場合、あまり長時間の粉砕は、効率的ではないし、酸化が進行する等の問題もある。適切な混合機器の一例を挙げれば、ボールミル、振動ミル、アトライターミル、ヘンシェルミキサー、バンバリミキサー、パワフルミキサー等である。 When mixing the raw material powder, attention should be paid to the contamination of impurities including the mixing medium. Mixing of heavy metals such as iron, alkali metals and halogens should be avoided as much as possible. Further, in the case of mixing in which pulverization is performed at the same time, pulverization for too long is not efficient, and there is a problem that oxidation proceeds. Examples of suitable mixing equipment include a ball mill, a vibration mill, an attritor mill, a Henschel mixer, a Banbury mixer, and a powerful mixer.
本発明のBN質成形体の一用途は、それを熱処理して曲部を有するBN質焼結体を製造することである。この熱処理は、非酸化性雰囲気下、1700〜2100℃で行うことが好ましい。非酸化性雰囲気としては、例えば、窒素、アルゴン、アンモニア等が用いられる。 One application of the BN quality molded body of the present invention is to produce a BN quality sintered body having a curved portion by heat-treating it. This heat treatment is preferably performed at 1700 to 2100 ° C. in a non-oxidizing atmosphere. As the non-oxidizing atmosphere, for example, nitrogen, argon, ammonia or the like is used.
市販の六方晶窒化硼素粉末A(黒鉛化指数1.6)、及び六方晶窒化硼素粉末B(黒鉛化指数5.2)を用い、表1に示す所定の割合に混合した。BN質成形体4のSNには、市販の窒化ケイ素粉末(電気化学工業社製商品名「NP−600」)を用いた。 Commercially available hexagonal boron nitride powder A (graphitization index 1.6) and hexagonal boron nitride powder B (graphitization index 5.2) were mixed in the predetermined proportions shown in Table 1. A commercially available silicon nitride powder (trade name “NP-600” manufactured by Denki Kagaku Kogyo Co., Ltd.) was used as the SN of the BN molded body 4.
各原料はアルミナ製のボールを使って6hrsボールミル混合し、得られた混合原料をラバープレス型に充填して充填密度を求めた。ラバープレス型はゴム製のパイプ形状で、粉末充填部は内径100mm、外径120mm、厚さ10mm、高さ200mmのものを使用した。充填密度は、充填した粉末の質量から算出した。充填密度の調節は、(1)原料粉を充填するだけ、(2)振動を与える(タップ振動)、(3)軽く押しつける、(4)強く押しつける、(5)突き固める、ことによって行った。上記(1)から(5)の順で充填密度は大きくなった。次いで、所定の成形圧でCIP成形を行った後、脱型して寸法を測定してCIP密度を算出した。各々のBN質成形体は、同じ条件で2個づつ作製し、充填密度や成形密度は両者の平均値を取った。それらの結果を表1に示す。 Each raw material was subjected to 6 hrs ball mill mixing using alumina balls, and the obtained mixed raw material was filled into a rubber press mold to obtain a filling density. The rubber press mold was in the shape of a rubber pipe, and the powder filling portion used had an inner diameter of 100 mm, an outer diameter of 120 mm, a thickness of 10 mm, and a height of 200 mm. The packing density was calculated from the mass of the filled powder. The packing density was adjusted by (1) just filling the raw material powder, (2) applying vibration (tap vibration), (3) pressing lightly, (4) pressing strongly, and (5) tamping. The packing density increased in the order of (1) to (5) above. Next, after CIP molding was performed at a predetermined molding pressure, the mold was removed and the dimensions were measured to calculate the CIP density. Two BN compacts were produced under the same conditions, and the packing density and molding density were average values of the two. The results are shown in Table 1.
2個づつ作製した各BN質成形体の内の1個より試料を切り出し、パイプ形状の厚み方向から粉末X線回折を測定して、配向角度を求めた。次に、残りのBN質成形体を、窒素雰囲気中で2100℃、12hrsの熱処理を行ってBN質焼結体を作製した。各BN質焼結体は、外観を調べた後、試料を切り出し、JISR1404に従って、曲げ強度を測定した。試料はパイプの長手方向に切り出して各5個づつ作製してその強度を測定し、平均値を算出した。それらの結果を表2に示す。 A sample was cut out from one of the two BN compacts produced in pairs, and the powder X-ray diffraction was measured from the thickness direction of the pipe shape to determine the orientation angle. Next, the remaining BN compact was heat-treated at 2100 ° C. for 12 hours in a nitrogen atmosphere to produce a BN sintered compact. After examining the appearance of each BN sintered body, the sample was cut out and the bending strength was measured according to JIS R1404. Samples were cut out in the longitudinal direction of the pipe, and each sample was produced five times, the strength was measured, and the average value was calculated. The results are shown in Table 2.
表より明らかなように、本発明のBN質成形体を用いると、外観が良好で比較的曲げ強度の大きなBN質焼結体が得られたのに対し、充填密度の小さすぎるBN質成形体5では、成形時にワレが生じて破断してしまい、8を用いた比較例では、加熱時にワレが発生し、強度の小さいBN質焼結体となった。一方、充填密度の大きすぎるBN質成形体6、7を用いた比較例では、配向角度が小さくなって、クラックが生じ、これらも低強度のBN質焼結体となった。 As is clear from the table, when the BN molded body of the present invention was used, a BN sintered body having a good appearance and a relatively high bending strength was obtained, whereas a BN quality molded body having a too low filling density was obtained. In No. 5, cracking occurred and broke during molding. In the comparative example using No. 8, cracking occurred during heating, resulting in a BN sintered body with low strength. On the other hand, in the comparative example using the BN compacts 6 and 7 having a too high packing density, the orientation angle was small and cracks were generated, and these also became low strength BN sintered bodies.
本発明のBN質成形体は、それを熱処理してBN質焼結体を製造するのに用いられる。それらの成形体や焼結体はそのまま使用されるだけではなく、快削性を活かして更に各種の加工を加えるための元材として用いる用途も考えられる。また、本発明のBN質焼結体は、半導体用の各種治具をはじめ、従来から知られているBN質焼結体の用途に広く適用することができる。 The BN molded body of the present invention is used to produce a BN sintered body by heat-treating it. These molded bodies and sintered bodies are not only used as they are, but are also considered to be used as base materials for further various processing utilizing the free-cutting properties. In addition, the BN sintered body of the present invention can be widely applied to various uses of BN sintered bodies that have been conventionally known, including various semiconductor jigs.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003382630A JP4253565B2 (en) | 2003-11-12 | 2003-11-12 | Hexagonal boron nitride molded body, production method and use thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003382630A JP4253565B2 (en) | 2003-11-12 | 2003-11-12 | Hexagonal boron nitride molded body, production method and use thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005145737A true JP2005145737A (en) | 2005-06-09 |
JP4253565B2 JP4253565B2 (en) | 2009-04-15 |
Family
ID=34691649
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003382630A Expired - Lifetime JP4253565B2 (en) | 2003-11-12 | 2003-11-12 | Hexagonal boron nitride molded body, production method and use thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4253565B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006282485A (en) * | 2005-04-05 | 2006-10-19 | Denki Kagaku Kogyo Kk | Method for producing boron nitride fired compact |
JP2007070197A (en) * | 2005-09-09 | 2007-03-22 | National Institute Of Advanced Industrial & Technology | Boron nitride burned substance and method for producing the same |
WO2014196496A1 (en) * | 2013-06-03 | 2014-12-11 | 電気化学工業株式会社 | Resin-impregnated boron nitride sintered body and use for same |
JP2018014249A (en) * | 2016-07-21 | 2018-01-25 | 日産自動車株式会社 | Method of manufacturing electrode |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61168570A (en) * | 1985-01-18 | 1986-07-30 | 川崎製鉄株式会社 | Boron nitride sintered body and manufacture |
JPS6364973A (en) * | 1986-09-08 | 1988-03-23 | 川崎製鉄株式会社 | Boron nitride sintered body and manufacture |
JPH02296772A (en) * | 1989-05-09 | 1990-12-07 | Nec Corp | Support for traveling-wave tube |
JPH0312316A (en) * | 1989-06-12 | 1991-01-21 | Shin Etsu Chem Co Ltd | Boron nitride powder and its sintered body |
JPH05246765A (en) * | 1992-03-02 | 1993-09-24 | Shin Etsu Chem Co Ltd | Compact for producing cubic boron nitride sintered compact |
JPH09202663A (en) * | 1996-01-24 | 1997-08-05 | Denki Kagaku Kogyo Kk | Melamine borate particle, its production and use thereof and production of hexagonal boron nitride powder |
-
2003
- 2003-11-12 JP JP2003382630A patent/JP4253565B2/en not_active Expired - Lifetime
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61168570A (en) * | 1985-01-18 | 1986-07-30 | 川崎製鉄株式会社 | Boron nitride sintered body and manufacture |
JPS6364973A (en) * | 1986-09-08 | 1988-03-23 | 川崎製鉄株式会社 | Boron nitride sintered body and manufacture |
JPH02296772A (en) * | 1989-05-09 | 1990-12-07 | Nec Corp | Support for traveling-wave tube |
JPH0312316A (en) * | 1989-06-12 | 1991-01-21 | Shin Etsu Chem Co Ltd | Boron nitride powder and its sintered body |
JPH05246765A (en) * | 1992-03-02 | 1993-09-24 | Shin Etsu Chem Co Ltd | Compact for producing cubic boron nitride sintered compact |
JPH09202663A (en) * | 1996-01-24 | 1997-08-05 | Denki Kagaku Kogyo Kk | Melamine borate particle, its production and use thereof and production of hexagonal boron nitride powder |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006282485A (en) * | 2005-04-05 | 2006-10-19 | Denki Kagaku Kogyo Kk | Method for producing boron nitride fired compact |
JP2007070197A (en) * | 2005-09-09 | 2007-03-22 | National Institute Of Advanced Industrial & Technology | Boron nitride burned substance and method for producing the same |
WO2014196496A1 (en) * | 2013-06-03 | 2014-12-11 | 電気化学工業株式会社 | Resin-impregnated boron nitride sintered body and use for same |
JPWO2014196496A1 (en) * | 2013-06-03 | 2017-02-23 | デンカ株式会社 | Resin-impregnated boron nitride sintered body and use thereof |
US10087112B2 (en) | 2013-06-03 | 2018-10-02 | Denka Company Limited | Resin-impregnated boron nitride sintered body and use for same |
US10377676B2 (en) | 2013-06-03 | 2019-08-13 | Denka Company Limited | Resin-impregnated boron nitride sintered body and use for same |
JP2018014249A (en) * | 2016-07-21 | 2018-01-25 | 日産自動車株式会社 | Method of manufacturing electrode |
Also Published As
Publication number | Publication date |
---|---|
JP4253565B2 (en) | 2009-04-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101751531B1 (en) | Method for producing silicon nitride substrate | |
JP5231823B2 (en) | Polycrystalline MgO sintered body, method for producing the same, and MgO target for sputtering | |
KR20140113364A (en) | Dense composite material, method for producing the same, and component for semiconductor production equipment | |
ZA200303525B (en) | A heat conductive material. | |
JP2007197229A (en) | High-thermal conductive silicon nitride substrate and method of manufacturing the same | |
JP5406565B2 (en) | Aluminum oxide sintered body, manufacturing method thereof, and semiconductor manufacturing apparatus member | |
KR101413250B1 (en) | Aluminum nitride sintered product, method for producing the same, and electrostatic chuck including the same | |
JP2002128569A (en) | High thermal conductive silicon nitride ceramic and its manufacturing method | |
JPH0617270B2 (en) | Boron nitride atmospheric pressure sintered body | |
JP4253565B2 (en) | Hexagonal boron nitride molded body, production method and use thereof | |
JP2007191339A (en) | Hexagonal boron nitride sintered compact and its manufacturing method | |
JPH05238830A (en) | Sintered aluminum nitride and its production | |
JPH1067565A (en) | Sintered silicon carbide body and its production | |
JP2005255462A (en) | Silicon nitride sintered compact, method for manufacturing the same and circuit board using the same | |
JP2642184B2 (en) | Method for producing aluminum nitride-hexagonal boron nitride sintered body | |
JP2008297134A (en) | Boron carbide based sintered compact and protective member | |
JP4542747B2 (en) | Manufacturing method of high strength hexagonal boron nitride sintered body | |
JP2008156169A (en) | Silicon carbide granule, method for producing silicon carbide sintered compact using it and silicon carbide sintered compact | |
JP2008156142A (en) | Aluminum nitride sintered compact and method for manufacturing the same | |
JP2752227B2 (en) | AlN-BN composite sintered body and method for producing the same | |
JP5265859B2 (en) | Aluminum nitride sintered body | |
JPH06329474A (en) | Sintered aluminum nitride and its production | |
JP2664759B2 (en) | Ceramic composite material and method for producing the same | |
JP2778783B2 (en) | Method for producing BN-AlN-based sintered body having anisotropy | |
JP5245081B2 (en) | High hardness high density cubic boron nitride sintered body and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070330 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070703 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070831 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071120 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080121 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20080701 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080730 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20080905 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081007 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081208 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090120 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090126 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4253565 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120130 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120130 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130130 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140130 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |