JP4812446B2 - Defect detection method for roller bearings by torque monitoring - Google Patents

Defect detection method for roller bearings by torque monitoring Download PDF

Info

Publication number
JP4812446B2
JP4812446B2 JP2006022481A JP2006022481A JP4812446B2 JP 4812446 B2 JP4812446 B2 JP 4812446B2 JP 2006022481 A JP2006022481 A JP 2006022481A JP 2006022481 A JP2006022481 A JP 2006022481A JP 4812446 B2 JP4812446 B2 JP 4812446B2
Authority
JP
Japan
Prior art keywords
roller bearing
defect
signal
roller
detection method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006022481A
Other languages
Japanese (ja)
Other versions
JP2007205760A (en
Inventor
育彦 榊原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2006022481A priority Critical patent/JP4812446B2/en
Publication of JP2007205760A publication Critical patent/JP2007205760A/en
Application granted granted Critical
Publication of JP4812446B2 publication Critical patent/JP4812446B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Description

この発明は、ころ軸受の転走面およびころのいずれか一方または両方の欠陥を検出するトルク監視によるころ軸受の欠陥検出方法に関する。   The present invention relates to a roller bearing defect detection method based on torque monitoring that detects defects in one or both of a rolling contact surface and a roller of a roller bearing.

従来、軸受の転走面や転動体での欠陥を部品単体の状態で検出する方法として、顕微鏡による肉眼での外観検査などが行われている。
また、完成品の状態での軸受の欠陥検出方法としては、加速度ピックアップまたは速度ピックアップを用いた振動検査による方法が行われている(例えば特許文献1)。
特開2000−171351号公報
2. Description of the Related Art Conventionally, as a method for detecting a defect on a rolling surface of a bearing or a rolling element in a state of a single component, an appearance inspection with a naked eye using a microscope has been performed.
Further, as a bearing defect detection method in a finished product state, a method of vibration inspection using an acceleration pickup or a speed pickup is performed (for example, Patent Document 1).
JP 2000-171351 A

しかし、上記した顕微鏡による肉眼での外観検査では、検査に多大な時間がかかるうえに、人的作業のため見落としが発生する可能性がある。また、部品単体での検査では、製品の組立時に発生する打ち傷やバリの圧着などを検出することは不可能である。
また、振動検査では、比較的大きな欠陥を検出することは可能であるが、微少に引っ掛かり感が認められる程度の小欠陥を検出することが困難であった。また、回転がロックしてしまうほどの大欠陥では、かえって振動値が小さくなるため、良品と誤判定する可能性があるなどの問題点もあった。
However, in the appearance inspection with the naked eye using the microscope described above, the inspection takes a lot of time and oversight may occur due to human work. Further, in the inspection of a single component, it is impossible to detect a scratch or a burr crimp that occurs during product assembly.
In the vibration inspection, it is possible to detect a relatively large defect, but it is difficult to detect a small defect having a slight catching feeling. In addition, there is a problem that a large defect that locks the rotation causes the vibration value to be small, and may be erroneously determined as a non-defective product.

この発明の目的は、完成品でのころ軸受の転走面やころに存在する微少な欠陥を精度良く検出でき、また回転がロックしてしまう大欠陥も安定して検出でき、検出の所要時間も短縮できるトルク監視によるころ軸受の欠陥検出方法を提供することである。   The object of the present invention is to accurately detect minute defects existing on the rolling surface of the roller bearing and the roller in the finished product, and to stably detect large defects that lock the rotation. It is another object of the present invention to provide a roller bearing defect detection method by torque monitoring that can be shortened.

この発明のトルク監視によるころ軸受の欠陥検出方法は、外輪およびこの外輪の転走面を転動する複数のころを備えたころ軸受において、前記外輪の転走面およびころのいずれか一方または両方の欠陥を検出する方法であって、ころ軸受におけるころの配列内にテーパ軸を挿入し、その楔効果でテーパ軸ところと転走面を密着させた状態で、テーパ軸を回転させ、このテーパ軸の回転トルクの変動をトルクセンサで検出し、トルクセンサで検出された信号を信号処理することで前記転走面またはころの欠陥を検出することを特徴とする。
この方法によると、完成品でのころ軸受の転走面やころに存在する微少な欠陥を精度良く検出でき、また回転がロックしてしまう大欠陥も安定して検出でき、検査の所要時間も短縮できる。すなわち、微小な欠陥から大欠陥までの高い検出性能が得られる。また、検査時間が短くて済むため、軸受の生産工程における欠陥検出処理のインライン化が可能となる。
According to the present invention, there is provided a roller bearing defect detection method based on torque monitoring, in a roller bearing including an outer ring and a plurality of rollers that roll on the rolling surface of the outer ring, either or both of the rolling surface of the outer ring and the roller. The taper shaft is inserted into the roller array in the roller bearing, and the taper shaft is rotated and the tapered surface is brought into close contact by the wedge effect. A variation in rotational torque of the shaft is detected by a torque sensor, and a defect of the rolling surface or roller is detected by signal processing of a signal detected by the torque sensor.
According to this method, it is possible to accurately detect minute defects existing on the rolling surface and roller of the roller bearing in the finished product, and it is possible to stably detect large defects that lock the rotation, and the time required for inspection is also increased. Can be shortened. That is, high detection performance from a minute defect to a large defect can be obtained. In addition, since the inspection time is short, the defect detection process in the bearing production process can be inlined.

この発明において、前記信号処理は、トルクセンサから得られた信号波形から所定の不要周波数帯の信号成分をフィルタ処理で除去するものであっても良い。また、前記信号処理は、包絡線検波処理を行い、この包絡線検波処理された信号の周波数分析により、欠陥成分の定量化を行うものであっても良い。さらに、前記信号処理は、パルスの計数を行うものであっても良い。また、前記信号処理は、実効値によって定量化を行う方法であっても良い。   In the present invention, the signal processing may remove signal components in a predetermined unnecessary frequency band from the signal waveform obtained from the torque sensor by filtering. The signal processing may be performed by performing envelope detection processing and quantifying the defect component by frequency analysis of the signal subjected to the envelope detection processing. Further, the signal processing may be performed by counting pulses. The signal processing may be a method of performing quantification using an effective value.

この発明のトルク監視によるころ軸受の欠陥検出方法は、外輪およびこの外輪の転走面を転動する複数のころを備えたころ軸受において、前記外輪の転走面およびころのいずれか一方または両方の欠陥を検出する方法であって、ころ軸受におけるころの配列内にテーパ軸を挿入し、その楔効果でテーパ軸ところと転走面を密着させた状態で、テーパ軸を回転させ、このテーパ軸の回転トルクの変動をトルクセンサで検出し、トルクセンサで検出された信号を信号処理することで前記転走面またはころの欠陥を検出するものとしたため、完成品でのころ軸受の転走面やころに存在する微少な欠陥を精度良く検出でき、また回転がロックしてしまう大欠陥も安定して検出でき、検出の所要時間も短縮できる。   According to the present invention, there is provided a roller bearing defect detection method based on torque monitoring, in a roller bearing including an outer ring and a plurality of rollers that roll on the rolling surface of the outer ring, either or both of the rolling surface of the outer ring and the roller. The taper shaft is inserted into the roller array in the roller bearing, and the taper shaft is rotated and the tapered surface is brought into close contact by the wedge effect. Rolling bearings in the finished product are detected by detecting fluctuations in the rotational torque of the shaft with a torque sensor and detecting the defect of the rolling surface or roller by processing the signal detected by the torque sensor. A minute defect existing on a surface or a roller can be detected with high accuracy, a large defect whose rotation is locked can be detected stably, and the time required for detection can be shortened.

この発明の一実施形態を図1ないし図6と共に説明する。図1は、この実施形態によるころ軸受の欠陥検出方法に用いられる検査装置の構成図を示す。この欠陥検出方法が適用される検査対象のころ軸受11は、図6に完成品の一例を示すように、円筒状のシェル型外輪12と、この外輪12の内径面である転走面12aに沿って配列され転走面12aを転動する複数のころ13と、これらのころ13を回転自在に保持する保持器14とでなるシェル型のラジアル軸受である。この欠陥検出方法では、上記ころ軸受11における外輪12の転走面12aおよびころ13の欠陥を検出する。   An embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a configuration diagram of an inspection apparatus used in the roller bearing defect detection method according to this embodiment. The roller bearing 11 to be inspected to which this defect detection method is applied includes a cylindrical shell-type outer ring 12 and a rolling surface 12a that is an inner diameter surface of the outer ring 12 as shown in FIG. This is a shell-type radial bearing including a plurality of rollers 13 arranged along the rolling surface 12a and a retainer 14 that rotatably holds these rollers 13. In this defect detection method, defects in the rolling surface 12 a of the outer ring 12 and the rollers 13 in the roller bearing 11 are detected.

図1に示す検査装置1は、検査対象のころ軸受11を、その外輪12の外周から把持するチャック2と、このチャック2に対向配置され前記ころ軸受11におけるころ13の配列内に挿入されるテーパ軸3と、このテーパ軸3を回転駆動するモータ4と、テーパ軸3の回転トルクの変動を検出するトルクセンサ5と、このトルクセンサ5で検出された信号を信号処理する分析器6とを備える。前記チャック2は、リニアスライド8に沿って昇降自在に支持されており、シリンダ装置等からなる昇降駆動源7により昇降駆動される。また、チャック2は、調芯機構9により調芯可能とされている。テーパ軸3の近傍には、ころ軸受11へのテーパ軸3の挿入量を監視するロードセル10が設けられている。   An inspection apparatus 1 shown in FIG. 1 is inserted into a chuck 2 that grips a roller bearing 11 to be inspected from the outer periphery of an outer ring 12 and an array of rollers 13 in the roller bearing 11 that are disposed opposite to the chuck 2. A taper shaft 3, a motor 4 that rotationally drives the taper shaft 3, a torque sensor 5 that detects fluctuations in the rotational torque of the taper shaft 3, and an analyzer 6 that performs signal processing on signals detected by the torque sensor 5. Is provided. The chuck 2 is supported so as to be movable up and down along the linear slide 8 and is driven up and down by a lifting drive source 7 including a cylinder device or the like. The chuck 2 can be aligned by the alignment mechanism 9. A load cell 10 for monitoring the amount of insertion of the taper shaft 3 into the roller bearing 11 is provided in the vicinity of the taper shaft 3.

テーパ軸3は、チャック2の上昇により、チャック2が把持するころ軸受11に挿入される。ロードセル10は、テーパ軸3の挿入時にテーパ軸3にかかる加圧力を計測し、その計測値からテーパ軸3の挿入量を推定する。ロードセル10の監視するテーパ軸3の挿入量が一定の値を超えると、これに応答して昇降駆動源7が停止される。このとき、テーパ軸3の楔効果で、テーパ軸3ところ軸受11のころ13と外輪転走面12aが密着した状態となる。この状態で、モータ4によりテーパ軸3が回転駆動され、テーパ軸3の回転トルクの変動がトルクセンサ5で検出される。このトルクセンサ5で検出された信号を前記分析器6で信号処理することにより、ころ軸受11の外輪転走面12aまたはころ13の欠陥の有無が検出される。   The taper shaft 3 is inserted into the roller bearing 11 held by the chuck 2 as the chuck 2 moves up. The load cell 10 measures the pressure applied to the taper shaft 3 when the taper shaft 3 is inserted, and estimates the insertion amount of the taper shaft 3 from the measured value. When the insertion amount of the taper shaft 3 monitored by the load cell 10 exceeds a certain value, the lift drive source 7 is stopped in response to this. At this time, due to the wedge effect of the taper shaft 3, the roller 13 of the bearing 11 and the outer ring rolling surface 12a are in close contact with each other at the taper shaft 3. In this state, the taper shaft 3 is rotationally driven by the motor 4, and the fluctuation of the rotational torque of the taper shaft 3 is detected by the torque sensor 5. The signal detected by the torque sensor 5 is processed by the analyzer 6 to detect the presence or absence of a defect in the outer ring rolling surface 12a of the roller bearing 11 or the roller 13.

図2は、前記分析器6のブロック図を示す。この分析器6は、前段のプリアンプ回路部21と後段の分析用PLC(プログラマブル・ロジック・コントローラ)22とでなる。 プリアンプ回路部21は、帯域フィルタ24によりトルクセンサ5で得られた信号波形から不要周波数帯の信号成分を除去するフィルタ処理を行った後、その信号を増幅器25で増幅する第1のフィルタ回路23Aと、低域フィルタ26によりトルクセンサ5で得られた信号波形から不要周波数帯の信号成分を除去するフィルタ処理を行った後、その信号を増幅器27で増幅する第2のフィルタ回路23Bとを有する。   FIG. 2 shows a block diagram of the analyzer 6. The analyzer 6 includes a preamplifier circuit unit 21 at the front stage and a PLC (programmable logic controller) 22 for analysis at the rear stage. The preamplifier circuit unit 21 performs a filter process for removing a signal component in an unnecessary frequency band from the signal waveform obtained by the torque sensor 5 by the band filter 24, and then amplifies the signal by the amplifier 25. And a second filter circuit 23B that amplifies the signal by an amplifier 27 after performing a filter process for removing a signal component of an unnecessary frequency band from the signal waveform obtained by the torque sensor 5 by the low-pass filter 26. .

分析用PLC22は、包絡線検波・周波数分析処理手段27と、パルスカウント手段28と、実効値演算処理手段29と、判定手段30とを備える。   The analyzing PLC 22 includes an envelope detection / frequency analysis processing unit 27, a pulse count unit 28, an effective value calculation processing unit 29, and a determination unit 30.

包絡線検波・周波数分析処理手段27は、プリアンプ回路部21における第1のフィルタ回路23Aを経由した信号を包絡線検波処理し、この包絡線検波処理された信号の周波数分析を行うことにより欠陥成分の定量化を行うものである。包絡線検波・周波数分析処理手段27は、絶対値検波部27a、包絡線処理部27b、および周波数分析部27cを入力側からこの順に有し、入力信号を絶対値検波部27aで絶対値検波し、その検波した信号を包絡線処理部27bで包絡線処理し、その包絡線処理された信号を周波数分析部27cで周波数分析する。   The envelope detection / frequency analysis processing means 27 performs envelope detection processing on the signal that has passed through the first filter circuit 23A in the preamplifier circuit unit 21, and performs frequency analysis of the signal subjected to the envelope detection processing to thereby detect a defect component. Quantification is performed. The envelope detection / frequency analysis processing means 27 has an absolute value detection unit 27a, an envelope processing unit 27b, and a frequency analysis unit 27c in this order from the input side, and detects an absolute value of the input signal by the absolute value detection unit 27a. The detected signal is subjected to envelope processing by the envelope processing unit 27b, and the frequency-analyzed signal is subjected to frequency analysis by the frequency analysis unit 27c.

パルスカウント手段28は、第1のフィルタ回路23Aを経由した信号のパルス計数を行うものである。パルスカウント手段28は、絶対値検波部28a、クレストファクタ処理部28b、およびパルスカウント部28cを、入力側からこの順に有し、入力信号を絶対値検波部28aで絶対値検波し、この検波された信号をクレストファクタ処理部28bでクレストファクタ処理し、その処理後の信号のパルス係数を、パルスカウント部28cにより行う。   The pulse counting means 28 performs pulse counting of a signal that has passed through the first filter circuit 23A. The pulse count means 28 has an absolute value detection unit 28a, a crest factor processing unit 28b, and a pulse count unit 28c in this order from the input side. The absolute value detection unit 28a detects the absolute value of the input signal and this detection is performed. The crest factor processing unit 28b performs crest factor processing, and the pulse coefficient of the processed signal is performed by the pulse count unit 28c.

実効値演算処理手段29は、前記プリアンプ回路部21における第2のフィルタ回路23Bを経由した信号の実効値を演算し、その実効値により欠陥成分の定量化を行うものである。   The effective value calculation processing means 29 calculates the effective value of the signal that has passed through the second filter circuit 23B in the preamplifier circuit section 21, and quantifies the defect component based on the effective value.

判定手段30は、包絡線検波・周波数分析処理手段27、パルスカウント手段28、および実効値演算処理手段29の処理結果から、ころ軸受11の欠陥の有無を判定し、判定信号を出力するものである。判定手段30は、通常品判定部30aとロック品判定部30bとを有しており、通常品判定部30aは、包絡線検波・周波数分析処理手段27、およびパルスカウント手段28の出力に対して、所定の判定基準に従って、通常の疵品の判別を行う。ロック品判定部30bは、実効値演算処理手段29の処理結果から、所定の基準に従ってロック品の判別を行う。   The determination means 30 determines the presence or absence of defects in the roller bearing 11 from the processing results of the envelope detection / frequency analysis processing means 27, the pulse count means 28, and the effective value calculation processing means 29, and outputs a determination signal. is there. The determination unit 30 includes a normal product determination unit 30 a and a locked product determination unit 30 b, and the normal product determination unit 30 a corresponds to the outputs of the envelope detection / frequency analysis processing unit 27 and the pulse count unit 28. In accordance with a predetermined determination criterion, a normal product is determined. The lock product determination unit 30b determines the lock product according to a predetermined reference from the processing result of the effective value calculation processing unit 29.

表1には、上記分析器6における分析用PLC22での各信号処理手段27〜29の機能名と、その内容と、検査項目を対照させて示している。   Table 1 shows the function names of the signal processing means 27 to 29 in the analyzing PLC 22 in the analyzer 6, the contents thereof, and the inspection items in a contrasting manner.

Figure 0004812446
Figure 0004812446

すなわち、判定手段30では、包絡線検波・周波数分析処理手段27で行われる「包絡線検波+FFT」の判定と、パルスカウント手段28で行われるパルスカウントの判定で、微少な欠陥によるゴリ感の検出を行い、実効値演算処理手段29で行われる実効値の演算結果の判定により、ころ軸受11が回転せずにロックしてしまう非常に大きな疵の検出を行う。   That is, the determination means 30 detects a sense of grief due to a minute defect by determining “envelope detection + FFT” performed by the envelope detection / frequency analysis processing means 27 and determining the pulse count performed by the pulse count means 28. And the detection of the effective value calculation result performed by the effective value calculation processing means 29 detects a very large wrinkle that causes the roller bearing 11 to lock without rotating.

図3〜図5には、上記した欠陥検出方法により行った具体的な検査結果をグラフにして示す。そのうち、図3は包絡線検波処理のデータに基づくゴリ感の有無の検査結果を、図4はパルスカウントのデータに基づくゴリ感の有無の検査結果を、図5は実効値に基づくロック品の有無の検査結果をそれぞれ示す。なお、この検査は、以下に挙げる測定条件で行った。
加圧力 :3N
テーパ軸テーパ角 :0.0035°
テーパ軸回転数 :300rpm
測定チャック前進速度 :30mm/sec
測定時間 :0.51sec
判定内容 :(1)包絡線検波+FFT(搬送波帯域 120−320Hz ,繰り返し周波数 23Hz)
(2)パルスカウント
(3)実効値
3 to 5 are graphs showing specific inspection results obtained by the above-described defect detection method. Of these, FIG. 3 shows the inspection result for the presence or absence of a sense of ghost based on the data of the envelope detection processing, FIG. 4 shows the result of the examination for the presence or absence of sensation based on the data of the pulse count, and FIG. Each test result is shown. This inspection was performed under the following measurement conditions.
Applied pressure: 3N
Taper shaft taper angle: 0.0035 °
Taper shaft rotation speed: 300rpm
Measurement chuck advance speed: 30 mm / sec
Measurement time: 0.51 sec
Details of determination: (1) Envelope detection + FFT (carrier band 120-320 Hz, repetition frequency 23 Hz)
(2) Pulse count
(3) Effective value

図3に示す「包絡線検波+FFT」での測定結果のグラフにおいて、要求精度のゴリ感が中程度の製品はグラフの横軸3.0以上の製品であるが、グラフ中のレベル線AをNG(不良)レベルとすると100%NG判定されており、要求精度を満足していることが分かる。また、ゴリ感が小程度の製品もある程度検出可能であることも分かる。   In the graph of the measurement result of “envelope detection + FFT” shown in FIG. 3, a product with a moderate feeling of required accuracy is a product having a horizontal axis of 3.0 or more in the graph. If the NG (defective) level is determined, 100% NG determination is made, and it can be seen that the required accuracy is satisfied. It can also be seen that a product with a low degree of harshness can be detected to some extent.

図4に示すパルスカウントでの測定結果のグラフによると、ゴリ感が中程度以上の製品の判定を、「包絡線検波+FFT」による判定の場合と比較した場合、流動品と測定値が近接している場合が見られる。   According to the graph of the measurement result with the pulse count shown in FIG. 4, when comparing the determination of a product with a moderate feeling of harshness with the determination by “envelope detection + FFT”, the fluidized product and the measured value are close to each other. If you can see.

図5に示す実効値判定でロック品の有無を測定した結果のグラフでは、「包絡線検波+FFT」の判定値とパルスカウント数はOK品(良品)と同レベルであるが、実効値ではOK品の3〜10倍の値を示している。   In the graph of the result of measuring the presence / absence of the locked product in the effective value determination shown in FIG. 5, the determination value of “envelope detection + FFT” and the pulse count are the same level as the OK product (good product), but the effective value is OK. The value is 3 to 10 times that of the product.

以上の結果により、微少な欠陥によるゴリ感の検出は「包絡線検波+FFT」判定を基本とし、パルスカウント判定を組み合わせて行い、ロックして回らないほどの重大NGを実効値判定で行えば、正確な欠陥検出が可能であることが確認できた。   Based on the above results, the detection of a sense of grief due to a minute defect is based on the “envelope detection + FFT” determination, combined with the pulse count determination, and if a serious NG that does not rotate and lock is performed by the effective value determination, It was confirmed that accurate defect detection was possible.

このことから、この発明のトルク監視によるころ軸受の欠陥検出方法では、完成品の状態でのころ軸受11の外輪転走面12aやころ13に存在する微少な欠陥を精度良く検出することができる。また、従来例の振動検査では検出が困難な、回転がロックしてしまう大欠陥も安定して検出することができる。さらに、従来例の目視による単体部品での外観検査の場合と比べて、検査時間が短くなるので、インラインでの全数自動検査が可能となる。   Therefore, in the roller bearing defect detection method based on torque monitoring according to the present invention, it is possible to accurately detect minute defects existing on the outer ring rolling surface 12a of the roller bearing 11 and the roller 13 in the finished product state. . In addition, it is possible to stably detect a large defect that is difficult to detect in the vibration inspection of the conventional example and whose rotation is locked. Furthermore, since the inspection time is shorter than in the case of visual inspection with a single component by visual observation in the conventional example, it is possible to perform an in-line 100% automatic inspection.

(A)はこの発明の一実施形態にかかるトルク監視によるころ軸受の欠陥検出方法に用いられる検査装置の概略構成図、(B)はその軸受とテーパ軸の関係を示す部分拡大断面図である。(A) is a schematic block diagram of the test | inspection apparatus used for the defect detection method of the roller bearing by torque monitoring concerning one Embodiment of this invention, (B) is the elements on larger scale which show the relationship between the bearing and a taper shaft. . 同検査装置における分析器のブロック図である。It is a block diagram of the analyzer in the inspection device. 前記欠陥検出方法における「包絡線検波+FFT」判定による測定結果のグラフである。It is a graph of the measurement result by "envelope detection + FFT" determination in the said defect detection method. 前記欠陥検出方法におけるパルスカウント判定による測定結果のグラフである。It is a graph of the measurement result by pulse count determination in the defect detection method. 前記欠陥検出方法における実効値判定による測定結果のグラフである。It is a graph of the measurement result by the effective value determination in the said defect detection method. 同欠陥検査方法の検査対象となるころ軸受の一例を示す断面図である。It is sectional drawing which shows an example of the roller bearing used as the test object of the defect inspection method.

符号の説明Explanation of symbols

3…テーパ軸
5…トルクセンサ
6…分析器
11…ころ軸受
27…包絡線検波・周波数分析処理手段
28…パルスカウント手段
29…実効値演算処理手段
30…判定手段
DESCRIPTION OF SYMBOLS 3 ... Tapered shaft 5 ... Torque sensor 6 ... Analyzer 11 ... Roller bearing 27 ... Envelope detection / frequency analysis processing means 28 ... Pulse count means 29 ... Effective value calculation processing means 30 ... Determination means

Claims (5)

外輪およびこの外輪の転走面を転動する複数のころを備えたころ軸受において、前記外輪の転走面およびころのいずれか一方または両方の欠陥を検出する方法であって、
ころ軸受におけるころの配列内にテーパ軸を挿入し、その楔効果でテーパ軸ところと転走面を密着させた状態で、テーパ軸を回転させ、このテーパ軸の回転トルクの変動をトルクセンサで検出し、トルクセンサで検出された信号を信号処理することで前記転走面またはころの欠陥を検出することを特徴とするトルク監視によるころ軸受の欠陥検出方法。
In a roller bearing provided with an outer ring and a plurality of rollers rolling on the rolling surface of the outer ring, a method for detecting a defect in one or both of the rolling surface of the outer ring and the roller,
Insert a taper shaft into the roller array in the roller bearing, rotate the taper shaft with the tapered shaft and the rolling surface in close contact with each other by the wedge effect, and use a torque sensor to measure the fluctuation in rotational torque of the taper shaft. A method for detecting a defect of a roller bearing by torque monitoring, wherein the defect of the rolling surface or the roller is detected by detecting and processing a signal detected by a torque sensor.
請求項1において、前記信号処理として、トルクセンサから得られた信号波形から所定の不要周波数帯の信号成分をフィルタ処理で除去するトルク監視によるころ軸受の欠陥検出方法。   2. The roller bearing defect detection method according to claim 1, wherein, as the signal processing, a signal component of a predetermined unnecessary frequency band is removed from the signal waveform obtained from the torque sensor by filtering. 請求項1または請求項2において、前記信号処理として、包絡線検波処理を行い、この包絡線検波処理された信号の周波数分析により、欠陥成分の定量化を行うトルク監視によるころ軸受の欠陥検出方法。   3. The roller bearing defect detection method according to claim 1 or 2, wherein, as the signal processing, an envelope detection process is performed, and a defect component is quantified by frequency analysis of the signal subjected to the envelope detection process. . 請求項1または請求項2において、前記信号処理として、パルスの計数を行うトルク監視によるころ軸受の欠陥検出方法。   3. The roller bearing defect detection method according to claim 1, wherein the signal processing includes torque monitoring for counting pulses. 請求項1または請求項2において、前記信号処理として、実効値によって定量化を行うトルク監視によるころ軸受の欠陥検出方法。   3. The roller bearing defect detection method according to claim 1, wherein the signal processing is quantified by an effective value as torque processing.
JP2006022481A 2006-01-31 2006-01-31 Defect detection method for roller bearings by torque monitoring Active JP4812446B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006022481A JP4812446B2 (en) 2006-01-31 2006-01-31 Defect detection method for roller bearings by torque monitoring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006022481A JP4812446B2 (en) 2006-01-31 2006-01-31 Defect detection method for roller bearings by torque monitoring

Publications (2)

Publication Number Publication Date
JP2007205760A JP2007205760A (en) 2007-08-16
JP4812446B2 true JP4812446B2 (en) 2011-11-09

Family

ID=38485373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006022481A Active JP4812446B2 (en) 2006-01-31 2006-01-31 Defect detection method for roller bearings by torque monitoring

Country Status (1)

Country Link
JP (1) JP4812446B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5318514B2 (en) * 2008-10-02 2013-10-16 Ntn株式会社 Torque measuring device
JP6133112B2 (en) * 2013-04-11 2017-05-24 Ntn株式会社 Rolling bearing diagnostic device and rolling bearing diagnostic method

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5944576B2 (en) * 1976-05-01 1984-10-30 エヌ・テ−・エヌ東洋ベアリング株式会社 Assembly width measuring device for conical roller bearings
DE3607654C1 (en) * 1986-03-08 1987-07-23 Skf Gmbh Device for determining the contact angle in ball bearings
JP2734631B2 (en) * 1988-12-16 1998-04-02 日本精工株式会社 Apparatus and method for detecting cracks in bearing mechanism
JP3130986B2 (en) * 1991-10-30 2001-01-31 日本電産株式会社 Vibration measuring device
JPH0691411A (en) * 1992-09-14 1994-04-05 Miyuki Unate Chuck with clamping device
JPH06272670A (en) * 1993-03-18 1994-09-27 Hitachi Ltd Manufacture of rotary air compression device and manufacture assist device therefor
JP3413475B2 (en) * 1997-05-08 2003-06-03 ミネベア株式会社 Torque tester
JP2001165813A (en) * 1999-12-10 2001-06-22 Ntn Corp Bearing device having abnormality detection function, and roll supporting device of continuous casting facility using it
US6378373B1 (en) * 2000-11-09 2002-04-30 New Hampshire Ball Bearings, Inc. High-speed bearing vibrational analysis system
JP2003004592A (en) * 2001-06-22 2003-01-08 Koyo Seiko Co Ltd Device for measuring rotational accuracy of rolling bearing
JP3944744B2 (en) * 2003-07-29 2007-07-18 日本精工株式会社 Abnormality diagnosis device and rolling bearing device having the same
JP2006118869A (en) * 2004-10-19 2006-05-11 Nsk Ltd Defect detector for rolling bearing, and defect detection method for the rolling bearing

Also Published As

Publication number Publication date
JP2007205760A (en) 2007-08-16

Similar Documents

Publication Publication Date Title
JP6899109B2 (en) Abnormality diagnosis method of the part to be diagnosed in the rotation drive device and the abnormality diagnosis device used for it.
JP2009103525A (en) Method for diagnosing abnormality of tooth plane of gear and apparatus using same
JP2008292288A (en) Bearing diagnostic device for reduction gear
WO2008117765A1 (en) Abnormality diagnostic method and device of extremely low speed rotary machine
EP3722783A1 (en) Detection method for concentration of fluid particulate matter
Nienhaus et al. Development of acoustic emission (AE) based defect parameters for slow rotating roller bearings
JP4812446B2 (en) Defect detection method for roller bearings by torque monitoring
JP2003232674A (en) Abnormality diagnosing method and abnormality diagnosing device of machine equipment or apparatus
Wang et al. Condition monitoring on grease lubrication of rolling bearing using AE technology
JP2008032681A (en) Inspection method of rolling device component, and inspection device for rolling device component
CN105521997A (en) Method for diagnosing faults of rolling mill roller system on basis of vibration signals
Jiang et al. In‐Process Quality Inspection of Rolling Element Bearings Based on the Measurement of Microelastic Deformation of Outer Ring
CN114007774B (en) State evaluation method and state evaluation device for rolling device and rolling equipment
Jiang et al. Rolling bearing quality evaluation based on a morphological filter and a Kolmogorov complexity measure
Hort et al. Monitoring of acoustic emission signal of loaded axial bearings
JP5330008B2 (en) Rotation accuracy evaluation method and evaluation apparatus
JP2013224916A (en) Grinding burn determination device and grinding burn determination method
JP7346065B2 (en) Diagnostic method and device for low-speed rotating equipment
US10378874B2 (en) System and method for characterizing surfaces using size data
JP2004093357A (en) Evaluation method and evaluation device
TWI633312B (en) Method and system for measuring channel precision of crossed roller bearing
Hort et al. Application of acoustic emission for measuring of contact fatigue of axial bearing
CN219977768U (en) Bearing vibration detection equipment
Alshimmeri Diagnosis of low-speed bearing degradation using acoustic emission techniques
JP2015017898A (en) Probe inspection method and surface shape measurement device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110823

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110823

R150 Certificate of patent or registration of utility model

Ref document number: 4812446

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250