JPH02306169A - Dc current detector - Google Patents

Dc current detector

Info

Publication number
JPH02306169A
JPH02306169A JP1126144A JP12614489A JPH02306169A JP H02306169 A JPH02306169 A JP H02306169A JP 1126144 A JP1126144 A JP 1126144A JP 12614489 A JP12614489 A JP 12614489A JP H02306169 A JPH02306169 A JP H02306169A
Authority
JP
Japan
Prior art keywords
output
current
voltage
detection
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1126144A
Other languages
Japanese (ja)
Inventor
Akiyoshi Teramoto
寺本 昭好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1126144A priority Critical patent/JPH02306169A/en
Publication of JPH02306169A publication Critical patent/JPH02306169A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

PURPOSE:To enhance the detection accuracy of a small current region by connecting an output resistor for expanding the detection level of the small current region to a usual output resistor in series and short-circuiting and opening the same corresponding to the magnitude of a current to be detected. CONSTITUTION:In a current detection part, by driving the output winding wound around the iron core magnetically coupled with a primary conductor to which a current to be detected flows by an AC power supply, the detection voltage corresponding to the current to be detected flows to the feedback winding 7 wound around the same iron core. The first and second output resistors 8, 9 are connected to said winding 7 in series and the output voltage at the connec tion point of both of them is compared with reference voltage EREF by a compa rator 10 and, when the output voltage becomes larger than the reference voltage, an output signal 11 is generated and a switch circuit 12 is turned ON to short- circuit the resistor 9. The output voltage E01 exclusive to the small current region between both terminals of the resistors 8, 9 is high in level to enhance detection resolving power. Therefore, the effect of foreign noise and the offset voltage of a signal processing system is prevented and the detection accuracy in the small current region is enhanced.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

この発明は、粒子加速器等の励磁電流を高精度に検出す
る直流電流検出装置に関するものである。
The present invention relates to a DC current detection device that detects excitation current of a particle accelerator or the like with high precision.

【従来の技術】[Conventional technology]

第3図は例えば特開昭55−60860号公報に示され
た従来の直流電流検出装置を示す構成図であり図におい
て、1は4個の可飽和リアクトルから成る鉄心、2は各
鉄心1に磁気的に結合されて直列に接続された1次導体
で、直流の被検出電流■、が流される。3は各鉄心1に
巻回されて直列に接続された出力巻線、4,5はそれぞ
れ2つの出力巻線3に対して設けられた電流検出部、6
は電流検出部4.5の検出電圧eI+  e2の代数和
の電圧e、+e2を増幅する電力増幅器、7は各鉄心1
に巻回されて直列に接続され、電力増幅器6の出力電流
が流される帰還巻線、8は帰還巻VA 7と接地間に接
続され出力電圧E0を得る出力抵抗である。 上記電流検出部4.5において、41.51は交流電源
、42,43,52.53は整流用ダイオード、44.
45,54.55は負電流阻止用抵抗、46.47,5
6.57は最大電流を通すためのバイパス用ダイオード
、48.58は検出電圧eI+  eZを得る検出抵抗
である。 次に動作について説明する。 1次導体2に被検出電流11を流した状態で、各出力巻
線3を電流検出部4.5の交流電源41゜51により駆
動することにより、各検出抵抗48゜58に、被検出電
流I、及び鉄心1の励磁電流に応じた電流が流れて、検
出電圧el+82が得られる。この検出電圧e、とe2
との代数和e、+82の電圧は、電力増幅器6に加えら
れて電力増幅される。第4図(a) 、 (b) 、 
(c)は被検出電流I、と被検出電圧”I+”2及びe
、+ezとの関係を示す。 電力増幅器6の出力電流は帰還巻線7に、1次導体2を
流れる被検出電流■1と逆極性で流れる。 この帰還巻vA7の電流は1次導体2の被検出電流11
と巻数とによるアンペア回数で止まり、安定を保つ。従
って、この電流回路に接続された出力抵抗8の両端の出
力電圧E0は被検出電流■、に比例するものとなる。被
検出電流11と出力電圧E0との関係は第5図に示すよ
うに直線性を有する。 以上の説明より、検出精度を上げるには、出力抵抗8の
値を大きくすれば良いことが判る。第6図はそれを説明
するためのもので、電力増幅器6より出力された電流■
、は、帰還巻線7及び出力抵抗8を通るが、この電流は
被検出電流I、によって決められるため、理論的には出
力抵抗8を大きくすれば、出力電圧E0も大きくなり、
第7図の特性21及び22に示すようになる。同図で、
特性21は出力抵抗8の小さい場合を示し、特性22は
出力抵抗8の大きい場合を示す。しかしながら、従来の
直流電流検出装置では、このような動作は実際には不可
能となる。何故ならば、第7図における出力抵抗8が高
い特性22の場合において、ある電流11を越えると、
電力増幅器6の出力は飽和現象を生じる。これは電力増
幅器6そのものの特性にもよるが、電力増幅器6に使用
される電源電圧の大きさにもよる。従って、入力電流(
被検出電流r、)が流れているにも拘らず、電力増幅器
6が飽和のため帰還電流を流すことができず、このため
、第4図(c)に示す特性の負傾斜部分20の領域に入
り込んで正帰還信号となるため、入力 電流11が小さ
くなっても、もはやその出力は小さくならず、第5図の
特性を得ることができなくなる。
FIG. 3 is a block diagram showing a conventional DC current detection device disclosed in, for example, Japanese Patent Application Laid-Open No. 55-60860. A direct current to be detected (2) is passed through the primary conductors that are magnetically coupled and connected in series. 3 is an output winding wound around each iron core 1 and connected in series; 4 and 5 are current detection units provided for each of the two output windings 3; 6
is a power amplifier that amplifies the voltage e, +e2 which is the algebraic sum of the detected voltage eI+e2 of the current detection unit 4.5, and 7 is a power amplifier for each iron core 1.
8 is an output resistor connected between the feedback winding VA 7 and ground to obtain an output voltage E0. In the current detection section 4.5, 41.51 is an AC power supply, 42, 43, 52.53 are rectifying diodes, 44.
45, 54.55 are negative current blocking resistors, 46.47, 5
6.57 is a bypass diode for passing the maximum current, and 48.58 is a detection resistor for obtaining a detection voltage eI+eZ. Next, the operation will be explained. With the detected current 11 flowing through the primary conductor 2, each output winding 3 is driven by the AC power source 41°51 of the current detection section 4.5, so that the detected current is applied to each detection resistor 48°58. I, and a current according to the excitation current of the iron core 1 flows, and a detected voltage el+82 is obtained. This detection voltage e, and e2
The voltage of the algebraic sum e, +82 is applied to the power amplifier 6 and power amplified. Figure 4 (a), (b),
(c) is the detected current I, the detected voltage “I+”2 and e
, +ez is shown. The output current of the power amplifier 6 flows into the feedback winding 7 with a polarity opposite to that of the detected current 1 flowing through the primary conductor 2. The current of this feedback winding vA7 is the detected current 11 of the primary conductor 2.
It stops at the number of amperes depending on the number of turns and remains stable. Therefore, the output voltage E0 across the output resistor 8 connected to this current circuit is proportional to the detected current (2). The relationship between the detected current 11 and the output voltage E0 has linearity as shown in FIG. From the above explanation, it can be seen that the value of the output resistor 8 can be increased to increase the detection accuracy. Figure 6 is for explaining this, and shows the current output from the power amplifier 6.
, passes through the feedback winding 7 and the output resistor 8, but since this current is determined by the detected current I, theoretically, if the output resistor 8 is increased, the output voltage E0 will also be increased,
The characteristics are shown in characteristics 21 and 22 in FIG. In the same figure,
Characteristic 21 shows the case where the output resistance 8 is small, and characteristic 22 shows the case where the output resistance 8 is large. However, with conventional DC current detection devices, such an operation is actually impossible. This is because when the output resistance 8 in FIG. 7 has a high characteristic 22, when a certain current 11 is exceeded,
The output of the power amplifier 6 undergoes a saturation phenomenon. This depends on the characteristics of the power amplifier 6 itself, but also on the magnitude of the power supply voltage used for the power amplifier 6. Therefore, the input current (
Even though the current to be detected (r,) is flowing, the power amplifier 6 is saturated and no feedback current can be passed. Therefore, the region of the negative slope portion 20 of the characteristic shown in FIG. 4(c) Since the input current 11 enters the current and becomes a positive feedback signal, even if the input current 11 becomes small, its output no longer becomes small, and the characteristics shown in FIG. 5 can no longer be obtained.

【発明が解決しようとする課題】[Problem to be solved by the invention]

従来の直流電流検出装置は以上のように構成されている
ので、小電流領域の検出精度を上げることができず、こ
の対策として電力増幅器6の飽和電圧を上げようとして
も、電源電圧を上げる必要があり、また電源電圧は電力
増幅器6の定格により決められるものであるため、容易
に変更することができないなどの問題点があった。 この発明は上記のような問題点を解消するためになされ
たもので、小電流領域の検出精度を上げることの可能な
直流電流検出装置を得ることを目的とする。
Since the conventional DC current detection device is configured as described above, it is not possible to increase the detection accuracy in the small current region, and even if an attempt is made to increase the saturation voltage of the power amplifier 6 as a countermeasure, it is necessary to increase the power supply voltage. Furthermore, since the power supply voltage is determined by the rating of the power amplifier 6, there are problems in that it cannot be easily changed. The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to obtain a DC current detection device that can improve detection accuracy in a small current region.

【課題を解決するための手段】[Means to solve the problem]

この発明に係る直流電流検出装置は従来の出力抵抗と直
列に別個の出力抵抗を新たに接続すると共に、従来の出
力抵抗の検出電圧が、所定の値以上となった時に、新た
に接続した出力抵抗を短絡するようにしたものである。
The DC current detection device according to the present invention newly connects a separate output resistor in series with the conventional output resistor, and when the detection voltage of the conventional output resistor exceeds a predetermined value, the newly connected output The resistor is short-circuited.

【作用】[Effect]

この発明における2個の出力抵抗の両端出力は抵抗値が
大きいため、小電流領域においては従来のものと比較し
てレベルの大きい信号となって検出分解能が上がり、こ
のため、外来ノイズ、信号処理系のオフセット電圧など
の影響を受けにくく、検出精度を向上させることができ
る。
Since the outputs at both ends of the two output resistors in this invention have a large resistance value, in the small current region, the signal is of a higher level compared to the conventional one, and the detection resolution is increased. It is less susceptible to the effects of system offset voltage, etc., and can improve detection accuracy.

【実施例】【Example】

以下、この発明の一実施例を図について説明する。第1
図はこの発明による直流電流検出装置の出力抵抗回路部
分を示すもので、6,7.8は第3図の同一符号部分と
対応する。また他の図示しない部分は第3図と同一構成
されている。 第1図において、9は第1の出力抵抗8と帰還巻線7と
の間に直列に接続された第2の出力抵抗、EO,は第1
及び第2の出力抵抗8.9の接続点から取り出される通
常電流領域専用の出力電圧、Eotは帰還巻線7と第2
の出力抵抗9との接続点から取り出される小電流領域専
用の出力電圧、■、は帰還巻線7の電流である。10は
第1の出力抵抗8の発生する出力電圧E。1のレベルが
予め設定された基準電圧E□、に達したことを検出する
比較器、11は比較器10の出力信号、12は出力信号
11によって動作し、第2の出力抵抗9を短絡するスイ
ッチ回路である。 次に動作について説明する。 第2図は、横軸に被検出電流1.を、縦軸にこの発明に
よる直流電流検出装置の出力電圧E。、及びE02を示
したものである。第1図及び第2図において、小電流領
域専用の出力電圧E。2は出力抵抗8と9との両端電圧
であるため、そのレベルは大きく、検出分解能が従来の
それに比較して大きく向上している。一方、電力増幅器
6の出力電圧レベルの制約から、比較器10によって第
1の出力抵抗8の両端電圧(通常レベルの出力電圧E0
1)を監視し、その値が予め設定したしきい値E II
EFを越えた時に、速やかに出力信号11を発生し、ス
イッチ回路12をONにして第2の出力抵抗9を短絡す
る。 以上により、比較器10が動作した後は、通常の出力電
圧EOIは、スイッチ回路12の動作に拘らず、通常レ
ベルを保ち続ける。一方、小電流領域専用の出力電圧E
。2は出力電圧EOIに対して、スイッチ回路12の電
圧ドロップ分Δeだけ高いレベルに抑えられるため、電
力増幅器6への負担は極く僅かとなり、従来の検出装置
と同様の動作をすることになる。 また本装置の出力電圧E。IIEOZは常に外部へ出力
可能に成されているため、外部回路において■1≦I 
IIEFの範囲で、任意のポイントで出力信号を切り替
えて使用することができる。第2図では、−例として1
.=1.のポイントで出力電圧E o + +  E 
o zを切り替えた場合の出力信号特性を一点鎖線13
で示している。 なお、上記実施例では出力電圧E。II  EO2を互
いに独立して出力し、外部回路において、これらの出力
電圧EIII+  Eozの選択、切り替えを行う場合
について示したが、装置内にその切り替えレベル(I、
)の設定器を備えると共に、切り替えた後の出力電圧が
拡大レベルか通常レベルかを示す信号を外部へ出力する
ものであっても、上記実施例と同様の効果を奏する。
An embodiment of the present invention will be described below with reference to the drawings. 1st
The figure shows the output resistance circuit portion of the DC current detection device according to the present invention, and 6, 7.8 correspond to the same reference numerals in FIG. Further, other parts not shown have the same configuration as in FIG. 3. In FIG. 1, 9 is the second output resistor connected in series between the first output resistor 8 and the feedback winding 7, and EO is the first output resistor 8.
and the output voltage exclusively for the normal current region taken out from the connection point of the second output resistor 8.9, Eot is the output voltage taken out from the connection point of the feedback winding 7 and the second
The output voltage exclusively for the small current region taken out from the connection point with the output resistor 9 is the current of the feedback winding 7. 10 is an output voltage E generated by the first output resistor 8. A comparator detects that the level of 1 has reached a preset reference voltage E□, 11 is the output signal of the comparator 10, 12 is operated by the output signal 11, and short-circuits the second output resistor 9. It is a switch circuit. Next, the operation will be explained. In FIG. 2, the horizontal axis indicates the detected current 1. The vertical axis represents the output voltage E of the DC current detection device according to the present invention. , and E02. In FIGS. 1 and 2, the output voltage E is dedicated to the small current region. Since 2 is the voltage across the output resistors 8 and 9, its level is large, and the detection resolution is greatly improved compared to the conventional one. On the other hand, due to constraints on the output voltage level of the power amplifier 6, the comparator 10 sets the voltage across the first output resistor 8 (normal level output voltage E0
1) is monitored and its value is a preset threshold value E II
When EF is exceeded, the output signal 11 is immediately generated, the switch circuit 12 is turned on, and the second output resistor 9 is short-circuited. As described above, after the comparator 10 operates, the normal output voltage EOI continues to maintain the normal level regardless of the operation of the switch circuit 12. On the other hand, the output voltage E for small current area
. 2 is suppressed to a level higher than the output voltage EOI by the voltage drop Δe of the switch circuit 12, so the load on the power amplifier 6 is extremely small, and it operates in the same way as a conventional detection device. . Also, the output voltage E of this device. IIEOZ is always configured to be able to output to the outside, so in the external circuit ■1≦I
The output signal can be switched and used at any point within the IIEF range. In Figure 2 - for example 1
.. =1. The output voltage E o + + E at the point
The output signal characteristics when switching oz are shown in dashed line 13.
It is shown in Note that in the above embodiment, the output voltage is E. In the above example, the output voltages EIII and Eoz are output independently of each other and the output voltages EIII and Eoz are selected and switched in an external circuit.
) and outputs a signal indicating whether the output voltage after switching is the enlarged level or the normal level to the outside, the same effect as in the above embodiment can be obtained.

【発明の効果】【Effect of the invention】

以上のように、この発明によれば通常の出力抵抗と直列
に、小電流領域の検出レベル拡大用出力抵抗を接続し、
かつ、被検出電流の大きさにより、自動的に後者の出力
抵抗を短絡、開放するように構成したので、小電流領域
の検出レベルを拡大することができ、検出精度を向上さ
せると共に、その他の領域において、も飽和することな
く、従来と同一の精度が得られる効果がある。
As described above, according to the present invention, an output resistor for expanding the detection level in a small current region is connected in series with a normal output resistor,
In addition, the latter output resistor is configured to be automatically short-circuited or opened depending on the magnitude of the current to be detected, so it is possible to expand the detection level in the small current region, improve detection accuracy, and improve other The effect is that the same accuracy as the conventional method can be obtained without saturation even in this area.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例による直流電流検出装置の
出力抵抗回路部分を示す構成図、第2図は同装置の入−
出力信号特性図、第3図は従来の直流電流検出装置を示
す構成図、第4図は同装置の動作を説明するための特性
図、第5図は同装置の入−出力信号特性図、第6図は同
装置の要部を示す構成図、第7図は同装置の動作を説明
するための特性図である。 ■は鉄心、2は1成環体、3は出力巻線、4゜5は電流
検出部、41.51は交流電源、7は帰還巻線、8は第
1の出力抵抗、9は第2の出力抵抗、10は比較器、1
1は出力信号、12はスイッチ回路。 なお、図中、同一符号は同一、又は相当部分を示す。 第1図 3.七力巷率艷 第3図 第5図
FIG. 1 is a configuration diagram showing the output resistance circuit portion of a DC current detection device according to an embodiment of the present invention, and FIG.
Output signal characteristic diagram, FIG. 3 is a configuration diagram showing a conventional DC current detection device, FIG. 4 is a characteristic diagram for explaining the operation of the device, FIG. 5 is an input-output signal characteristic diagram of the device, FIG. 6 is a configuration diagram showing the main parts of the device, and FIG. 7 is a characteristic diagram for explaining the operation of the device. ■ is the iron core, 2 is the first ring body, 3 is the output winding, 4゜5 is the current detection section, 41.51 is the AC power supply, 7 is the feedback winding, 8 is the first output resistor, 9 is the second output resistance, 10 is the comparator, 1
1 is an output signal, 12 is a switch circuit. In addition, in the figures, the same reference numerals indicate the same or equivalent parts. Figure 1 3. Figure 3, Figure 5

Claims (1)

【特許請求の範囲】[Claims] 被検出電流が流れる1次導体と、上記1次導体と磁気的
に結合される鉄心と、上記鉄心に巻回された出力巻線と
、上記出力巻線を交流電源で駆動することにより、上記
被検出電流に応じた検出電圧を得るように成された電流
検出部と、上記検出電圧に応じた電流が流れ上記鉄心に
巻回された帰還巻線と、上記帰還巻線に直列に接続され
た第1及び第2の出力抵抗と、上記第1及び第2の出力
抵抗の接続点に得られる出力電圧と基準電圧とを比較す
る比較器と、上記比較器の出力信号により制御されるこ
とにより、上記第2の出力抵抗を短絡するスイッチ回路
とを備えた直流電流検出装置。
By driving a primary conductor through which the current to be detected flows, an iron core magnetically coupled to the primary conductor, an output winding wound around the iron core, and the output winding with an AC power source, A current detection section configured to obtain a detected voltage according to the detected current, a feedback winding through which a current according to the detected voltage flows and is wound around the iron core, and connected in series to the feedback winding. a comparator that compares an output voltage obtained at a connection point between the first and second output resistors and a reference voltage; and a comparator that is controlled by an output signal of the comparator. and a switch circuit that short-circuits the second output resistor.
JP1126144A 1989-05-19 1989-05-19 Dc current detector Pending JPH02306169A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1126144A JPH02306169A (en) 1989-05-19 1989-05-19 Dc current detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1126144A JPH02306169A (en) 1989-05-19 1989-05-19 Dc current detector

Publications (1)

Publication Number Publication Date
JPH02306169A true JPH02306169A (en) 1990-12-19

Family

ID=14927766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1126144A Pending JPH02306169A (en) 1989-05-19 1989-05-19 Dc current detector

Country Status (1)

Country Link
JP (1) JPH02306169A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009150762A (en) * 2007-12-20 2009-07-09 Fujitsu Telecom Networks Ltd Current measuring device
JP2010210377A (en) * 2009-03-10 2010-09-24 U R D:Kk Direct current sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009150762A (en) * 2007-12-20 2009-07-09 Fujitsu Telecom Networks Ltd Current measuring device
JP2010210377A (en) * 2009-03-10 2010-09-24 U R D:Kk Direct current sensor

Similar Documents

Publication Publication Date Title
US5559657A (en) Earth fault circuit breaker
MXPA00012698A (en) Modular current sensor and power source.
JP2712470B2 (en) Inverter current detection device
US5239253A (en) Portable engine generator
JPH0522836A (en) Power supply
CA2024351C (en) Differential protective relay apparatus
JPH1198835A (en) H-bridge step-up circuit
JPH02306169A (en) Dc current detector
JPH0630579A (en) Current detecting circuit
JPH07312823A (en) Dc leak detection and protective device
JPH04238272A (en) Power supply circuit with leakage current detecting function
JPH052452U (en) Semiconductor circuit breaker
JP2841531B2 (en) Arm short detection circuit for power converter
JP3282208B2 (en) Inverter phase loss detection circuit
US4949235A (en) Magnetic amplifier shutdown circuit
KR0121575B1 (en) Relay apparatus with detecting an absent phase and reverse phase
JP3259319B2 (en) Inverter abnormality detection device
JPS63228916A (en) Air harmonizer protector
JPS60139128A (en) Ground protecting device for power converter
SU832644A2 (en) Device for deferential protection of dc network portions
SU920939A1 (en) Device for protecting brushless synchronous machine
JPS622888Y2 (en)
JPH04308420A (en) Motor controller
JPS6046640B2 (en) Commutation failure prevention circuit for linear thyristor motor converter
JPS59149776A (en) Ground protecting device for power converter