JP4813775B2 - Porous structure and manufacturing method thereof - Google Patents

Porous structure and manufacturing method thereof Download PDF

Info

Publication number
JP4813775B2
JP4813775B2 JP2004180686A JP2004180686A JP4813775B2 JP 4813775 B2 JP4813775 B2 JP 4813775B2 JP 2004180686 A JP2004180686 A JP 2004180686A JP 2004180686 A JP2004180686 A JP 2004180686A JP 4813775 B2 JP4813775 B2 JP 4813775B2
Authority
JP
Japan
Prior art keywords
substrate
porous structure
substance
micropores
columnar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004180686A
Other languages
Japanese (ja)
Other versions
JP2006005205A (en
Inventor
功太 舘野
雅也 納富
哲 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2004180686A priority Critical patent/JP4813775B2/en
Publication of JP2006005205A publication Critical patent/JP2006005205A/en
Application granted granted Critical
Publication of JP4813775B2 publication Critical patent/JP4813775B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Silicon Compounds (AREA)

Description

本発明は多孔構造体及びその製造方法に関するものである。詳しくは、微細孔を有する構造体及びその製造方法に関する。   The present invention relates to a porous structure and a method for producing the same. In detail, it is related with the structure which has a micropore, and its manufacturing method.

従来、深さ方向の長さが孔径よりも桁違いで長いナノホールアレイとして陽極酸化によるアルミナのナノホールアレイが知られている(非特許文献1)。
この方法は、アルミの基板を酸化することにより自己組織化的にナノホールができる特徴がある。
H. Masuda, M. Satoh, Jpn. J. Appl. Phys., 35, L126 (1996). S. Bhunia, T. Kawamura, Y. Watanabe, S. Fujikawa, and K. Tokushima, Appl. Phys. Lett., 83, 3371 (2003).
Conventionally, an alumina nanohole array by anodization is known as a nanohole array whose length in the depth direction is an order of magnitude longer than the hole diameter (Non-patent Document 1).
This method is characterized in that nanoholes can be formed in a self-organized manner by oxidizing an aluminum substrate.
H. Masuda, M. Satoh, Jpn. J. Appl. Phys., 35, L126 (1996). S. Bhunia, T. Kawamura, Y. Watanabe, S. Fujikawa, and K. Tokushima, Appl. Phys. Lett., 83, 3371 (2003).

しかしながら、上記方法では作製されるナノホールアレイはアルミナに限定され、また、孔径も10nm以下は困難である。
SiやGaAs等の化合物半導体でAu等の金属との共晶による融点の低下により微小金属の下に選択的に結晶成長が起こるVLS(Vapor-Liquid-Solid:気相-液相-固相)成長法が知られている(非特許文献2)。
However, the nanohole array produced by the above method is limited to alumina, and the pore diameter is difficult to be 10 nm or less.
VLS (Vapor-Liquid-Solid) where selective crystal growth occurs under a small metal due to a decrease in melting point due to eutectic with a metal such as Au in a compound semiconductor such as Si or GaAs A growth method is known (Non-Patent Document 2).

VLS成長法は、[111]B方向に柱状構造が成長し、成長条件によって柱の径が長さ方向で変わらないナノワイヤを形成することができる。
しかしながら、低温成長であるため結晶は双晶となる可能性がある。双晶の界面に生ずるバンド歪は、キャリアの伝導性の低下や再結合点の発生につながり、素子特性の低下や素子寿命の劣化という問題を引き起こす。
The VLS growth method can form nanowires in which a columnar structure grows in the [111] B direction and the diameter of the column does not change in the length direction depending on the growth conditions.
However, because of the low temperature growth, the crystal may be twinned. The band strain generated at the twin interface leads to a decrease in carrier conductivity and the occurrence of recombination points, causing problems such as degradation of device characteristics and degradation of device lifetime.

上記課題を解決する本発明の請求項1に係る多孔構造体の製造方法は、基板上の多数の位置に金属微粒子を形成し、次いで、該金属微粒子上に第一の物質をVLS成長法により選択的に成長させることにより柱状構造を多数形成し、引き続き、前記柱状構造の高さよりも下まで前記基板上に第二の物質を充填した後、前記第一の物質である柱状構造を除去して、微細孔を多数形成し、更に、前記微細孔内の壁に第三の物質を成長させて、前記微細孔の孔径を更に小さくして、微細孔を多数有する構造体を形成することを特徴とする。 In the method for producing a porous structure according to claim 1 of the present invention for solving the above-mentioned problem, metal fine particles are formed at a number of positions on a substrate, and then a first substance is formed on the metal fine particles by a VLS growth method. A large number of columnar structures are formed by selective growth, and after the substrate is filled with a second substance below the height of the columnar structure, the columnar structure as the first substance is removed. Forming a large number of fine holes , and further growing a third substance on the walls in the fine holes to further reduce the diameter of the fine holes to form a structure having a large number of fine holes. Features.

上記課題を解決する本発明の請求項2に係る多孔構造体の製造方法は、請求項1において、前記第一の物質のVLS成長方向が特定の結晶方位に向かって起こることを利用し、その成長方向から傾いた面方位を有する傾斜基板を前記基板として用いることにより、前記微細孔を前記基板に垂直な方向に対し斜めの向きの縦長の孔としたことを特徴とする。   The method for producing a porous structure according to claim 2 of the present invention that solves the above-described problem uses the fact that the VLS growth direction of the first substance occurs toward a specific crystal orientation in claim 1, By using an inclined substrate having a plane orientation inclined from the growth direction as the substrate, the fine hole is a vertically long hole inclined in a direction perpendicular to the substrate.

上記課題を解決する本発明の請求項3に係る多孔構造体の製造方法は、請求項1または2に記載の多孔構造体の製造方法において、前記柱状構造を除去する際に、選択エッチングを使用することを特徴とする。 The method for producing a porous structure according to a third aspect of the present invention for solving the above-mentioned problems uses a selective etching in removing the columnar structure in the method for producing a porous structure according to the first or second aspect. It is characterized by doing.

上記課題を解決する本発明の請求項に係る多孔構造体の製造方法は、請求項1において、前記基板を除去したことを特徴とする。 A method for producing a porous structure according to a fourth aspect of the present invention for solving the above-mentioned problems is characterized in that, in the first aspect, the substrate is removed.

上記課題を解決する本発明の請求項に係る多孔構造体は、微細孔を多数有する多孔構造体であって、基板上の予め定めた多数の位置に金属微粒子を形成し、次いで、該金属微粒子上に第一の物質をVLS成長法により選択的に成長させることにより柱状構造を多数形成し、引き続き、前記柱状構造の高さよりも下まで前記基板上に第二の物質を充填した後、前記第一の物質である柱状構造を除去して、微細孔を多数形成し、更に、前記微細孔内の壁に第三の物質を成長させて、前記微細孔の孔径を更に小さくすることにより、予め定めた位置に径10nm以下の微細孔を多数設けたことを特徴とする。 The porous structure according to claim 5 of the present invention for solving the above-mentioned problem is a porous structure having a large number of micropores, wherein metal fine particles are formed at a number of predetermined positions on a substrate, and then the metal A plurality of columnar structures are formed by selectively growing the first substance on the fine particles by the VLS growth method, and subsequently filling the substrate with the second substance below the height of the columnar structure; By removing the columnar structure as the first substance to form a large number of micropores, and further growing a third substance on the walls in the micropores to further reduce the pore diameter of the micropores A large number of fine holes having a diameter of 10 nm or less are provided at predetermined positions.

上記課題を解決する本発明の請求項に係る多孔構造体は、請求項に記載の多孔構造体において、前記微細孔が格子状に配列されたことを特徴とする。 A porous structure according to a sixth aspect of the present invention for solving the above-mentioned problems is characterized in that in the porous structure according to the fifth aspect , the micropores are arranged in a lattice pattern.

本発明の多孔構造体は、(1)種々の材料で作製され、(2)所定の位置に微細孔を設けられ、(3)アルミ基板の陽極酸化では作製困難であった10nm以下、更には、ナノワイヤ径よりも小さい径(例えば、1nmより小さい径)の微細孔を有することが可能である。特に、半導体では多孔構造体内に良質な結晶を成長できるため、高特性の光或いは電子デバイスの提供が可能となる。 The porous structure of the present invention is (1) produced with various materials, (2) provided with micropores at predetermined positions, and (3) 10 nm or less , which was difficult to produce by anodic oxidation of an aluminum substrate, It is possible to have micropores having a diameter smaller than the nanowire diameter (for example, a diameter smaller than 1 nm) . In particular, since a high-quality crystal can be grown in a porous structure in a semiconductor, it is possible to provide a high-performance optical or electronic device.

先ず、基板上にナノサイズの金属微粒子をアレイ状に形成し、次いで、この金属微粒子に第一の物質を構成する元素を含む原料を供給することで、VLS(気相・液相・固相)成長により第一の物質の柱状構造が形成される。
柱状構造は金属微粒子と同様にナノサイズであり、幅が100nm以下で、高さは数ミクロンから数ミリまでが可能である。
First, nano-sized metal fine particles are formed in an array on a substrate, and then a raw material containing an element constituting the first substance is supplied to the metal fine particles, so that a VLS (gas phase / liquid phase / solid phase) is supplied. ) A columnar structure of the first substance is formed by growth.
The columnar structure is nano-sized like metal fine particles, has a width of 100 nm or less, and can have a height of several microns to several millimeters.

引き続き、第二の物質で柱状構造の高さよりも下まで基板を埋め込み成長をした後、第一の物質と第二の物質の反応性の違いを利用した選択エッチングにより第一の物質である柱状構造を除去して微細孔をアレイ状に有する構造体を形成する。
特に、基板として第一の物質の成長方向から傾いた面方位を有する傾斜基板を用いれば、VLS成長法における成長方向が特定の結晶方位に向かって起こることを利用でき、基板に垂直な方向に対し斜めの向きの縦長の孔が形成される。
Subsequently, after the substrate is buried and grown below the height of the columnar structure with the second material, the columnar shape which is the first material is obtained by selective etching utilizing the difference in reactivity between the first material and the second material. The structure is removed to form a structure having micropores in an array.
In particular, if a tilted substrate having a plane orientation tilted from the growth direction of the first substance is used as the substrate, the fact that the growth direction in the VLS growth method occurs toward a specific crystal orientation can be used, and the direction perpendicular to the substrate can be utilized. On the other hand, a vertically long hole having an oblique direction is formed.

更に、微細孔に更に第三の物質を成長して更に細い径の孔を形成することもできる。 It is also possible to form a further narrow the diameter of the hole to grow further a third material fine pores.

なお、本発明においては、多孔構造体とは、ナノオーダー(ナノスケール)径の微細孔を有する構造体であるIn the present invention, the porous structure is a structure having a nano-order (nano-scale) size of the fine pores.

本発明の第1実施形態例に係る多孔構造体を図1、図2に示す。
図1は多孔構造体の製造過程を示す斜視図、図2は多孔構造体の断面図である。
本実施形態例に係る多孔構造体は、図4に示すフローチャートに従い、以下のように製造される。
A porous structure according to a first embodiment of the present invention is shown in FIGS.
FIG. 1 is a perspective view showing a manufacturing process of a porous structure, and FIG. 2 is a cross-sectional view of the porous structure.
The porous structure according to the present embodiment is manufactured as follows according to the flowchart shown in FIG.

先ず、図1(a)に示すように、GaAs(311)B基板1上にレジスト塗布後EBにより直径20nmのホールを形成し、Auを蒸着して200nm間隔で8nm径、高さ5nmのAu微粒子2をアレイ状を形成した(ステップS1)。   First, as shown in FIG. 1A, after applying a resist on a GaAs (311) B substrate 1, a hole having a diameter of 20 nm is formed by EB, and Au is vapor-deposited. The fine particles 2 were formed in an array (step S1).

次いで、MOVPE(有機金属気相成長)により、基板温度430℃でTMGa(トリメチルガリウム)とTMAl(トリメチルアルミニウム)とAsH3又はTBAs(ターシャリブチルアルシン)とを用いて、Au微粒子2上にAlGaAsナノワイヤを選択的に結晶成長させ、図1(b)に示すように、規則正しく配列された5nm程度の径の柱状構造3を形成した(ステップS2)。 Next, by MOVPE (metal organic vapor phase epitaxy) at a substrate temperature of 430 ° C. using TMGa (trimethylgallium), TMAl (trimethylaluminum) and AsH 3 or TBAs (tertiarybutylarsine), AlGaAs is deposited on the Au fine particles 2. The nanowires were selectively crystal-grown to form a columnar structure 3 with a diameter of about 5 nm regularly arranged as shown in FIG. 1B (step S2).

本実施例で使用するGaAs(311)B基板1は、AlGaAsナノワイヤの成長方向から傾いた面方位を有する傾斜基板である。
そのため、柱状構造3は基板1に垂直な方向に対して29.5°傾いた方向の[111]B方向に成長した。
柱状構造3の高さが300nmとなるようにナノワイヤの成長時間と原料の流量を調整した。
The GaAs (311) B substrate 1 used in this example is an inclined substrate having a plane orientation inclined from the growth direction of the AlGaAs nanowires.
Therefore, the columnar structure 3 grew in the [111] B direction, which was inclined by 29.5 ° with respect to the direction perpendicular to the substrate 1.
The growth time of the nanowire and the flow rate of the raw material were adjusted so that the height of the columnar structure 3 was 300 nm.

引き続き、図1(c)に示すように、700℃でTMIn(トリメチルインジウム)とPH3又はTBP(ターシャリブチルホスフィン)を用いて、厚さ150nmとなるように基板上1にInP層4で埋め込み成長を行った(ステップS3)。 Subsequently, as shown in FIG. 1C, the InP layer 4 is formed on the substrate 1 so as to have a thickness of 150 nm using TMIn (trimethylindium) and PH 3 or TBP (tertiarybutylphosphine) at 700 ° C. Embedded growth was performed (step S3).

最後に、図1(d)に示すように、硫酸・過酸化水素・水よりなる溶液を用いて、AlGaAsナノワイヤよりなる柱状構造3を選択的に除去し、ナノサイズの微細孔(いわゆるナノホール)4aをアレイ状に有する構造体(多孔構造体)5を作製した(ステップS4)。同様にGaAs(111)B基板1においても多孔構造体が作製された。その断面を図2(a)に示すが、これは本実施例に至る前の断面であるFinally, as shown in FIG. 1 (d), a columnar structure 3 made of AlGaAs nanowires is selectively removed using a solution made of sulfuric acid, hydrogen peroxide, and water, so that nano-sized micropores (so-called nanoholes) are obtained. A structure (porous structure) 5 having 4a in an array was produced (step S4). Similarly, a porous structure was produced also on the GaAs (111) B substrate 1. The cross section is shown in FIG. 2A , which is a cross section before reaching the present embodiment .

なお、本実施例の参考例として、図2(b)に示すように、選択エッチングの時間を長くすることによりGaAs基板1もエッチングすることが可能であり、多孔構造体5の微細孔4aの下に空気層Aを形成することができ
そして、本実施例では、図2(c)に示すように、多孔構造体5の表面及びその微細孔4a内に、更にMOVPEによりInP層6を成長し、微細孔4aの孔径を更に小さくすることができた。
微細孔4a内にInP層6を成長したように、微細孔を囲む壁を多層化することにより、ナノワイヤ径よりも小さい径(例えば、1nmより小さい径)を有する微細孔を形成することが可能となる。
As a reference example of this embodiment, as shown in FIG. 2B, it is possible to etch the GaAs substrate 1 by increasing the time of selective etching, and the micropores 4a of the porous structure 5 can be etched. Ru can be formed an air layer a under.
In this embodiment, as shown in FIG. 2C, an InP layer 6 is further grown by MOVPE on the surface of the porous structure 5 and in the micropores 4a, thereby further reducing the pore diameter of the micropores 4a. I was able to.
As the InP layer 6 is grown in the micropore 4a, it is possible to form micropores having a diameter smaller than the nanowire diameter (for example, a diameter smaller than 1 nm) by multilayering the walls surrounding the micropores. It becomes.

なお、本実施例の参考例として、図2(d)に示すように、微細孔4a内にヘテロ構造を作製し、量子閉じ込め構造を作製することもできる。
即ち、微細孔4a内に30nmのInP7と、TMGa,TMIn,AsH3を用いてIn組成0.5のGaInAs(8nm)量子ドット8、更に50nmのInP9を順に成長させた。
この成長は650℃と高温でMOVPE成長されるため高品質な結晶が形成される。
フォトルミネッセンス測定をしたところ、1.5μmに強い発光が観測された。
As a reference example of this embodiment, as shown in FIG. 2D, a heterostructure can be produced in the microhole 4a to produce a quantum confinement structure.
That is, 30 nm InP7, TMGa, TMIn, AsH 3 were used to sequentially grow GaInAs (8 nm) quantum dots 8 having an In composition of 0.5 and further 50 nm InP9 in the fine holes 4a.
Since this growth is MOVPE grown at a high temperature of 650 ° C., high quality crystals are formed.
When photoluminescence was measured, strong light emission was observed at 1.5 μm.

本発明の第2実施形態例を説明する。
Si(111)基板をナノ電極リソグラフィで格子状に酸化を行い、その後MOVPE装置内で20nmGaAsを成長した。
酸化された格子状の部分にはGaAsは成長しないため、格子のサイズを調整することで50nm角のGaAs島を200nm間隔で配列することができた。
A second embodiment of the present invention will be described.
The Si (111) substrate was oxidized into a lattice shape by nanoelectrode lithography, and then 20 nm GaAs was grown in a MOVPE apparatus.
Since GaAs does not grow on the oxidized lattice-like portion, 50 nm square GaAs islands could be arranged at intervals of 200 nm by adjusting the size of the lattice.

その後Auの蒸着を行い、アニールすることでGaAs島に直径20nm、高さ5nmの金の微粒子を形成した。
その後400℃でGaAsナノワイヤをTMGa,AsH3を用いて成長した。
ナノワイヤよりなる柱状構造は基板に垂直に500nmの長さで配列して成長された。
Au was then deposited and annealed to form gold fine particles having a diameter of 20 nm and a height of 5 nm on the GaAs island.
Thereafter, GaAs nanowires were grown at 400 ° C. using TMGa, AsH 3 .
A columnar structure made of nanowires was grown in a length of 500 nm perpendicular to the substrate.

その後スパッタリングによりSiO2を膜厚200nmとなるように蒸着した。
図1(c)と同様にナノワイヤよりなる柱状構造が突き出た構造となるため、硫酸・過酸化水素・水でエッチングすることで、図1(d)と同様なSiO2膜の多孔構造体が形成された。
この後、Si基板をHF−HNO3−CH3COOHの溶液で除去することにより、薄膜多孔構造体(ナノホール膜)が作製された。
Thereafter, SiO 2 was deposited by sputtering so as to have a film thickness of 200 nm.
Since a columnar structure made of nanowires protrudes as in FIG. 1C, a porous structure of SiO 2 film similar to FIG. 1D is obtained by etching with sulfuric acid, hydrogen peroxide, and water. Been formed.
Thereafter, the Si substrate was removed with a solution of HF—HNO 3 —CH 3 COOH, thereby producing a thin film porous structure (nanohole film).

この薄膜多孔構造体7は、図3(a)に矢印で示すように、液体、気体を通す時のフィルタとなり、微小固体でこの孔径よりも大きいものは通過できない。また、光、電子線等についても同様である。
また、図3(b)に矢印で示すように、光を薄膜多孔構造体7内に伝播させ、回折効果により波長選択フィルタ等の動作が期待されるフォトニック結晶導波路に適用することも可能である。
The thin-film porous structure 7 serves as a filter for passing a liquid or gas as shown by an arrow in FIG. 3A, and fine solids larger than this pore diameter cannot pass through. The same applies to light, electron beams, and the like.
Further, as indicated by arrows in FIG. 3B, it is also possible to apply light to a photonic crystal waveguide in which light is propagated into the thin film porous structure 7 and the operation of a wavelength selection filter or the like is expected due to the diffraction effect. It is.

なお、VLS成長法に用いられる基板材料として実施例1ではGaAs、実施例2ではSi基板上のGaAsを、当該基板材料と共晶を作る材料として実施例1,2では共にAuを、ナノワイヤの材料としては実施例1ではAlGaAs、実施例2ではGaAsをそれぞれ使用していたが、本発明は、これらに限られるものではない。 The substrate material used in the VLS growth method is GaAs in Example 1 , GaAs on the Si substrate in Example 2, Au in Examples 1 and 2 as a material for forming a eutectic with the substrate material, and Nanowire. As materials, AlGaAs was used in Example 1 and GaAs was used in Example 2, but the present invention is not limited to these.

例えば、基板材料としては、GaP、InP、GaN、サファイア、InSb、GaSb、InAs、SiC等の半導体基板を用いることができる。
また、当該基板材料と共晶を作る材料としては、Cu、Ag、Pt、Ni、Sb、Fe等の金属を用いることができる。
更に、ナノワイヤの材料としては、Si、Ge、Cの単体からGaP、GaN、GaSb、InP、InAs、InSb、AlAs、AlN、ZnO、ZnSeの二元化合物、AlGaAs、GaInAs、GaInP等の三元化合物、GaInAsP、AlGaInAs等の四元化合物などの半導体を使用することができる。
For example, as a substrate material, a semiconductor substrate such as GaP, InP, GaN, sapphire, InSb, GaSb, InAs, and SiC can be used.
In addition, as a material for forming a eutectic with the substrate material, metals such as Cu, Ag, Pt, Ni, Sb, and Fe can be used.
Further, as the material of the nanowire, a binary compound of Si, Ge, C, GaP, GaN, GaSb, InP, InAs, InSb, AlAs, AlN, ZnO, ZnSe, a ternary compound such as AlGaAs, GaInAs, GaInP, etc. A semiconductor such as a quaternary compound such as GaInAsP or AlGaInAs can be used.

このように説明したように、本発明の多孔構造体及びその製造方法は、例えば、数nm径の孔を有する構造体及びその製造に関するものであり、特に、VLS成長法によりナノワイヤを形成し、当該ナノワイヤの周囲を所定の物質で充填し、当該ナノワイヤをエッチングにより除去することにより、数nm径の孔を有する構造体を製造することに特徴がある。   As described above, the porous structure of the present invention and the method for producing the same relate to, for example, a structure having a pore having a diameter of several nm and the production thereof, and in particular, a nanowire is formed by a VLS growth method, The structure is characterized in that a structure having a hole with a diameter of several nanometers is manufactured by filling the periphery of the nanowire with a predetermined substance and removing the nanowire by etching.

ナノオーダー径の多孔構造体を製造する従来方法として、アルミニウム板の陽極酸化し、多孔質アルミナを製造する方法があったが、多孔を有する物質がアルミナに限定されるという問題があった。
本発明の製造方法は、VLS成長法によりナノワイヤを形成した後、それを除去する方法であるため、多孔構造体の材料として、様々な材料を適用できるという効果がある。
As a conventional method for producing a nano-order-diameter porous structure, there is a method in which an aluminum plate is anodized to produce porous alumina, but there is a problem that a porous material is limited to alumina.
Since the manufacturing method of the present invention is a method of removing a nanowire after it is formed by the VLS growth method, there is an effect that various materials can be applied as the material of the porous structure.

本発明は、気体、液体状の物質や微小固体、電子、光等に対するナノスケールの導波路やフィルタ、或いは3次元閉じ込め量子ナノ構造等の応用が考えられる。   The present invention can be applied to nanoscale waveguides and filters, three-dimensional confined quantum nanostructures, etc. for gases, liquid substances, fine solids, electrons, light, and the like.

図1(a)はGaAs(311)B基板上にAu微粒子が同形で整然と並んだ様子を表した斜視図、図1(b)はGaAsのナノワイヤアレイを表した斜視図、図1(c)はInPにより埋め込み成長を行った様子を表した斜視図、図1(d)はエッチング後の多孔構造体を表した斜視図である。1A is a perspective view showing a state in which Au fine particles are arranged in an orderly manner on a GaAs (311) B substrate, FIG. 1B is a perspective view showing a GaAs nanowire array, and FIG. FIG. 1 is a perspective view showing a state in which buried growth is performed with InP, and FIG. 1D is a perspective view showing a porous structure after etching. 図2(a)は微細孔の断面図、図2(b)はナノホール形成時に基板までエッチングされた様子を表した断面図、図2(c)はナノホールに更にホール径を小さくした様子を表した断面図、図2(d)はナノホールにヘテロ構造を作製し、量子閉じ込め構造を作製した様子を表した断面図である。2A is a cross-sectional view of a fine hole, FIG. 2B is a cross-sectional view showing a state where the substrate is etched to form a nanohole, and FIG. 2C is a view showing a state where the hole diameter is further reduced to the nanohole. FIG. 2D is a cross-sectional view illustrating a state in which a heterostructure is formed in a nanohole and a quantum confinement structure is formed. 図3(a)はナノホール膜がフィルタとして機能する様子を表した断面図、図3(b)はナノホール膜内に光が導波する様子を表した断面図である。FIG. 3A is a cross-sectional view illustrating a state in which the nanohole film functions as a filter, and FIG. 3B is a cross-sectional view illustrating a state in which light is guided into the nanohole film. 本発明に係る多孔構造体の製造過程を示すフローチャートである。It is a flowchart which shows the manufacturing process of the porous structure which concerns on this invention.

符号の説明Explanation of symbols

1 GaAs(311)B基板
2 Au微粒子
3 柱状構造
4 InP層
4a 微細孔
5 多孔構造体
6 InP層
7 InP
8 In組成0.5のGaInAs(8nm)量子ドット
9 InP
10 薄膜多孔構造体
A 空気層
DESCRIPTION OF SYMBOLS 1 GaAs (311) B substrate 2 Au fine particle 3 Columnar structure 4 InP layer 4a Micropore 5 Porous structure 6 InP layer 7 InP
8 GaInAs (8 nm) quantum dots with an In composition of 0.5 9 InP
10 Thin-film porous structure A Air layer

Claims (6)

基板上の多数の位置に金属微粒子を形成し、
次いで、該金属微粒子上に第一の物質をVLS成長法により選択的に成長させることにより柱状構造を多数形成し、
引き続き、前記柱状構造の高さよりも下まで前記基板上に第二の物質を充填した後、前記第一の物質である柱状構造を除去して、微細孔を多数形成し、
更に、前記微細孔内の壁に第三の物質を成長させて、前記微細孔の孔径を更に小さくして、微細孔を多数有する構造体を形成することを特徴とする多孔構造体の製造方法。
Metal fine particles are formed at many positions on the substrate,
Next, a number of columnar structures are formed by selectively growing the first substance on the metal fine particles by the VLS growth method,
Subsequently, after filling the substrate with a second substance below the height of the columnar structure, the columnar structure as the first substance is removed to form a large number of micropores,
Further, a method for producing a porous structure is characterized in that a third substance is grown on the wall in the micropore to further reduce the pore diameter of the micropore to form a structure having a large number of micropores. .
請求項1において、
前記第一の物質のVLS成長方向が特定の結晶方位に向かって起こることを利用し、その成長方向から傾いた面方位を有する傾斜基板を前記基板として用いることにより、前記微細孔を前記基板に垂直な方向に対し斜めの向きの縦長の孔としたことを特徴とする多孔構造体の製造方法。
In claim 1,
Utilizing the fact that the VLS growth direction of the first material is directed toward a specific crystal orientation, and using a tilted substrate having a plane orientation tilted from the growth direction as the substrate, the fine holes are formed in the substrate. A method for producing a porous structure, characterized in that the elongated holes are oblique with respect to a vertical direction.
請求項1または2に記載の多孔構造体の製造方法において、
前記柱状構造を除去する際に、選択エッチングを使用することを特徴とする多孔構造体の製造方法。
In the manufacturing method of the porous structure according to claim 1 or 2,
In removing the columnar structure, selective etching is used, and a method for manufacturing a porous structure is provided.
請求項1において、
前記基板を除去したことを特徴とする多孔構造体の製造方法。
In claim 1,
A method for producing a porous structure, wherein the substrate is removed.
微細孔を多数有する多孔構造体であって、
基板上の予め定めた多数の位置に金属微粒子を形成し、
次いで、該金属微粒子上に第一の物質をVLS成長法により選択的に成長させることにより柱状構造を多数形成し、
引き続き、前記柱状構造の高さよりも下まで前記基板上に第二の物質を充填した後、前記第一の物質である柱状構造を除去して、微細孔を多数形成し、
更に、前記微細孔内の壁に第三の物質を成長させて、前記微細孔の孔径を更に小さくすることにより、予め定めた位置に径10nm以下の微細孔を多数設けたことを特徴とする多孔構造体。
A porous structure having a large number of micropores,
Metal fine particles are formed at a number of predetermined positions on the substrate,
Next, a number of columnar structures are formed by selectively growing the first substance on the metal fine particles by the VLS growth method,
Subsequently, after filling the substrate with a second substance below the height of the columnar structure, the columnar structure as the first substance is removed to form a large number of micropores,
Furthermore, a third substance is grown on the wall in the micropore, and the pore diameter of the micropore is further reduced, thereby providing a large number of micropores having a diameter of 10 nm or less at a predetermined position. Porous structure.
請求項に記載の多孔構造体において、
前記微細孔が格子状に配列されたことを特徴とする多孔構造体。
The porous structure according to claim 5 , wherein
A porous structure in which the micropores are arranged in a lattice pattern.
JP2004180686A 2004-06-18 2004-06-18 Porous structure and manufacturing method thereof Expired - Fee Related JP4813775B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004180686A JP4813775B2 (en) 2004-06-18 2004-06-18 Porous structure and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004180686A JP4813775B2 (en) 2004-06-18 2004-06-18 Porous structure and manufacturing method thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010189109A Division JP2010283381A (en) 2010-08-26 2010-08-26 Method of manufacturing heterostructure

Publications (2)

Publication Number Publication Date
JP2006005205A JP2006005205A (en) 2006-01-05
JP4813775B2 true JP4813775B2 (en) 2011-11-09

Family

ID=35773312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004180686A Expired - Fee Related JP4813775B2 (en) 2004-06-18 2004-06-18 Porous structure and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4813775B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4547519B2 (en) * 2004-10-22 2010-09-22 独立行政法人物質・材料研究機構 Method for producing silicon nanowire
JP2008108757A (en) * 2006-10-23 2008-05-08 Matsushita Electric Works Ltd Compound semiconductor light-emitting element, illumination apparatus employing the same and manufacturing method of compound semiconductor element
JP2008108924A (en) * 2006-10-26 2008-05-08 Matsushita Electric Works Ltd Compound semiconductor light-emitting element, illumination apparatus employing the same and manufacturing method of compound semiconductor light-emitting element
JP4982176B2 (en) * 2006-12-28 2012-07-25 パナソニック株式会社 COMPOUND SEMICONDUCTOR ELEMENT, LIGHTING DEVICE USING SAME, AND METHOD FOR PRODUCING COMPOUND SEMICONDUCTOR ELEMENT
JP5096824B2 (en) * 2007-07-24 2012-12-12 日本電信電話株式会社 Nanostructure and method for producing nanostructure
DE102008058400A1 (en) * 2008-11-21 2010-05-27 Istituto Italiano Di Tecnologia Nanowires on substrate surfaces, process for their preparation and their use
JP2015053336A (en) 2013-09-05 2015-03-19 株式会社東芝 Semiconductor device and manufacturing method of the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05175118A (en) * 1991-12-24 1993-07-13 Nippon Telegr & Teleph Corp <Ntt> Method for creating compound semiconductor having quantum fine line or quantum box structure
JP2697474B2 (en) * 1992-04-30 1998-01-14 松下電器産業株式会社 Manufacturing method of microstructure
JPH07169938A (en) * 1993-12-16 1995-07-04 Denki Kagaku Kogyo Kk Quantum fine wire device and its manufacture
JPH07183485A (en) * 1993-12-22 1995-07-21 Denki Kagaku Kogyo Kk Quantum fine line device and manufacture
US20030116531A1 (en) * 2001-12-20 2003-06-26 Kamins Theodore I. Method of forming one or more nanopores for aligning molecules for molecular electronics

Also Published As

Publication number Publication date
JP2006005205A (en) 2006-01-05

Similar Documents

Publication Publication Date Title
Lei et al. Highly ordered nanostructures with tunable size, shape and properties: A new way to surface nano-patterning using ultra-thin alumina masks
TWI452186B (en) Production of single-crystal semiconductor material using a nanostructure template
TWI395260B (en) Production of semiconductor devices
JP2007050500A (en) Semiconductor nanostructure and method for fabricating the same
US7521274B2 (en) Pulsed growth of catalyst-free growth of GaN nanowires and application in group III nitride semiconductor bulk material
KR101169307B1 (en) Nanostructures and method of making the same
KR101209151B1 (en) Method for fabricating quantum dot and semiconductor structure containing quantum dot
Liang et al. Nonlithographic fabrication of lateral superlattices for nanometric electromagnetic-optic applications
TWI459589B (en) Method for making epitaxial structure
JP4864837B2 (en) Fabrication method of nanolaser structure
TW201344946A (en) Epitaxial structure
JP4813775B2 (en) Porous structure and manufacturing method thereof
JPWO2009031276A1 (en) Group III nitride structure and method for producing group III nitride semiconductor fine columnar crystal
JP2010283381A (en) Method of manufacturing heterostructure
JP5032823B2 (en) Nanostructure and method for producing nanostructure
JP2007007827A (en) Method for manufacturing nanostructure
JP5096824B2 (en) Nanostructure and method for producing nanostructure
Ironside et al. Review of lateral epitaxial overgrowth of buried dielectric structures for electronics and photonics
JP4563026B2 (en) Manufacturing method of three-dimensional confined quantum nanostructure
JPH11112099A (en) Manufacture of semiconductor optical element
JP2000124441A (en) Preparation of semiconductor quantum dot
JP5494992B2 (en) 3D microfabricated substrate
Kang et al. Fabrication of Colloidal InGaN/GaN Quantum Dots from Epitaxially Grown Quantum Wells
Tateno et al. Nanoholes in InP and C60 Layers on GaAs Substrates by Using AlGaAs Nanowire Templates
KR20000037777A (en) Heavily doped quantum wire and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110823

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110825

R150 Certificate of patent or registration of utility model

Ref document number: 4813775

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees