JP4819687B2 - 特異値分解を使用する聴診音を分析する方法および診断装置 - Google Patents

特異値分解を使用する聴診音を分析する方法および診断装置 Download PDF

Info

Publication number
JP4819687B2
JP4819687B2 JP2006536713A JP2006536713A JP4819687B2 JP 4819687 B2 JP4819687 B2 JP 4819687B2 JP 2006536713 A JP2006536713 A JP 2006536713A JP 2006536713 A JP2006536713 A JP 2006536713A JP 4819687 B2 JP4819687 B2 JP 4819687B2
Authority
JP
Japan
Prior art keywords
matrix
matrices
auscultatory
patient
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006536713A
Other languages
English (en)
Other versions
JP2007508899A (ja
Inventor
エー. ギオン,マリー
ジー. エルドマン,アーサー
ソマーフェルド,ジョージ
エイチ. テウフィーク,アーメッド
ディー. オスター,クレイグ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3M Innovative Properties Co
University of Minnesota
Original Assignee
3M Innovative Properties Co
University of Minnesota
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 3M Innovative Properties Co, University of Minnesota filed Critical 3M Innovative Properties Co
Publication of JP2007508899A publication Critical patent/JP2007508899A/ja
Application granted granted Critical
Publication of JP4819687B2 publication Critical patent/JP4819687B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B7/00Instruments for auscultation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B7/00Instruments for auscultation
    • A61B7/02Stethoscopes
    • A61B7/04Electric stethoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B7/00Instruments for auscultation
    • A61B7/003Detecting lung or respiration noise

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Acoustics & Sound (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Description

本発明は一般的に医療装置に関し、および、特に、聴診音の分析のための電子装置に関する。
臨床医および他の医療専門家が、長年の間、生理学的状態の検出と診断とを補助するために聴診音に頼ってきた。例えば、臨床医が、心臓の疾病を検出する目的で心音を監視するために聴診器を使用することがある。他の例としては、臨床医が、呼吸器の病状または胃腸の病状を検出するために患者の肺または腹腔に関連付けられた音を監視することがある。
電子的に録音された聴診音に対してアルゴリズムを適用する自動装置が開発されてきた。一例が自動血圧監視装置である。他の例が、聴診音の分析に基づいて生理学的状態を自動的に監視することを試みる分析システムを含む。例えば、人工神経回路網が、聴診音を分析するための、および、自動化診断または提案診断(suggested diagnosis)を実現するための1つの実現可能な機構として議論されてきた。
これらの従来の技術を使用する場合には、任意の度合いの精度で聴診音に基づいた特定の生理学的状態の自動化診断を実現することが困難である場合が多い。さらに、臨床医を補助するためにリアルタイムまたは疑似リアルタイムで適用されることが可能な仕方で従来の技術を実施することが困難である場合が多い。
一般的に、本発明は、患者の生理学的状態を診断する場合に医療専門家を補助するために聴診音を分析する技術に関する。この技術は、例えば、様々な心臓状態を診断する際に医療専門家を補助するために適用されてよい。例えば、本明細書で説明されている技術を使用して自動的に検出されることが可能な心臓状態の例が、大動脈弁閉鎖不全症と大動脈弁狭窄症、三尖弁閉鎖不全症と三尖弁狭窄症、肺動脈弁狭窄症と肺動脈弁閉鎖不全症、僧帽弁閉鎖不全症と僧帽弁狭窄症、大動脈瘤、頸動脈狭窄症、および、他の心臓病状を含む。この技術は、他の生理学的状態を検出するために聴診音に適用されてもよい。例えば、この技術は、呼吸器の病状または胃腸の病状を検出するために患者の肺や腹腔や他の区域から録音された音を検出するために使用されてもよい。
本明細書で説明している技術によって、特異値分解(「SVD」)が、既知の生理学的状態に関連付けられた聴診音のディジタル化表現を含む臨床データに適用される。この臨床データは1組の行列として公式化されてよく、この場合に各行列は、生理学的状態のそれぞれ1つに関連付けられた聴診音のディジタル表現を格納する。臨床データに対するSVDの適用が、その行列を、多次元空間内の1組の「疾病領域(disease region)」を定義する1組の部分行列の形に分解する。
その次に、各々の生理学的状態に関する部分行列の1つまたは複数が、診断装置内の設定(configuration)データとして使用されてよい。さらに明確に述べると、この診断装置は、その設定データを、多次元空間内の1組の1つまたは複数のベクトルを生成するために、患者に関連付けられた聴診音のディジタル化表現に対して適用する。この診断装置は、定義されている疾病領域に対するベクトルの向きに基づいて、例えば心臓病状のような生理学的状態を患者が有しているかどうかを判定する。
一実施態様では、方法が、既知の生理学的状態に関連付けられた聴診音を、多次元空間内で定義された1組の1つまたは複数の疾病領域に対してマッピングするステップと、患者に関連付けられた聴診音を表している多次元空間内の1組の1つまたは複数のベクトルを生成するステップとを含む。この方法は、さらに、多次元空間内で定義されているベクトルと疾病領域との関数として患者の生理学的状態に関連付けられた診断メッセージを出力するステップも含む。
別の実施態様では、方法が、多次元空間内の1組の1つまたは複数の疾病領域に対して聴診音をマップするために生理学的状態に関連付けられた聴診音のディジタル化表現に対して特異値分解(「SVD」)を適用するステップと、多次元マッピングに基づいて診断装置による使用のために設定データを出力するステップとを含む。
別の実施態様では、方法が、既知の生理学的状態に関連付けられた聴診音のディジタル化表現に対して特異値分解(「SVD」)を適用することによって生成された設定データを診断装置内に記憶するステップを含み、この設定データは多次元空間内の1組の1つまたは複数の疾病領域に対して聴診音をマップする。この方法は、さらに、生理学的状態の1つまたは複数を選択するために、患者に関連付けられた聴診音を表しているディジタル化表現に対してその設定データを適用するステップと、その選択された生理学的状態を表示する診断メッセージを出力するステップとを含む。
別の実施態様では、診断装置が媒体と制御ユニットとを備え、特異値分解を用いて聴診音を分析することを特徴とする。この媒体は、既知の生理学的状態に関連付けられた聴診音のディジタル化表現に対して特異値分解(「SVD」)を適用することによって生成された設定データを格納する。この制御ユニットは、1組の定義された疾病領域を有する多次元空間内の1つまたは複数のベクトルの1組を生成し、生理学的状態の1つを選択するために、患者に関連付けられた聴診音を表しているディジタル化表現に対して設定データを適用する。この制御ユニットは、生理学的状態の選択された1つを表示する診断メッセージを出力する。
別の実施態様では、データ分析システムが分析モジュールとデータベースとを含む。この分析モジュールは、多次元空間内の1組の1つまたは複数の疾病領域に対して聴診音をマップするために、既知の生理学的状態に関連付けられた聴診音のディジタル化表現に対して特異値分解(「SVD」)を適用する。このデータベースは、この分析モジュールによって生成されたデータを格納する。
別の実施態様では、本発明は、命令を含むコンピュータ可読媒体に関する。この命令は、1組の生理学的状態の中の1つの生理学的状態を選択するために、患者に関連付けられた聴診音を表しているディジタル化表現に対して設定データをプログラム可能プロセッサに適用させ、この場合に、この設定が、多次元空間内の1組の1つまたは複数の疾病領域に対して聴診音をマップする。この命令は、さらに、選択された1つの生理学的状態を表示する診断メッセージをプログラム可能プロセッサに出力させる。
この技術は1つまたは複数の利点を提供するだろう。例えば、SVDの適用は、従来のアプローチに比較してより正確な患者の自動診断を実現するだろう。これに加えて、この技術は、SVDを使用して設定データが事前計算され、その次に、患者に関する診断を下す際に臨床医を補助するために、リアルタイムまたは疑似リアルタイムで診断装置によって、すなわち、臨床医によって適用されることを可能にする。
本発明の1つまたは複数の実施態様の詳細が、添付図面と以下の説明とにおいて示されている。本発明の他の特徴と目的と利点が、以下の説明と図面から、および、特許請求項から明らかだろう。
図1は、診断を下す際に臨床医10を補助するために診断装置6が患者8からの聴診音を分析する例示的なシステム2を示すブロック図である。一般的に、診断装置6は、データ分析システム4によって生成された設定データ13にしたがってプログラムされる。診断装置6は、患者8からの聴診音を分析するためにその設定データを使用し、および、患者の生理学的状態を診断する際に臨床医10を補助するためにその分析に基づいて診断メッセージを出力する。例示を目的として心臓状態に関して説明しているが、この技術は、患者8の身体の他の区域から録音された聴診音に対しても適用されてよい。例えば、この技術は、呼吸器の呼吸器の状態または胃腸の状態を検出するために患者8の肺または腹腔から録音された聴診音に適用されてもよい。
診断装置6による使用のための設定データ13を生成する際には、データ分析システム4は、既知の生理学的状態を有する1組の患者から録音された聴診音のディジタル化表現を含む臨床データ12を受け取って処理する。例えば、この聴診音は、1つまたは複数の既知の心臓病状を有する患者から録音されてもよい。心臓病状の例は、大動脈弁閉鎖不全症と大動脈弁狭窄症、三尖弁閉鎖不全症と三尖弁狭窄症、肺動脈弁狭窄症と肺動脈弁閉鎖不全症、僧帽弁閉鎖不全症と僧帽弁狭窄症、大動脈瘤、頸動脈狭窄症、および、他の心臓病状を含む。これに加えて、臨床データ12は「正常な」患者すなわち心臓病状を持たない患者から録音された聴診音を含む。一実施形態では、臨床データ12は、フィルタされていない生フォーマットの心音の録音を含む。
データ分析システム4の分析モジュール14は、電子的に録音された聴診音を表している多次元エネルギー空間内の1組の「疾病領域」を定義するために、本明細書で説明している技術によって臨床データ12の録音された聴診音を分析する。多次元空間内の各々の疾病領域は、それぞれの疾病を示すものとしてすでに数学的に識別されている心臓サイクル中の音の特徴に対応する。
さらに詳細に後述するように、一実施形態では、分析モジュール14は、多次元空間内で疾病領域とその境界とを定義するために特異値分解(「SVD」)を適用する。さらに、分析モジュール14は、多次元空間内の疾病領域の間のエネルギー差を最大にするために、および、各々の疾病領域の間の正規距離(normal distance)を最大化する各疾病領域に関するそれぞれのエネルギー角(energy angle)を定義するために、SVDを適用する。データ分析システム4は、分析モジュール14の実行とSVDの適用とのための動作環境を提供する1つまたは複数のコンピュータを含んでよく、これは計算集約的なタスクであるだろう。例えば、データ分析システム4は、数学モデル化および数値分析環境を提供する1つまたは複数のワークステーションまたはメインフレームコンピュータを含んでもよい。
分析モジュール14は、診断装置6による使用のためにパラメトリックデータベース16内に分析結果を格納する。例えば、このパラメトリックデータベース16は、多次元エネルギー空間とこの空間内の疾病領域に関するエネルギー領域とを定義する、診断装置6のためのデータを含んでもよい。言い換えると、このデータは、正常な心臓活動と定義された心臓病状とを示している心臓サイクルに関する聴診音の特徴を識別するために使用されてよい。さらに詳細に後述するように、このデータは、臨床データ12に対するSVDの適用中に生成される1つまたは複数の部分行列を含んでもよい。
分析モジュール14が臨床データ12を処理してパラメトリックデータベース16を生成し終わると、診断装置6は、患者8の診断を補助するために、設定データ13を受け取るか、または、設定データ13を適用するために他の形でプログラムされる。図示されている実施形態では、聴診音録音装置18が患者8からの聴診音を監視し、および、通信リンク19を経由して診断装置6にその聴診音のディジタル化表現を通信する。診断装置6は、患者8から録音された聴診音を分析するために設定データ13を適用する。
一般的に、診断装置6は、聴診音録音装置18から受け取られたディジタル化表現を、臨床データ12からデータ分析システム4によって計算された多次元エネルギー空間に対してマップするために、設定データ13を適用する。さらに詳細に後述するように、診断装置6は、捕捉された音を表現している多次元空間内の1組のベクトルを生じさせるために設定データ13を適用する。その次に、診断装置6は、疾病領域に対する多次元空間内のベクトルの向きに基づいて疾病領域の1つを選択する。一実施形態では、診断装置6は、多次元空間内の定義された疾病領域のどれがその代表的なベクトルから最小距離を有するかを判定する。この判定に基づいて、診断装置は、臨床医10に対する提案診断を提供する。診断装置6は、臨床医10に対して正確な診断が報告されることを確かなものにするのに役立つように、患者8の録音された心音によって識別された1つまたは複数の心臓サイクルに対して分析を反復してもよい。
様々な実施形態では、診断装置6は様々なメッセージタイプを出力してよい。例えば、診断装置6は、患者8の生理学的状態が正常か異常であるかどうかを示す、例えば、患者が心臓病状に罹っているか否かを示す、「合格/不合格」タイプのメッセージを出力してもよい。この実施形態では、データ分析システム4は、2つの疾病領域、すなわち、(1)正常および(2)疾病の疾病領域を含むように、多次元空間を定義してよい。言い換えると、データ分析システム4は、各々の心臓病状に関して多次元空間によってそれぞれの疾病領域を定義することは必ずしも必要ではない。分析中に、診断装置6は、患者8の聴診音がより厳密に「正常」領域または「疾病」領域にマップするかどうかを判定し、および、この判定に基づいて合格/不合格メッセージを出力するだけでよい。診断装置6は、患者8のマップされた聴診音が正常な領域からである計算された距離に基づいて、重症度標識を表示してもよい。
別の例として、診断装置6は、患者8が現在罹っている1つまたは複数の特定の病状を提案するために診断メッセージを出力してもよい。この代わりに、または、これに加えて、診断装置6は、患者8が罹る傾向がある病状の予想的な評価としての診断メッセージを出力してもよい。言い換えると、この予想的な評価は、患者が特定の心臓疾病に罹りやすいかどうかを示す。これは、予想された病状が発症または悪化する可能性を低下させるために臨床医8が事前対応的に療法を処方することを可能にするだろう。
診断装置6は、臨床医10が表示メッセージタイプを選択することを可能にするユーザ設定可能モード設定をサポートしてもよい。例えば、診断装置6は、合格/不合格タイプのメッセージだけが表示される第1のモードと、1つまたは複数の提案診断が表示される第2のモードと、1つまたは複数の予想診断が提案される第3のモードとをサポートしてもよい。
診断装置6は、ラップトップコンピュータ、ハンドヘルド計算装置、パーソナルディジタルアシスタント(PDA)、または、心エコー分析装置等であってよい。診断装置6は、組込みマイクロプロセッサ、ディジタルシグナルプロセッサ(DSP)、フィールドプログラマブルゲートアレイ(FPGA)、特定用途向け集積回路(ASIC)、または、この技術を実装するための他のハードウェア、ファームウェア、および/または、ソフトウェアを含んでよい。言い換えると、患者8からの聴診音の分析が、本明細書で説明するように、ハードウェア、ソフトウェア、ファームウェア、これらの組合せ、または、他の類似物の形で実装されてよい。ソフトウェアの形で実装される場合には、コンピュータ可読媒体が、上述の技術の1つまたは複数を実施するためにプロセッサまたはDSPによって実行されることが可能な命令すなわちプログラムコードを記憶してよい。例えば、コンピュータ可読媒体は、磁気媒体、光学媒体、ランダムアクセスメモリ(RAM)、読出し専用メモリ(ROM)、不揮発性ランダムアクセスメモリ(NVRAM)、電気的消去可能書込み可能読出し専用メモリ(EEPROM)、フラッシュメモリ、または、プログラムコードを記憶するのに適している他の媒体を含んでよい。
聴診音録音装置18は、患者8の聴診音を表している電子信号を生成することが可能な任意の装置であってよい。一例としては、聴診音録音装置18は、聴診音の電子録音を生成および捕捉するためのディジタルシグナルプロセッサ(DSP)または他の内部コントローラを有する電子聴診器であってよい。あるいは、この代わりに、使い捨て/再使用可能センサ、マイクロホン、および、聴診音を捕捉するための他の装置のような、聴診器ではない製品が使用されてもよい。
本明細書で説明している技術の適用が、フィルタされていない形式の生データの使用を可能にする。更に、この技術は、聴診音録音装置18によって捕捉された可聴範囲内にない聴診音を利用できる。例えば、電子聴診器は、0−2000Hzの範囲内の音を捕捉してよい。
診断装置6と聴診音録音装置18は、別個の装置として図示されているが、単一の装置の中に統合されてもよく、すなわち、例えば、本明細書で説明する技術にしたがって患者8からの心音を録音および分析するのに十分な計算リソースを有する電子聴診器内に統合されてもよい。通信リンク19が、例えば直列もしくは並列の通信リンクのような有線リンク、ワイヤレス赤外通信リンク、または、所有権のあるプロトコルもしくは802.11(a/b/g)、Bluetooth(登録商標)等のようなワイヤレス規格のいずれかによるワイヤレス通信リンクであってよい。
図2は、患者8(図1)の診断を補助するための診断装置として動作するポータブルディジタルアシスタント(PDA)20の例示的な具体例のブロック図である。この図示されている具体例では、PDA 20は、タッチスクリーン22と、入力キー26、28と、入力キー29A−29Dとを含む。
臨床医10による取得キー26の選択時に、診断装置20は、患者8から録音された聴診音のディジタル化表現を通信リンク19を介して受け取るために取得モードに入る。ディジタル化表現が受け取られると、臨床医10は、設定データ13を適用しおよび受け取られた聴診音に基づいて提案診断を行うことを診断装置20に命じるために、診断キー28を起動する。あるいは、診断装置20は、診断キー28を起動する必要なしに、聴診音を処理することを自動的に開始してもよい。
より詳細に後述するように、診断装置20は、データ分析システム4によって計算された多次元エネルギー空間に対して聴診音録音装置18から受け取られたディジタル化表現をマップするために、設定データ13を適用する。一般的に、診断装置20は、多次元空間内で定義されている疾病領域のどれに患者8の聴診音が最も近くマップするかを判定する。この判定に基づいて、診断装置20は、1つまたは複数の提案診断を臨床医10に対して出力するために、タッチスクリーン22を更新する。この例では、診断装置20は、患者8が大動脈狭窄症に罹っているかも知れないことを聴診音が示すということを表示する診断メッセージ24を出力する。これに加えて、診断装置は、患者8から録音された聴診音の図形的表現23を出力してもよい。
診断装置20は、その装置によって行われる分析のタイプを制御する幾つかの入力キー29A−29Dを含んでもよい。例えば、臨床医10によってどの入力キー29A−29Dが選択されたかに基づいて、診断装置20は、合格/不合格タイプの診断メッセージ、患者8が現時点で罹っているかも知れない1つまたは複数の提案された病状、患者8が罹っていると認定された1つまたは複数の病状、および/または、患者8が罹る傾向がある1つまたは複数の病状の予想的な評価を提供する。
画面22または入力キーは、さらに、性別、年齢、BMI(体重指数=体重(キログラム)/身長(メートル)の2乗)のような固有患者情報の入力を可能にすることが可能である。この情報は、本明細書で説明する分析で使用可能である。
図2に示す実施形態では、診断装置20は、Palm.Inc.(Milpitas,California)によって製造されているPalmPilot、または、Microsoft Corporation(Redmond,Washington)からのWindows(登録商標) CEオペレーティングシステムを実行するPocketPCのような任意のPDAであってよい。
図3は、本明細書で説明している技術によって診断装置として動作する電子聴診器30の例示的な実施形態の斜視図である。この図示されている実施形態では、電子聴診器30が、チェストピース(chestpiece)32と、音響伝送機構34と、イヤピースアセンブリ(earpiece assembly)36とを含む。チェストピース32は、聴診音を収集するために患者8の体の付近にまたは体に押し付けて配置されるようになっている。音響伝送機構34は、収集された音響をイヤピースアセンブリ36に伝送する。イヤピースアセンブリ36は1対のイヤピース37A、37Bを含み、臨床医10は聴診音をこのイヤピースアセンブリでモニタする。
この図示されている実施形態では、チェストピース32は、診断メッセージ42の出力のための表示装置40を含む。さらに明確に述べると、電子聴診器30は、チェストピース32によって捕捉された聴診音を、データ分析システム4によって計算された多次元エネルギー空間に対してマップするために、設定データ13を適用する内部コントローラ44を含む。コントローラ44は、エネルギー空間内で定義された疾病領域のどれに対して患者8の聴診音が最も近くマップするかを判定する。この判定に基づいて、コントローラ44は、診断メッセージ42を出力するために表示装置40を更新する。
コントローラ44は、チェストピース32内に配置されている形で、例示を目的として示されているのであって、電子聴診器30の他の区域内に配置されてもよい。コントローラ44は、組込みマイクロプロセッサ、DSP、FPGA、ASIC、または、この技術を実装するための類似したハードウェア、ファームウェアおよび/またはソフトウェアを含んでよい。コントローラ44は、本明細書で説明されている技術の1つまたは複数を行うために実行されることが可能なコンピュータ可読命令すなわちプログラムコードを記憶するためのコンピュータ可読媒体を含んでよい。
図4は、本明細書で説明する技術の概要を示す流れ図である。図4に示されているように、このプロセスは概ね2つの段階に区分できる。第1の段階が、診断装置6のための設定データ13を生成するために臨床データ12(図1)がSVDを使用して分析されるパラメトリック分析段階と呼ばれる。このプロセスは計算集約的だろう。第2の段階が、患者の診断を補助するために診断装置6が分析段階の結果を適用する診断段階と呼ばれる。例示のために、図4の流れ図を、図1を参照しながら説明する。
最初に、臨床データ12が収集され(50)、および、特異値分解のためにデータ分析システム4に提供される(52)。上述したように、臨床データ12は、既知の心臓状態を有する1組の患者からの聴診音の電子的録音を含む。
データ分析システム4の分析モジュール14は、電子的に録音された心音を表している多次元空間内の1組の疾病領域を定義するために、本明細書に説明されている技術によって臨床データ12の録音された心音を分析する(52)。多次元空間内の各々の疾病領域は、それぞれの疾病を示すものとして数学的に識別されている心臓サイクル中の音に対応する。分析モジュール14はその分析の結果をパラメトリックデータベース16内に格納する(54)。特に、この結果は、生成された多次元空間に患者の聴診音をマップするための、診断装置6による使用のための設定データ13を含む。分析モジュール14が臨床データ12を処理し終わると、診断装置6は、設定データ13を受け取るか、または、他の形で、患者18の診断を補助するために設定データ13を適用するようにプログラムされる(56)。このようにして、データ分析システムは、リアルタイムまたは疑似リアルタイムで適用されてよいパラメトリックデータを生成するために、既知の生理学的状態が分かっている患者から録音された聴診音の代表的なサンプルの組を分析するための、SVDを含む、本明細書で説明されている技術を適用するものと見なされることが可能である。
診断段階は、聴診音録音装置18が患者8からの聴診音を捕捉する時に開始する。診断装置6は、聴診音録音装置18から受け取られた心音を、臨床データ12からデータ分析システム4によって計算された多次元エネルギー空間に対してマップするために、設定データ13を適用する(58)。心臓聴診音の場合には、診断装置6は、正確な診断が臨床医10に対して報告されることを確実なものにするのに役立つように、患者8の録音心音に関連付けられた1つまたは複数の心臓サイクルに関するリアルタイム診断を繰り返してもよい。診断装置6は、設定の適用と、多次元空間に対する患者聴診音のマッピングとに基づいて、診断メッセージ32を出力する(59)。
図5は、パラメトリック分析段階(図4)をさらに詳細に示す流れ図である。最初に、既知の心臓状態を有する1組の患者から臨床データ12が収集される(60)。一実施形態では、各々の録音が約8秒間の聴診心音を捕捉し、これは70拍/分の心拍数の場合に約9.33回の心臓サイクルを表す。各録音は、32,000個の個別値を有するベクトルRとしてディジタル形式で記憶され、これは約4000Hzのサンプリングレートに相当する。
各々の心音録音Rは、図6に関連して詳細に後述するように前処理される。この前処理中に、分析モジュール14は、各心臓サイクルの開始時点と終了時点とを識別するために、ベクトルRを処理する。これに加えて、分析モジュール14は、各心臓サイクルにおける心収縮期および心拡張期とS1期間およびS2期間とに関する開始時点と終了時点とを識別する。これらの識別に基づいて、分析モジュール14は、通常の心拍数、例えば、70拍/分に各心臓サイクルを正規化する。言い換えると、分析モジュール14は、70拍/分の心拍数に相当する約8.57ミリ秒のような設定された時間期間に、心臓サイクルに関連付けられたデータを拡張または圧縮するために、必要に応じて各々の心臓サイクルに対応するディジタル化データを再サンプリングしてよい。
各々の個別の心臓録音を前処理した後に、分析モジュール14は、多次元エネルギー空間を生成するために、および、聴診音の特徴に相関する多次元エネルギー空間内の疾病領域を定義するために、特異値分解(SVD)を臨床データ12に適用する(63)。
更に明確に述べると、分析モジュール14は、次式のM×N行列Aを形成するために、同一の既知の心臓状態を有する患者に関するN個の前処理された録音Rを組み合わせる。
Figure 0004819687
上式中で、各々の行が、例えば3400個のディジタル化値のようなM個のディジタル化値を有する異なる録音Rを表す。
その次に、分析モジュール14は、3つの部分行列の積の形にAを分解するためにSVDを適用し、
A=UDVT
上式中で、Uは直交列を有するN×M行列であり、DはM×M非負対角行列であり、かつ、VはM×M直交行列である。この関係は、さらに、下式として表現されてもよく、
TAV=diag(S)=diag(σ1,...,σp
上式中で、行列S(σ1,...,σp)の要素がAの特異値である。このSVD表現では、Uは左の非正則の行列であり、Mは右の非正則の行列である。さらに、Uは、行列Aを最も適切に定義する各Rによって特徴を定義するM×M加重行列と見なされることが可能である。更に明確に述べると、SVDの原理によって、U行列は、M次元空間内の定義された領域に対して行列Aをマップする加重行列を提供する。
分析モジュール14は、各々の心臓状態に関してこのプロセスを繰り返す。言い換えると、分析モジュール14は、対応する行列ANORMALを計算するために「正常」患者に関して録音Rを使用し、および、UNORMAL行列を生成するためにSVDを適用する。同様に、分析モジュールは、各病状に関してA行列とこれに対応するU行列とを計算する。例えば、分析モジュール14は、UAS、UAR、UTR、および/または、UDISEASEDとを生成してよく、下付き文字「AS」は、大動脈弁狭窄症を呈することが他の診断ツールによって分かっている患者または患者集団から生成されたU行列を示す。下付き文字「AR」は大動脈弁閉鎖不全症を示し、および、下付き文字「TR」は、同様に三尖弁閉鎖不全症を示した。
次に、分析モジュール14は、計算されたU行列の各々にその他のU行列を2つ1組で乗算し、および、心臓状態を区別する特徴をU行列のどの部分が最も適切に特徴付けるかを識別するために、結果として得られた行列に対してSVDを行う。例えば、UNORMAL行列とUAS行列とUAR行列を想定すると、分析モジュールは次の行列を計算する。
T1=UNORMAL*UAS
T2=UNORMAL*UAR
T3=UAS*UAR
分析モジュール14は、次に、結果として得られた行列T1、T2、T3の各々に対してSVDを適用し、このことが、それぞれの心臓状態の間の多次元空間内のエネルギー差を最大化する各々の当初のU行列の一部分を識別するために使用されることが可能な1組の部分行列を再び戻す。例えば、SVDをT1に適用することによって計算された行列は、多次元空間内のそれぞれの疾病領域の直交性を最大化するUNORMALとUASとの一部分を識別するために使用されることが可能である。
したがって、T1は、診断中により効率的に適用できる部分行列にUNORMALとUASとを削減または他の形で縮小するために使用されてよい(64)。例えば、T1、T2、T3の各々にSVDを適用することによって計算されたS行列が使用されてもよい。多次元空間内のそれぞれの2つの心臓状態の間のエネルギー角を計算するために、各々のS行列に逆コサインが適用されてもよい。その次に、このエネルギー角は、各U行列のどの部分が多次元空間内の疾病理由の間のエネルギー差を最も適切に明らかにするかを識別するために使用されてもよい。
次に、分析モジュールは、心臓状態の各々に関する平均ベクトルAVを計算する(66)。特に、心臓データ12から公式化された各M×N A行列に関して、分析モジュール14が、行列A内のN個の録音Rから計算された平均ディジタル化値を保存する1×N平均ベクトルAVを計算する。例えば、分析モジュール14は、AVASベクトル、AVARベクトル、AVTRベクトル、および/または、AVDISEASEDベクトルを計算してよい。
分析モジュール14は、計算されたAV平均ベクトルと、U行列または縮小U行列を、設定データ13としての使用のためにパラメトリックデータベース16内に格納する。例えば、分析モジュール14は、診断装置6による設定データ13としての使用のために、AVAS、AVAR、AVTR、UNORMAL、UAS、および、UARを記憶してよい(68)。
図6は、聴診音録音Rの前処理をさらに詳細に示す流れ図である。一般的に、この前処理技術は聴診音録音Rを心臓サイクルの形に区分し、および、各心臓サイクルを4つの部分、すなわち、第1の心音と、心収縮期部分と、第2の心音と、心拡張期部分とに区分する。この前処理技術は、ノイズ抑制のためにシャノンエネルギーエンベログラム(Shannon Energy Envelogram(SEE))を利用する。その次に、SEEは、心音ピークの相対的なばらつきの少なさを使用して閾値化(threshold)される。使用されるこの閾値は、特定の聴診音録音Rに基づいて適応的に生成されることが可能である。
最初に、分析モジュール14は、録音中のエネルギー閾値を識別するために聴診音録音Rに対するウェーブレット分析を行う(70)。例えば、ウェーブレット分析は、特定の周波数範囲の間のエネルギー閾値を明らかにしてもよい。言い換えると、ディジタル化録音のエネルギーの大部分を含む特定の周波数範囲が識別されることが可能である。
識別されたエネルギー閾値に基づいて、分析モジュール14は聴診音録音Rを1つまたは複数の周波数帯域に分解する(72)。分析モジュール14は、各々の心臓サイクルを識別するために各周波数帯域内の信号の特徴を分析する。特に、分析モジュール14は、心臓サイクルの心収縮期段階および心拡張期段階と、特定の弁活動が生じるS1期間およびS2期間とを識別するために、周波数帯域を調べる(74)。各心臓サイクルを区分するために、分析モジュール14は、最初に、低域フィルタ、例えば、カットオフ周波数が1kHzである8次チェビシェフ型の低域フィルタを使用してよい。その次に、平均SEEが、次式の通りに、0.01秒のセグメント重複を伴って聴診音録音Rの全体にわたって0.02秒セグメント毎に計算されてもよく、
Figure 0004819687
上式中で、Xnormは聴診音録音の低域フィルタされかつ正規化されたサンプルであり、および、Nは、0.02秒セグメント中の信号サンプル数であり、例えば、Nは200に等しい。「正規化平均シャノンエネルギー」対「時間軸」が次の通りに計算されてよく、
Figure 0004819687
上式中で、M(Es(t))はEs(t)の平均値であり、および、S(Es(t))はEs(t)の標準偏差である。その次に、この平均値と標準偏差は、各心臓サイクルに関してピークを識別するための基準として、および、各心臓サイクルに関して各セグメントに関する開始と時間とを識別するための基準として使用される。
各心臓サイクルと各S1およびS2期間とに関する開始時点と終了時点とが聴診音録音R中で発見されると、分析モジュール14は、各々の心臓サイクルと各々のS1およびS2期間とが一定の時間期間全体にわたって生じるように拡張または圧縮するために、必要に応じて聴診音録音Rを再サンプリングする(76)。例えば、分析モジュール14は、例えば70拍/分のような一般的な心拍数に各心臓サイクルを正規化してもよく、および、心臓サイクル中の各S1およびS2期間が等しい時間長さに一致することを確実にしてもよい。これは、有利なことに、心臓活動の様々な段階に関する聴診音録音Rの一部分が、より容易にかつより正確に分析され、および、その他の聴診音録音の類似部分と比較されることを可能にするだろう。
ディジタル化録音R中の心臓サイクルの正規化の時に、分析モジュール14は分析のために心臓サイクルの1つまたは複数を選択する(78)。例えば、分析モジュール14は、心臓サイクル中に存在するノイズの量に基づいて心臓サイクルの「最も清浄な(cleanest)」な心臓サイクルを選択してよい。他の例と同様に、分析モジュール14は、心臓サイクルすべての平均、または、分析のために2つ以上のランダムに選択された心臓サイクルに対する平均を計算してよい。
図7は、図6を参照して上述したウェーブレット分析とエネルギー閾値化との結果の例を示すグラフである。特に、図7は録音Rの一部分を示す。この例では、分析モジュール14は、例示的な聴診音録音Rを4つの周波数帯域80A−80Dに分解しており、および、各々の周波数帯域はそれぞれの周波数成分82A−82Dを含む。
この分解に基づいて、分析モジュール14は、心臓サイクルの諸段階を示す聴診音に対する変化を検出する。分解された周波数を分析することと、関連した特徴、例えば周波数帯域80の1つまたは複数における勾配の変化を識別することとによって、分析モジュール14は、心収縮期と心拡張期と、特に、S1およびS2期間の開始と終了とを確実に検出することが可能である。
図8は、聴診音録音Rのデータ構造84の一例を示す。図示してあるように、データ構造84は、聴診音録音Rを表しているディジタル化データを記憶する1×Nベクトルを含んでよい。さらに、前処理と再サンプリングとに基づいて、データ構造84は固定数の心臓サイクルの全体にわたってデータを格納し、および、S1およびS2領域の各々がそのデータ構造の事前定義された部分を占める。例えば、第1の心臓サイクルに関するS1領域86はデータ構造84の要素0−399を含んでよく、および、第1の心臓サイクルの心収縮期領域87は要素400−1299を含んでよい。このことが、特定の心臓サイクルに関するS1およびS2領域が中で列整列(column−aligned)している上述したM×N行列Aを形成するために、複数の聴診音録音Rが容易に組み合わされることを可能にする。
図9は、診断段階(図4)を更に詳細に示す流れ図である。最初に、聴診音データが患者8から収集される(90)。上述したように、この聴診データは、例えば電子聴診器のような別個の聴診音録音装置18によって収集されてよく、および、リンク通信19を経由して診断装置6に通信されてよい。別の実施形態では、診断装置6の機能が聴診音録音装置18の中に統合されてもよい。パラメトリック分析段階と同様に、収集された聴診録音は、患者8から約8秒間の聴診音を捕捉し、および、3400個の個別の値を有するベクトルRPATとしてディジタル形式で記憶されてよい。
聴診データRPATを捕捉する時に、診断装置6は、図6に関連付けて詳細に上述したように、心音録音RPATを前処理する(92)。この前処理中に、診断装置6は、各心臓サイクルに関する開始時点と終了時点と、各心臓サイクルの心収縮期および心拡張期の開始時点と終了時点と、S1およびS2期間の開始時点と終了時点とを識別するために、ベクトルRPATを処理する。これらの識別に基づいて、診断装置6は、例えば70拍/分のような一般的な心拍数に各心臓サイクルを正規化する。
次に、診断装置6は、分析段階中に調査された各々の生理学的状態に関する設定データ13を適用するループを初期化する。例えば、診断装置は、患者8の診断を補助するために、AVAS、AVAR、AVTR、UNORMAL、UAS、および、UARの設定データを利用してもよい。
最初に、診断装置6は、例えば「正常」のような、第1の生理学的状態を選択する(93)。その次に、診断装置6は、差ベクトルDを生成するために、捕捉された聴診音ベクトルRPATから対応する平均ベクトルAVを減算する(94)。結果的に得られたDのディジタル化データが、捕捉された心音ベクトルRPATと現在選択されている生理学的状態との間の差を表すので、Dは一般的に差ベクトルと呼ばれる。例えば、診断装置6は、次式の通りにDNORMALを計算してよい。
NORMAL=RPAT−AVNORMAL
その次に、診断装置6は、現在選択されている心臓状態に関して患者8を表しているベクトルPを生じさせるために、現在選択されている生理学的状態に関する対応するU行列を、結果的に得られた差ベクトルDに乗算する(96)。例えば、診断装置6は、次式の通りにPNORMALベクトルを計算してよく、
NORMAL=DNORMAL*UNORMAL
対応するU行列によって差ベクトルDを乗算することが、多次元空間内の対応する疾病領域に関連付けられた加重行列を効果的に適用し、および、多次元空間内のベクトルPを生じさせる。現在の心臓状態の疾病領域に対するベクトルPの整合が、結果として得られた差ベクトルDの正規性と分析段階中に求められたU行列とに依存する。
診断装置6は、患者8から録音された聴診音を表している1組のベクトルを生じさせるために、多次元空間内で定義されている各心臓状態に関してこのプロセスを繰り返す(98、106)。例えば、設定データ13がAVAS、AVAR,AVTR、UNORMAL、UAS、および、UARを含むと想定すると、診断装置6は次式の通りに4つの患者ベクトルを計算する。
NORMAL=DNORMAL*UNORMAL
AS=DAS*UAS
AR=DAR*UAR
TR=DTR*UTR
このベクトルの組が、分析段階中に生成された多次元空間内の患者8から録音された聴診音を表現する。したがって、各ベクトルとその対応する疾病領域との間の距離が、患者8からの聴診音の特徴と、それぞれの心臓状態を有することが判明している患者の聴診音の特徴との間の類似性の程度を表す。
その次に、診断装置6は、ベクトルの向きと多次元空間内の疾病領域との関数として、疾病領域の1つを選択する。一実施形態では、診断装置は、エネルギー空間内で定義されている疾病領域のどれがそれぞれのベクトルから最小の距離を有するかを判定する。例えば、診断装置6は、最初に、ベクトルPの各々と定義された疾病領域との間の最小角距離を表しているエネルギー角を計算する(100)。上述の例に続いて、診断装置6は、次の4つの距離測度値を計算してよい。
DISTNORMAL=PNORMAL−MIN[PAS,PAR,PTR
DISTAS=PAS−MIN[PNORMAL,PAR,PTR
DISTAR=PAR−MIN[PAS,PNORMAL,PTR
DISTTR=PTR−MIN[PAS,PAR,PNORMAL
特に、各々の距離測定値DISTが、それぞれの患者ベクトルPと多次元空間内の定義された各疾病領域の平均値との間の2次元距離である。
この計算された距離に基づいて、診断装置6は最小の距離測定値を識別し(102)、および、臨床医10を補助するために患者8に関する提案診断を決定する。例えば、患者ベクトルPASの組がそのそれぞれの疾病空間すなわちAS疾病空間から最小距離にある場合には、診断装置6は、患者8が大動脈弁狭窄症に罹っている可能性が高いだろうと判定する。診断装置6は、この識別に基づいて臨床医10に対して代表的な診断メッセージを出力する(104)。このメッセージを出力する前に、診断装置6は、正確な診断が臨床医10に報告されることを確実なものにするのを促進するために、患者8の録音された心音に関して識別された1つまたは複数の心臓サイクルに関する分析を繰り返してもよい。
本明細書で説明されている技術が、「正常」心臓活動または大動脈弁狭窄症を有することが知られている1組の患者に関する臨床データに適用された。特に、多次元空間が、臨床データの例に基づいて生成され、および、その次に、患者が、本明細書に説明されている技術によってリアルタイムで評価された。
次の表が、正常な心臓状態を有することが知られている患者の聴診音に関する距離計算を示す。特に、各患者の測定された心臓サイクルの各々に関するベクトルが計算された。表1が、正常な心臓状態に関連付けられた多次元空間内の疾病領域に関する、ボルト単位で測定されたベクトルの距離を示す。
Figure 0004819687
表2は、大動脈弁狭窄症に罹っていることが分かっている患者の聴診音に関するボルト単位で測定した距離計算を示す。特に、表2は、大動脈弁狭窄症の心臓状態に関連付けられた多次元空間内の領域に対するベクトルの距離を示す。
Figure 0004819687
表1と表2に示すように、このベクトルは多次元空間内で明瞭に分離している、診断が容易に行われることという表示。5人の患者すべてが類似のパターンにしたがった。
図10Aと図10Bは、例示的な結果を概略的に示すグラフである。特に、図10Aと図10Bは、正常データに比較した大動脈弁狭窄症データを示す。同様に、図11Aと図11Bは、正常データに比較した三尖弁閉鎖不全症データを示すグラフである。図12Aと図12Bは、三尖弁閉鎖不全症データに比較した大動脈弁狭窄症を示すグラフである。一般的に、図10A、図10B、図11A、図11Bのグラフは、この技術が、正常データと疾病関連データとに関する実質的に非重複であるデータを結果的にもたらすということを示す。
本発明の様々な実施形態を説明してきた。例えば、録音に関連して説明してきたが、この技術は、患者からの他の電気記録に対して適用可能である。この技術は、例えば、患者から電気的に検出された心電図記録にも適用されてよい。これらの実施形態と他の実施形態とが以下の特許請求項の範囲内に含まれている。
患者に対して診断を下す際に臨床医を補助するための、本明細書で説明する技術によって診断装置が聴診音を分析するシステムの一例を示すブロック図である。 本明細書に説明されている技術による診断装置として動作するポータブルディジタルアシスタント(PDA)の例示的な具体例のブロック図である。 診断装置として動作する電子聴診器の例示的な具体例の斜視図である。 本明細書で説明されている技術の概要を示す流れ図である。 特異値分解が臨床データに適用されるパラメトリック分析段階を示す流れ図である。 聴診音録音の前処理を示す流れ図である。 聴診音録音の前処理中のウェーブレット分析およびエネルギー閾値化の結果の例を示すグラフである。 聴診音録音のデータ構造の一例を示す図である。 患者の聴診音のディジタル化表現のための推奨診断を提供するパラメトリック分析段階からの設定データを診断装置が適用するリアルタイム診断段階を示す流れ図である。 大動脈弁狭窄症データを正常データと比較することによる、この技術の結果の一例を示すグラフである。 大動脈弁狭窄症データを正常データと比較することによる、この技術の結果の一例を示すグラフである。 三尖弁閉鎖不全症データを正常データと比較することによる、この技術の結果の一例を示すグラフである。 三尖弁閉鎖不全症データを正常データと比較することによる、この技術の結果の一例を示すグラフである。 大動脈弁狭窄症データを三尖弁閉鎖不全症データと比較することによる、この技術の結果の一例を示すグラフである。 大動脈弁狭窄症データを三尖弁閉鎖不全症データと比較することによる、この技術の結果の一例を示すグラフである。

Claims (8)

  1. (i)既知の生理学的状態に関連付けられた聴診音のディジタル化表現を格納する1組の行列であって、各行列が、前記既知の生理学的状態の異なる1つに関連付けられており、かつ、それぞれの生理学的状態に関連付けられた前記聴診音のディジタル化表現を格納している、1組の行列を公式化するステップと、
    (ii)多次元空間内の疾病領域を定義するそれぞれの組の部分行列を計算するために前記行列の各々に対して特異値分解を適用するステップと、により
    既知の生理学的状態に関連付けられた聴診音を多次元空間内で定義された1組の1つまたは複数の疾病領域に対してマップするステップと、
    前記特異値分解を適用するステップによって生成された設定データであって、異なる生理学的状態に関連付けられた少なくとも1つの部分行列を含む設定データにしたがって診断装置を設定するステップと、
    を含むことを特徴とする方法。
  2. 前記行列の各々は、N個の前記ディジタル化表現と前記ディジタル化表現の各々に関するM個のディジタル値とを格納するN×M行列を含む請求項1に記載の方法。
  3. 前記行列の各々に対して特異値分解を適用するステップは、各行列が前記既知の生理学的状態に関連付けられた聴診音のディジタル化表現を格納する1組の行列の行列Aを下式の通りに3つの部分行列の積に分解するために特異値分解を適用するステップを含み、
    A=UDVT
    上式中で、Aは前記既知の生理学的状態の1つと関連し、Uは前記多次元空間内で定義された領域に対して行列Aをマップする重み行列を与える、直交列を有するN×M行列であり、DはM×M非負対角行列であり、かつ、VはM×M直交行列である、
    請求項1に記載の方法。
  4. 前記行列の各々に対して特異値分解を適用するステップは、
    前記計算されたU行列の各々にその他のU行列を2つ1組で乗算することによって、1組の行列Tを計算するステップと、
    各行列Tをそれぞれの組の部分行列に分解するために、結果として得られた前記行列Tの各々に対して特異値分解を行うステップと、
    前記設定データに使用されるべき前記U行列の一部分を識別するために、前記行列Tの各々から生成された前記部分行列を適用するステップと、
    をさらに含む請求項3に記載の方法。
  5. 既知の生理学的状態に関連付けられた前記聴診音の各々は、複数の心臓サイクルの全体にわたって録音された音のディジタル化表現を含み、かつ、
    聴診音をマップするステップは、
    前記心臓サイクル各々の開始点と終了点とを識別するために、前記ディジタル化表現の各々を処理するステップと、
    前記心臓サイクルの各々に関する心収縮期および心拡張期と前記心臓サイクルの各々に関するS1期間およびS2期間とに関する開始時点および終了時点を識別するために、前記ディジタル化表現の各々を処理するステップと、
    前記心臓サイクルの各々を一般的な心拍数に正規化するために、前記心収縮期および前記心拡張期と前記S1期間およびS2期間とに関する識別された開始時点および終了時点に基づいて前記ディジタル化表現を再サンプリングするステップと、
    を含む請求項1に記載の方法。
  6. 前記生理学的状態は、正常な生理学的状態と、大動脈弁閉鎖不全症と、大動脈弁狭窄症と、三尖弁閉鎖不全症と、三尖弁狭窄症と、肺動脈弁狭窄症と、肺動脈弁閉鎖不全症と、僧帽弁閉鎖不全症と、大動脈瘤と、頸動脈狭窄症と、僧帽弁狭窄症との中の1つまたは複数を含む請求項1に記載の方法。
  7. 請求項1に記載の方法により、特異値分解を適用することによって生成された設定データに従って設定された診断装置であって、
    前記設定データを格納する媒体と、
    1組の定義された疾病領域を有する多次元空間内の1つまたは複数のベクトルの1組を生成し、前記多次元空間内の前記疾病領域に対する前記ベクトルの向きに基づいて前記生理学的状態の1つを選択するために、患者に関連付けられた聴診音を表しているディジタル化表現に対して前記設定データを適用する制御ユニットであって、前記生理学的状態の前記選択された1つを表示する診断メッセージを出力する制御ユニットと、
    を備えことを特徴とする診断装置。
  8. 前記診断装置は、モバイル計算装置とパーソナルディジタルアシスタントと心エコー分析器と電子聴診器との中の1つを含む請求項7に記載の診断装置。
JP2006536713A 2003-10-22 2004-10-19 特異値分解を使用する聴診音を分析する方法および診断装置 Expired - Fee Related JP4819687B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US51344403P 2003-10-22 2003-10-22
US60/513,444 2003-10-22
US10/781,118 US7300405B2 (en) 2003-10-22 2004-02-18 Analysis of auscultatory sounds using single value decomposition
US10/781,118 2004-02-18
PCT/US2004/034557 WO2005041778A1 (en) 2003-10-22 2004-10-19 Analysis of auscultatory sounds using single value decomposition

Publications (2)

Publication Number Publication Date
JP2007508899A JP2007508899A (ja) 2007-04-12
JP4819687B2 true JP4819687B2 (ja) 2011-11-24

Family

ID=34526866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006536713A Expired - Fee Related JP4819687B2 (ja) 2003-10-22 2004-10-19 特異値分解を使用する聴診音を分析する方法および診断装置

Country Status (10)

Country Link
US (1) US7300405B2 (ja)
EP (1) EP1677680B1 (ja)
JP (1) JP4819687B2 (ja)
KR (1) KR100805181B1 (ja)
CN (1) CN1870941B (ja)
AU (1) AU2004285457B2 (ja)
CA (1) CA2542718A1 (ja)
NO (1) NO20062317L (ja)
TW (1) TW200526174A (ja)
WO (1) WO2005041778A1 (ja)

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040220487A1 (en) * 2003-04-29 2004-11-04 Andrey Vyshedskiy Method and apparatus for physiological data acquisition via sound input port of computing device
US20050197865A1 (en) * 2004-03-05 2005-09-08 Desmond Jordan Physiologic inference monitor
JP4759727B2 (ja) * 2004-03-19 2011-08-31 国立大学法人山口大学 デジタル聴診解析システム
US20060167385A1 (en) * 2005-01-24 2006-07-27 3M Innovative Properties Company Analysis of auscultatory sounds using voice recognition
US7520860B2 (en) 2005-04-13 2009-04-21 Marie G. Johnson Detection of coronary artery disease using an electronic stethoscope
US8092396B2 (en) * 2005-10-20 2012-01-10 Merat Bagha Electronic auscultation device
US9398891B2 (en) 2005-10-20 2016-07-26 Tiba Medical, Inc. Multiple communication interface medical examination apparatus, system, and/or method
US20080281170A1 (en) * 2005-11-08 2008-11-13 Koninklijke Philips Electronics N.V. Method for Detecting Critical Trends in Multi-Parameter Patient Monitoring and Clinical Data Using Clustering
US8920343B2 (en) 2006-03-23 2014-12-30 Michael Edward Sabatino Apparatus for acquiring and processing of physiological auditory signals
US7806833B2 (en) * 2006-04-27 2010-10-05 Hd Medical Group Limited Systems and methods for analysis and display of heart sounds
WO2008000254A1 (en) * 2006-06-26 2008-01-03 Coloplast A/S Multi parametric classification of cardiovascular sounds
CN100407996C (zh) * 2006-06-29 2008-08-06 李长杰 基于蓝牙技术的无线听诊器的实现方法及蓝牙听诊器
WO2008036649A2 (en) * 2006-09-18 2008-03-27 The Trustees Of Columbia University In The City Of New York System and method for diagnosing a condition of a patient
JP2008113936A (ja) * 2006-11-07 2008-05-22 Yasuaki Nakagawa 生体音聴診装置
US11389080B2 (en) * 2007-11-28 2022-07-19 Intervet Inc. System and method for diagnosis of bovine diseases using auscultation analysis
US20090290719A1 (en) * 2008-05-22 2009-11-26 Welch Allyn, Inc. Stethoscopic assembly with record/playback feature
US10064580B2 (en) 2008-11-07 2018-09-04 Intervet Inc. System and method for determining antibiotic effectiveness in respiratory diseased animals using auscultation analysis
KR101072452B1 (ko) * 2009-05-27 2011-10-11 충북대학교 산학협력단 심장질환 진단장치 및 방법
WO2011071989A2 (en) * 2009-12-08 2011-06-16 Aum Cardiovascular, Llc Systems and methods for detecting cardiovascular disease
US8771198B2 (en) 2009-12-18 2014-07-08 Koninklijkle Philips N.V. Signal processing apparatus and method for phonocardiogram signal
JP5710168B2 (ja) * 2010-07-26 2015-04-30 シャープ株式会社 生体測定装置、生体測定方法、生体測定装置の制御プログラム、および、該制御プログラムを記録した記録媒体
WO2012025815A1 (en) 2010-08-25 2012-03-01 Diacoustic Medical Devices (Pty) Ltd A system and method for classifying a heart sound
EP2462871A1 (en) * 2010-12-13 2012-06-13 Acarix A/S System, stethoscope and method for indicating risk of coronary artery disease
CN102670184B (zh) * 2012-05-10 2014-01-01 中国科学院合肥物质科学研究院 自助式心血管机能检测系统及其使用方法
MX362388B (es) 2013-02-06 2019-01-15 Geissler Companies Llc Sistema y metodo para determinar la efectividad antibiotica en animales con enfermedades del sistema respiratorio usando un analisis de auscultacion.
CN104510492A (zh) * 2013-10-06 2015-04-15 吴伟 不可听信号的听诊方法及装置
US10271737B2 (en) * 2014-09-18 2019-04-30 National Central University Noninvasive arterial condition detecting method, system, and non-transitory computer readable storage medium
JP6675897B2 (ja) * 2015-03-24 2020-04-08 Jrcs株式会社 電子聴診器
CN106053116B (zh) * 2016-07-18 2018-10-23 合肥凯利光电科技有限公司 消化道动力检测仪低温环境中抗干扰性能的工业检测方法
CN106679799B (zh) * 2016-12-28 2019-07-12 陕西师范大学 一种雷声信号发生系统及雷声信号模拟方法
US11284827B2 (en) 2017-10-21 2022-03-29 Ausculsciences, Inc. Medical decision support system
CN110720899B (zh) * 2019-10-14 2020-08-25 浙江大学 一种基于mpsf提取的ava狭窄定位及狭窄程度多级分类系统
KR102432260B1 (ko) * 2019-12-27 2022-08-16 주식회사 에이티센스 심전도 데이터에 관련된 심음 데이터를 이용하여 심전도 데이터의 비정상 신호 구간을 검출하는 생체신호 측정 장치 및 생체신호 측정 방법
US20230038457A1 (en) 2019-12-27 2023-02-09 Kyocera Corporation Control apparatus, control system, and control method
US20220031256A1 (en) * 2020-07-31 2022-02-03 3M Innovative Properties Company Composite phonocardiogram visualization on an electronic stethoscope display
KR20240107023A (ko) 2022-12-29 2024-07-08 한국과학기술원 청진음 분석모델을 학습시키는 방법 및 장치
KR20240125191A (ko) 2023-02-10 2024-08-19 지에스테크놀로지 주식회사 청진음 분석 시스템 및 방법

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3878832A (en) * 1973-05-14 1975-04-22 Palo Alto Medical Research Fou Method and apparatus for detecting and quantifying cardiovascular murmurs and the like
US4094308A (en) * 1976-08-19 1978-06-13 Cormier Cardiac Systems, Inc. Method and system for rapid non-invasive determination of the systolic time intervals
US4289141A (en) * 1976-08-19 1981-09-15 Cormier Cardiac Systems, Inc. Method and apparatus for extracting systolic valvular events from heart sounds
US4193393A (en) * 1977-08-25 1980-03-18 International Bio-Medical Industries Diagnostic apparatus
US4154231A (en) * 1977-11-23 1979-05-15 Russell Robert B System for non-invasive cardiac diagnosis
US4220160A (en) * 1978-07-05 1980-09-02 Clinical Systems Associates, Inc. Method and apparatus for discrimination and detection of heart sounds
US4446873A (en) * 1981-03-06 1984-05-08 Siemens Gammasonics, Inc. Method and apparatus for detecting heart sounds
US4549552A (en) * 1981-03-06 1985-10-29 Siemens Gammasonics, Inc. Heart sound detector and cardiac cycle data are combined for diagnostic reliability
US4548204A (en) * 1981-03-06 1985-10-22 Siemens Gammasonics, Inc. Apparatus for monitoring cardiac activity via ECG and heart sound signals
US4546777A (en) * 1981-03-06 1985-10-15 Siemens Gammasonics, Inc. Heart sound detector and synchronization for diagnostics
CA1198806A (en) * 1982-11-24 1985-12-31 Her Majesty The Queen, In Right Of Canada, As Represented By The Minister Of National Defence Heart rate detector
US4679570A (en) * 1984-11-13 1987-07-14 Phonocardioscope Partners Phonocardioscope with a liquid crystal display
US4720866A (en) * 1985-09-20 1988-01-19 Seaboard Digital Systems, Inc. Computerized stethoscopic analysis system and method
US4889130A (en) * 1985-10-11 1989-12-26 Lee Arnold St J Method for monitoring a subject's heart and lung sounds
US4792145A (en) * 1985-11-05 1988-12-20 Sound Enhancement Systems, Inc. Electronic stethoscope system and method
US4672976A (en) * 1986-06-10 1987-06-16 Cherne Industries, Inc. Heart sound sensor
US4712565A (en) * 1986-10-27 1987-12-15 International Acoustics Incorporated Method and apparatus for evaluating of artificial heart valves
US5218969A (en) * 1988-02-04 1993-06-15 Blood Line Technology, Inc. Intelligent stethoscope
US5213108A (en) * 1988-02-04 1993-05-25 Blood Line Technology, Inc. Visual display stethoscope
US4905706A (en) * 1988-04-20 1990-03-06 Nippon Colin Co., Ltd. Method an apparatus for detection of heart disease
US4967760A (en) 1989-02-02 1990-11-06 Bennett Jr William R Dynamic spectral phonocardiograph
US5036857A (en) * 1989-10-26 1991-08-06 Rutgers, The State University Of New Jersey Noninvasive diagnostic system for coronary artery disease
US5109863A (en) * 1989-10-26 1992-05-05 Rutgers, The State University Of New Jersey Noninvasive diagnostic system for coronary artery disease
US5025809A (en) * 1989-11-28 1991-06-25 Cardionics, Inc. Recording, digital stethoscope for identifying PCG signatures
US5490516A (en) * 1990-12-14 1996-02-13 Hutson; William H. Method and system to enhance medical signals for real-time analysis and high-resolution display
US5301679A (en) * 1991-05-31 1994-04-12 Taylor Microtechnology, Inc. Method and system for analysis of body sounds
US5360005A (en) * 1992-01-10 1994-11-01 Wilk Peter J Medical diagnosis device for sensing cardiac activity and blood flow
US5687738A (en) * 1995-07-03 1997-11-18 The Regents Of The University Of Colorado Apparatus and methods for analyzing heart sounds
US6050950A (en) * 1996-12-18 2000-04-18 Aurora Holdings, Llc Passive/non-invasive systemic and pulmonary blood pressure measurement
US6135966A (en) * 1998-05-01 2000-10-24 Ko; Gary Kam-Yuen Method and apparatus for non-invasive diagnosis of cardiovascular and related disorders
AU4953299A (en) 1998-07-08 2000-02-01 Cirrus Systems, Llc Analytic stethoscope
US6048319A (en) * 1998-10-01 2000-04-11 Integrated Medical Systems, Inc. Non-invasive acoustic screening device for coronary stenosis
US6396931B1 (en) * 1999-03-08 2002-05-28 Cicero H. Malilay Electronic stethoscope with diagnostic capability
US6440082B1 (en) * 1999-09-30 2002-08-27 Medtronic Physio-Control Manufacturing Corp. Method and apparatus for using heart sounds to determine the presence of a pulse
KR100387201B1 (ko) * 2000-11-16 2003-06-12 이병훈 자동판독 기록진단장치
WO2002096293A1 (en) 2001-05-28 2002-12-05 Health Devices Pte Ltd. Heart diagnosis system
US20040208390A1 (en) * 2003-04-18 2004-10-21 Medispectra, Inc. Methods and apparatus for processing image data for use in tissue characterization
US7136518B2 (en) * 2003-04-18 2006-11-14 Medispectra, Inc. Methods and apparatus for displaying diagnostic data
US20040209237A1 (en) * 2003-04-18 2004-10-21 Medispectra, Inc. Methods and apparatus for characterization of tissue samples

Also Published As

Publication number Publication date
US20050090755A1 (en) 2005-04-28
AU2004285457B2 (en) 2008-12-18
US7300405B2 (en) 2007-11-27
CN1870941B (zh) 2010-05-12
AU2004285457A1 (en) 2005-05-12
KR20060090279A (ko) 2006-08-10
EP1677680A1 (en) 2006-07-12
KR100805181B1 (ko) 2008-02-21
WO2005041778A1 (en) 2005-05-12
EP1677680B1 (en) 2013-04-10
TW200526174A (en) 2005-08-16
JP2007508899A (ja) 2007-04-12
CA2542718A1 (en) 2005-05-12
NO20062317L (no) 2006-07-24
CN1870941A (zh) 2006-11-29

Similar Documents

Publication Publication Date Title
JP4819687B2 (ja) 特異値分解を使用する聴診音を分析する方法および診断装置
US20060167385A1 (en) Analysis of auscultatory sounds using voice recognition
Thiyagaraja et al. A novel heart-mobile interface for detection and classification of heart sounds
CN103313662B (zh) 指示冠状动脉疾病的风险的系统、听诊器
EP2793691B1 (en) Intrinsic frequency hemodynamic waveform analysis
EP2034900B1 (en) Multi parametric classification of cardiovascular sound
CN102245102B (zh) 用于心冲击图信号的分析的方法和设备
EP2440139B1 (en) Method and apparatus for recognizing moving anatomical structures using ultrasound
US10092268B2 (en) Method and apparatus to monitor physiologic and biometric parameters using a non-invasive set of transducers
US20100094152A1 (en) System and method for acoustic detection of coronary artery disease
US6616608B2 (en) Periodic-physical-information measuring apparatus
US20240023817A1 (en) Compact mobile three-lead cardiac monitoring device with hybrid electrode
JP4882052B2 (ja) 自己組織化マップを用いた脈波診断システム並びに自己組織化マップの生成プログラム及び生成方法
US20220304631A1 (en) Multisensor pulmonary artery and capillary pressure monitoring system
JP7320867B2 (ja) 医療機器及びプログラム
TWI822508B (zh) 多維度人工智能聽診裝置
FR2973998A1 (fr) Dispostif et procede de suivi d'une activite cardiaque et pulmonaire
JPS63200739A (ja) 体腔音の音響信号解析による医療診断支援システム
JPH04174641A (ja) 電子血圧計

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110901

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees