JP2014055876A - Current detection and measurement device - Google Patents

Current detection and measurement device Download PDF

Info

Publication number
JP2014055876A
JP2014055876A JP2012201384A JP2012201384A JP2014055876A JP 2014055876 A JP2014055876 A JP 2014055876A JP 2012201384 A JP2012201384 A JP 2012201384A JP 2012201384 A JP2012201384 A JP 2012201384A JP 2014055876 A JP2014055876 A JP 2014055876A
Authority
JP
Japan
Prior art keywords
current
measurement
field effect
effect transistor
diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012201384A
Other languages
Japanese (ja)
Inventor
Takuya Hara
卓也 原
Senpei Yokoyama
専平 横山
Sukeyoshi Chiba
祐喜 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Telecom Networks Ltd
Original Assignee
Fujitsu Telecom Networks Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Telecom Networks Ltd filed Critical Fujitsu Telecom Networks Ltd
Priority to JP2012201384A priority Critical patent/JP2014055876A/en
Publication of JP2014055876A publication Critical patent/JP2014055876A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To allow a current detection and measurement device for measuring charge/discharge characteristics of a battery, a capacitor, or the like to be stably operated with low loss by an inexpensive configuration.SOLUTION: A current detection and measurement device has a plurality kinds of current measuring resistances connected between a tester and a measurement object like a battery or a capacitor and detects or measures a current flowing in the measurement object by voltages at both ends of the current measuring resistances. A field effect transistor which, in a turned-on state, shorts a circuit between both ends of the current measuring resistances connected between a test measurement power supply part and the measurement object and a forward polarity diode in a direction opposite to a forward direction of a parasitic diode of the field effect transistor are connected in parallel, and an abnormal voltage rise is suppressed by respective forward voltages of the diode and the parasitic diode of the field effect transistor.

Description

本発明は、バッテリやコンデンサ等の被測定物に対する充電電流又は放電電流の検出又は測定を、低損失且つ安定に行う電流検出測定装置に関する。   The present invention relates to a current detection and measurement apparatus that stably detects or measures a charging current or a discharging current for an object to be measured such as a battery or a capacitor with low loss.

各種構成のバッテリやコンデンサ等を直流電源として利用する各種の装置が知られており、従って、直流電源として利用するバッテリやコンデンサ等を被測定物として充放電特性を予め測定することが必要となる。このような充放電特性等を測定する手段としては、既に各種の手段が提案され、且つ実用化されている。一般的には、抵抗を直列に接続して、その抵抗を介して被測定物に流れる電流の大きさに対応した抵抗の両端間の電圧を測定し、抵抗値との関係に従って電流を求める手段が一般的であり、検出又は測定する電流範囲が広い場合は、抵抗値が異なる複数の抵抗を、検出又は測定の範囲対応に切替える手段が適用されている。   Various devices that use batteries, capacitors, and the like of various configurations as DC power sources are known. Therefore, it is necessary to measure charge / discharge characteristics in advance using batteries, capacitors, and the like that are used as DC power sources as objects to be measured. . Various means have already been proposed and put to practical use as means for measuring such charge / discharge characteristics. Generally, a means for connecting a resistor in series, measuring the voltage across the resistor corresponding to the magnitude of the current flowing through the object to be measured through the resistor, and obtaining the current according to the relationship with the resistance value However, when a current range to be detected or measured is wide, a means for switching a plurality of resistors having different resistance values to correspond to the range of detection or measurement is applied.

図5は、従来例のバッテリの充放電特性の試験装置として適用されている要部を示し、21は試験測定電源部、22は被試験バッテリ、23は試験測定部、24は試験制御部、Q01は電界効果トランジスタ、R01,R02は電流測定用の抵抗を示す。この抵抗R01,R02の抵抗値は、例えば、R01>R02として、小電流測定時は、抵抗R01の両端の電圧を試験測定部23により測定し、又大電流測定時は、抵抗R02の両端の電圧を試験測定部23により測定する。この大電流測定時には、小電流測定用の抵抗値が大きい抵抗R01の両端の電圧が高くなるから、試験測定部23の制御により、トランジスタQ01をオンとして、抵抗R01を短絡状態とする。それによって、試験測定部23に入力される大電流測定時の高電圧入力を回避することが可能となる。   FIG. 5 shows a main part applied as a conventional battery charge / discharge characteristic test apparatus, in which 21 is a test measurement power supply unit, 22 is a battery under test, 23 is a test measurement unit, 24 is a test control unit, Q01 is a field effect transistor, and R01 and R02 are current measurement resistors. The resistance values of the resistors R01 and R02 are, for example, R01> R02, the voltage at both ends of the resistor R01 is measured by the test measurement unit 23 at the time of small current measurement, and at both ends of the resistor R02 at the time of large current measurement. The voltage is measured by the test measurement unit 23. At the time of this large current measurement, the voltage across the resistor R01 having a large resistance value for small current measurement becomes high. Therefore, under the control of the test measurement unit 23, the transistor Q01 is turned on and the resistor R01 is short-circuited. As a result, it is possible to avoid high voltage input when measuring a large current input to the test measurement unit 23.

図6は、従来例の他の充放電特性の試験装置として適用されている要部を示し、31は試験測定電源部、32は被試験バッテリ、33は試験測定部、34は試験制御部、35は切替制御部、R31,R32は電流測定用の抵抗、Q31,Q32は切替スイッチSW31を構成する電界効果トランジスタ、Q33,Q34は切替スイッチSW32を構成する電界効果トランジスタを示す。切替制御部35により、一方の切替スイッチSW31(電界効果トランジスタQ31,Q32)をオン、他方の切替スイッチSW32(電界効果トランジスタQ33,Q34)をオフとするように、電界効果トランジスタを制御すると、抵抗R31を介して被試験バッテリ32に電流が流れ、それによる抵抗R31の両端の電圧を試験測定部33に入力することにより、被試験バッテリ32に流れる電流を測定することができ、又一方の切替スイッチSW31(電界効果トランジスタQ31,Q32)をオフとし、他方の切替スイッチSW32(電界効果トランジスタQ33,Q34)をオンとするように制御すると、被試験バッテリ32に流れる電流は、抵抗R32を介して流れ、その抵抗R32の両端の電圧を試験測定部33に入力することにより、被試験バッテリ32に流れる電流を測定することができる。   FIG. 6 shows a main part applied as a test apparatus for other charge / discharge characteristics in the conventional example, 31 is a test and measurement power supply unit, 32 is a battery under test, 33 is a test and measurement unit, 34 is a test control unit, 35 is a switching control unit, R31 and R32 are current measuring resistors, Q31 and Q32 are field effect transistors constituting the changeover switch SW31, and Q33 and Q34 are field effect transistors constituting the changeover switch SW32. When the field control transistor is controlled by the switching control unit 35 so that one switching switch SW31 (field effect transistors Q31, Q32) is turned on and the other switching switch SW32 (field effect transistors Q33, Q34) is turned off, A current flows through the battery under test 32 via R31, and the voltage across the resistor R31 is input to the test measurement unit 33, whereby the current flowing through the battery under test 32 can be measured and one of the switches is switched. When the switch SW31 (field effect transistors Q31, Q32) is turned off and the other changeover switch SW32 (field effect transistors Q33, Q34) is turned on, the current flowing through the battery under test 32 passes through the resistor R32. The voltage across the resistor R32 is input to the test measurement unit 33. And it makes it possible to measure the current flowing through the tested battery 32.

又前述の図5に示す構成と類似した構成を備え、抵抗値がR01>R02の関係を有するように構成した抵抗R01の両端の電圧と基準電圧とを比較し、抵抗R01の両端の電圧が基準電圧を超えた場合、設定した電流値を超える電流が流れたことを示すことから、その場合は、抵抗値の高い抵抗R01と並列に接続した電界効果トランジスタQ01をオンとする制御構成によって、抵抗R01に流れる電流を、オン状態に制御した電界効果トランジスタによってバイパスし、抵抗値の高い抵抗R01の両端に生じる電圧の上昇を、自動的に抑制する手段が提案されている(例えば、特許文献1参照)。   Also, the voltage across the resistor R01 is compared with the reference voltage by comparing the voltage across the resistor R01, which has a configuration similar to the configuration shown in FIG. 5 and has a resistance value of R01> R02. When the reference voltage is exceeded, it indicates that a current exceeding the set current value has flowed. In that case, by the control configuration that turns on the field effect transistor Q01 connected in parallel with the resistor R01 having a high resistance value, A means has been proposed in which the current flowing through the resistor R01 is bypassed by a field-effect transistor controlled to be in an on state, and an increase in voltage generated across the resistor R01 having a high resistance value is automatically suppressed (for example, Patent Documents). 1).

特開2009−150762号公報JP 2009-150762 A

バッテリやコンデンサに対して、充電特性と放電特性とについて、広範囲の試験が可能であることが要望されている。この場合、充電特性試験時の電流方向と、放電特性試験時の電流方向とは反対であり、何れの方向に流れる電流についても測定可能とする必要がある。又各種の容量のバッテリやコンデンサに対しても測定可能の構成が要望される。又バッテリやコンデンサの充放電容量は、多種類であることから、試験測定範囲の拡大も要望され、且つ安全性の確保も重要である。例えば、従来例の図5に示す構成に於いては、試験開始時に、抵抗R01をバイパスする為の電界効果トランジスタQ01はオフ状態で、その時に、被試験バッテリ22と試験測定電源部21との間で突入電流が流れると、高抵抗値の抵抗R01の両端の電圧が異常な高電圧となって、障害発生の原因となる可能性が高い問題があり、又高抵抗値の抵抗R01が焼損する可能性が高くなる問題もあった。又従来例の図6に示す構成に於いては、充電方向と放電方向との反転する電流方向に対して切替える為のスイッチ回路を構成するには、2個の電界効果トランジスタをそれぞれの寄生ダイオードの極性が反対となるようにして直列的に接続する必要があり、コストアップとなる問題がある。   A battery and a capacitor are required to be able to perform a wide range of tests on charge characteristics and discharge characteristics. In this case, the current direction during the charge characteristic test is opposite to the current direction during the discharge characteristic test, and it is necessary to be able to measure the current flowing in either direction. Further, it is desired to have a configuration capable of measuring various types of batteries and capacitors. In addition, since there are many types of charge / discharge capacities of batteries and capacitors, it is required to expand the test measurement range, and ensuring safety is also important. For example, in the configuration shown in FIG. 5 of the conventional example, the field effect transistor Q01 for bypassing the resistor R01 is turned off at the start of the test, and at that time, the battery under test 22 and the test measurement power supply unit 21 are disconnected. When an inrush current flows between them, the voltage at both ends of the high-resistance resistor R01 becomes an abnormally high voltage and there is a high possibility of causing a failure, and the high-resistance resistor R01 burns out. There was also a problem that increased the possibility of doing so. In the configuration shown in FIG. 6 of the conventional example, two field effect transistors are provided for each parasitic diode in order to configure a switch circuit for switching between the charging direction and the discharging current direction. It is necessary to connect in series so that the polarities of the two are opposite to each other.

本発明は、前述の従来例の問題点を解決することを目的とし、比較的簡単な構成で且つ廉価な構成により、充放電特性試験を可能とするものである。   An object of the present invention is to solve the problems of the conventional example described above, and to enable a charge / discharge characteristic test with a relatively simple configuration and an inexpensive configuration.

本発明の電流検出測定装置は、試験装置と被測定物との間に複数種類の電流測定用抵抗を接続し、該電流測定用抵抗の両端の電圧により前記被測定物に流れる電流を検出又は測定する電流検出測定装置であって、前記試験装置と前記被測定物との間に接続した前記電流測定用抵抗の両端を、オン状態に於いて短絡する電界効果トランジスタと、該電界効果トランジスタの寄生ダイオードの順方向とは逆方向の順方向の極性のダイオードとを並列に接続した構成を備えている。   The current detection and measurement apparatus of the present invention connects a plurality of types of current measurement resistors between the test apparatus and the object to be measured, and detects the current flowing through the object to be measured by the voltages at both ends of the current measurement resistor. A current detection measuring device for measuring, a field effect transistor for short-circuiting both ends of the current measuring resistor connected between the test device and the object to be measured in an ON state, and the field effect transistor It has a configuration in which a diode having a polarity in the forward direction opposite to the forward direction of the parasitic diode is connected in parallel.

又前記複数種類の電流測定用抵抗の中の最小値の抵抗を除く他の抵抗値の抵抗のそれぞれ両端間を短絡する為の電界効果トランジスタと、該電界効果トランジスタの寄生ダイオードの順方向とは逆方向の順方向の極性のダイオードとを並列に接続した構成を備えている。   In addition, the field effect transistor for short-circuiting both ends of each of the resistances other than the minimum value among the plurality of types of current measurement resistors, and the forward direction of the parasitic diode of the field effect transistor It has a configuration in which a diode having a reverse polarity in the forward direction is connected in parallel.

電流測定用抵抗の両端の電圧により、被測定物のバッテリやコンデンサの充電電流又は放電電流を測定する構成に於いて、大電流測定用の抵抗に比較して小電流測定用の抵抗は、その抵抗値が大きいものであり、従って、同一の電流が流れても、小電流測定用の抵抗の両端の電圧は高くなる。このような電圧上昇の回避と、電流測定範囲の切替えとを行う為の構成として、電界効果トランジスタと、その寄生ダイオードの順方向とは逆方向の順方向の極性のダイオードとを並列に接続した比較的簡単な構成によって、測定電流範囲の切替えと、測定用抵抗の両端の異常電圧上昇の抑制とを図ることができる。   In the configuration in which the charging current or discharging current of the battery or capacitor of the object to be measured is measured by the voltage across the current measuring resistor, the small current measuring resistor is compared to the large current measuring resistor. The resistance value is large. Therefore, even when the same current flows, the voltage at both ends of the small current measuring resistor becomes high. As a configuration for avoiding such voltage rise and switching the current measurement range, a field effect transistor and a diode having a forward polarity opposite to the forward direction of the parasitic diode are connected in parallel. With a relatively simple configuration, it is possible to switch the measurement current range and suppress an abnormal voltage rise at both ends of the measurement resistor.

本発明の実施例1の説明図である。It is explanatory drawing of Example 1 of this invention. 本発明の実施例1の切替部の要部説明図である。It is principal part explanatory drawing of the switch part of Example 1 of this invention. 本発明の実施例1の切替えによる作用説明図である。It is operation | movement explanatory drawing by the switching of Example 1 of this invention. 本発明の実施例2の説明図である。It is explanatory drawing of Example 2 of this invention. 従来例の説明図である。It is explanatory drawing of a prior art example. 従来例の説明図である。It is explanatory drawing of a prior art example.

本発明の電流検出測定装置は、試験装置と被測定物との間に複数種類の電流測定用抵抗を接続し、該電流測定用抵抗の両端の電圧により前記被測定物に流れる電流を検出又は測定する電流検出測定装置であって、前記試験装置と前記被測定物との間に接続した前記電流測定用抵抗の両端を、オン状態に於いて短絡する電界効果トランジスタと、該電界効果トランジスタの寄生ダイオードの順方向とは逆方向の順方向の極性のダイオードとを並列に接続した構成を備えている。   The current detection and measurement apparatus of the present invention connects a plurality of types of current measurement resistors between the test apparatus and the object to be measured, and detects the current flowing through the object to be measured by the voltages at both ends of the current measurement resistor. A current detection measuring device for measuring, a field effect transistor for short-circuiting both ends of the current measuring resistor connected between the test device and the object to be measured in an ON state, and the field effect transistor It has a configuration in which a diode having a polarity in the forward direction opposite to the forward direction of the parasitic diode is connected in parallel.

又複数種類の電流測定用抵抗の中の最小値の抵抗を除く他の抵抗値の抵抗のそれぞれ両端間を短絡する為の電界効果トランジスタと、該電界効果トランジスタの寄生ダイオードの順方向と逆方向の順方向の極性のダイオードとを並列に接続した構成を備えている。   Also, a field effect transistor for short-circuiting both ends of each of the resistances other than the minimum value among the plurality of types of current measurement resistors, and the forward and reverse directions of the parasitic diode of the field effect transistor The forward polarity diode is connected in parallel.

図1は、本発明の実施例1の説明図であり、1は測定電源部、2は被試験バッテリ、3は測定制御部、4は測定検出部、5,6は切替部、R1,R2は電流測定用抵抗、Q1は電界効果トランジスタ、D1はダイオード、D2は電界効果トランジスタの寄生ダイオードを示し、ダイオードD1の順方向極性が、電界効果トランジスタQ1の寄生ダイオードD2と反対となるように接続する。なお、電流測定用抵抗R2と並列に接続した切替部6は、切替部5と同様の構成を備えているものであるが、電界効果トランジスタやダイオード等は図示を省略している。又被試験バッテリ2は、充放電を行う被試験コンデンサとすることも可能であり、以下充放電試験の被試験体として、バッテリを用いる場合について説明する。又測定電源部1は、内部構成について図示を省略しているが、既に知られている被試験体としてのバッテリ2やコンデンサに対する充電制御及び放電制御を行う制御構成を含むものである。なお、被試験バッテリ2を被測定物とすると、測定電源部1と測定制御部3と測定検出部4とを含めて試験装置に相当する者となる。   FIG. 1 is an explanatory diagram of Embodiment 1 of the present invention, in which 1 is a measurement power source unit, 2 is a battery under test, 3 is a measurement control unit, 4 is a measurement detection unit, 5 and 6 are switching units, and R1 and R2 Is a current measuring resistor, Q1 is a field effect transistor, D1 is a diode, D2 is a parasitic diode of the field effect transistor, and is connected so that the forward polarity of the diode D1 is opposite to that of the parasitic diode D2 of the field effect transistor Q1 To do. The switching unit 6 connected in parallel with the current measuring resistor R2 has the same configuration as that of the switching unit 5, but a field effect transistor, a diode, and the like are not shown. The battery under test 2 can be a capacitor under test for charging / discharging. Hereinafter, a case where a battery is used as a device under test for a charge / discharge test will be described. Although the measurement power supply unit 1 is not shown in its internal configuration, the measurement power supply unit 1 includes a control configuration for performing charge control and discharge control on a battery 2 or a capacitor as a known device to be tested. Note that if the battery under test 2 is a device under test, the measurement power supply unit 1, the measurement control unit 3, and the measurement detection unit 4 are persons corresponding to the test apparatus.

測定電源部1と被試験バッテリ2との間に接続した電流測定用抵抗R1,R2は、例えば、R1>R2の抵抗値の関係として、抵抗R1を小電流測定用、抵抗R2を大電流測定用とする。従って、小電流測定時は、一方の切替部5の電界効果トランジスタQ1はオフ、他方の切替部6の電界効果トランジスタ(図示を省略)はオンとするように、測定制御部3によって制御し、電流測定用抵抗R1の両端の電圧Vr1を測定制御部3に加えて、Vr1/R1の演算により、被試験バッテリ2に流れる電流を求めることができる。又大電流測定時は、切替部5の電界効果トランジスタQ1はオン、他方の切替部6の図示を省略した電界効果トランジスタはオフとするように、測定制御部3によって制御し、電流測定用抵抗R2の両端の電圧Vr2を測定制御部3に加えて、Vr2/R2の演算によって、被試験バッテリ2に流れる電流を求めることができる。   The current measurement resistors R1 and R2 connected between the measurement power supply unit 1 and the battery under test 2 have, for example, a resistance value relationship of R1> R2, and the resistor R1 is used for measuring a small current and the resistor R2 is used for measuring a large current. For use. Therefore, when measuring a small current, the measurement control unit 3 controls the field effect transistor Q1 of one switching unit 5 to be off and the field effect transistor (not shown) of the other switching unit 6 to be on, The voltage Vr1 at both ends of the current measuring resistor R1 is added to the measurement control unit 3, and the current flowing through the battery under test 2 can be obtained by calculating Vr1 / R1. When measuring a large current, the measurement control unit 3 controls the field effect transistor Q1 of the switching unit 5 to be turned on and the field effect transistor not shown in the other switching unit 6 to be turned off. By adding the voltage Vr2 across R2 to the measurement control unit 3 and calculating Vr2 / R2, the current flowing through the battery under test 2 can be obtained.

電流測定用抵抗R1,R2に流れる電流は、被試験バッテリ2に対する充電試験時と放電試験時とは、方向が反転するもので、図示の電界効果トランジスタQ1の接続状態の場合、放電試験時には、電界効果トランジスタQ1をオフ状態に制御した場合でも、寄生ダイオードD2に対しては順方向となり、抵抗R1の両端の電圧は、寄生ダイオードD2によって抑制することが可能となる。同様に、切替部6に於いても、抵抗R2の両端の電圧は、図示を省略したダイオード及び電界効果トランジスタの寄生ダイオードによって、異常な電圧上昇を抑制することができる。又測定電源部1から被試験バッテリ2に対して例えば、高電圧を急に印加した場合、電界効果トランジスタQ1がターンオンする前であると、電流測定用抵抗R1,R2に大きな電流が流れて、焼損する状態となる。しかし、前述のように、ダイオードD1と電界効果トランジスタQ1の寄生ダイオードとにより、電流が何れの方向に流れる場合でも、ダイオードの順方向電圧により、抵抗R1,R2の両端の電圧が抑制されるから、電流測定用抵抗R1,R2の焼損を回避することができる。   The currents flowing through the current measuring resistors R1 and R2 are reversed in direction during the charge test and the discharge test for the battery under test 2. In the connection state of the illustrated field effect transistor Q1, during the discharge test, Even when the field effect transistor Q1 is controlled to be in the OFF state, the forward direction is applied to the parasitic diode D2, and the voltage across the resistor R1 can be suppressed by the parasitic diode D2. Similarly, also in the switching unit 6, the voltage across the resistor R2 can suppress an abnormal voltage rise by a diode (not shown) and a parasitic diode of a field effect transistor. For example, when a high voltage is suddenly applied to the battery under test 2 from the measurement power supply unit 1, a large current flows through the current measurement resistors R1 and R2 before the field effect transistor Q1 is turned on. It will be in a state of burning. However, as described above, the diode D1 and the parasitic diode of the field effect transistor Q1 cause the voltage across the resistors R1 and R2 to be suppressed by the forward voltage of the diode regardless of the direction of current flow. The burnout of the current measuring resistors R1 and R2 can be avoided.

又前述の切替部5の要部構成を図2の(A)に示すもので、電界効果トランジスタQ1とその寄生ダイオードD2と追加接続のダイオードD1とを含む切替部は、従来は、図6又は図2の(B)に示すように、2個の電界効果トランジスタQ01,Q02(図6に於ける電界効果トランジスタQ31,Q32又は電界効果トランジスタQ33,Q34)を、それぞれの寄生ダイオードの順方向極性が反対方向となるように接続した構成としなければ、電流方向が反転する回路の切替スイッチとして充分な機能を発揮できないものであったが、本発明に於いては、図2の(A)に示すように、1個の電界効果トランジスタQ1と1個のダイオードD1とにより構成することが可能となり、小型化とコストダウンとを図ることができる。   FIG. 2A shows the main configuration of the switching unit 5 described above. The switching unit including the field effect transistor Q1, its parasitic diode D2, and the additionally connected diode D1 has been conventionally shown in FIG. As shown in FIG. 2B, the two field effect transistors Q01 and Q02 (the field effect transistors Q31 and Q32 or the field effect transistors Q33 and Q34 in FIG. 6) are replaced with the forward polarities of the respective parasitic diodes. If the circuit is not connected in the opposite direction, it cannot function sufficiently as a changeover switch for a circuit in which the current direction is reversed. However, in the present invention, FIG. As shown in the figure, it is possible to configure with one field effect transistor Q1 and one diode D1, and it is possible to reduce the size and cost.

図3は、3個のそれぞれ異なる抵抗値の電流測定用抵抗R1〜R3を直列に接続した場合の電圧V1〜V3と、電界効果トランジスタの寄生ダイオード及び並列接続のダイオードとの順方向電圧Vfとについての説明図であり、電流測定用抵抗R1〜R3のそれぞれの抵抗値は、R1>R2>R3の関係の場合を示し、従って、同一電流が流れた場合の各電流測定用抵抗R1,R2,R3の両端の電圧は、V1>V2>V3の関係となる。しかし、図1及び図2の(A)に示すように、電界効果トランジスタQ1とその寄生ダイオードD2と、ダイオードD1とにより、それぞれの順方向電圧をVfとすると、各抵抗R1〜R3のそれぞれの両端の電圧をVfとして示すように抑圧することが可能となり、従って、各抵抗R1〜R3を大電力用の構成とすることなく、突入電流等による焼損防止も可能となる。なお、流れる電流測定時の電圧は、前述の順方向電圧Vf以下の電圧として電流測定を行うものである。   FIG. 3 shows voltages V1 to V3 when three current measuring resistors R1 to R3 having different resistance values are connected in series, and a forward voltage Vf between a parasitic diode of a field effect transistor and a diode connected in parallel. The resistance values of the current measurement resistors R1 to R3 indicate a relationship of R1> R2> R3, and accordingly, the current measurement resistors R1, R2 when the same current flows. , R3 have a relationship of V1> V2> V3. However, as shown in FIG. 1 and FIG. 2A, when the forward voltage of each of the resistors R1 to R3 is Vf by the field effect transistor Q1, its parasitic diode D2, and the diode D1, respectively. It is possible to suppress the voltage at both ends as indicated by Vf. Therefore, it is possible to prevent burning due to an inrush current or the like without using the resistors R1 to R3 for high power. In addition, the voltage at the time of the measurement of the flowing electric current measures current as a voltage below the above-mentioned forward voltage Vf.

図4は、本発明の実施例2の説明図であり、R10〜R12は電流測定用抵抗、11は測定電源部、12は被試験バッテリ、13は測定制御部、R10〜R12は電流測定用抵抗、Q11,Q12は電界効果トランジスタ、D11,D12はダイオード、A11,A12は演算増幅器、Vr11,Vr12は基準電圧を示す。なお、電界効果トランジスタQ11,Q12のそれぞれの寄生ダイオードは図示を省略しているが、並列接続のダイオードD11,D12とは順方向がそれぞれ逆方向となる。又抵抗R10は、抵抗値を最小とした大電流測定用の抵抗であり、通常の電流測定範囲を多少超えたとしても、異常電圧とはならない低抵抗値を有する場合を示す。従って、この抵抗R10の両端間を短絡する為の電界効果トランジスタ等は省略した場合を示すものであるが、他の抵抗R11,R12と同様に、並列に電界効果トランジスタとダイオードとを接続することもできる。又測定電源部11と被試験バッテリ12との間に、電流測定用抵抗R10〜R12を直列に接続し、抵抗値が最小の電流測定用抵抗R10は、大電流測定用として、通常の電流測定制御に於いては、前述のように、異常な電圧とならないような低抵抗値の場合を示すもので、R10<R11<R12の抵抗値の関係とした電流測定用抵抗R11,R12の両端の電圧は、大きな電流が流れることにより、異常上昇する可能性があるから、それを抑制する為のダイオードD11,D12と電界効果トランジスタQ11,Q12とを接続し、演算増幅器A11,A12は、抵抗R11,R12の両端の電圧が、基準電圧Vr11,Vr12を超えたことを検出して、電界効果トランジスタQ11,Q12をオンとすると共に、その情報を測定制御部13に入力する。   FIG. 4 is an explanatory diagram of Embodiment 2 of the present invention, in which R10 to R12 are current measurement resistors, 11 is a measurement power supply unit, 12 is a battery under test, 13 is a measurement control unit, and R10 to R12 are for current measurement. Resistors, Q11 and Q12 are field effect transistors, D11 and D12 are diodes, A11 and A12 are operational amplifiers, and Vr11 and Vr12 are reference voltages. Although the parasitic diodes of the field effect transistors Q11 and Q12 are not shown, the forward direction is opposite to that of the parallel-connected diodes D11 and D12. The resistor R10 is a resistor for measuring a large current with a minimum resistance value, and shows a case where the resistor R10 has a low resistance value that does not become an abnormal voltage even if it exceeds the normal current measurement range. Therefore, the field effect transistor for short-circuiting both ends of the resistor R10 is omitted. However, like the other resistors R11 and R12, the field effect transistor and the diode are connected in parallel. You can also. Also, current measurement resistors R10 to R12 are connected in series between the measurement power source 11 and the battery 12 to be tested, and the current measurement resistor R10 having the smallest resistance value is used for measuring a large current. In the control, as described above, the case of a low resistance value that does not cause an abnormal voltage is shown, and the resistances R11 and R12 at both ends of the current measurement resistor are in a relation of R10 <R11 <R12. Since the voltage may rise abnormally when a large current flows, the diodes D11 and D12 and the field effect transistors Q11 and Q12 for suppressing the voltage are connected, and the operational amplifiers A11 and A12 are connected to the resistor R11. , R12 are detected to exceed the reference voltages Vr11, Vr12, the field effect transistors Q11, Q12 are turned on, and the information is measured and controlled. Input to 13.

この実施例2に於いても、電界効果トランジスタQ11,Q12と並列に、それらの寄生ダイオードと逆極性のダイオードD11,D12を並列に接続した構成として、抵抗R11,R12の両端の電圧が、寄生ダイオード及びダイオードD11,D12の順方向電圧に抑制されるから、異常電圧の発生の回避及び電流測定用の抵抗の焼損の回避を図ることが可能となり、それによって、信頼性向上と共に、装置構成のコストダウンを図ることができる。   In the second embodiment, the diodes D11 and D12 having opposite polarities to the parasitic diodes are connected in parallel with the field effect transistors Q11 and Q12, and the voltages at both ends of the resistors R11 and R12 are parasitic. Since the forward voltages of the diodes and the diodes D11 and D12 are suppressed, it is possible to avoid the occurrence of abnormal voltage and to avoid the burning of the resistance for current measurement. Cost can be reduced.

1 測定電源部
2 被試験バッテリ
3 測定制御部
4 測定検出部
5,6 切替部
R1,R2 電流測定用抵抗
D1 ダイオード
D2 寄生ダイオード
Q1 電界効果トランジスタ
DESCRIPTION OF SYMBOLS 1 Measurement power supply part 2 Battery under test 3 Measurement control part 4 Measurement detection part 5,6 Switching part R1, R2 Current measurement resistance D1 Diode D2 Parasitic diode Q1 Field effect transistor

Claims (2)

試験装置と被測定物との間に複数種類の電流測定用抵抗を接続し、該電流測定用抵抗の両端の電圧により前記被測定物に流れる双方向の電流を検出又は測定する電流検出測定装置に於いて、
前記試験装置と前記被測定物との間に接続した前記電流測定用抵抗の両端を、オン状態に於いて短絡する電界効果トランジスタと、
該電界効果トランジスタの寄生ダイオードの順方向とは逆方向の順方向の極性のダイオードとを並列に接続した構成とを備えた
ことを特徴とする電流検出測定装置。
A current detection and measurement device that connects a plurality of types of current measurement resistors between a test device and a device under test, and detects or measures a bidirectional current flowing through the device under test using a voltage across the current measurement resistor. In
A field effect transistor that short-circuits both ends of the current measuring resistor connected between the test apparatus and the device under test in an ON state;
A current detection and measurement apparatus comprising: a diode having a polarity in the forward direction opposite to the forward direction of the parasitic diode of the field effect transistor.
前記複数種類の電流測定用抵抗の中の最小値の抵抗を除く他の抵抗値の抵抗のそれぞれ両端間を短絡する為の電界効果トランジスタと、該電界効果トランジスタの寄生ダイオードの順方向とは逆方向の順方向の極性のダイオードとを並列に接続した構成を備えていることを特徴とする請求項1記載の電流検出測定装置。   A field effect transistor for short-circuiting both ends of each of the resistances other than the minimum resistance among the plurality of types of current measurement resistors, and the forward direction of the parasitic diode of the field effect transistor is opposite The current detection and measurement device according to claim 1, comprising a configuration in which a diode having a forward polarity in a direction is connected in parallel.
JP2012201384A 2012-09-13 2012-09-13 Current detection and measurement device Pending JP2014055876A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012201384A JP2014055876A (en) 2012-09-13 2012-09-13 Current detection and measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012201384A JP2014055876A (en) 2012-09-13 2012-09-13 Current detection and measurement device

Publications (1)

Publication Number Publication Date
JP2014055876A true JP2014055876A (en) 2014-03-27

Family

ID=50613317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012201384A Pending JP2014055876A (en) 2012-09-13 2012-09-13 Current detection and measurement device

Country Status (1)

Country Link
JP (1) JP2014055876A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106872840A (en) * 2017-01-09 2017-06-20 浙江南都电源动力股份有限公司 Voltage acquisition line short test circuit and equipment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009122056A (en) * 2007-11-19 2009-06-04 Denso Corp Battery charge/discharge current detection device
JP2009150762A (en) * 2007-12-20 2009-07-09 Fujitsu Telecom Networks Ltd Current measuring device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009122056A (en) * 2007-11-19 2009-06-04 Denso Corp Battery charge/discharge current detection device
JP2009150762A (en) * 2007-12-20 2009-07-09 Fujitsu Telecom Networks Ltd Current measuring device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106872840A (en) * 2017-01-09 2017-06-20 浙江南都电源动力股份有限公司 Voltage acquisition line short test circuit and equipment

Similar Documents

Publication Publication Date Title
KR102052956B1 (en) Relay checking device of battery pack and Battery control system
US9308826B2 (en) Method and apparatus to detect leakage current between power sources
JP2023056524A (en) Fault detection for battery management systems
US10288694B2 (en) Secondary battery monitoring device and method for diagnosing failure
US9923410B2 (en) Precharging circuit for charging an intermediate circuit capacitor
JP2004219414A (en) Circuit and method for detecting defective insulation
KR101504429B1 (en) Temperature measuring apparatus using negative temperature coefficient thermistor
JP2014166140A (en) Current control circuit and current control method for controlling branch circuit flowing through branch
JP7014565B2 (en) Secondary battery monitoring device and failure diagnosis method
JP2014509747A5 (en)
US10928428B2 (en) Measuring apparatus
JP2014509747A (en) Current sensor
US9812743B2 (en) Battery state monitoring circuit and battery device
TW201526519A (en) Detection device for power component driver and detection method thereof
JP2014055876A (en) Current detection and measurement device
JP6119479B2 (en) Electric vehicle charger
JP6549055B2 (en) Battery pack
JP2016165032A (en) Semiconductor switch
WO2016078078A1 (en) Charger system for battery starting current test
JP5989171B1 (en) CURRENT DETECTION CIRCUIT AND ELECTRIC CONTROL DEVICE FOR VEHICLE HAVING THE CIRCUIT
JP6159190B2 (en) Constant current generating circuit, constant current generating device, constant current generating method, resistance measuring device, and resistance measuring method
US10514307B2 (en) Fault detection apparatus
JP2008209998A (en) Voltage generator
JP6038529B2 (en) measuring device
JP6727958B2 (en) measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150707

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151110