JP4824007B2 - Current measuring device - Google Patents

Current measuring device Download PDF

Info

Publication number
JP4824007B2
JP4824007B2 JP2007328497A JP2007328497A JP4824007B2 JP 4824007 B2 JP4824007 B2 JP 4824007B2 JP 2007328497 A JP2007328497 A JP 2007328497A JP 2007328497 A JP2007328497 A JP 2007328497A JP 4824007 B2 JP4824007 B2 JP 4824007B2
Authority
JP
Japan
Prior art keywords
current
resistor
voltage
measuring
field effect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007328497A
Other languages
Japanese (ja)
Other versions
JP2009150762A (en
Inventor
芳久 梶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Telecom Networks Ltd
Original Assignee
Fujitsu Telecom Networks Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Telecom Networks Ltd filed Critical Fujitsu Telecom Networks Ltd
Priority to JP2007328497A priority Critical patent/JP4824007B2/en
Publication of JP2009150762A publication Critical patent/JP2009150762A/en
Application granted granted Critical
Publication of JP4824007B2 publication Critical patent/JP4824007B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Measurement Of Current Or Voltage (AREA)

Description

本発明は、自動的に測定レンジを切替えて、広範囲にわたり所定の精度で電流を測定する電流測定装置に関する。   The present invention relates to a current measuring apparatus that automatically switches a measurement range and measures current with a predetermined accuracy over a wide range.

電流を測定する手段は、既に各種提案され且つ実用化されている。又測定電流値をディジタル信号に変換して、表示や制御を行う構成も知られている。又広範囲の電流値を所定の測定精度を維持して測定する為に測定レンジ切替えを行う構成が一般的である。例えば、図9に示すように、充放電装置等の電源部101と、コンデンサやバッテリー等の負荷部102との間に抵抗Rを接続し、流れる電流による抵抗Rの両端の電圧を、変換比A,B,C(A>B>C)の電圧変換器103,104,105により変換し、それぞれをADボード106に入力し、ディジタル信号に変換して、測定ディジタル電流値として出力する構成が知られている。   Various means for measuring current have already been proposed and put into practical use. A configuration is also known in which a measured current value is converted into a digital signal for display and control. In general, the measurement range is switched to measure a wide range of current values while maintaining a predetermined measurement accuracy. For example, as shown in FIG. 9, a resistor R is connected between a power supply unit 101 such as a charging / discharging device and a load unit 102 such as a capacitor or a battery, and the voltage across the resistor R due to the flowing current is converted into a conversion ratio. A voltage is converted by voltage converters 103, 104, and 105 of A, B, and C (A> B> C), input to the AD board 106, converted into a digital signal, and output as a measured digital current value. Are known.

この電流測定装置は、負荷部102に流れる電流がIA<IB<ICの場合に、電流IAの場合は、測定電流値が小さい範囲であり、抵抗Rの両端の電圧は、小さい値となるから、電圧変換器103によりA倍し、電流IAより大きい電流IBの場合は、電圧変換器104によりB倍し、電流IBより大きい電流ICの場合は、電圧変換器105によりC倍して、ADボード106によりディジタル値に変換する。それにより、電流IA〜ICの範囲にわたり、ほぼ同一の精度で電流測定が可能となる。   In this current measuring device, when the current flowing through the load unit 102 is IA <IB <IC, the measured current value is in a small range when the current IA, and the voltage at both ends of the resistor R becomes a small value. When the current IB is larger than the current IA, it is multiplied by A by the voltage converter 103. When the current IC is larger than the current IB, the voltage is multiplied by B. When the current IC is larger than the current IB, the voltage is multiplied by C. The digital value is converted by the board 106. Thereby, current measurement can be performed with substantially the same accuracy over the range of currents IA to IC.

又図10に示す従来の電流測定装置は、電源部111からコンデンサやバッテリー等の負荷部112に流れる電流を、直列接続の抵抗Ra,Rbのそれぞれの両端の電圧として検出し、ADボード113に入力する構成を有し、抵抗Raを小電流測定用、抵抗Rbを大電流測定用とすると、抵抗値はRa>Rbの関係とするもので、小電流測定用の抵抗Raに、ダイオードDa,Dbを並列接続する。なお、負荷部112に流れる電流が常に一方向のみの場合は、その電流が流れる方向の順方向特性の1個のダイオードのみを接続すれば良いものであり、図示の矢印方向に電流が流れる場合は、ダイオードDaのみを接続すれば良いことになる。小電流測定時は、抵抗Raの両端の電圧はダイオードDa,Dbの順方向電圧以下であるが、大電流測定時は、抵抗Raの両端の電圧が高くなり、この抵抗Raによる電力損失が大きくなるが、その時に、ダイオードの順方向の閾値電圧以上となると、電流はダイオードに分流して流れることにより、大電流測定時の電力損失を低減することができる。   10 detects the current flowing from the power supply unit 111 to the load unit 112 such as a capacitor or a battery as the voltage across each of the resistors Ra and Rb connected in series, and the AD board 113 detects the current. When the resistor Ra is used for measuring a small current and the resistor Rb is used for measuring a large current, the resistance value has a relationship of Ra> Rb, and the diode Da, Db is connected in parallel. When the current flowing through the load unit 112 is always only in one direction, it is sufficient to connect only one diode having forward characteristics in the direction in which the current flows, and the current flows in the direction of the arrow shown in the figure. Therefore, it is sufficient to connect only the diode Da. When measuring a small current, the voltage at both ends of the resistor Ra is equal to or less than the forward voltage of the diodes Da and Db. When measuring a large current, the voltage at both ends of the resistor Ra becomes high, and the power loss due to the resistor Ra is large. However, at that time, when the voltage exceeds the threshold voltage in the forward direction of the diode, the current is shunted and flows to the diode, so that power loss at the time of measuring a large current can be reduced.

又動作モードにより数A程度の電流と、数mA〜数10mAの電流が流れる場合の電流検出手段として、抵抗値が大きい抵抗と抵抗値が小さい抵抗とを、動作モードに従って切替えるか、又は数A程度の大電流の動作モードの場合に、直列接続した抵抗値の大きい抵抗と小さい抵抗との中の抵抗値が大きい抵抗をスイッチによりショートすることにより、大電流動作モードと小電流動作モードとに於ける電流検出精度を同等に維持して電流測定を行う手段が提案されている(例えば、特許文献1参照)。
特開2000−194456号公報
In addition, as a current detection means when a current of about several A and a current of several mA to several tens of mA flow depending on the operation mode, a resistor having a large resistance value and a resistor having a small resistance value are switched according to the operation mode, or several A In the case of an operation mode with a large current level, a resistor having a large resistance value and a resistance value having a large resistance value connected in series are short-circuited by a switch to switch between a large current operation mode and a small current operation mode. There has been proposed a means for performing current measurement while maintaining equal current detection accuracy (see, for example, Patent Document 1).
JP 2000-194456 A

従来例の図9に示す電流検出装置は、広範囲の電流を測定することが可能であるが、複数の電圧変換器を設けることによるコストアップの問題がある。又図10に示す電流検出装置は、大電流測定用の抵抗に並列にダイオードを接続するものであるが、抵抗の両端の電圧をダイオードの順方向の閾値電圧の例えば0.6V以下には抑制することができないので、大電流測定時の損失が比較的大きい問題がある。又前述の特許文献1に於いては、電流測定範囲を、動作モードの切替制御信号に基づいて切替えるもので、自動的に測定レンジ切替えを行う構成は示されていない。   Although the current detection device shown in FIG. 9 of the conventional example can measure a wide range of current, there is a problem of cost increase by providing a plurality of voltage converters. The current detection device shown in FIG. 10 connects a diode in parallel with a resistor for measuring a large current, but suppresses the voltage at both ends of the resistor to a forward threshold voltage of the diode, for example, 0.6 V or less. Therefore, there is a problem that the loss when measuring a large current is relatively large. In Patent Document 1, the current measurement range is switched based on the operation mode switching control signal, and a configuration for automatically switching the measurement range is not shown.

本発明は、前述の従来例の問題点を解決することを目的とし、流れる電流に従って測定レンジを自動的に切替え、且つ電力損失を低減するものである。   An object of the present invention is to solve the problems of the conventional example described above, and to automatically switch the measurement range according to the flowing current and reduce the power loss.

本発明の電流測定装置は、電源部と負荷部との間に直列接続した抵抗値の異なる複数の抵抗と、これらの抵抗の両端の電圧をディジタル変換して測定ディジタル電流値として出力するADボードとを含む電流測定装置であって、大電流測定用の抵抗に比較して抵抗値の大きい小電流測定用の抵抗に並列接続した電界効果トランジスタと、抵抗値の大きい抵抗の両端の電圧と基準電圧とを比較し、抵抗値の大きい抵抗の両端の電圧が、基準電圧を超えた時に、電界効果トランジスタをオン状態とするコンパレータとを備えている。   A current measuring apparatus according to the present invention includes a plurality of resistors having different resistance values connected in series between a power supply unit and a load unit, and digitally converting voltages at both ends of these resistors and outputting them as measured digital current values A field effect transistor connected in parallel to a resistor for measuring a small current having a large resistance value compared to a resistor for measuring a large current, a voltage across both ends of the resistor having a large resistance value, and a reference Comparing with the voltage, a comparator that turns on the field effect transistor when the voltage across the resistor having a large resistance value exceeds the reference voltage is provided.

又電源部と負荷部との間に直列接続した抵抗値の異なる複数の抵抗と、これらの抵抗の両端の電圧をディジタル変換して測定ディジタル電流値として出力するADボードとを含む電流測定装置であって、大電流測定用の抵抗に比較して抵抗値の大きい小電流測定用の抵抗に並列に接続した電界効果トランジスタと、抵抗値の大きい抵抗の両端の電位差の絶対値を出力する絶対値回路と、この絶対値回路の出力と基準電圧とを比較し、絶対値回路の出力が基準電圧を超えた時に、電界効果トランジスタをオン状態とするコンパレータとを備えている。   Also, a current measuring device including a plurality of resistors having different resistance values connected in series between a power supply unit and a load unit, and an AD board that digitally converts voltages at both ends of these resistors and outputs them as measured digital current values. An absolute value that outputs an absolute value of a potential difference between a field effect transistor connected in parallel to a resistor for measuring a small current having a large resistance value compared to a resistor for measuring a large current and a resistor having a large resistance value The circuit includes a comparator that compares the output of the absolute value circuit with a reference voltage and turns on the field effect transistor when the output of the absolute value circuit exceeds the reference voltage.

又電源部と負荷部との間に直列接続した抵抗値の異なる複数の抵抗と、これらの抵抗の両端の電圧をディジタル変換して測定ディジタル電流値として出力するADボードとを含む電流測定装置であって、大電流測定用の抵抗に比較して抵抗値の大きい小電流測定用の抵抗に並列接続し、ソースをそれぞれ共通に基準電位に接続した2個の直列接続の電界効果トランジスタと、抵抗値の大きい抵抗の両端の電位差の絶対値を出力する絶対値回路と、この絶対値回路の出力と、基準電位に接続した基準電圧とを比較し、絶対値回路の出力が基準電圧を超えた時に、2個直列接続の電界効果トランジスタをオン状態とするコンパレータとを備えている。   Also, a current measuring device including a plurality of resistors having different resistance values connected in series between a power supply unit and a load unit, and an AD board that digitally converts voltages at both ends of these resistors and outputs them as measured digital current values. Two series-connected field effect transistors connected in parallel to a resistor for measuring a small current having a large resistance value compared to a resistor for measuring a large current, each having a source commonly connected to a reference potential, and a resistor The absolute value circuit that outputs the absolute value of the potential difference between both ends of a resistor with a large value, the output of this absolute value circuit, and the reference voltage connected to the reference potential were compared, and the output of the absolute value circuit exceeded the reference voltage In some cases, two comparators that turn on two field-effect transistors connected in series are provided.

又電源部と負荷部との間に直列接続した抵抗値の異なる複数の抵抗の両端の電圧を整流平滑化して、ADボードに入力する整流部を設けることができる。又電界効果トランジスタをオン状態とするコンパレータの出力を測定レンジ切替信号として、ADボードに入力する構成とすることができる。   Further, it is possible to provide a rectifying unit that rectifies and smoothes the voltages at both ends of a plurality of resistors having different resistance values connected in series between the power supply unit and the load unit and inputs them to the AD board. Further, the output of the comparator that turns on the field effect transistor can be input to the AD board as a measurement range switching signal.

又電源部と負荷部との間に直列接続した抵抗値の異なる複数の抵抗と、これらの抵抗の両端の電圧をディジタル変換して測定ディジタル電流値として出力するADボードとを含む電流測定装置であって、大電流測定用の抵抗に比較して抵抗値の大きい小電流測定用の抵抗に並列接続した電界効果トランジスタと、抵抗値の小さい抵抗の両端の電圧を検出する演算増幅器と、この演算増幅器の出力信号と基準電圧とを比較し、出力信号が基準電圧を超えた時に電界効果トランジスタをオンとし、出力信号が基準電圧より低下した時に電界効果トランジスタをオフとするコンパレータとを備えている。   Also, a current measuring device including a plurality of resistors having different resistance values connected in series between a power supply unit and a load unit, and an AD board that digitally converts voltages at both ends of these resistors and outputs them as measured digital current values. A field effect transistor connected in parallel to a resistor for measuring a small current having a large resistance value compared to a resistor for measuring a large current, an operational amplifier for detecting a voltage at both ends of the resistor having a small resistance value, and this calculation Comparing the output signal of the amplifier with a reference voltage, and a comparator that turns on the field effect transistor when the output signal exceeds the reference voltage and turns off the field effect transistor when the output signal falls below the reference voltage. .

複数の抵抗値が異なる抵抗を、電源部と負荷部との間に直列に接続し、抵抗値が大きい小電流測定用の抵抗と並列に電界効果トランジスタを接続し、その小電流測定用の抵抗の両端の電圧が、大きな電流が流れたことにより基準電圧を超えた時に電界効果トランジスタをオン状態とし、その電界効果トランジスタによって、抵抗値の大きい小電流測定用の抵抗をバイパスするものであり、ダイオードによって抵抗値の大きい小電流測定用の抵抗をバイパスする従来例に比較して、大電流測定時の抵抗による電力損失を大幅に低減することができる利点があり、更に、ソースをそれぞれ共通に基準電位に接続した2個の直列接続の電界効果トランジスタを、小電流測定用の抵抗値の大きい抵抗に並列に接続した構成として、電流方向が何れの方向であっても測定可能となる利点がある。 A plurality of resistors having different resistance values are connected in series between the power supply unit and the load unit, and a field effect transistor is connected in parallel with a resistor for measuring a small current with a large resistance value. When the voltage at both ends exceeds the reference voltage due to the flow of a large current , the field effect transistor is turned on, and the field effect transistor bypasses a resistor for measuring a small current with a large resistance value . Compared to the conventional example that bypasses a resistor for measuring a small current with a large resistance value by a diode, there is an advantage that the power loss due to the resistor at the time of measuring a large current can be greatly reduced. As a configuration in which two series-connected field effect transistors connected to a reference potential are connected in parallel to a resistor having a large resistance value for measuring a small current, whichever current direction is There is an advantage that it becomes possible to measure be in.

本発明の電流測定装置は、図1を参照して説明すると、電源部1と負荷部2との間に直列接続した抵抗値の異なる複数の抵抗R1,R2と、これらの抵抗R1,R2の両端の電圧をディジタル変換して測定ディジタル電流値として出力するADボード3とを含み、大電流測定用の抵抗R1に比較して抵抗値の大きい小電流測定用の抵抗R2に並列接続した電界効果トランジスタ4と、抵抗値の大きい抵抗R2の両端の電圧と基準電圧Vr1とを比較して、抵抗値の大きい抵抗R2の両端の電圧が、基準電圧Vr1を超えた時に、電界効果トランジスタ4をオン状態とするコンパレータ5とを備えている。   The current measuring device of the present invention will be described with reference to FIG. 1. A plurality of resistors R1 and R2 having different resistance values connected in series between the power supply unit 1 and the load unit 2 and the resistors R1 and R2 And an AD board 3 that converts the voltage at both ends into a digital value and outputs it as a measured digital current value, and is connected in parallel to a small current measuring resistor R2 having a larger resistance value than the large current measuring resistor R1. The voltage at both ends of the transistor 4 and the resistor R2 having a large resistance value is compared with the reference voltage Vr1, and the field effect transistor 4 is turned on when the voltage at both ends of the resistor R2 having the large resistance value exceeds the reference voltage Vr1. And a comparator 5 for setting the state.

図1は、本発明の実施例1の説明図であり、1はインバータや充放電装置等の電源部、2はコンデンサ、バッテリー、モータ等の負荷部、3は複数のA/D変換部を含むADボード、4は電界効果トランジスタ、5はコンパレータ、Vr1は基準電圧、R1は大電流測定用の抵抗、R2は小電流測定用の抵抗を示し、抵抗R1,R2の抵抗値はR1<R2の関係に選定する。又小電流測定用の抵抗R2と並列に電界効果トランジスタ4を接続する。又負荷部2をコンデンサ又はバッテリーとして、電源部1を充電装置とすると、図示の矢印方向の直流の電流が、直列接続の抵抗R1,R2を介して流れる。これらの抵抗R1,R2の両端の電圧をADボード3に入力してディジタル値に変換する。   FIG. 1 is an explanatory diagram of Embodiment 1 of the present invention, where 1 is a power supply unit such as an inverter or a charge / discharge device, 2 is a load unit such as a capacitor, battery, or motor, and 3 is a plurality of A / D conversion units. AD board including 4 is a field effect transistor, 5 is a comparator, Vr1 is a reference voltage, R1 is a resistor for measuring a large current, R2 is a resistor for measuring a small current, and the resistance values of the resistors R1 and R2 are R1 <R2 Select the relationship. A field effect transistor 4 is connected in parallel with the small current measuring resistor R2. When the load unit 2 is a capacitor or a battery and the power supply unit 1 is a charging device, a direct current in the direction of the arrow shown in the figure flows through resistors R1 and R2 connected in series. The voltages across these resistors R1 and R2 are input to the AD board 3 and converted into digital values.

小電流測定用の抵抗R2は、大電流測定用の抵抗R1に比較して抵抗値が大きいものであり、この抵抗R2と並列に電界効果トランジスタ4を接続し、抵抗R2の両端の電圧と基準電圧Vr1とをコンパレータ5により比較し、小電流測定範囲を超えた電流が流れた時に、抵抗R2の両端の電圧が基準電圧Vr1を超えるように設定する。それにより、小電流測定範囲を超える電流が流れると、コンパレータ5の出力信号により電界効果トランジスタ4をオンとする。このオン状態となった電界効果トランジスタ4により、抵抗R2の両端の電圧を基準電圧Vr1に従った値にクランプすることになる。又コンパレータ5の出力信号をADボード3に測定レンジ切替信号として入力する。通常の抵抗による電流測定に於いては、抵抗の両端の電圧は最大50mV〜200mV程度に選定する場合が一般的である。前述の抵抗R1,R2についても、電流測定レンジの最大電流値と予め選定した最大電圧との関係で、大電流測定用の抵抗R1と小電流測定用の抵抗R2との抵抗値を選定する。   The resistance R2 for measuring the small current has a larger resistance value than the resistance R1 for measuring the large current. The field effect transistor 4 is connected in parallel with the resistance R2, and the voltage across the resistance R2 and the reference The voltage Vr1 is compared by the comparator 5, and when a current exceeding the small current measurement range flows, the voltage across the resistor R2 is set to exceed the reference voltage Vr1. Thereby, when a current exceeding the small current measurement range flows, the field effect transistor 4 is turned on by the output signal of the comparator 5. The field effect transistor 4 in the on state clamps the voltage across the resistor R2 to a value according to the reference voltage Vr1. The output signal of the comparator 5 is input to the AD board 3 as a measurement range switching signal. In the current measurement with a normal resistance, the voltage across the resistance is generally selected to be about 50 mV to 200 mV at maximum. For the resistors R1 and R2, the resistance values of the resistor R1 for measuring a large current and the resistor R2 for measuring a small current are selected based on the relationship between the maximum current value in the current measurement range and the maximum voltage selected in advance.

又電界効果トランジスタ4のオン抵抗による電圧降下は、数10mV〜数100mV程度或いはそれ以下の電界効果トランジスタの開発も進められている。又抵抗R2の両端の電圧が基準電圧Vr1を超えた場合に、コンパレータ5の出力信号により電界効果トランジスタ4をオン状態として、小電流測定用の抵抗R2の両端の電圧を基準電圧Vr1によってクランプした状態とし、且つADボード3にコンパレータ5の出力信号を入力して、抵抗R2の両端の電圧を測定ディジタル電流値とする小電流測定レンジから、抵抗R1の両端の電圧を測定ディジタル電流値とする大電流測定レンジに切替える。この大電流測定レンジに於ける小電流測定用の抵抗R2による電力損失は、電界効果トランジスタ4がオンとなって電流をバイパスし、オン抵抗が小さいことにより、ダイオードによってバイパスする従来例に比較して大幅に低減することが可能となる。   Further, development of a field effect transistor whose voltage drop due to the on-resistance of the field effect transistor 4 is about several tens of mV to several hundred mV or less is being promoted. When the voltage across the resistor R2 exceeds the reference voltage Vr1, the field effect transistor 4 is turned on by the output signal of the comparator 5, and the voltage across the resistor R2 for small current measurement is clamped by the reference voltage Vr1. From the small current measurement range in which the output signal of the comparator 5 is input to the AD board 3 and the voltage across the resistor R2 is the measured digital current value, the voltage across the resistor R1 is the measured digital current value. Switch to the large current measurement range. The power loss due to the small current measurement resistor R2 in this large current measurement range is compared to the conventional example in which the field effect transistor 4 is turned on to bypass the current and the on resistance is small, so that it is bypassed by a diode. Can be greatly reduced.

又ADボード3は、抵抗R1,R2の両端の電圧を入力して、それぞれディジタル値に変換するA/D変換器と、A/D変換した測定ディジタル電流値を切替えて出力する切替出力手段とを含み、この切替出力手段をコンパレータ5の出力信号により制御し、電流測定レンジを自動的に切替える構成を有する場合を示すものであるが、例えば、複数のA/D変換器により変換した測定ディジタル電流値を、図示を省略した後段の回路で自動的に選択出力する手段を適用することも可能である。又A/D変換器により変換した抵抗R1,R2による測定ディジタル電流値を比較し、電界効果トランジスタ4がオンとなることによる抵抗R1,R2による測定ディジタル電流値の差が所定値を超えた時に、抵抗R2による測定ディジタル電流値から抵抗R1による測定ディジタル電流値に切替えて出力する手段を適用することも可能である。又測定ディジタル電流値を、図示を省略した表示装置等に入力して、ディジタル表示を行うこともできる。   The AD board 3 also receives an A / D converter that inputs voltages across the resistors R1 and R2 and converts them into digital values, and a switching output means for switching and outputting the A / D converted measured digital current values. The switching output means is controlled by the output signal of the comparator 5, and the current measurement range is automatically switched. For example, the measurement digital converted by a plurality of A / D converters is shown. It is also possible to apply means for automatically selecting and outputting the current value by a subsequent circuit (not shown). Also, the measured digital current values by the resistors R1 and R2 converted by the A / D converter are compared, and when the difference between the measured digital current values by the resistors R1 and R2 due to the field effect transistor 4 being turned on exceeds a predetermined value. It is also possible to apply means for switching and outputting the measured digital current value by the resistor R2 to the measured digital current value by the resistor R1. Also, the measured digital current value can be input to a display device or the like (not shown) for digital display.

前述のように、負荷部2に流れる直流の電流が小電流測定レンジ内の場合、抵抗R2の両端の電圧が基準電圧Vr1以下であり、電界効果トランジスタ4はオフ状態で、ADボード3から、抵抗R2の両端の電圧をディジタル値に変換した測定ディジタル電流値を出力し、この小電流測定レンジを超えて大電流測定レンジの電流が流れると、抵抗R2の両端の電圧が基準電圧Vr1を超えるので、コンパレータ5により電界効果トランジスタ4をオンとして、抵抗R2の両端の電圧が基準電圧Vr1にクランプされた状態とする。この基準電圧Vr1を例えば100mVとすると、小電流測定用の抵抗R2の両端の電圧は、大電流測定レンジに於いても100mVにクランプされ、且つADボード3は抵抗R1の両端の電圧をディジタル値に変換した測定ディジタル電流値を出力し、小電流測定レンジから大電流測定レンジに自動的に切替えることができる。又負荷部2に流れる電流が減少して大電流測定レンジ以下となると、抵抗R2の両端の電圧が基準電圧Vr1以下となり、電界効果トランジスタ5はオフとなり、最初の小電流測定レンジによる電流測定の状態となる。なお、大電流測定レンジに於いて、電界効果トランジスタ4を10数mΩの完全なオン状態として、電力損失を低減し、大電流測定レンジから小電流測定レンジに移行した場合は、ADボード3と出力測定電流値の範囲の判定により、電界効果トランジスタ4をオフ状態とする制御構成を付加することも可能である。   As described above, when the direct current flowing through the load unit 2 is within the small current measurement range, the voltage across the resistor R2 is equal to or lower than the reference voltage Vr1, the field effect transistor 4 is in the off state, and the AD board 3 A measured digital current value obtained by converting the voltage at both ends of the resistor R2 into a digital value is output. When the current in the large current measurement range flows beyond this small current measurement range, the voltage at both ends of the resistor R2 exceeds the reference voltage Vr1. Therefore, the field effect transistor 4 is turned on by the comparator 5 and the voltage across the resistor R2 is clamped to the reference voltage Vr1. If this reference voltage Vr1 is, for example, 100 mV, the voltage across the resistor R2 for small current measurement is clamped to 100 mV even in the large current measurement range, and the AD board 3 converts the voltage across the resistor R1 to a digital value. The measured digital current value converted into can be output and the small current measurement range can be automatically switched to the large current measurement range. When the current flowing through the load unit 2 decreases and falls below the large current measurement range, the voltage across the resistor R2 falls below the reference voltage Vr1, the field effect transistor 5 is turned off, and current measurement using the first small current measurement range is performed. It becomes a state. In the large current measurement range, when the field effect transistor 4 is set to a complete ON state of a few dozen mΩ to reduce power loss and shift from the large current measurement range to the small current measurement range, It is also possible to add a control configuration for turning off the field effect transistor 4 by determining the range of the output measurement current value.

図2は本発明の実施例2の説明図であり、図1と同一符号は同一名称部分を示し、4−1、4−2は電界効果トランジスタ、5−1,5−2はコンパレータ、R2−1,R2−2は中電流測定用及び小電流測定用の抵抗、Vr1−1,Vr1−2は基準電圧を示す。大電流測定用の抵抗R1と、中電流測定用の抵抗R2−1と、小電流測定用の抵抗R2−2とを直列に接続し、中電流測定用の抵抗R2−1と並列に電界効果トランジスタ4−1を接続し、小電流測定用の抵抗R2−2と並列に電界効果トランジスタ4−2を接続し、コンパレータ5−1,5−2の出力信号により電界効果トランジスタ4−1,4−2を制御し、且つコンパレータ5−1,5−2の出力信号により、ADボード3により変換した測定ディジタル電流値を切替選択して図示を省略した後段の回路構成に出力する。   FIG. 2 is an explanatory diagram of a second embodiment of the present invention. The same reference numerals as those in FIG. 1 denote the same parts, 4-1 and 4-2 are field effect transistors, 5-1 and 5-2 are comparators, and R2. -1, R2-2 are resistors for medium current measurement and small current measurement, and Vr1-1 and Vr1-2 are reference voltages. A resistor R1 for measuring a large current, a resistor R2-1 for measuring a medium current, and a resistor R2-2 for measuring a small current are connected in series, and a field effect in parallel with the resistor R2-1 for measuring a medium current. The transistor 4-1 is connected, the field effect transistor 4-2 is connected in parallel with the small current measuring resistor R2-2, and the field effect transistors 4-1 and 4 are output by the output signals of the comparators 5-1 and 5-2. -2 is controlled and the measured digital current value converted by the AD board 3 is switched and selected by the output signals of the comparators 5-1 and 5-2, and is output to the subsequent circuit configuration not shown.

又大電流測定用の抵抗R1と、中電流測定用の抵抗R2−1と、小電流測定用の抵抗R2−2とのそれぞれの抵抗値は、それぞれ符号で示すと、R1<(R2−1)<(R2−2)の関係とする。又コンパレータ5−1,5−2に対する基準電圧Vr1−1,Vr1−2は、抵抗R2−1,R2−2の抵抗値と測定レンジ切替えの電流値とを基に選定するものであり、条件によっては同一の電圧とすることも可能である。又ADボード3は、大電流測定用と中電流測定用と小電流測定用とのそれぞれのA/D変換器と、それぞれの変換出力ディジタル電流値を切替出力する切替手段を含み、この切替手段をコンパレータ5−1,5−2の出力信号により制御して、大電流測定レンジと中電流測定レンジと小電流測定レンジとの切替えを行うことができる。   Further, the resistance values of the resistor R1 for measuring a large current, the resistor R2-1 for measuring a medium current, and the resistor R2-2 for measuring a small current are represented by R1 <(R2-1). ) <(R2-2). The reference voltages Vr1-1 and Vr1-2 for the comparators 5-1 and 5-2 are selected based on the resistance values of the resistors R2-1 and R2-2 and the current value for switching the measurement range. Depending on the case, the same voltage can be used. The AD board 3 includes A / D converters for large current measurement, medium current measurement, and small current measurement, and switching means for switching and outputting the respective converted output digital current values. Can be controlled by the output signals of the comparators 5-1 and 5-2 to switch between the large current measurement range, the medium current measurement range, and the small current measurement range.

電源部1から負荷部2に矢印方向の電流が流れ、抵抗R1,R2−1,R2−2の両端の電圧がADボード3に入力され、その時、電界効果トランジスタ5−1,5−2がオフ状態の小電流測定レンジの場合、小電流測定用の抵抗R2−2の両端の電圧をディジタル値に変換した小電流測定レンジの測定ディジタル電流値をADボード3から選択出力する。この小電流測定レンジの電流を超える電流が流れると、抵抗R2−2の両端の電圧が基準電圧Vr1−2を超えるので、コンパレータ5−2の出力信号により電界効果トランジスタ5−2をオンとする。それにより、抵抗R2−2の両端の電圧は、基準電圧Vr1−2によってクランプされた状態となり、又コンパレータ5−2の出力信号により、ADボード3は、中電流測定レンジとして、抵抗R2−1の両端の電圧をA/D変換して、中電流測定レンジの測定ディジタル電流値として選択出力する。   A current in the direction of the arrow flows from the power supply unit 1 to the load unit 2, and voltages at both ends of the resistors R1, R2-1, and R2-2 are input to the AD board 3, and at that time, the field effect transistors 5-1 and 5-2 In the case of the small current measurement range in the off state, the measured digital current value of the small current measurement range obtained by converting the voltage across the resistor R2-2 for small current measurement into a digital value is selectively output from the AD board 3. When a current exceeding the current in the small current measurement range flows, the voltage across the resistor R2-2 exceeds the reference voltage Vr1-2, and the field effect transistor 5-2 is turned on by the output signal of the comparator 5-2. . As a result, the voltage across the resistor R2-2 is clamped by the reference voltage Vr1-2, and the AD board 3 uses the output signal of the comparator 5-2 as a medium current measurement range to cause the resistor R2-1. A / D conversion is performed on the voltage at both ends, and the output is selected and output as a measured digital current value in the medium current measurement range.

更に負荷部2に流れる電流が増加し、抵抗R2−1の両端の電圧が基準電圧Vr1−1を超えると、コンパレータ5−1の出力信号により電界効果トランジスタ5−1をオンとする。それにより、抵抗R2−1の両端の電圧は基準電圧Vr1−1によってクランプされた状態となり、又コンパレータ5−1とコンパレータ5−2との出力信号により、ADボード3は、大電流測定レンジとして、抵抗R1の両端の電圧をA/D変換し、大電流測定レンジの測定ディジタル電流値として選択出力する。この状態に於いては、小電流測定用の抵抗R2−2の両端の電圧は、基準電圧Vr1−2によりクランプされ、又中電流測定用の抵抗R2−1の両端の電圧は、基準電圧Vr1−1によりクランプされた状態となる。なお、測定レンジを小電流測定レンジと中電流測定レンジと大電流測定レンジとの3段階の測定レンジの自動的な切替えを行う場合を示すが、更に多くの段階で測定レンジの切替えを可能とする構成とすることができる。その場合、それぞれ抵抗値が異なる複数の抵抗を直列に接続し、例えば、大電流測定レンジ対応の抵抗以外の複数の抵抗に、それぞれ電界効果トランジスタを並列に接続し、それぞれの抵抗の両端の電圧とそれぞれの基準電圧とを、コンパレータにより比較して、現在の電流測定レンジ以下の電流測定レンジ対応の電界効果トランジスタをオンとして、抵抗値の大きい方の抵抗をバイパス状態とする制御構成とすることも可能である。   When the current flowing through the load unit 2 further increases and the voltage across the resistor R2-1 exceeds the reference voltage Vr1-1, the field effect transistor 5-1 is turned on by the output signal of the comparator 5-1. As a result, the voltage across the resistor R2-1 is clamped by the reference voltage Vr1-1, and the AD board 3 uses the output signals from the comparator 5-1 and the comparator 5-2 as a large current measurement range. The voltage at both ends of the resistor R1 is A / D converted and selectively output as a measured digital current value in the large current measurement range. In this state, the voltage across the resistor R2-2 for small current measurement is clamped by the reference voltage Vr1-2, and the voltage across the resistor R2-1 for medium current measurement is the reference voltage Vr1. It becomes the state clamped by -1. In addition, the case where the measurement range is automatically switched between the three measurement ranges of the small current measurement range, the medium current measurement range, and the large current measurement range is shown, but the measurement range can be switched in more stages. It can be set as the structure to do. In that case, a plurality of resistors each having a different resistance value are connected in series, for example, a field effect transistor is connected in parallel to each of a plurality of resistors other than the resistor corresponding to the large current measurement range, and the voltages at both ends of each resistor are connected. And the respective reference voltages are compared by a comparator, and a control configuration in which a field effect transistor corresponding to a current measurement range equal to or lower than the current current measurement range is turned on and a resistor having a larger resistance value is set in a bypass state. Is also possible.

図3は、本発明の実施例3の説明図であり、図1と同一符号は同一名称部分を示し、Vr1aは基準電圧を示す。この実施例3は、図1に示す場合と電流の流れる方向が矢印で示すように反対であり、例えば、負荷部2をバッテリーとし、電源部1を充放電制御部として放電制御を行う場合に相当する。従って、コンパレータ5は、抵抗R2の両端の電圧と基準電圧Vr1aとを比較するものであるが、電流方向が図1に示す場合に比較して反対であるから、基準電圧Vr1aの極性も反転している。そして、図1に示す場合と同様に、小電流測定用の抵抗R2の両端の電圧が基準電圧Vr1aを超えると、コンパレータ5の出力信号により電界効果とトランジスタ4をオンとして、抵抗R2の両端の電圧を基準電圧Vr1aによりクランプした状態とし、ADボード3は、抵抗R1の両端の電圧と抵抗R2の両端の電圧とを測定ディジタル電流値にA/D変換するものであるが、電界効果トランジスタ4をオンとするコンパレータ5の出力信号によって、抵抗R1の両端の電圧を、大電流測定レンジの測定ディジタル電流値として出力する。即ち、小電流測定レンジから大電流測定レンジに自動的に切替えることができると共に、小電流測定用の抵抗R2による電力損失を低減することができる。なお、図2に示す実施例2についても電流方向が反対の場合、コンパレータに対する基準電圧の極性を反対とすることにより、大中小の電流測定レンジに対して対応することができる。   FIG. 3 is an explanatory diagram of Embodiment 3 of the present invention. The same reference numerals as those in FIG. 1 denote the same names, and Vr1a denotes a reference voltage. In the third embodiment, the direction of current flow is opposite to the case shown in FIG. 1 as indicated by an arrow. For example, in the case where discharge control is performed using the load unit 2 as a battery and the power source unit 1 as a charge / discharge control unit. Equivalent to. Therefore, the comparator 5 compares the voltage across the resistor R2 with the reference voltage Vr1a, but the polarity of the reference voltage Vr1a is also reversed because the current direction is opposite to that shown in FIG. ing. As in the case shown in FIG. 1, when the voltage at both ends of the small current measuring resistor R2 exceeds the reference voltage Vr1a, the field effect and the transistor 4 are turned on by the output signal of the comparator 5, and both ends of the resistor R2 are turned on. The voltage is clamped by the reference voltage Vr1a, and the AD board 3 A / D converts the voltage across the resistor R1 and the voltage across the resistor R2 into a measured digital current value. The voltage at both ends of the resistor R1 is output as a measured digital current value in the large current measurement range by the output signal of the comparator 5 that turns ON. That is, it is possible to automatically switch from the small current measurement range to the large current measurement range, and to reduce power loss due to the small current measurement resistor R2. In the second embodiment shown in FIG. 2 as well, when the current direction is opposite, the polarity of the reference voltage with respect to the comparator can be reversed to cope with large, medium and small current measurement ranges.

図4は、本発明の実施例4の説明図であり、図1と同一符号は同一名称部分を示し、Dは電界効果トランジスタ4の寄生ダイオード、6は差動増幅器、7は絶対値回路を示す。この実施例4は、図1と図3との電流方向が反対の場合の構成に対して、電流が何れの方向に流れる場合も、同一の構成で電流測定を可能とするものであり、例えば、電源部1を充放電制御回路、負荷部2をバッテリーやコンデンサ等の充放電による電流方向が反転する場合の電流測定に適用することができる。又差動増幅器6と絶対値回路7とは、小電流測定用の抵抗R2の両端の電圧の極性が、電流方向に対応して反転するから、抵抗R2の両端の電位差を差動増幅器6により求め、この差動増幅器6の出力極性は、電流方向に従って反転するから、絶対値回路7により、電流方向に関係しない一方の極性の電圧値としてコンパレータ5に入力し、基準電圧Vr1と比較する。この場合の基準電圧Vr1は、電流方向に関係しないように、基準電位に基準電圧Vr1のマイナス側を接続し、基準電圧Vr1のプラス側をコンパレータ5に入力するもので、基準電位は、例えば、電源部1の出力端子間の電圧の1/2の電位とすることができる。   FIG. 4 is an explanatory diagram of Embodiment 4 of the present invention. The same reference numerals as those in FIG. 1 denote the same parts, D is a parasitic diode of the field effect transistor 4, 6 is a differential amplifier, and 7 is an absolute value circuit. Show. The fourth embodiment enables current measurement with the same configuration when the current flows in either direction as compared to the configuration in which the current directions in FIGS. 1 and 3 are opposite. For example, The power supply unit 1 can be applied to a charge / discharge control circuit, and the load unit 2 can be applied to current measurement when the current direction is reversed due to charging / discharging of a battery or a capacitor. In addition, the differential amplifier 6 and the absolute value circuit 7 are configured such that the polarity of the voltage across the resistor R2 for measuring a small current is inverted corresponding to the current direction. Since the output polarity of the differential amplifier 6 is inverted according to the current direction, the absolute value circuit 7 inputs the voltage value of one polarity not related to the current direction to the comparator 5 and compares it with the reference voltage Vr1. The reference voltage Vr1 in this case is such that the negative side of the reference voltage Vr1 is connected to the reference potential and the positive side of the reference voltage Vr1 is input to the comparator 5 so as not to relate to the current direction. The potential between the output terminals of the power supply unit 1 can be ½ of the voltage.

又電界効果トランジスタ4の寄生ダイオードDは、個別部品のダイオードと同様に、順方向閾値電圧はほぼ0.6Vであり、小電流測定レンジに於ける電流による抵抗R2の両端の電圧は、前述のように、最大200mV程度であるから、寄生ダイオードDによるバイパス機能は生じないものであり、小電流測定範囲を超える電流が流れた場合に、電界効果トランジスタ4がオン状態となり、抵抗R2に流れる小電流測定範囲を超える電流をバイバスすることができる。従って、大電流測定範囲の電流による抵抗R2の電力損失を低減することができる。この実施例4の電流測定装置は、電源部1と負荷部2との間の電流が何れの方向であっても測定可能となる利点がある。   The parasitic diode D of the field effect transistor 4 has a forward threshold voltage of about 0.6 V, like the diode of the individual component, and the voltage across the resistor R2 due to the current in the small current measurement range is as described above. Thus, since the maximum is about 200 mV, the bypass function by the parasitic diode D does not occur, and when a current exceeding the small current measurement range flows, the field effect transistor 4 is turned on, and the small current flowing through the resistor R2 Current exceeding the current measurement range can be bypassed. Therefore, the power loss of the resistor R2 due to the current in the large current measurement range can be reduced. The current measuring device according to the fourth embodiment has an advantage that the current between the power source unit 1 and the load unit 2 can be measured in any direction.

図5は、本発明の実施例5の説明図であり、図1及び図4と同一符号は同一名称部分を示し、4a,4bは電界効果トランジスタ、Da,Dbは寄生ダイオードを示す。この実施例5は、前述の実施例4と同様に電流方向が何れの方向であっても電流測定を可能とした構成を示し、小電流測定用の抵抗R2の両端に、2個の電界効果トランジスタ4a,4bを例えばソースを共通接続して、並列接続する。そのソースの共通接続点を、基準電圧Vr1のマイナス側を接続している基準電位に接続する。又差動増幅器6と絶対値回路7とは、図4に示した場合と同様に、抵抗R2の両端の電位差を差動増幅器6により求め、絶対値回路7により一方の極性に変換し、コンパレータ5により基準電圧Vr1と比較し、基準電圧Vr1を超える場合に、小電流測定範囲を超える電流が流れる場合であり、電界効果トランジスタ4a,4bをオンとして、抵抗R2の両端の電圧を基準電圧Vr1に対応した値にクランプする。この実施例5に於いても、抵抗値の大きい小電流測定用の抵抗R2の両端の電圧を、大電流測定範囲に於いて電界効果トランジスタ4a,4bをオンとして基準電圧Vr1にクランプした状態とし、抵抗R2による電力損失を低減することができる。   FIG. 5 is an explanatory diagram of Embodiment 5 of the present invention. The same reference numerals as those in FIGS. 1 and 4 denote the same parts, 4a and 4b denote field effect transistors, and Da and Db denote parasitic diodes. The fifth embodiment shows a configuration in which current measurement is possible regardless of the direction of current as in the fourth embodiment, and two field effects are provided at both ends of the small current measuring resistor R2. The transistors 4a and 4b are connected in parallel, for example, with the sources connected in common. The common connection point of the sources is connected to the reference potential connecting the negative side of the reference voltage Vr1. Similarly to the case shown in FIG. 4, the differential amplifier 6 and the absolute value circuit 7 obtain the potential difference between both ends of the resistor R2 by the differential amplifier 6, convert it to one polarity by the absolute value circuit 7, and 5 is compared with the reference voltage Vr1. When the reference voltage Vr1 is exceeded, a current exceeding the small current measurement range flows, the field effect transistors 4a and 4b are turned on, and the voltage across the resistor R2 is set to the reference voltage Vr1. Clamp to the value corresponding to. Also in the fifth embodiment, the voltage across the resistor R2 for measuring a small current having a large resistance value is clamped at the reference voltage Vr1 with the field effect transistors 4a and 4b turned on in the large current measuring range. The power loss due to the resistor R2 can be reduced.

図6は、本発明の実施例6の説明図であり、1は交流の電源部、2は交流で動作する誘導電動機等の交流の負荷部、3は複数のA/D変換部を含むADボード、4は電界効果トランジスタ、5はコンパレータ、Dは電界効果トランジスタの寄生ダイオード、Vr1は基準電圧、R1は大電流測定用の抵抗、R2は小電流測定用の抵抗、8,9は全波整流して平滑化する整流部を示す。又前述の各実施例と同様に抵抗R1,R2の抵抗値はR1<R2の関係に選定する。又整流部9の−側を基準電位とし、+側をコンパレータ5の+端子に入力し、コンパレータ5の−端子に、基準電位に−側を接続した基準電圧Vr1の+側を接続する。   FIG. 6 is an explanatory diagram of Embodiment 6 of the present invention, where 1 is an AC power supply unit, 2 is an AC load unit such as an induction motor operating with AC, and 3 is an AD including a plurality of A / D conversion units. Board, 4 is a field effect transistor, 5 is a comparator, D is a parasitic diode of the field effect transistor, Vr1 is a reference voltage, R1 is a resistor for measuring a large current, R2 is a resistor for measuring a small current, and 8 and 9 are full waves The rectification | straightening part which rectifies and smoothes is shown. Similarly to the above-described embodiments, the resistance values of the resistors R1 and R2 are selected so that R1 <R2. Further, the negative side of the rectifying unit 9 is set as a reference potential, the positive side is input to the positive terminal of the comparator 5, and the negative side of the reference voltage Vr <b> 1 is connected to the negative terminal of the comparator 5.

電源部1から負荷部2に流れる電流は、前述の双方向の直流電流と同様に双方向に流れるものであるが、交流の周波数に従って電流方向が反転する。従って、抵抗R1,R2の両端の電圧も交流電圧となる。整流部8,9は、抵抗R1,R2の両端の交流電圧を整流平滑化して直流電圧とし、ADボード3に入力して、A/D変換し、測定ディジタル電流値とする。又小電流測定用の抵抗R2の両端に電界効果トランジスタ4のソース、ドレーンを接続し、ゲートにコンパレータ5の出力信号を入力する。コンパレータ5の+端子に整流部9の+側の出力電圧を入力し、その整流部9の−側を基準電位に接続する。又コンパレータ5の−端子と基準電位との間に基準電圧vr1を印加する接続構成とする。   The current flowing from the power supply unit 1 to the load unit 2 flows in the same way as the above-described bidirectional DC current, but the current direction is reversed according to the AC frequency. Accordingly, the voltage across the resistors R1 and R2 is also an AC voltage. The rectifiers 8 and 9 rectify and smooth the AC voltage at both ends of the resistors R1 and R2 to obtain a DC voltage, which is input to the AD board 3 and A / D converted to obtain a measured digital current value. The source and drain of the field effect transistor 4 are connected to both ends of the small current measuring resistor R2, and the output signal of the comparator 5 is input to the gate. The + side output voltage of the rectifying unit 9 is input to the + terminal of the comparator 5, and the − side of the rectifying unit 9 is connected to the reference potential. Further, the connection configuration is such that the reference voltage vr1 is applied between the negative terminal of the comparator 5 and the reference potential.

電源部1から負荷部2に流れる交流電流が、直列接続の抵抗R1,R2に流れ、抵抗R1,R2の両端の交流電圧を整流部8,9により直流に変換し、整流部9の整流出力電圧が、基準電圧Vr1を超えると、コンパレータ5の出力信号により電界効果トランジスタ4をオン状態として、抵抗R2の両端の電圧を、基準電圧Vr1にクランプする。それによって、大電流測定レンジに於いて、抵抗値の大きい小電流測定用の抵抗R2による電力消費を低減することができる利点がある。   The alternating current flowing from the power supply unit 1 to the load unit 2 flows to the series-connected resistors R1 and R2, and the AC voltage at both ends of the resistors R1 and R2 is converted into direct current by the rectifying units 8 and 9, and the rectified output of the rectifying unit 9 When the voltage exceeds the reference voltage Vr1, the field effect transistor 4 is turned on by the output signal of the comparator 5, and the voltage across the resistor R2 is clamped to the reference voltage Vr1. Thereby, there is an advantage that the power consumption by the resistor R2 for measuring a small current having a large resistance value can be reduced in the large current measuring range.

図7は、本発明の実施例7の説明図であり、図1及び図3と同一符号は同一名称部分を示し、10は演算増幅器である。なお、抵抗値の異なる抵抗R1,R2と、ADボード3とによる測定電流値をディジタル値として出力する構成は、図1に示す実施例1と同様であるから、重複する説明は省略する。この実施例7に於いては、演算増幅器10により抵抗値の小さい抵抗R1の両端の電圧を検出して、コンパレータ5によって基準電圧Vr1と比較する。演算増幅器10の出力信号が基準電圧Vr1を超える状態の電流が抵抗R1に流れる場合、抵抗値の大きい抵抗R1による電力損失が増加するが、その時に、コンパレータ5により電界効果トランジスタ4をオンとして、抵抗R2をバイパスし、大電流測定状態とする。それにより、大電流測定時の電力損失を低減することができる。又抵抗R1に流れる電流が減少して、演算増幅器10の出力信号が基準電圧Vr1より低下すると、コンパレータ5から電界効果トランジスタ4のゲートに印加していた電圧が零となり、電界効果トランジスタ4はオフ状態に復帰する。即ち、小電流測定状態に復帰する。従って、大電流測定状態では、小電流測定用の抵抗値の大きい抵抗R2を電界効果トランジスタ4のオン状態によりバイパスして電力損失を低減し、小電流測定状態では、電界効果トランジスタ4をオフ状態として、抵抗値の大きい抵抗R2により測定精度を高くして測定することができる。又電流方向が図示の矢印方向と反対の場合、演算増幅器10の入力端子の切替え又は演算増幅器10の出力端子に絶対値回路を接続して、電流方向が何れの方向であっても、コンパレータ5に於いて基準電圧Vr1と比較可能の構成とすることができる。   FIG. 7 is an explanatory diagram of Embodiment 7 of the present invention. The same reference numerals as those in FIGS. 1 and 3 denote the same parts, and 10 denotes an operational amplifier. In addition, since the structure which outputs resistance value R1, R2 from which resistance value differs, and AD board 3 as a digital value is the same as that of Example 1 shown in FIG. 1, the overlapping description is abbreviate | omitted. In the seventh embodiment, the operational amplifier 10 detects the voltage across the resistor R1 having a small resistance value, and the comparator 5 compares it with the reference voltage Vr1. When a current in which the output signal of the operational amplifier 10 exceeds the reference voltage Vr1 flows through the resistor R1, power loss due to the resistor R1 having a large resistance value increases. At that time, the field effect transistor 4 is turned on by the comparator 5; Resistor R2 is bypassed to enter a large current measurement state. Thereby, the power loss at the time of measuring a large current can be reduced. When the current flowing through the resistor R1 decreases and the output signal of the operational amplifier 10 falls below the reference voltage Vr1, the voltage applied from the comparator 5 to the gate of the field effect transistor 4 becomes zero, and the field effect transistor 4 is turned off. Return to the state. That is, the state returns to the small current measurement state. Therefore, in the large current measurement state, the resistor R2 having a large resistance value for small current measurement is bypassed by the ON state of the field effect transistor 4 to reduce power loss, and in the small current measurement state, the field effect transistor 4 is turned off. As described above, measurement can be performed with high measurement accuracy using the resistor R2 having a large resistance value. If the current direction is opposite to the arrow direction shown in the figure, the absolute value circuit is connected to the input terminal of the operational amplifier 10 or the output terminal of the operational amplifier 10 so that the comparator 5 Therefore, the reference voltage Vr1 can be compared.

図8は、本発明の実施例8の説明図であり、1は電源部、2は負荷部、3はADボード、4−1、4−2は電界効果トランジスタ、5−1,5−2はコンパレータ、R1は大電流測定用の抵抗、R2−1,R2−2は中電流測定用及び小電流測定用の抵抗、Vr1−1,Vr1−2は基準電圧、11は演算増幅器を示す。演算増幅器11は、大電流測定用の抵抗R1の両端の電圧を検出して、コンパレータ5−1,5−2に入力し、基準電圧Vr1−1,Vr1−2と比較し、例えば、小電流測定レンジの場合、電界効果トランジスタ5−1,5−2はオフ状態を維持する。この小電流測定レンジを超える電流が流れて、中電流測定レンジとする場合、演算増幅器11の出力信号は、基準電圧Vr1−2を超えるので、コンパレータ5−2により電界効果トランジスタ4−2をオン状態と、抵抗値の大きい抵抗R2−2に流れる電流をバイパスする。又中電流測定レンジを超える電流が流れると、演算増幅器11の出力信号は、基準電圧Vr1−1を超えるので、コンパレータ5−1により電界効果トランジスタ4−1もオン状態とし、最大抵抗値の抵抗R2−2と中抵抗値の抵抗R2−1とをそれぞれ電界効果トランジスタ4−2,4−1をオンとし、最小抵抗値の抵抗R1により電流測定を行う構成に自動的に移行することができる。この実施例に於いても、前述の実施例と同様に、電流方向が図示の矢印方向と反対の場合、演算増幅器11の入力端子の切替え又は演算増幅器11の出力端子に絶対値回路を接続して、電流方向が何れの方向であっても、コンパレータ5−1,5−2に於いて基準電圧Vr1−1,Vr1−2と比較可能の構成とすることができる。   FIG. 8 is an explanatory diagram of an eighth embodiment of the present invention, where 1 is a power supply unit, 2 is a load unit, 3 is an AD board, 4-1 and 4-2 are field effect transistors, and 5-1 and 5-2. Is a comparator, R1 is a resistor for measuring a large current, R2-1 and R2-2 are resistors for measuring a medium current and a small current, Vr1-1 and Vr1-2 are reference voltages, and 11 is an operational amplifier. The operational amplifier 11 detects the voltage across the resistor R1 for measuring a large current, inputs it to the comparators 5-1 and 5-2, and compares it with the reference voltages Vr1-1 and Vr1-2. In the measurement range, the field effect transistors 5-1 and 5-2 are kept off. When a current exceeding the small current measurement range flows and the medium current measurement range is set, the output signal of the operational amplifier 11 exceeds the reference voltage Vr1-2, so that the field effect transistor 4-2 is turned on by the comparator 5-2. The state and the current flowing through the resistor R2-2 having a large resistance value are bypassed. When a current exceeding the medium current measurement range flows, the output signal of the operational amplifier 11 exceeds the reference voltage Vr1-1. Therefore, the field effect transistor 4-1 is also turned on by the comparator 5-1, and the resistance having the maximum resistance value is set. It is possible to automatically shift to a configuration in which the field effect transistors 4-2 and 4-1 are turned on for the R2-2 and the medium resistance R2-1, and current measurement is performed by the resistance R1 having the minimum resistance value. . In this embodiment, similarly to the above-described embodiment, when the current direction is opposite to the direction of the arrow shown in the figure, the absolute value circuit is connected to the input terminal of the operational amplifier 11 or to the output terminal of the operational amplifier 11. Thus, regardless of the direction of the current, the comparators 5-1 and 5-2 can be configured to be comparable with the reference voltages Vr1-1 and Vr1-2.

本発明の実施例1の説明図である。It is explanatory drawing of Example 1 of this invention. 本発明の実施例2の説明図である。It is explanatory drawing of Example 2 of this invention. 本発明の実施例3の説明図である。It is explanatory drawing of Example 3 of this invention. 本発明の実施例4の説明図である。It is explanatory drawing of Example 4 of this invention. 本発明の実施例5の説明図である。It is explanatory drawing of Example 5 of this invention. 本発明の実施例6の説明図である。It is explanatory drawing of Example 6 of this invention. 本発明の実施例7の説明図である。It is explanatory drawing of Example 7 of this invention. 本発明の実施例8の説明図である。It is explanatory drawing of Example 8 of this invention. 従来例の説明図である。It is explanatory drawing of a prior art example. 従来例の説明図である。It is explanatory drawing of a prior art example.

符号の説明Explanation of symbols

1 電源部
2 負荷部
3 ADボード
4,4−1,4−2 電界効果トランジスタ
5,5−1,5−2 コンパレータ
R1,R2,R2−1,R2−2 抵抗
Vr1,Vr1−1,Vr1−2 基準電圧
10,11 演算増幅器
DESCRIPTION OF SYMBOLS 1 Power supply part 2 Load part 3 AD board 4,4-1,4-2 Field effect transistor 5,5-1,5-2 Comparator R1, R2, R2-1, R2-2 Resistor Vr1, Vr1-1, Vr1 -2 Reference voltage 10,11 Operational amplifier

Claims (3)

電源部と負荷部との間に直列接続した抵抗値の異なる複数の抵抗と、該抵抗の両端の電圧をディジタル変換して測定ディジタル電流値として出力するADボードとを含む電流測定装置に於いて、
大電流測定用の抵抗に比較して抵抗値の大きい小電流測定用の抵抗に並列接続し、ソースをそれぞれ共通に基準電位に接続した2個の直列接続の電界効果トランジスタと、
前記抵抗値の大きい小電流測定用の抵抗の両端の電位差の絶対値を出力する絶対値回路と、
該絶対値回路の出力と、前記基準電位に接続した基準電圧とを比較し、前記絶対値回路の出力が前記基準電圧を超えた時に前記2個直列接続の電界効果トランジスタをオン状態とするコンパレータと
を備えたことを特徴とする電流測定装置。
In a current measuring device including a plurality of resistors having different resistance values connected in series between a power supply unit and a load unit, and an AD board that digitally converts voltages at both ends of the resistors and outputs them as measured digital current values ,
Two series-connected field effect transistors connected in parallel to a resistor for measuring a small current having a large resistance value compared to a resistor for measuring a large current , each having a source commonly connected to a reference potential ;
An absolute value circuit that outputs an absolute value of a potential difference between both ends of the resistor for measuring a small current with a large resistance value ;
A comparator that compares the output of the absolute value circuit with a reference voltage connected to the reference potential, and turns on the two field-effect transistors connected in series when the output of the absolute value circuit exceeds the reference voltage And a current measuring device.
前記電源部と前記負荷部との間に直列接続した抵抗値の異なる抵抗のそれぞれ両端の電圧を整流平滑化して前記ADボードに入力する整流部を設けたことを特徴とする請求項1記載の電流測定装置。 2. The rectifying unit according to claim 1, further comprising: a rectifying unit that rectifies and smoothes voltages at both ends of resistors having different resistance values connected in series between the power supply unit and the load unit and inputs the same to the AD board. Current measuring device. 前記電界効果トランジスタをオン状態とする前記コンパレータの出力信号を、測定レンジ切替信号として前記ADボードに入力する構成を備えたことを特徴とする請求項1記載の電流測定装置。 The current measuring apparatus according to claim 1, further comprising: a configuration in which an output signal of the comparator that turns on the field effect transistor is input to the AD board as a measurement range switching signal .
JP2007328497A 2007-12-20 2007-12-20 Current measuring device Expired - Fee Related JP4824007B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007328497A JP4824007B2 (en) 2007-12-20 2007-12-20 Current measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007328497A JP4824007B2 (en) 2007-12-20 2007-12-20 Current measuring device

Publications (2)

Publication Number Publication Date
JP2009150762A JP2009150762A (en) 2009-07-09
JP4824007B2 true JP4824007B2 (en) 2011-11-24

Family

ID=40920044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007328497A Expired - Fee Related JP4824007B2 (en) 2007-12-20 2007-12-20 Current measuring device

Country Status (1)

Country Link
JP (1) JP4824007B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5699301B2 (en) * 2010-02-23 2015-04-08 アルプス・グリーンデバイス株式会社 Current sensor
JP2014055876A (en) * 2012-09-13 2014-03-27 Fujitsu Telecom Networks Ltd Current detection and measurement device
JP2016063030A (en) * 2014-09-17 2016-04-25 シチズンホールディングス株式会社 LED drive circuit
JP2021032735A (en) * 2019-08-26 2021-03-01 日置電機株式会社 Detection circuit and measuring apparatus
CN114167112B (en) * 2021-12-16 2024-05-24 青岛东软载波智能电子有限公司 High-precision wide-range low-voltage-difference current measurement circuit

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02306169A (en) * 1989-05-19 1990-12-19 Mitsubishi Electric Corp Dc current detector
JP3628948B2 (en) * 2000-02-21 2005-03-16 富士男 小澤 Current / voltage conversion circuit
JP4184245B2 (en) * 2003-12-01 2008-11-19 富士男 小澤 Current / voltage conversion circuit

Also Published As

Publication number Publication date
JP2009150762A (en) 2009-07-09

Similar Documents

Publication Publication Date Title
JP2008157672A (en) Insulation deterioration detection device for motor
US9429601B2 (en) Alternating current input voltage detection circuit
US20070145964A1 (en) DC-DC converter
JP4824007B2 (en) Current measuring device
US10288694B2 (en) Secondary battery monitoring device and method for diagnosing failure
US20130176758A1 (en) Mosfet bridge rectifier
US8228014B2 (en) Multi-phase DC/DC boost converter
US20140015533A1 (en) Current sensor
US20130088895A1 (en) Full bridge converter
JP2005065447A (en) Current detection method and current detection device of dc-dc converter
CN108226794B (en) Secondary battery monitoring device and failure diagnosis method
JP6949648B2 (en) Switching power supply
WO2018173364A1 (en) Bridgeless power factor correction circuit
US20130328540A1 (en) Buck switching regulator and control circuit thereof
JP2014075871A (en) Ac-dc converter
WO2018225235A1 (en) Control device for dc-dc converter
US9013171B2 (en) Method and apparatus for detecting a zero-voltage condition across four quadrant switches
JP2004129388A (en) Current detector and motor drive
US11899044B2 (en) Current sensor
US9606565B2 (en) Power supply with a switch converter
JP2012156659A (en) Current detection circuit
US5952855A (en) Circuit with multiple output voltages for multiple analog to digital converters
JP4466346B2 (en) Ground fault detection circuit for semiconductor power converter
US11979084B2 (en) Active clamp DC/DC converter including current sense peak control mode control
IT201800003415A1 (en) THREE-PHASE SYNCHRONOUS RECTIFIER FOR BATTERY CHARGER ON BOARD VEHICLE

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110906

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110907

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110915

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees