JP2002128569A - High thermal conductive silicon nitride ceramic and its manufacturing method - Google Patents

High thermal conductive silicon nitride ceramic and its manufacturing method

Info

Publication number
JP2002128569A
JP2002128569A JP2000318912A JP2000318912A JP2002128569A JP 2002128569 A JP2002128569 A JP 2002128569A JP 2000318912 A JP2000318912 A JP 2000318912A JP 2000318912 A JP2000318912 A JP 2000318912A JP 2002128569 A JP2002128569 A JP 2002128569A
Authority
JP
Japan
Prior art keywords
silicon nitride
sintered body
high thermal
thermal conductivity
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000318912A
Other languages
Japanese (ja)
Other versions
JP3648541B2 (en
Inventor
Kiyoshi Hirao
喜代司 平尾
Hiroyuki Hayashi
裕之 林
Seiji Itaya
清司 板谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2000318912A priority Critical patent/JP3648541B2/en
Publication of JP2002128569A publication Critical patent/JP2002128569A/en
Application granted granted Critical
Publication of JP3648541B2 publication Critical patent/JP3648541B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a silicon nitride sintered body which enables the densification and grain growth of a sintered body by a low temperature sintering of <=1900 deg.C, and has a high thermal conductivity of >=100 W/mK. SOLUTION: When a high thermal conductive silicon nitride sintered body is manufactured so that the densification and grain growth of a sintered body are enabled by low temperature sintering of <=1900 deg.C, the silicon nitride powder wherein the sintering agent which contains at least silicon nitride magnesium (MgSiN2) is added, is molded. Subsequently, sintering the silicon nitride powder at a temperature of <=1900 deg.C, the densely sintered body which has a high thermal conductivity of >=100 W/mK, is obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、優れた特性を有す
る高熱伝導窒化ケイ素セラミックス及びその製造方法に
関するものであり、更に詳しくは、窒化ケイ素マグネシ
ウム(MgSiN2 )を焼結助剤として用いることによ
り、比較的低温での緻密化と粒成長を可能として高熱伝
導窒化ケイ素焼結体を製造する方法及びその製品に関す
るものである。本発明は、熱機関、熱交換器、ヒートパ
イプ等の機械部品材料や半導体基板、プリント配線基板
等の電気絶縁材料として用いるのに適した高熱伝導窒化
ケイ素焼結体並びにその製造法を提供するものである。
BACKGROUND OF THE INVENTION The present invention relates to superior characteristics high thermal conductivity silicon nitride ceramics and a manufacturing method thereof, and more particularly, by using the silicon nitride magnesium (MgSiN 2) as a sintering aid The present invention relates to a method for producing a highly thermally conductive silicon nitride sintered body by enabling densification and grain growth at a relatively low temperature, and a product thereof. The present invention provides a high thermal conductive silicon nitride sintered body suitable for use as a mechanical component material such as a heat engine, a heat exchanger, and a heat pipe, and an electric insulating material such as a semiconductor substrate and a printed wiring board, and a method for producing the same. Things.

【0002】[0002]

【従来の技術】一般に、構造部材として用いられる材料
系については、構造部材としての放熱材料を考えた場
合、最も一般的に用いられる金属材料は、500℃を越
える条件下において冷却等を行うことなしに用いること
は不可能である。更に、これらの金属材料は、セラミッ
クスに比べて、耐食性、耐酸化性に劣る。更に、導電体
であることから、パワ−デバイスなど高い放熱性を要求
される絶縁基板材料として用いることは難しい。一方、
窒化アルミニウム焼結体、炭化ケイ素焼結体等のセラミ
ック材料は、高い絶縁性と高い熱伝導性を合わせ持つこ
とから、一部、放熱基板材料として使用されるようにな
ってきた。しかし、これらの高熱伝導性セラミックス
は、強度、靱性が低く、機械的信頼性に欠けるため、そ
の用途は非常に限られたものであった。
2. Description of the Related Art In general, regarding a material system used as a structural member, when considering a heat radiation material as a structural member, the most commonly used metal material is subjected to cooling or the like under a condition exceeding 500 ° C. It is impossible to use without it. Furthermore, these metal materials are inferior in corrosion resistance and oxidation resistance as compared with ceramics. Furthermore, since it is a conductor, it is difficult to use it as an insulating substrate material requiring high heat dissipation such as a power device. on the other hand,
Ceramic materials such as aluminum nitride sintered bodies and silicon carbide sintered bodies have both been used as heat dissipating substrate materials because of their high insulating properties and high thermal conductivity. However, these high thermal conductive ceramics have low strength and toughness, and lack mechanical reliability, so that their use has been very limited.

【0003】次に、窒化ケイ素系の材料については、一
般に、窒化ケイ素焼結体は、高い強度と高い靱性を合わ
せ持つ優れた構造用セラミック材料として知られてい
る。更に、炭化ケイ素や窒化アルミニウムとの結晶構造
の類似性から窒化ケイ素結晶も高い熱伝導率を持つ。し
かし、多結晶体、即ち、窒化ケイ素焼結体において、1
00W/mK以上の高い熱伝導率を発現させるには、以
下の例1)〜例4)に例示するように、高温、高圧窒素
中での焼結や、ホットプレス焼結と熱処理を組み合わせ
た方法など、煩雑で、かつ非常にコストのかかるプロセ
スが必要であった。また、以下の例3)と例4)では、
種結晶添加とシ−ト成形などの成形方法を組み合わせた
手法により配向構造を持つ焼結体が作製され、粒子の配
向方向で120〜140W/mKの高い熱伝導率が達成
されている。しかし、これらの焼結体は、著しい熱伝導
率の異方性を示し、配向方向に垂直な方向では高熱伝導
方向の約半分の熱伝導率しか示さない。
[0003] As for silicon nitride-based materials, silicon nitride sintered bodies are generally known as excellent structural ceramic materials having both high strength and high toughness. Furthermore, silicon nitride crystals also have high thermal conductivity due to the similarity in crystal structure with silicon carbide and aluminum nitride. However, in a polycrystal, that is, a silicon nitride sintered body, 1
In order to develop a high thermal conductivity of 00 W / mK or more, sintering in a high-temperature, high-pressure nitrogen, or hot-press sintering and heat treatment are combined as exemplified in the following Examples 1) to 4). A complicated and very expensive process such as a method was required. In the following examples 3) and 4),
A sintered body having an oriented structure is produced by a method combining seed crystal addition and a molding method such as sheet molding, and a high thermal conductivity of 120 to 140 W / mK in the orientation direction of the particles has been achieved. However, these sintered bodies show remarkable anisotropy of thermal conductivity, and exhibit only about half the thermal conductivity in the direction perpendicular to the orientation direction in the direction of high thermal conductivity.

【0004】例1) 平均粒径0.5μmの窒化ケイ素
粉末に0.5〜4mol%のY23 とNd23 の等
モル混合物を焼結助剤として添加し、2000℃、10
00気圧の窒素圧下で4時間焼結した焼結体の熱伝導率
は100〜120W/mKであった(Journal
of the American Ceramic S
ociety,vol.79,No.11,pp.28
78−82(1996))。
Example 1) Silicon nitride having an average particle size of 0.5 μm
0.5-4 mol% Y in powderTwo OThree And NdTwo OThree Etc.
The molar mixture was added as a sintering aid,
Thermal conductivity of sintered body sintered for 4 hours under nitrogen pressure of 00 atm
Was 100 to 120 W / mK (Journal
of the American Ceramic S
ociety, vol. 79, no. 11, pp. 28
78-82 (1996)).

【0005】例2) 比表面積5m2 /gの窒化ケイ素
粉末に5wt%のY23 を添加した粉末を1気圧の窒
素中、1800℃、40MPaの一軸加圧下で2時間ホ
ットプレス焼結し、更に、1850℃で16時間熱処理
した試料の熱伝導率はホットプレスの加圧方向に垂直な
方向で110W/mKであった(Journal of
the American Ceramic Soci
ety,vol.82,No.11,pp.3105−
12(1999))。
Example 2) Hot press sintering of a powder obtained by adding 5 wt% of Y 2 O 3 to a silicon nitride powder having a specific surface area of 5 m 2 / g under a uniaxial pressure of 1800 ° C. and 40 MPa in nitrogen of 1 atm. Further, the thermal conductivity of the sample heat-treated at 1850 ° C. for 16 hours was 110 W / mK in the direction perpendicular to the pressing direction of the hot press (Journal of
the American Ceramic Soci
ety, vol. 82, No. 11, pp. 3105-
12 (1999)).

【0006】例3) 比表面積10m2 /gの窒化ケイ
素粉末に種結晶として5体積%の棒状窒化ケイ素粒子
(短軸径1μm、長軸径10μm)、焼結助剤として5
wt%のY23 、更に、有機溶剤とバインダ−を混合
して得られたスラリ−をドクタ−ブレ−ド法を用いて、
厚さ約100μmに成形し、これを積層して脱脂後、ホ
ットプレスにより緻密化し、更に、9気圧の窒素中、1
850℃で24時間熱処理して配向構造を持つ窒化ケイ
素焼結体を得た(特許第2882575号(本出願人に
よる特許))。この焼結体は、粒子配向方向で約120
W/mKの高い熱伝導率を有するが、粒子の配向方向に
垂直な方向での熱伝導率は約70W/mKである。
Example 3) 5% by volume of rod-like silicon nitride particles (short axis diameter 1 μm, long axis diameter 10 μm) as a seed crystal in silicon nitride powder having a specific surface area of 10 m 2 / g and 5 as a sintering aid
The slurry obtained by mixing wt% of Y 2 O 3 and an organic solvent and a binder was subjected to a doctor blade method to obtain a slurry.
It is molded to a thickness of about 100 μm, laminated, degreased, and densified by hot pressing.
Heat treatment was performed at 850 ° C. for 24 hours to obtain a silicon nitride sintered body having an oriented structure (Japanese Patent No. 28882575 (patent by the present applicant)). This sintered body has a particle orientation of about 120.
Although it has a high thermal conductivity of W / mK, the thermal conductivity in the direction perpendicular to the orientation direction of the particles is about 70 W / mK.

【0007】例4) 平均粒径約0.5μmの窒化ケイ
素粉末に種結晶として5wt%の棒状窒化ケイ素粒子
(短軸径1μm、長軸径10μm)、焼結助剤として
0.5mol%のY23 と0.5mol%Nd2
3 、更に、有機溶剤とバインダ−を混合して得られたス
ラリ−をドクタ−ブレ−ド法を用いて、厚さ約100μ
mに成形し、これを積層して脱脂後、ホットプレスによ
り緻密化し、更に、300気圧の窒素中、2200℃で
4時間熱処理して配向構造を持つ窒化ケイ素焼結体を得
ている(日本セラミックス協会学術論文誌、104巻、
12月号、pp.1171−73(1996))。この
焼結体は、粒子配向方向で約140W/mKの高い熱伝
導率を有するが、粒子の配向方向に垂直な方向での熱伝
導率は約70W/mKである。
Example 4) Silicon nitride powder having an average particle size of about 0.5 μm and 5 wt% of rod-like silicon nitride particles (short axis diameter 1 μm, long axis diameter 10 μm) as seed crystals, and 0.5 mol% as a sintering aid Y 2 O 3 and 0.5 mol% Nd 2 O
3. Further, the slurry obtained by mixing the organic solvent and the binder was used to a thickness of about 100 μm using a doctor blade method.
m, laminated and degreased, densified by hot pressing, and further heat-treated at 2200 ° C. for 4 hours in nitrogen at 300 atm to obtain a silicon nitride sintered body having an oriented structure (Japan Journal of the Ceramic Society of Japan, 104 volumes,
December issue, pp. 1171-73 (1996)). This sintered body has a high thermal conductivity of about 140 W / mK in the grain orientation direction, but has a thermal conductivity of about 70 W / mK in a direction perpendicular to the grain orientation direction.

【0008】[0008]

【発明が解決しようとする課題】上述したように、これ
まで、高熱伝導窒化ケイ素焼結体は、高窒素圧下、高温
で焼結あるいはホットプレスの後熱処理を行うという高
コストのプロセスにより作製されていた。これは、高熱
伝導化には、(1)焼結後に残留する低熱伝導のガラス
相を低減させるために少ない量の焼結助剤で緻密化を行
うこと、(2)粒成長を生じさせ、熱伝導の阻害要因で
ある粒子内部の酸素を低減させること、が必要とされる
からである。このような状況の中で、本発明者らは、上
記従来技術に鑑みて、上記高コストのプロセスによらな
いで高熱伝導窒化ケイ素セラミックスを製造する方法を
開発することを目標として鋭意研究を積み重ねた結果、
窒化ケイ素粉末に少なくとも窒化ケイ素マグネシウム
(MgSiN2 )を含む焼結助剤を添加する方法を採用
することにより所期の目的を達成し得ることを見出し、
本発明を完成するに至った。本発明の目的は、高い熱伝
導率を持つ窒化ケイ素焼結体を簡便かつ低コストで製造
するために、低温で緻密化と粒成長が可能な新しい焼結
助剤を開発することにある。また、本発明は、少なくと
も窒化ケイ素マグネシウム(MgSiN2 )を含む焼結
助剤を用いて、低温での緻密化と粒成長を可能とする新
しい高熱伝導窒化ケイ素セラミックスの製造方法を提供
することを目的とするものである。更に、本発明は、上
記製造方法により得られる、100W/mK以上の高い
熱伝導率を有する高熱伝導窒化ケイ素焼結体を提供する
ことを目的とするものである。
As described above, conventionally, high thermal conductive silicon nitride sintered bodies have been manufactured by a high-cost process of performing sintering at a high temperature under a high nitrogen pressure or performing heat treatment after hot pressing. I was This is because (1) densification with a small amount of a sintering aid to reduce the low heat conduction glass phase remaining after sintering, (2) causing grain growth, This is because it is necessary to reduce oxygen inside the particles, which is a factor inhibiting heat conduction. Under these circumstances, the present inventors have conducted intensive studies in view of the above-mentioned conventional technology with the aim of developing a method for producing a high thermal conductive silicon nitride ceramic without using the above-mentioned high-cost process. As a result,
It has been found that the intended purpose can be achieved by adopting a method of adding a sintering aid containing at least silicon magnesium nitride (MgSiN 2 ) to silicon nitride powder,
The present invention has been completed. An object of the present invention is to develop a new sintering aid capable of densification and grain growth at a low temperature in order to easily and at low cost produce a silicon nitride sintered body having high thermal conductivity. Further, the present invention provides a new method for producing a high thermal conductive silicon nitride ceramic which enables densification and grain growth at a low temperature by using a sintering aid containing at least silicon magnesium nitride (MgSiN 2 ). It is the purpose. Still another object of the present invention is to provide a high thermal conductive silicon nitride sintered body having a high thermal conductivity of 100 W / mK or more, which is obtained by the above-mentioned production method.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するめの
本発明は、以下の技術的手段から構成される。 (1)1900℃以下の低温焼結により、焼結体の緻密
化と粒成長を可能として高熱伝導窒化ケイ素焼結体を製
造する方法であって、窒化ケイ素粉末に少なくとも窒化
ケイ素マグネシウム(MgSiN2 )を含む焼結助剤を
添加し、成形し、次いで、これを1900℃以下の温度
で焼結し、かつ100W/mK以上の高い熱伝導率を有
する緻密な焼結体を得ることを特徴とする高熱伝導窒化
ケイ素焼結体の製造方法。 (2)上記(1)記載の製造方法により得られる、10
0W/mK以上の高い熱伝導率を有することを特徴とす
る高熱伝導窒化ケイ素焼結体。 (3)上記(1)記載の製造方法により得られる、窒化
ケイ素マグネシウム(MgSiN2 )を焼結助剤として
用いて作製されたことを特徴とする高熱伝導窒化ケイ素
焼結体。
The present invention for solving the above-mentioned problems comprises the following technical means. (1) A method for producing a high thermal conductive silicon nitride sintered body by allowing a sintered body to be densified and grown by low-temperature sintering at 1900 ° C. or lower, wherein silicon nitride powder contains at least silicon magnesium nitride (MgSiN 2). ) Is added and molded, then sintered at a temperature of 1900 ° C. or less to obtain a dense sintered body having a high thermal conductivity of 100 W / mK or more. For producing a high thermal conductive silicon nitride sintered body. (2) 10 obtained by the production method described in (1) above.
A high thermal conductive silicon nitride sintered body having a high thermal conductivity of 0 W / mK or more. (3) A highly thermally conductive silicon nitride sintered body obtained by using silicon magnesium nitride (MgSiN 2 ) as a sintering aid, obtained by the production method described in (1) above.

【0010】[0010]

【発明の実施の形態】窒化ケイ素に焼結助剤として、酸
化マグネシウム(MgO)を添加することが、焼結温度
の低下に非常に有効なことは以前から知られている。し
かし、MgOをMg源として添加したのでは、低温焼結
は可能であるが粒成長が遅いこと、粒界ガラス相中の酸
素含有量を増加させるため、窒化ケイ素粒子内部の酸素
量の低減が生じにくいことにより、高熱伝導化は困難で
あった。本発明者らは、MgOに代わるMg源として、
非酸化物を探索した結果、MgSiN2 が混合・成形な
ど大気中のプロセスにおいても安定であり、かつ比較的
低温での緻密化と粒成長が可能であることを見出した。
即ち、窒化ケイ素粉末に少なくとも窒化ケイ素マグネシ
ウム(MgSiN2 )粉末を含む焼結助剤を添加するこ
とにより、1900℃以下の焼結温度で100W/mK
以上の高い熱伝導率を有する緻密な焼結体を得ることに
成功した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS It has long been known that the addition of magnesium oxide (MgO) as a sintering aid to silicon nitride is very effective in lowering the sintering temperature. However, when MgO is added as a Mg source, low-temperature sintering is possible but grain growth is slow, and the oxygen content in the grain boundary glass phase is increased. It is difficult to achieve high thermal conductivity because it hardly occurs. The present inventors have proposed, as a Mg source instead of MgO,
As a result of searching for a non-oxide, it was found that MgSiN 2 was stable even in an atmospheric process such as mixing and molding, and that densification and grain growth were possible at a relatively low temperature.
That is, by adding a sintering aid containing at least silicon magnesium nitride (MgSiN 2 ) powder to silicon nitride powder, 100 W / mK at a sintering temperature of 1900 ° C. or less.
We succeeded in obtaining a dense sintered body having the above high thermal conductivity.

【0011】本発明により、高熱伝導窒化ケイ素焼結体
を作製するには、まず、窒化ケイ素原料粉末に少なくと
も窒化ケイ素マグネシウム(MgSiN2 )を含む所定
量の焼結助剤を添加する。この窒化ケイ素マグネシウム
としては、例えば、ケイ化マグネシウム金属粉末(Mg
2 Si)を窒素雰囲気中1400℃程度に加熱し合成さ
れたもの(日本セラミックス協会学術論文誌、105
巻、934−939ページ、1997年記載の方法)を
粉砕して得た粉末が用いられる。窒化ケイ素原料は、α
型、β型いずれの結晶系のものを用いても良いが、好適
には、平均粒径1μm以下の微粉末を用いることが望ま
しい。焼結助剤としては、少なくとも窒化ケイ素マグネ
シウム(MgSiN2 )を含むものを使用することが重
要であり、これ以外に、一般に用いられる焼結助剤、例
えば、Sc23 、Y23 、Nd23 、Yb2 3
等の希土類酸化物、HfO2 、CeO2 、ZrO2 等の
酸化物の1種以上を添加することができる。上記焼結助
剤の添加量は、緻密化の方法(常圧焼結、ガス圧焼結、
ホットプレスなど)により異なるが、高熱伝導化の阻害
要因となる残留ガラス相をできるだけ低減すること、高
熱伝導化には粒成長が必要であるが緻密化の後の粒成長
は残留ガラス相が少ないほど速いこと、等の意味から緻
密化が可能な最少量に留めることが望ましく、具体的に
は焼結助剤量として2〜10mol%が好ましい。
According to the present invention, a high thermal conductive silicon nitride sintered body is provided.
First, at least to silicon nitride raw material powder
Also silicon magnesium nitride (MgSiNTwo ) Including
Add the amount of sintering aid. This silicon magnesium nitride
For example, magnesium silicide metal powder (Mg
Two Si) is heated to about 1400 ° C in a nitrogen atmosphere to synthesize
(The Ceramic Society of Japan, 105
Volume, pp. 934-939, 1997).
A powder obtained by pulverization is used. Silicon nitride raw material is α
Type, β-type crystal system may be used,
It is desirable to use fine powder having an average particle size of 1 μm or less.
New As a sintering aid, at least silicon nitride magnet
Cium (MgSiNTwo ) Is important to use
It is important to use other commonly used sintering aids, such as
For example, ScTwo OThree , YTwo OThree , NdTwo OThree , YbTwoOThree 
Rare earth oxides such as HfOTwo , CeOTwo , ZrOTwo Etc.
One or more oxides can be added. The above sintering aid
The amount of the agent added depends on the method of densification (normal pressure sintering, gas pressure sintering,
Hot press, etc.), but hinders high thermal conductivity
To minimize residual glass phase as a factor
Grain growth is necessary for thermal conduction, but grain growth after densification
Means that the smaller the residual glass phase, the faster
It is desirable to keep it to the minimum possible density.
Is preferably 2 to 10 mol% as a sintering aid.

【0012】次に、これらの原料の混合に当たっては、
粉体の混合あるいは混練に用いられる遊星ミル、ポット
ミル、トロンメルなどの通常の機械を使用することがで
きる。この混合は、湿式、乾式のどちらでも良いが、望
ましくは湿式において混合される。湿式混合において
は、水、メタノール、エタノール、トルエンなどの溶剤
が用いられるが、窒化ケイ素の酸化を抑えるために有機
溶媒を用いることが望ましい。有機溶剤を用いた場合
は、カチオン性セルロース、ポリカルボン酸などの分散
剤を用いることにより効率良く混合することができる。
Next, in mixing these raw materials,
An ordinary machine used for mixing or kneading the powder, such as a planetary mill, a pot mill, and a trommel, can be used. This mixing may be either a wet type or a dry type, but is desirably performed in a wet type. In the wet mixing, a solvent such as water, methanol, ethanol, and toluene is used, and it is preferable to use an organic solvent to suppress oxidation of silicon nitride. When an organic solvent is used, mixing can be performed efficiently by using a dispersant such as cationic cellulose and polycarboxylic acid.

【0013】上記の方法で混合したスラリーから溶媒を
乾燥して得た混合粉末を金型を用いて所定の形状に成形
する。場合によっては成形密度を高めるため金型成形後
に冷間静水圧成形(CIP)が行われる。また、上記の
方法で混合したスラリーに、ポリビニルブチラール等の
有機バインダーを適量添加し、ドクターブレード法等に
よるシート成形、あるいは押出し成形などの成形法を用
いて直接シート状の成形体を作製することもできる。
The mixed powder obtained by drying the solvent from the slurry mixed by the above method is molded into a predetermined shape using a mold. In some cases, cold isostatic pressing (CIP) is performed after the die forming to increase the forming density. In addition, an appropriate amount of an organic binder such as polyvinyl butyral is added to the slurry mixed by the above method, and a sheet-shaped formed body is directly produced by a sheet forming method such as a doctor blade method or an extrusion method. Can also.

【0014】次に、上記成形体は、まず、窒素雰囲気
中、600〜1000℃の温度で仮焼を行い、有機成分
を加熱除去した後、1900℃以下、1700〜190
0℃の温度、1〜10気圧の窒素中で1〜24時間焼結
する。本発明は、上記特定の焼結助剤を使用することに
より、窒素中の加熱だけで焼結体の緻密化が可能である
が、必要により、ホットプレス処理等を採用することは
適宜可能である。本発明により、1900℃以下の低温
焼結で、焼結体の緻密化(相対密度で98%以上)と平
均粒径で1μm以上に粒成長した組織を発達させること
が可能となる。
Next, the molded body is first calcined at a temperature of 600 to 1000 ° C. in a nitrogen atmosphere to remove organic components by heating.
Sinter for 1 to 24 hours at 0 ° C. and 1 to 10 atm nitrogen. In the present invention, by using the above specific sintering aid, it is possible to densify the sintered body only by heating in nitrogen, but if necessary, it is possible to employ a hot press treatment or the like as appropriate. is there. According to the present invention, the sintered body can be densified (at a relative density of 98% or more) and a microstructure having an average grain size of 1 μm or more can be developed by low-temperature sintering at 1900 ° C. or less.

【0015】[0015]

【作用】本発明者らは、窒化ケイ素の高熱伝導化に関す
る基礎的な検討を重ねた結果、窒化ケイ素焼結体の高熱
伝導化には、焼結体を構成する窒化ケイ素粒子内部の不
純物酸素を著しく低減させる必要があること、更に、粒
子内部の酸素低減には十分な粒成長が必要なことを見出
した。即ち、高い純度を持つ窒化ケイ素原料においてさ
え、窒化ケイ素粒子内部には0.5wt%程度の不純物
酸素が含まれている。高温での緻密化後、液相を介した
溶解再析出反応により微細な原料粉末粒子は大きな粒子
へと成長するが、この際、粒子内部の不純物酸素はガラ
ス相に取り残され、酸素含有量の少ない窒化ケイ素とし
て再析出する。このため、高熱伝導化には、酸素のトラ
ップ効果を高めるため酸素含有量の少ない液相を生成さ
せること、平均粒径として2倍以上となるような十分な
粒成長を起こすことが重要である。本発明において、窒
化ケイ素粉末に少なくとも窒化ケイ素マグネシウム(M
gSiN2 )を含む焼結助剤を添加することにより、液
相中の酸素含有量を増加させることなく焼結温度の低下
に必要なMgを液相の構成元素として添加でき、更に、
窒化物として添加するので液相中の窒素濃度が高くなり
粒成長が促進され、その結果、焼結温度の低下と高熱伝
導化が同時に達成される。
The inventors of the present invention have conducted basic studies on increasing the thermal conductivity of silicon nitride. As a result, the improvement of the thermal conductivity of the silicon nitride sintered body requires the introduction of impurity oxygen inside the silicon nitride particles constituting the sintered body. Was found to be significantly reduced, and sufficient grain growth was required to reduce oxygen inside the particles. That is, even in a silicon nitride raw material having a high purity, about 0.5 wt% of impurity oxygen is contained inside the silicon nitride particles. After densification at high temperature, the fine raw material powder particles grow into large particles by a solution reprecipitation reaction via the liquid phase, but at this time, impurity oxygen inside the particles is left in the glass phase, and the oxygen content of the particles is reduced. Redeposit as less silicon nitride. Therefore, in order to increase the thermal conductivity, it is important to generate a liquid phase having a low oxygen content in order to enhance the effect of trapping oxygen, and to cause sufficient grain growth so that the average particle diameter becomes twice or more. . In the present invention, at least silicon magnesium nitride (M
By adding a sintering aid containing gSiN 2 ), Mg required for lowering the sintering temperature can be added as a constituent element of the liquid phase without increasing the oxygen content in the liquid phase.
Since it is added as a nitride, the nitrogen concentration in the liquid phase is increased, and grain growth is promoted. As a result, a reduction in the sintering temperature and a high thermal conductivity are achieved at the same time.

【0016】[0016]

【実施例】次に、実施例に基づいて本発明を具体的に説
明するが、本発明は当該実施例によって何ら限定される
ものではない。 実施例 (1)窒化ケイ素焼結体の作製 ケイ化マグネシウム(MgSi2 )を窒素気流中140
0℃で5分間加熱することにより窒化ケイ素マグネシウ
ム(MgSiN2 )粉末を合成した。平均粒子径0.5
μmのβ−窒化ケイ素粉末に、0.5wt%の分散剤、
5mol%の窒化ケイ素マグネシウム粉末及び2〜5m
ol%の酸化イッテリビウム(Yb23 )を添加し、
メタノ−ルを分散媒とし窒化ケイ素製ポットと窒化ケイ
素製ボ−ルを用いて2時間遊星ミル混合を行った。エバ
ポレ−タを用いてメタノ−ルを蒸発させた後、窒素中8
00℃で仮焼し有機分を除去した。得られた粉末は金型
を用いて直径20mm、厚さ5mmのペレットに成形
し、更に、5ton/cm2 の圧力でCIP処理した。
成形体を窒化ホウ素(BN)製ルツボに設置し、10気
圧の加圧窒素中、1900℃で2〜24時間焼結を行っ
た。
Next, the present invention will be specifically described based on examples, but the present invention is not limited to the examples. Example (1) Production of silicon nitride sintered body Magnesium silicide (MgSi 2 ) was placed in a nitrogen stream at 140 ° C.
By heating at 0 ° C. for 5 minutes, a magnesium silicon nitride (MgSiN 2 ) powder was synthesized. Average particle size 0.5
0.5 μ% of a dispersant in μm β-silicon nitride powder,
5mol% silicon magnesium nitride powder and 2-5m
ol% of ytterbium oxide (Yb 2 O 3 )
Using methanol as a dispersion medium, planetary mill mixing was performed for 2 hours using a silicon nitride pot and a silicon nitride ball. After evaporating the methanol using an evaporator,
Calcination was performed at 00 ° C. to remove organic components. The obtained powder was formed into a pellet having a diameter of 20 mm and a thickness of 5 mm using a mold, and further subjected to a CIP treatment at a pressure of 5 ton / cm 2 .
The compact was placed in a crucible made of boron nitride (BN) and sintered at 1900 ° C. for 2 to 24 hours in pressurized nitrogen at 10 atm.

【0017】(2)窒化ケイ素焼結体の特性 焼結体の表面を研削し、厚さ約2mmの円盤状試験片を
作製し、レ−ザ−フラッシュ法を用いて熱伝導率を測定
した。表1に、この様にして得られた焼結体の密度、熱
伝導率をまとめて示す。
(2) Characteristics of Sintered Silicon Nitride The surface of the sintered body was ground to produce a disk-shaped test piece having a thickness of about 2 mm, and the thermal conductivity was measured by a laser flash method. . Table 1 summarizes the density and thermal conductivity of the thus obtained sintered body.

【0018】比較例 上記実施例において、MgSiN2 の代わりに平均粒子
径0.2μmの酸化マグネシウム(MgO)を2〜5m
ol%添加する以外は、実施例と全く同じ方法で作製し
た窒化ケイ素焼結体の特性も合わせて表1に示す。
Comparative Example In the above example, magnesium oxide (MgO) having an average particle diameter of 0.2 μm was used instead of MgSiN 2 for 2 to 5 m.
Table 1 also shows the characteristics of the silicon nitride sintered body produced in exactly the same manner as in the example except that ol% was added.

【0019】[0019]

【表1】 [Table 1]

【0020】表1から明らかなように、本発明の方法に
より得られた窒化ケイ素焼結体は、相対密度で98%以
上に緻密化し、100W/mK以上の高い熱伝導率を示
す。焼結体の切断面から平均粒子径を測定した結果、M
gO添加では平均粒子径が1μm前後であったのに対
し、MgSiN2 を添加した本発明の焼結体は1.2〜
3.8μmの平均粒子径を有しており、MgSiN2
加が粒成長の促進に有効であることが分かる。
As is clear from Table 1, the silicon nitride sintered body obtained by the method of the present invention is densified to a relative density of 98% or more and has a high thermal conductivity of 100 W / mK or more. As a result of measuring the average particle diameter from the cut surface of the sintered body, M
While the average particle diameter was about 1 μm when gO was added, the sintered body of the present invention to which MgSiN 2 was added was 1.2 to 1.2 μm.
It has an average particle diameter of 3.8 μm, indicating that the addition of MgSiN 2 is effective in promoting the grain growth.

【0021】[0021]

【発明の効果】以上詳述した通り、本発明は、窒化ケイ
素粉末に少なくとも窒化ケイ素マグネシウム(MgSi
2 )を含む焼結助剤を添加し、成形し、次いで、これ
を1900℃以下の温度で焼結することを特徴とする高
熱伝導窒化ケイ素セラミックスの製造方法に係り、本発
明により、1)1900℃以下の低温焼結で焼結体の緻
密化と粒成長を可能とする、2)100W/ml以上の
高い熱伝導率の窒化ケイ素焼結体が得られる、という格
別の効果が得られる。
As described in detail above, the present invention relates to a method of manufacturing a silicon nitride powder containing at least silicon magnesium nitride (MgSi).
The present invention relates to a method for producing a silicon nitride ceramic having a high thermal conductivity, characterized by adding a sintering aid containing N 2 ), molding and then sintering the same at a temperature of 1900 ° C. or less. ) It enables the densification and grain growth of the sintered body by low-temperature sintering at 1900 ° C or less, and 2) has the special effect of obtaining a silicon nitride sintered body with a high thermal conductivity of 100 W / ml or more. Can be

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 1900℃以下の低温焼結により、焼結
体の緻密化と粒成長を可能として高熱伝導窒化ケイ素焼
結体を製造する方法であって、窒化ケイ素粉末に少なく
とも窒化ケイ素マグネシウム(MgSiN2 )を含む焼
結助剤を添加し、成形し、次いで、これを1900℃以
下の温度で焼結し、かつ100W/mK以上の高い熱伝
導率を有する緻密な焼結体を得ることを特徴とする高熱
伝導窒化ケイ素焼結体の製造方法。
1. A method for producing a sintered body having high thermal conductivity by enabling sintering at a low temperature of 1900 ° C. or lower to enable densification and grain growth of the sintered body. A sintering aid containing MgSiN 2 ) is added, molded, and then sintered at a temperature of 1900 ° C. or less to obtain a dense sintered body having a high thermal conductivity of 100 W / mK or more. A method for producing a high thermal conductive silicon nitride sintered body, characterized in that:
【請求項2】 上記請求項1記載の製造方法により得ら
れる、100W/mK以上の高い熱伝導率を有すること
を特徴とする高熱伝導窒化ケイ素焼結体。
2. A high thermal conductive silicon nitride sintered body having a high thermal conductivity of 100 W / mK or more, obtained by the production method according to claim 1.
【請求項3】 上記請求項1記載の製造方法により得ら
れる、窒化ケイ素マグネシウム(MgSiN2 )を焼結
助剤として用いて作製されたことを特徴とする高熱伝導
窒化ケイ素焼結体。
3. A highly thermally conductive silicon nitride sintered body obtained by using the silicon magnesium nitride (MgSiN 2 ) as a sintering aid, obtained by the production method according to claim 1.
JP2000318912A 2000-10-19 2000-10-19 High thermal conductivity silicon nitride ceramics and method for producing the same Expired - Lifetime JP3648541B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000318912A JP3648541B2 (en) 2000-10-19 2000-10-19 High thermal conductivity silicon nitride ceramics and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000318912A JP3648541B2 (en) 2000-10-19 2000-10-19 High thermal conductivity silicon nitride ceramics and method for producing the same

Publications (2)

Publication Number Publication Date
JP2002128569A true JP2002128569A (en) 2002-05-09
JP3648541B2 JP3648541B2 (en) 2005-05-18

Family

ID=18797460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000318912A Expired - Lifetime JP3648541B2 (en) 2000-10-19 2000-10-19 High thermal conductivity silicon nitride ceramics and method for producing the same

Country Status (1)

Country Link
JP (1) JP3648541B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1304333C (en) * 2005-01-14 2007-03-14 中国科学院上海硅酸盐研究所 Low temperature sintering method for high hardness silicon nitride ceramics
US20110176277A1 (en) * 2008-07-03 2011-07-21 Hitachi Metals, Ltd. Silicon nitride sintered body, method of producing the same, and silicon nitride circuit substrate and semiconductor module using the same
WO2017030360A1 (en) * 2015-08-17 2017-02-23 한국과학기술원 Silicon nitride sintered compact with high thermal conductivity, and method for manufacturing same
CN111362704A (en) * 2020-03-19 2020-07-03 西安澳秦新材料有限公司 High-thermal-conductivity silicon nitride ceramic and preparation method thereof
CN111620697A (en) * 2020-06-08 2020-09-04 浙江锐克特种陶瓷有限公司 Silicon nitride substrate material prepared based on hot-pressing sintering method
CN111635235A (en) * 2020-06-08 2020-09-08 浙江锐克特种陶瓷有限公司 Preparation method of high-strength high-thermal-conductivity silicon nitride substrate
CN113800918A (en) * 2021-09-18 2021-12-17 湖南工业大学 Trace in-situ carbon-induced Si3N4Heat-conducting ceramic material and preparation method thereof
WO2022004754A1 (en) 2020-06-30 2022-01-06 株式会社トクヤマ Method for continuously producing silicon nitride sintered compact
WO2022004755A1 (en) 2020-06-30 2022-01-06 株式会社トクヤマ Silicon nitride sintered substrate
KR20220106119A (en) 2019-11-28 2022-07-28 가부시끼가이샤 도꾸야마 Manufacturing method of silicon nitride sintered compact
WO2022210369A1 (en) * 2021-03-30 2022-10-06 株式会社トクヤマ Method for producing silicon nitride sinterned body
CN115594510A (en) * 2022-11-21 2023-01-13 潍坊学院(Cn) Silicon nitride heat-conducting substrate and preparation method thereof
CN116639985A (en) * 2023-06-07 2023-08-25 湖南湘瓷科艺有限公司 High-thermal-conductivity silicon nitride ceramic substrate and application thereof

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1304333C (en) * 2005-01-14 2007-03-14 中国科学院上海硅酸盐研究所 Low temperature sintering method for high hardness silicon nitride ceramics
US20110176277A1 (en) * 2008-07-03 2011-07-21 Hitachi Metals, Ltd. Silicon nitride sintered body, method of producing the same, and silicon nitride circuit substrate and semiconductor module using the same
US8586493B2 (en) * 2008-07-03 2013-11-19 Hitachi Metals, Ltd. Silicon nitride sintered body, method of producing the same, and silicon nitride circuit substrate and semiconductor module using the same
WO2017030360A1 (en) * 2015-08-17 2017-02-23 한국과학기술원 Silicon nitride sintered compact with high thermal conductivity, and method for manufacturing same
JP2018528152A (en) * 2015-08-17 2018-09-27 韓国科学技術院Korea Advanced Institute Of Science And Technology High thermal conductivity silicon nitride sintered body and manufacturing method thereof
KR20220106119A (en) 2019-11-28 2022-07-28 가부시끼가이샤 도꾸야마 Manufacturing method of silicon nitride sintered compact
CN111362704A (en) * 2020-03-19 2020-07-03 西安澳秦新材料有限公司 High-thermal-conductivity silicon nitride ceramic and preparation method thereof
CN111620697A (en) * 2020-06-08 2020-09-04 浙江锐克特种陶瓷有限公司 Silicon nitride substrate material prepared based on hot-pressing sintering method
CN111635235A (en) * 2020-06-08 2020-09-08 浙江锐克特种陶瓷有限公司 Preparation method of high-strength high-thermal-conductivity silicon nitride substrate
KR20230031202A (en) 2020-06-30 2023-03-07 가부시끼가이샤 도꾸야마 Continuous manufacturing method of silicon nitride sintered body
WO2022004754A1 (en) 2020-06-30 2022-01-06 株式会社トクヤマ Method for continuously producing silicon nitride sintered compact
WO2022004755A1 (en) 2020-06-30 2022-01-06 株式会社トクヤマ Silicon nitride sintered substrate
KR20230029610A (en) 2020-06-30 2023-03-03 가부시끼가이샤 도꾸야마 Silicon nitride sintered substrate
WO2022210369A1 (en) * 2021-03-30 2022-10-06 株式会社トクヤマ Method for producing silicon nitride sinterned body
KR20230160278A (en) 2021-03-30 2023-11-23 가부시끼가이샤 도꾸야마 Method for manufacturing silicon nitride sintered body
CN113800918B (en) * 2021-09-18 2022-12-09 湖南工业大学 Trace in-situ carbon-induced Si3N4 heat-conducting ceramic material and preparation method thereof
CN113800918A (en) * 2021-09-18 2021-12-17 湖南工业大学 Trace in-situ carbon-induced Si3N4Heat-conducting ceramic material and preparation method thereof
CN115594510A (en) * 2022-11-21 2023-01-13 潍坊学院(Cn) Silicon nitride heat-conducting substrate and preparation method thereof
CN116639985A (en) * 2023-06-07 2023-08-25 湖南湘瓷科艺有限公司 High-thermal-conductivity silicon nitride ceramic substrate and application thereof

Also Published As

Publication number Publication date
JP3648541B2 (en) 2005-05-18

Similar Documents

Publication Publication Date Title
Hu et al. Promising high-thermal-conductivity substrate material for high-power electronic device: Silicon nitride ceramics
JP3501317B2 (en) High thermal conductivity silicon nitride sintered body and insulating substrate made of silicon nitride sintered body
Zhou et al. Thermal conductivity of silicon carbide densified with rare-earth oxide additives
JP5836522B2 (en) Method for manufacturing silicon nitride substrate
JP2002128569A (en) High thermal conductive silicon nitride ceramic and its manufacturing method
CN112159237A (en) High-thermal-conductivity silicon nitride ceramic material and preparation method thereof
JP2882575B2 (en) High thermal conductive silicon nitride ceramics and method for producing the same
JPH08510201A (en) Self-reinforced sintered silicon nitride
JPH08143400A (en) High strength and high toughness silicon nitride sintered compact
KR101681184B1 (en) Composition for Pressureless Sintered Silicon Carbide Material Having Low-Resistivity, Sintered Body and the Producing Method of the Same
WO2005049525A1 (en) High thermally conductive aluminum nitride sintered product
KR101470322B1 (en) Aluminum Nitride ceramics with high strength and the method of low temperature sintering thereof
JPH05238830A (en) Sintered aluminum nitride and its production
JPH09268069A (en) Highly heat conductive material and its production
JP3561153B2 (en) Silicon nitride heat dissipation member and method of manufacturing the same
JPH11100274A (en) Silicon nitride sintered compact, its production and circuit board
JP2008156142A (en) Aluminum nitride sintered compact and method for manufacturing the same
JP2752227B2 (en) AlN-BN composite sintered body and method for producing the same
JP2003095747A (en) Sintered silicon nitride compact and circuit board obtained by using the same
Chen et al. Microstructure of (Y+ Sm)–α-sialon with a-sialon seeds
JP5265859B2 (en) Aluminum nitride sintered body
Li et al. Thermal Conductivity and Flexural Strength of Two-Step Hot-Pressed SiC Ceramics
JP3271123B2 (en) Method for producing composite of silicon nitride and boron nitride
JPH06191953A (en) Aluminum nitride sintered compact
JPH11322438A (en) High thermal conductive silicon nitride sintered compact and its production

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040707

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040831

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041028

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20041210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050117

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350