JP2004093357A - Evaluation method and evaluation device - Google Patents

Evaluation method and evaluation device Download PDF

Info

Publication number
JP2004093357A
JP2004093357A JP2002254978A JP2002254978A JP2004093357A JP 2004093357 A JP2004093357 A JP 2004093357A JP 2002254978 A JP2002254978 A JP 2002254978A JP 2002254978 A JP2002254978 A JP 2002254978A JP 2004093357 A JP2004093357 A JP 2004093357A
Authority
JP
Japan
Prior art keywords
rolling bearing
vibration
frequency spectrum
electric signal
abnormality
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002254978A
Other languages
Japanese (ja)
Inventor
Yoshihiro Sato
佐藤 佳宏朗
Tatsunobu Momono
桃野 達信
Yasuyuki Muto
武藤 泰之
Takanori Miyasaka
宮坂 孝範
Shinichiro Asae
浅枝 真一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2002254978A priority Critical patent/JP2004093357A/en
Publication of JP2004093357A publication Critical patent/JP2004093357A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/52Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions
    • F16C19/527Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions related to vibration and noise
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2380/00Electrical apparatus
    • F16C2380/26Dynamo-electric machines or combinations therewith, e.g. electro-motors and generators

Abstract

<P>PROBLEM TO BE SOLVED: To provide an evaluation method and an evaluation device capable of diagnosing the presence or absence of abnormality such as the wear and damage to a rolling bearing receiving a radial load with a high reliability without requiring the disassembly of the device. <P>SOLUTION: After noise or vibration occurring in the rolling bearing 3 is converted into an electric signal by a vibration detection means 5 fitted to the stationary part of the unloaded area A2 of the rolling bearing 3 receiving the radial load, low range frequency components are retrieved by a filter treatment means 9, delivered to a waveform treatment means 11, and converted into frequency spectrum data with a specified waveform treatment by the waveform treatment means 11. The diagnosis for presence or absence of the abnormality in the specific portion of the rolling bearing 3 is performed according to whether the frequency component values occurring when the specific portion of the rolling bearing 3 is defective has peaks or not. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、ラジアル荷重を受ける転がり軸受の発生する音又は振動を検出し、検出した電気信号を所定の波形処理によって周波数スペクトルデータに変換し、予め転がり軸受の特定部位の異常時に発生する周波数成分値を基準値として記憶しておいて、前記した周波数スペクトルデータ上の基準値の対応箇所にピークが表出するか否かで転がり軸受の特定部位に対する異常の有無の診断を行う評価方法及び装置に関するものである。
【0002】
【従来の技術】
これまで、例えば、鉄鋼用の圧延機や鉄道車両の主電動機等の大型の装置に用いられる軸受では、軸受部品の摩耗や破損による不都合の発生を防止するために、定期的に分解目視検査を実施するようにしている。
この分解目視検査は、装置の一定期間の使用後に、軸受を装置から取り外して分解し、各軸受構成部品に対して、熟練した専門の検査担当者が、目視によって、摩耗の度合いや傷の有無を確認し、新品の軸受にはない凹凸や摩耗などの異常が検出されれば、新品に交換した後に、再度、組み立てを実施する。
【0003】
ところが、前述した分解検査は、装置から軸受を取り外す分解作業や、検査済みの軸受を再度装置に組み込み直す組込作業に多大な労力がかかり、装置の維持コストの大幅な増大を招くという問題があった。
また、検査時の分解作業や組み込み作業時に、誤って軸受部品等に打痕をつけて、検査自体が部品交換を増やす原因となる虞もあった。
更には、検査担当者の熟練度によっては、欠陥の見落としや、不要な部品交換の実施等の不備が発生する虞もあった。
【0004】
そこで、最近では、このような大型装置に用いられる転がり軸受の摩耗や破損による異常の有無を、前述した分解目視検査によらずに、小型の軸受の異常診断等で普及している評価装置を応用して診断することが検討された。
この評価装置は、転がり軸受の発生する音又は振動を検出して出力される電気信号を所定の波形処理によって周波数スペクトルデータに変換し、予めその転がり軸受の特定部位の異常時に発生する周波数成分値を基準値として記憶しておいて、前記した周波数スペクトルデータ上の基準値の対応箇所にピークが表出するか否かで転がり軸受の特定部位に対する異常の有無の診断を行うものである。
【0005】
従来のこの種の評価装置では、診断する周波数スペクトルデータは、転がり軸受の実際の常用回転数等に関係なく、その軸受を使用する装置に組み込んだ状態での共振帯域に着眼し、転がり軸受の発生する振動信号から共振帯域のみの振動信号を抽出して、その抽出した信号をエンベロープ分析等で周波数スペクトルデータに仕上げる。
【0006】
なお、ラジアル荷重を受ける転がり軸受31にあっては、図4に示すように、軸受31の荷重分布を考えた場合、内輪31b及び外輪31c間に配列された転動体31aに大きな荷重がかかる負荷圏A1と、転動体31aに荷重が負荷されない無負荷圏A2とが存在する。
例えば、円筒ころ軸受のような予圧(アキシャル荷重)を負荷できない転がり軸受では、必ず、この無負荷圏A2が存在する。一方、予圧を負荷できる玉軸受や円錐ころ軸受などの転がり軸受では、所定範囲内でのラジアル荷重下では、無負荷圏A2が存在しなくなる場合もあるが、更に大きなラジアル荷重が負荷されれば、荷重の作用方向と逆の側に無負荷圏A2が発生しうるので、ここでは、全ての場合を含めて、ラジアル荷重の作用方向と逆の側を、無負荷圏A2と呼ぶことにする。
【0007】
そして、このようなラジアル荷重を受ける転がり軸受について、前述した評価装置で異常の有無を診断する場合、転がり軸受の発生する音又は振動を検出する振動検出手段は、負荷圏A1に取り付けることが常識とされている。
これは、例えば、転がり軸受の軌道輪の損傷部を転動体が通過する際に起こる衝突力は、無負荷圏A2よりも負荷圏A1の方が大きく、大きな衝突力が発生することによる。つまり、大きな衝突力が発生する負荷圏A1により接近した位置で測定する方が、損傷部との衝突によって発生する振動を感度よく検出できるからである。
【0008】
このような評価装置によって大型の転がり軸受の異常診断が可能ならば、軸受の分解作業や組込作業が不要になり、更に、検査作業の操作で誤って軸受を破損させるような不都合も回避することができ、更に検査担当者の熟練度によって検査の信頼性が左右されるといったことも無くなり、無駄な部品交換を無くして、装置の維持コストの低減を図ることが可能になる。
【0009】
【発明が解決しようとする課題】
しかし、前述した鉄鋼用の圧延機や鉄道車両の主電動機等の大型の装置に用いられる転がり軸受に対して、前述した従来の評価装置で摩耗や破損による異常の有無の診断を実施すると、共振帯域の周波数スペクトルデータ上の異常を示すはずのピーク箇所が、その軸受の特定部位の異常時に発生する周波数成分値である基準値からずれてしまうため、実際に摩耗や破損等の欠陥による異常があっても、異常と見なされずに、見落とされてしまう虞があり、信頼性が薄く実用性に乏しい。
【0010】
また、鉄道車両の車軸用軸受の場合は、例えば、輪軸試験などで、定期的に、実際の使用回転域である低速回転域で駆動した状態で検査することがある。しかし、鉄道車両の車軸用軸受の場合、軸受が組み込まれるハウジングの剛性が高いため、例えば、軸受の軌道面に交換が必要となる損傷が生じていても、その損傷の上を転動体が通過した際に大きな振動がでず、そのため、装置の共振帯域には損傷に起因する振動が伝達されないため、前述した共振帯域の周波数スペクトルデータで異常の有無を診断する評価装置では、軸受の損傷を見逃してしまう虞があった。
【0011】
更に、転がり軸受を装備した現実の機械等では、転がり軸受が組み込まれる軸受箱(ハウジング)の負荷圏A1を臨む部位に、転がり軸受の音や振動を検出するための振動検出手段を装備するスペースが無かったり、あるいは、負荷圏A1にノイズを発生する高電圧ケーブルなどが配設されていて、負荷圏A1に振動検出手段を装備することが不可能な場合が、少なくない。
そのような場合に、振動検出手段を無負荷圏A2に装備して、診断を行うと、従来の評価方法及び装置では、正確な診断ができないという問題があった。
【0012】
以下に、無負荷圏A2に振動検出手段を取り付けて、従来の評価方法及び装置で異常の有無を診断した場合の問題点を明らかにする。
図5及び図6は、振動検出手段を負荷圏A1に取り付けた場合と、無負荷圏A2に取り付けた場合とで、検出した信号を比較したものである。
図5(a)は、無負荷圏A2に振動検出手段を配置して、その振動検出手段の検出した電気信号を周波数分析したものを示している。また、図5(b)は、負荷圏A1に振動検出手段を配置して、その振動検出手段の検出した電気信号を周波数分析したものを示している。
図5(a)、(b)に示す測定結果を比較すると、負荷圏A1に振動検出手段を取り付けた場合には、2kHz以上の高い周波数帯域でも、振動の発生域が明確に判明するが、無負荷圏A2に振動検出手段を取り付けた場合には、2kHz以上の高い周波数帯域では全体に信号が減衰していて、振動の発生域が不明確である。
【0013】
これは、無負荷圏A2では、高い周波数域の振動の減衰が著しく、高い周波数域となる共振帯域の信号を解析対象とする従来の評価方法及び装置では、信頼性の高い診断を行うことが困難であることを示唆する。
【0014】
図6(a)は、図5(a)の信号をエンベロープ分析して得た周波数スペクトルS1に対して、その軸受の特定部位の異常時に発生する周波数成分値である基準値(図に、点線の縦軸で示す周波数値)を照合した様子を示している。
また、図6(b)は、図5(b)の信号をエンベロープ分析して得た周波数スペクトルS2に対して、その軸受の特定部位の異常時に発生する周波数成分値である基準値(図に、点線の縦軸で示す周波数値)を照合した様子を示している。
【0015】
図6(a)と図6(b)との比較で明かなように、無負荷圏A2に振動検出手段を配置した場合の検出信号では、周波数スペクトルのピーク箇所が、その軸受の異常時に発生する周波数成分値からずれていて(特に基本周波数の22.02Hz付近)、異常の有無の診断が難しい。
このような不都合は、図5(a)に示したように、高い周波数域の信号の減衰が著しく、その信号の減衰分が、エンベロープ波形にずれを生じさせているからである。
【0016】
以上に説明したように、従来の評価方法及び装置では、診断の精度を向上させるためには、振動検出手段を転がり軸受の負荷圏A1に設置することが不可欠であるが、しかし、低速回転で使用され、装置の共振帯域には損傷に起因する振動が伝達され難い大型のラジアル軸受等では、診断を誤る可能性があった。
【0017】
本発明は上記事情に鑑みてなされたもので、ラジアル荷重を受けて低速回転で使用される大型の転がり軸受の摩耗や破損等の異常の有無を、装置の分解等が必要なく、しかも転がり軸受の無負荷圏に取り付けた振動検出手段の出力信号から高精度の診断を行うことができ、振動検出手段の取り付け位置の自由度が高いため、広範囲の機器や装置において転がり軸受の異常検出に利用することができる評価方法及び装置を提供することを目的とする。
【0018】
【課題を解決するための手段】
上記目的を達成するための本発明に係る評価方法は、ラジアル荷重を受ける転がり軸受の発生する音又は振動を電気信号として検出すると共に、検出した電気信号を所定の波形処理によって周波数スペクトルデータに変換し、予めその軸受の特定部位の異常時に発生する周波数成分値を基準値として用意しておいて、前記周波数スペクトルデータ上の前記基準値の対応箇所にピークが表出するか否かで前記転がり軸受の特定部位に対する異常の有無の診断を行う評価方法であって、
前記転がり軸受の発生する音又は振動を電気信号として検出する振動検出手段を、前記転がり軸受の無負荷圏の静止部に取り付け、且つ、前記振動検出手段の出力する電気信号は、フィルタ処理手段によって高い周波数帯域の信号をカットして、低い周波数帯域の信号のみを、前記波形処理によって周波数スペクトルデータに変換することを特徴とする。
【0019】
また、上記目的を達成するための本発明に係る評価装置は、ラジアル荷重を受ける転がり軸受の発生する音又は振動を電気信号として検出すると共に、検出した電気信号を所定の波形処理によって周波数スペクトルデータに変換し、予めその軸受の特定部位の異常時に発生する周波数成分値を基準値として用意しておいて、前記周波数スペクトルデータ上の前記基準値の対応箇所にピークが表出するか否かで前記転がり軸受の特定部位に対する異常の有無の診断を行う評価装置であって、
前記転がり軸受の無負荷圏の静止部に取り付けられて前記転がり軸受の発生する音又は振動を電気信号として検出する振動検出手段と、前記振動検出手段の出力する電気信号から高い周波数帯域の信号をカットするフィルタ処理手段と、前記フィルタ処理手段を通過した低い周波数帯域の電気信号を所定の波形処理によって周波数スペクトルデータに変換する波形処理手段と、予め前記転がり軸受の特定部位の異常時に発生する周波数成分値を基準値として記憶しておいて、前記周波数スペクトルデータ上の前記基準値の対応箇所にピークが表出するか否かで前記転がり軸受の特定部位に対する異常の有無の診断を行う比較判定手段とを備えたことを特徴とする。
【0020】
そして、上記構成の評価方法及び評価装置によれば、ラジアル荷重を受けて低速回転で使用される大型の転がり軸受の異常検出に使用すると、例えば、波形処理手段が作成するエンベロープ分析による周波数スペクトルデータは、無負荷圏においても減衰が少なく高感度で検出することができる低い周波数域の信号に基づいたものであり、更に、転がり軸受の常用回転域に合致したデータで、転がり軸受の特定部位に摩耗や破損等の異常があれば、その異常に起因する周波数成分がピーク値を取るように、異常に起因するピークが波形処理手段の出力する周波数スペクトルデータ上に顕著に表出する。
従って、比較判定手段の診断処理時には、異常の有無の判断基準として予め記憶していた周波数成分値に、波形処理手段が抽出した実測の周波数スペクトルデータのピーク箇所が重なるか否かで、特定部位での異常の有無を確実に診断することができる。
【0021】
【発明の実施の形態】
以下、本発明の評価方法を実現する評価装置の好適な実施の形態を添付図面に基づいて詳細に説明する。
図1は本発明に係る評価装置の一実施の形態を示したものである。
【0022】
この一実施の形態の評価装置1は、ラジアル荷重を受ける転がり軸受3の発生する音又は振動を検知して検知した音又は振動に応じた電気信号を出力する振動検出手段5と、振動検出手段5の出力する電気信号を増幅する増幅手段7と、増幅手段7で増幅された電気信号に対して1kHz以上の周波数成分をカットするフィルタ処理を実施して、1kHz以下の周波数成分のみの電気信号を出力するフィルタ処理手段9と、フィルタ処理手段9の出力する電気信号を所定の波形処理(エンベロープ分析)によって周波数スペクトルデータに変換する波形処理手段11と、予め転がり軸受3の特定部位の異常時に発生する周波数成分値を基準値として記憶し、前記した周波数スペクトルデータ上における基準値の対応箇所にピークが表出するか否かの比較照合処理によって転がり軸受3の特定部位に対する異常の有無の診断を行う比較判定手段15と、検出データ及び処理状況及び診断結果や予め格納したデータ等を表示するためのCRT等の表示手段17と、処理内容やデータや診断結果をハードコピーとして出力するプリンタ19とを備えた構成である。
【0023】
転がり軸受3は、内輪3aの内径が120mm、外輪3bの外径が220mm、内外輪の軸方向の幅寸法が155mm、内外輪間に17個の円錐ころ(図示は8個のみ)3cを装備した低速回転用の円錐転がり軸受で、例えば、鉄鋼用の圧延機や鉄道車両の主電動機等の大型の装置に用いられる。
この転がり軸受3の回転時に発生する音又は振動の検出は、転がり軸受3を通常の使用状態で装置に組み込んだ状態で回転駆動することによって行う。
この転がり軸受3は、実際の使用時と同様に、例えば、毎分180回転の回転速度で回転させた状態で、発生する音又は振動の検出が行われる。
【0024】
振動検出手段5は、圧電式絶縁型加速度センサーが用いられ、転がり軸受3の無負荷圏A2に近接した静止部(例えば、軸受箱など)に取り付けられて、内輪3aを回転させた時に転がり軸受3に発生する振動を測定する。
なお、この振動検出手段5としては、上記の圧電式絶縁型加速度センサー以外も使用可能である。例えば、振動を電気信号を変換する公知の接触式及び非接触式の各種検出器を使用することができる。振動の検出形式も、加速度式、速度式、変位式等の適宜形式のものの採用が可能である。
【0025】
フィルタ処理手段9,波形処理手段11,比較判定手段15等における信号処理は、入力データの演算処理で、コンピュータに所定の演算処理用の適宜プログラムを組み込むことでも構成することができる。
【0026】
増幅手段7から出力された増幅後の信号は、フィルタ処理手段9によるフィルタ処理を受ける前の状態で、波形処理手段11による波形処理(周波数分析)を行うと、図6に示すような周波数スペクトルを示す。
【0027】
波形処理手段11は、受けた信号に対して、エンベロープ分析などの所定の波形処理を施すことで、転がり軸受3の振動状態を示す周波数スペクトルデータを得る。
【0028】
比較判定手段15には、図示はしていないが、転がり軸受3の設計諸元や、異常の有無の診断に使用する各種のデータ(例えば、回転数情報)等を入力する回路や、入力されたデータを記憶する回路が接続されている。
回転体である転がり軸受は、図3に示すように、設計諸元や使用条件に応じて、特定部位の異常時に発生する周波数成分値が決定される。
比較判定手段15は、図3に示す特定部位の異常時に発生する周波数成分値を基準値として記憶していて、波形処理手段11が求めた周波数スペクトルデータ上の前記した基準値の対応箇所にピークが表出するか否かの比較照合処理によって転がり軸受3の特定部位に対する異常の有無の診断を行う。
【0029】
なお、本発明の作用・効果を確認するために、図1に示すように、転がり軸受3の負荷圏A1にも、振動検出手段5と同じ性能の振動検出手段51を装備して、振動検出手段5の検出信号から求めた周波数スペクトルデータと、振動検出手段51の検出信号から求めた周波数スペクトルデータを比較した。
図2(a)は転がり軸受3の無負荷圏A2に取り付けた振動検出手段5の検出信号から求めた周波数スペクトルの波形を示し、図2(b)は転がり軸受3の負荷圏A1に取り付けた振動検出手段51の検出信号から求めた周波数スペクトルの波形を示している。
なお、図2に示した測定結果は、何れも、外輪3bの軌道面に欠陥がある転がり軸受3を、外輪固定で、毎分180回転で内輪3aを回転させた時のものである。
そして、これらの図2(a),(b)に垂直な破線で示す位置の周波数成分値(周波数値)は、特定部位である外輪軌道面の欠陥に起因して発生する周波数成分値である。
【0030】
本実施の形態のように、フィルタ処理手段9によって高い周波数成分をカットした後の検出信号から、周波数スペクトルデータを生成する場合には、振動検出手段5が無負荷圏A2に取り付けられていても、外輪軌道面の損傷に起因して発生する周波数成分値上にスペクトル波形のピークが良好に重なって、外輪の損傷による異常を明確に示唆する。
従って、負荷圏A1に取り付けた振動検出手段51の場合と同様に、容易に、外輪の異常を診断することができる。
【0031】
以上に説明したように、本実施の形態の評価装置1では、ラジアル荷重を受けて低速回転で使用される大型の転がり軸受3の異常検出に使用すると、例えば、波形処理手段11が作成するエンベロープ分析による周波数スペクトルデータは、無負荷圏A2においても減衰が少なく高感度で検出することができる低い周波数域の信号に基づいたものであり、更に、転がり軸受3の常用回転域に合致したデータで、転がり軸受3の特定部位に摩耗や破損等の異常があれば、その異常に起因する周波数成分がピーク値を取るように、異常に起因するピークが波形処理手段11の出力する周波数スペクトルデータ上に顕著に表出する。
【0032】
従って、比較判定手段15の診断処理時には、異常の有無の判断基準として予め記憶していた周波数成分値に、波形処理手段11が抽出した実測の周波数スペクトルデータのピーク箇所が重なるか否かで、確実に異常の有無を診断することができ、診断結果について高い信頼性を保証することができる。
そして、ラジアル荷重を受けて低速回転で使用される大型の転がり軸受3の摩耗や破損等の異常の有無を、転がり軸受3の発生する音を含む振動から周波数分析によって診断できるため、例えば鉄鋼用の圧延機や鉄道車両の主電動機等の大型の装置に用いられる転がり軸受の異常診断や定期検査において、手間のかかる装置の分解等が必要なく、異常診断に要する労力及びコストを削減することが可能になる。
【0033】
【発明の効果】
本発明の評価方法及び装置によれば、ラジアル荷重を受けて低速回転で使用される大型の転がり軸受等の異常検出に使用すると、例えば、波形処理手段が作成するエンベロープ分析による周波数スペクトルデータは、無負荷圏A2においても減衰が少なく高感度で検出することができる低い周波数域の信号に基づいたものであり、更に、転がり軸受の常用回転域に合致したデータで、転がり軸受の特定部位に摩耗や破損等の異常があれば、その異常に起因する周波数成分がピーク値を取るように、異常に起因するピークが波形処理手段の出力する周波数スペクトルデータ上に顕著に表出する。
【0034】
従って、比較判定手段の診断処理時には、異常の有無の判断基準として予め記憶していた周波数成分値に、波形処理手段が抽出した実測の周波数スペクトルデータのピーク箇所が重なるか否かで、確実に異常の有無を診断することができ、診断結果について高い信頼性を保証することができる。
そして、ラジアル荷重を受けて低速回転で使用される大型の転がり軸受の摩耗や破損等の異常の有無を転がり軸受の発生する音を含む振動から周波数分析等によって診断できるため、例えば鉄鋼用の圧延機や鉄道車両の主電動機等の大型の装置に用いられる軸受の異常診断や定期検査において、手間のかかる装置の分解等が必要なく、異常診断に要する労力及びコストを削減することが可能になる。
【図面の簡単な説明】
【図1】本発明に係る評価装置の一実施の形態の概略構成を示すブロック図である。
【図2】転がり軸受の発生する振動信号をエンベロープ分析した周波数スペクトルを示す波形図で、(a)は図1において転がり軸受の無負荷圏に取り付けた振動検出手段が検出した振動信号から1kHz以下の周波数成分のみを抽出して得られた波形図、(b)は図1において転がり軸受の負荷圏に取り付けた振動検出手段が検出した振動信号から1kHz以下の周波数成分のみを抽出して得られた波形図である。
【図3】転がり軸受における傷の箇所と、その傷に起因して周波数スペクトル上にピーク値をもたらすエンベロープ処理後の周波数との関係を示す図である。
【図4】ラジアル荷重を受ける転がり軸受上における負荷圏と無負荷圏の存在域の説明図である。
【図5】振動検出手段の出力する検出信号の周波数分析による波形図で、(a)は振動検出手段を転がり軸受の無負荷圏に取り付けた場合に得られる波形図、(b)は振動検出手段を転がり軸受の負荷圏に取り付けた場合に得られる波形図である。
【図6】図5の波形に基づいてエンベロープ分析した周波数スペクトルを示す波形図で、(a)は転がり軸受の無負荷圏に取り付けた振動検出手段の出力する検出信号より得られる周波数スペクトルの波形図、(b)は転がり軸受の負荷圏に取り付けた振動検出手段の出力する検出信号より得られる周波数スペクトルの波形図である。
【符号の説明】
1 評価装置
3 転がり軸受
5 検出手段
7 増幅手段
9 フィルタ処理手段
11 波形処理手段
13 回転数検出手段
15 比較判定手段
A1 負荷圏
A2 無負荷圏
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention detects a sound or vibration generated by a rolling bearing receiving a radial load, converts the detected electric signal into frequency spectrum data by predetermined waveform processing, and preliminarily detects a frequency component generated when an abnormality occurs in a specific portion of the rolling bearing. An evaluation method and apparatus for storing a value as a reference value and diagnosing the presence or absence of an abnormality in a specific portion of the rolling bearing based on whether a peak appears at a location corresponding to the reference value on the frequency spectrum data described above. It is about.
[0002]
[Prior art]
Until now, for example, in bearings used for large devices such as rolling mills for steel and main motors of railway vehicles, in order to prevent occurrence of inconvenience due to wear and breakage of bearing parts, periodic visual inspection for disassembly is performed. I am trying to implement it.
In this disassembly visual inspection, after the equipment has been used for a certain period of time, the bearings are removed from the equipment and disassembled, and a skilled professional inspector visually inspects each bearing component to determine the degree of wear and the presence or absence of scratches. Is confirmed, and if an abnormality such as unevenness or wear that is not present in the new bearing is detected, the bearing is replaced with a new one and assembly is performed again.
[0003]
However, the above-mentioned disassembly inspection requires a great deal of labor for disassembly work for removing the bearing from the device and for reassembling the inspected bearing into the device again, resulting in a large increase in the maintenance cost of the device. there were.
In addition, during disassembly work or assembling work at the time of inspection, a dent may be erroneously made on a bearing component or the like, and the inspection itself may cause an increase in component replacement.
Further, depending on the skill of the inspector, there is a possibility that defects such as oversight of defects and unnecessary replacement of parts may occur.
[0004]
Therefore, recently, an evaluation device that has been widely used for abnormality diagnosis of small bearings and the like without using the above-described disassembly visual inspection to determine whether there is an abnormality due to wear or damage of the rolling bearing used for such a large device. Application and diagnosis were considered.
This evaluation device detects the sound or vibration generated by the rolling bearing, converts the output electric signal into frequency spectrum data by a predetermined waveform processing, and preliminarily determines a frequency component value generated when an abnormality occurs in a specific portion of the rolling bearing. Is stored as a reference value, and the presence or absence of a peak at a location corresponding to the reference value on the above-mentioned frequency spectrum data is used to diagnose the presence or absence of an abnormality in a specific portion of the rolling bearing.
[0005]
In this type of conventional evaluation device, the frequency spectrum data to be diagnosed focuses on the resonance band in a state in which the bearing is incorporated in a device using the bearing, regardless of the actual normal rotation speed of the rolling bearing, etc. A vibration signal of only the resonance band is extracted from the generated vibration signal, and the extracted signal is converted into frequency spectrum data by envelope analysis or the like.
[0006]
In the case of the rolling bearing 31 that receives a radial load, as shown in FIG. 4, when considering the load distribution of the bearing 31, a load that applies a large load to the rolling elements 31a arranged between the inner ring 31b and the outer ring 31c. There is a zone A1 and a no-load zone A2 in which no load is applied to the rolling elements 31a.
For example, in a rolling bearing such as a cylindrical roller bearing that cannot apply a preload (axial load), the no-load zone A2 always exists. On the other hand, in a rolling bearing such as a ball bearing or a tapered roller bearing capable of applying a preload, under a radial load within a predetermined range, the no-load zone A2 may not exist, but if a larger radial load is applied. Since the no-load zone A2 can be generated on the side opposite to the load application direction, the side opposite to the radial load application direction will be referred to as the no-load zone A2 in all cases. .
[0007]
When the above-described evaluation device diagnoses the presence or absence of an abnormality in the rolling bearing that receives such a radial load, it is common sense that the vibration detecting means for detecting the sound or vibration generated by the rolling bearing is attached to the load zone A1. It has been.
This is because, for example, the collision force generated when the rolling element passes through the damaged portion of the bearing ring of the rolling bearing is greater in the load zone A1 than in the no-load zone A2, and a large collision force is generated. In other words, the measurement at a position closer to the load zone A1 in which a large collision force is generated can detect the vibration generated by the collision with the damaged portion with higher sensitivity.
[0008]
If an abnormality diagnosis of a large rolling bearing is possible by such an evaluation device, the disassembly work and the assembling work of the bearing become unnecessary, and the inconvenience of accidentally damaging the bearing during the inspection work is also avoided. In addition, the reliability of the inspection is not affected by the skill level of the inspector, and the maintenance cost of the apparatus can be reduced by eliminating unnecessary component replacement.
[0009]
[Problems to be solved by the invention]
However, when the above-mentioned conventional evaluation device diagnoses the presence or absence of abnormalities due to wear and breakage for the rolling bearings used in large-scale devices such as the above-mentioned steel rolling mills and main motors of railway vehicles, resonance Since the peak point that should indicate an abnormality in the frequency spectrum data of the band deviates from the reference value, which is the frequency component value generated when an abnormality occurs in a specific part of the bearing, abnormalities due to defects such as wear and breakage actually occur. Even if there is, there is a risk of being overlooked without being regarded as abnormal, resulting in low reliability and poor practicality.
[0010]
In the case of an axle bearing for a railway vehicle, for example, an inspection may be periodically performed in a low-speed rotation range, which is an actual use rotation range, for example, in a wheel set test or the like. However, in the case of axle bearings for railway vehicles, since the housing in which the bearings are incorporated has high rigidity, for example, even if there is damage that requires replacement on the raceway surface of the bearing, the rolling element passes over the damage. Large vibration does not occur when the vibration is caused, and vibration due to damage is not transmitted to the resonance band of the device. There was a risk of overlooking it.
[0011]
Further, in a real machine or the like equipped with a rolling bearing, a space provided with a vibration detecting means for detecting noise and vibration of the rolling bearing is provided at a portion facing the load zone A1 of a bearing housing (housing) in which the rolling bearing is incorporated. There are many cases where there is no vibration or a high-voltage cable or the like that generates noise in the load zone A1 makes it impossible to equip the load zone A1 with vibration detection means.
In such a case, when the vibration is detected by mounting the vibration detecting means in the no-load area A2, there is a problem that accurate diagnosis cannot be performed with the conventional evaluation method and apparatus.
[0012]
In the following, a problem in a case where a vibration detection unit is attached to the no-load zone A2 and the presence or absence of an abnormality is diagnosed by the conventional evaluation method and device will be clarified.
FIGS. 5 and 6 show comparisons of detected signals between the case where the vibration detection means is attached to the load zone A1 and the case where the vibration detection unit is attached to the no-load zone A2.
FIG. 5A shows a result of arranging vibration detecting means in the no-load area A2 and frequency-analyzing an electric signal detected by the vibration detecting means. FIG. 5 (b) shows a result of arranging vibration detecting means in the load zone A1 and performing frequency analysis on an electric signal detected by the vibration detecting means.
Comparing the measurement results shown in FIGS. 5 (a) and 5 (b), when the vibration detecting means is attached to the load zone A1, the generation region of the vibration becomes clear even in a high frequency band of 2 kHz or more. When the vibration detecting means is attached to the no-load zone A2, the signal is attenuated in a high frequency band of 2 kHz or more, and the vibration generation range is unclear.
[0013]
This is because, in the no-load zone A2, the vibration in the high frequency range is significantly attenuated, and the conventional evaluation method and apparatus for analyzing the signal in the resonance band, which is the high frequency range, can perform highly reliable diagnosis. Suggest difficulties.
[0014]
FIG. 6 (a) shows a reference value (dotted line in FIG. 6), which is a frequency component value generated when a specific portion of the bearing is abnormal with respect to the frequency spectrum S1 obtained by envelope analysis of the signal of FIG. 5 (a). (Frequency value indicated by the vertical axis of FIG. 3).
FIG. 6 (b) shows a reference value (in the figure, a frequency component value generated when an abnormality occurs in a specific portion of the bearing) with respect to a frequency spectrum S2 obtained by envelope analysis of the signal of FIG. 5 (b). , The frequency value indicated by the dotted vertical axis).
[0015]
As is clear from a comparison between FIG. 6A and FIG. 6B, in the detection signal when the vibration detecting means is arranged in the no-load zone A2, a peak portion of the frequency spectrum occurs when the bearing is abnormal. (Particularly around the basic frequency of 22.02 Hz), it is difficult to diagnose the presence or absence of an abnormality.
This inconvenience is because, as shown in FIG. 5A, the signal in the high frequency range is significantly attenuated, and the amount of attenuation of the signal causes a shift in the envelope waveform.
[0016]
As described above, in the conventional evaluation method and apparatus, it is essential to install the vibration detecting means in the load zone A1 of the rolling bearing in order to improve the accuracy of diagnosis. Diagnosis may be erroneous for large radial bearings or the like that are used and vibrations due to damage are hardly transmitted to the resonance band of the device.
[0017]
The present invention has been made in view of the above circumstances, and it is possible to determine whether there is an abnormality such as wear or breakage of a large rolling bearing used at low speed under a radial load without disassembling the device, and furthermore, the rolling bearing. High-precision diagnosis can be performed from the output signal of the vibration detection means attached to the no-load area of the vehicle, and the degree of freedom of the installation position of the vibration detection means is high. It is an object of the present invention to provide an evaluation method and apparatus that can perform the evaluation.
[0018]
[Means for Solving the Problems]
An evaluation method according to the present invention for achieving the above object detects a sound or a vibration generated by a rolling bearing receiving a radial load as an electric signal, and converts the detected electric signal into frequency spectrum data by predetermined waveform processing. However, in advance, a frequency component value generated at the time of abnormality of a specific portion of the bearing is prepared as a reference value, and the rolling is determined by whether or not a peak appears at a location corresponding to the reference value on the frequency spectrum data. An evaluation method for diagnosing the presence or absence of abnormality in a specific portion of a bearing,
Vibration detecting means for detecting the sound or vibration generated by the rolling bearing as an electric signal is attached to a stationary portion of the rolling bearing in a no-load zone, and the electric signal output from the vibration detecting means is filtered by a filter processing means. A high frequency band signal is cut, and only a low frequency band signal is converted into frequency spectrum data by the waveform processing.
[0019]
Further, the evaluation device according to the present invention for achieving the above object detects sound or vibration generated by a rolling bearing receiving a radial load as an electric signal, and converts the detected electric signal into frequency spectrum data by predetermined waveform processing. Is prepared in advance as a reference value a frequency component value generated when an abnormality of a specific portion of the bearing is determined, and whether or not a peak appears at a location corresponding to the reference value on the frequency spectrum data. An evaluation device for diagnosing the presence or absence of an abnormality with respect to a specific portion of the rolling bearing,
A vibration detection unit attached to a stationary portion of the no-load zone of the rolling bearing to detect sound or vibration generated by the rolling bearing as an electric signal, and a signal in a high frequency band from an electric signal output by the vibration detection unit. Filter processing means for cutting, a waveform processing means for converting an electric signal of a low frequency band which has passed through the filter processing means into frequency spectrum data by predetermined waveform processing, and a frequency generated in advance when a specific portion of the rolling bearing is abnormal. A comparison determination in which the component values are stored as reference values, and a diagnosis is made as to whether or not there is an abnormality in a specific portion of the rolling bearing based on whether a peak appears at a location corresponding to the reference value on the frequency spectrum data. Means.
[0020]
According to the evaluation method and the evaluation apparatus of the above configuration, when used for detecting an abnormality of a large rolling bearing used at low speed under a radial load, for example, frequency spectrum data obtained by envelope analysis created by a waveform processing unit is used. Is based on a signal in a low frequency range that can be detected with high sensitivity with little attenuation even in the no-load range.Furthermore, data that matches the normal rotation range of the rolling bearing is used for specific parts of the rolling bearing. If there is an abnormality such as abrasion or breakage, the peak caused by the abnormality appears remarkably on the frequency spectrum data output by the waveform processing means, so that the frequency component caused by the abnormality has a peak value.
Therefore, at the time of the diagnosis processing of the comparison and determination means, whether or not the peak position of the actually measured frequency spectrum data extracted by the waveform processing means overlaps with the frequency component value stored in advance as a criterion for determining the presence or absence of an abnormality is determined. It is possible to reliably diagnose the presence or absence of an abnormality in the system.
[0021]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of an evaluation device for realizing the evaluation method of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 shows an embodiment of the evaluation device according to the present invention.
[0022]
The evaluation device 1 according to the embodiment includes a vibration detecting unit 5 that detects a sound or a vibration generated by the rolling bearing 3 that receives a radial load and outputs an electric signal corresponding to the detected sound or the vibration, and a vibration detecting unit. Amplifying means 7 for amplifying the electric signal output from the electronic device 5 and a filter process for cutting a frequency component of 1 kHz or more from the electric signal amplified by the amplifying means 7 to execute an electric signal having only a frequency component of 1 kHz or less. , A waveform processing means 11 for converting an electric signal output from the filter processing means 9 into frequency spectrum data by a predetermined waveform processing (envelope analysis), and when a specific portion of the rolling bearing 3 is abnormal in advance. The generated frequency component value is stored as a reference value, and a peak appears at a location corresponding to the reference value on the frequency spectrum data. A comparison determining means 15 for diagnosing the presence or absence of an abnormality in a specific portion of the rolling bearing 3 by the comparison and collation processing, and a display means such as a CRT for displaying detection data, processing status, diagnosis results, data stored in advance, and the like. 17 and a printer 19 that outputs processing contents, data, and diagnosis results as a hard copy.
[0023]
The rolling bearing 3 has an inner ring 3a having an inner diameter of 120 mm, an outer ring 3b having an outer diameter of 220 mm, an inner and outer ring having an axial width of 155 mm, and 17 tapered rollers (only eight shown) 3c between the inner and outer rings. A conical rolling bearing for low-speed rotation, which is used in large-sized devices such as a rolling mill for steel or a main motor of a railway vehicle.
The detection of the noise or vibration generated when the rolling bearing 3 rotates is performed by rotating the rolling bearing 3 in a state where the rolling bearing 3 is incorporated in the device in a normal use state.
As in the case of actual use, the rolling bearing 3 is rotated at a rotation speed of, for example, 180 revolutions per minute to detect a generated sound or vibration.
[0024]
The vibration detecting means 5 uses a piezoelectric insulation type acceleration sensor, and is attached to a stationary part (for example, a bearing box) close to the no-load zone A2 of the rolling bearing 3, and when the inner ring 3a is rotated, the rolling bearing is used. The vibration generated in 3 is measured.
In addition, as the vibration detecting means 5, other than the above-mentioned piezoelectric insulation type acceleration sensor can be used. For example, various known contact-type and non-contact-type detectors that convert vibration into an electric signal can be used. As the detection form of the vibration, an appropriate type such as an acceleration type, a speed type, and a displacement type can be adopted.
[0025]
The signal processing in the filter processing means 9, the waveform processing means 11, the comparison determination means 15 and the like is an arithmetic processing of input data, and can be also configured by incorporating an appropriate program for a predetermined arithmetic processing in a computer.
[0026]
When the amplified signal output from the amplifying means 7 is subjected to waveform processing (frequency analysis) by the waveform processing means 11 before being subjected to the filtering processing by the filtering processing means 9, the frequency spectrum as shown in FIG. Is shown.
[0027]
The waveform processing means 11 performs predetermined waveform processing such as envelope analysis on the received signal to obtain frequency spectrum data indicating the vibration state of the rolling bearing 3.
[0028]
Although not shown, a circuit for inputting design data of the rolling bearing 3 and various data (for example, information on the number of revolutions) used for diagnosing the presence or absence of an abnormality, or the like, is input to the comparing and judging means 15. A circuit for storing the data is connected.
As shown in FIG. 3, a frequency component value generated when a specific portion is abnormal is determined for a rolling bearing, which is a rotating body, according to design specifications and use conditions.
The comparison determination means 15 stores a frequency component value generated when an abnormality occurs in the specific part shown in FIG. 3 as a reference value, and peaks at a location corresponding to the reference value on the frequency spectrum data obtained by the waveform processing means 11. Is diagnosed as to whether or not there is an abnormality with respect to a specific portion of the rolling bearing 3 by a comparison and collation process as to whether or not is displayed.
[0029]
In order to confirm the operation and effect of the present invention, as shown in FIG. 1, a vibration detecting means 51 having the same performance as the vibration detecting means 5 is also provided in the load zone A1 of the rolling bearing 3 so as to detect the vibration. The frequency spectrum data obtained from the detection signal of the means 5 and the frequency spectrum data obtained from the detection signal of the vibration detection means 51 were compared.
2A shows a waveform of a frequency spectrum obtained from a detection signal of the vibration detecting means 5 attached to the no-load zone A2 of the rolling bearing 3, and FIG. 2B shows a waveform of the frequency spectrum attached to the loading zone A1 of the rolling bearing 3. 3 shows a waveform of a frequency spectrum obtained from a detection signal of the vibration detecting means 51.
Note that the measurement results shown in FIG. 2 are all obtained when the rolling bearing 3 having a defect in the raceway surface of the outer ring 3b is fixed to the outer ring and the inner ring 3a is rotated at 180 rotations per minute.
The frequency component value (frequency value) at the position indicated by the broken line perpendicular to FIGS. 2A and 2B is a frequency component value generated due to a defect on the outer raceway surface which is a specific portion. .
[0030]
As in the present embodiment, when frequency spectrum data is generated from the detection signal after the high frequency component is cut by the filter processing unit 9, even if the vibration detection unit 5 is attached to the no-load area A2. In addition, the peak of the spectrum waveform well overlaps the frequency component value generated due to the damage of the outer raceway surface, which clearly indicates the abnormality due to the damage of the outer race.
Therefore, similarly to the case of the vibration detecting means 51 attached to the load zone A1, the abnormality of the outer ring can be easily diagnosed.
[0031]
As described above, in the evaluation device 1 according to the present embodiment, when the evaluation device 1 is used for detecting an abnormality of the large rolling bearing 3 used at low speed under a radial load, for example, the envelope generated by the waveform processing unit 11 may be used. The frequency spectrum data obtained by the analysis is based on a signal in a low frequency range that can be detected with high sensitivity with little attenuation even in the no-load zone A2, and is data that matches the normal rotation range of the rolling bearing 3. If there is an abnormality such as wear or breakage at a specific portion of the rolling bearing 3, the peak caused by the abnormality is displayed on the frequency spectrum data output from the waveform processing unit 11 so that the frequency component caused by the abnormality takes a peak value. Appears prominently.
[0032]
Therefore, at the time of the diagnostic processing of the comparison determining means 15, whether or not the peak location of the actually measured frequency spectrum data extracted by the waveform processing means 11 overlaps with the frequency component value stored in advance as a criterion for determining the presence or absence of an abnormality is determined. The presence or absence of an abnormality can be reliably diagnosed, and high reliability of the diagnosis result can be guaranteed.
Then, the presence or absence of an abnormality such as abrasion or breakage of the large rolling bearing 3 used at low speed under a radial load can be diagnosed by frequency analysis from vibration including noise generated by the rolling bearing 3. In trouble diagnosis and periodic inspection of rolling bearings used in large-sized devices such as rolling mills and main motors of railway vehicles, troublesome disassembly of devices is not required, and labor and cost required for trouble diagnosis can be reduced. Will be possible.
[0033]
【The invention's effect】
According to the evaluation method and apparatus of the present invention, when used for abnormality detection of a large rolling bearing or the like used at low speed under a radial load, for example, frequency spectrum data by envelope analysis created by a waveform processing unit is It is based on a signal in a low frequency range that can be detected with high sensitivity even in the no-load zone A2 with little attenuation. In addition, data that matches the normal rotation range of the rolling bearing, If there is an abnormality such as breakage or breakage, the peak caused by the abnormality appears remarkably on the frequency spectrum data output from the waveform processing means, so that the frequency component caused by the abnormality has a peak value.
[0034]
Therefore, at the time of the diagnostic processing of the comparison determining means, it is surely determined whether or not the peak position of the actually measured frequency spectrum data extracted by the waveform processing means overlaps with the frequency component value stored in advance as a criterion for determining the presence or absence of abnormality. The presence or absence of an abnormality can be diagnosed, and high reliability of the diagnosis result can be guaranteed.
Then, it is possible to diagnose the presence or absence of abnormalities such as wear and breakage of large rolling bearings that are used at low speeds under a radial load by vibration analysis including noise generated by the rolling bearings by frequency analysis and the like. In trouble diagnosis and periodic inspection of bearings used for large devices such as main motors of railway machines and railway vehicles, troublesome disassembly of devices is not required, and labor and cost required for trouble diagnosis can be reduced. .
[Brief description of the drawings]
FIG. 1 is a block diagram showing a schematic configuration of an embodiment of an evaluation device according to the present invention.
FIG. 2 is a waveform diagram showing a frequency spectrum obtained by performing an envelope analysis on a vibration signal generated by the rolling bearing. FIG. 2 (a) shows a frequency spectrum of 1 kHz or less from a vibration signal detected by a vibration detecting means attached to a no-load zone of the rolling bearing in FIG. FIG. 1 (b) is a waveform diagram obtained by extracting only the frequency components of FIG. 1, and FIG. 1 (b) is obtained by extracting only the frequency components of 1 kHz or less from the vibration signal detected by the vibration detection means attached to the load zone of the rolling bearing in FIG. FIG.
FIG. 3 is a diagram illustrating a relationship between a location of a flaw in a rolling bearing and a frequency after an envelope process that causes a peak value on a frequency spectrum due to the flaw.
FIG. 4 is an explanatory diagram of a load zone and a no-load zone on a rolling bearing that receives a radial load.
5A and 5B are waveform diagrams obtained by frequency analysis of a detection signal output from a vibration detection unit, where FIG. 5A is a waveform diagram obtained when the vibration detection unit is mounted in a no-load zone of a rolling bearing, and FIG. It is a waveform diagram obtained when a means is attached to the load zone of a rolling bearing.
FIG. 6 is a waveform diagram showing a frequency spectrum obtained by performing envelope analysis based on the waveform of FIG. 5; FIG. 6 (a) is a waveform of a frequency spectrum obtained from a detection signal output from a vibration detecting means attached to a no-load zone of a rolling bearing; FIG. 3B is a waveform diagram of a frequency spectrum obtained from a detection signal output from a vibration detecting unit attached to a load zone of the rolling bearing.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Evaluation device 3 Rolling bearing 5 Detecting means 7 Amplifying means 9 Filter processing means 11 Waveform processing means 13 Rotation speed detecting means 15 Comparison determining means A1 Load area A2 No load area

Claims (2)

ラジアル荷重を受ける転がり軸受の発生する音又は振動を電気信号として検出すると共に、検出した電気信号を所定の波形処理によって周波数スペクトルデータに変換し、予めその軸受の特定部位の異常時に発生する周波数成分値を基準値として用意しておいて、前記周波数スペクトルデータ上の前記基準値の対応箇所にピークが表出するか否かで前記転がり軸受の特定部位に対する異常の有無の診断を行う評価方法であって、
前記転がり軸受の発生する音又は振動を電気信号として検出する振動検出手段を、前記転がり軸受の無負荷圏の静止部に取り付け、且つ、前記振動検出手段の出力する電気信号は、フィルタ処理手段によって高い周波数帯域の信号をカットして、低い周波数帯域の信号のみを、前記波形処理によって周波数スペクトルデータに変換することを特徴とする評価方法。
The sound or vibration generated by a rolling bearing subjected to a radial load is detected as an electric signal, and the detected electric signal is converted into frequency spectrum data by a predetermined waveform processing, and a frequency component generated in advance when a specific portion of the bearing is abnormal. A value is prepared as a reference value, and an evaluation method for diagnosing the presence or absence of an abnormality with respect to a specific portion of the rolling bearing by whether or not a peak appears at a location corresponding to the reference value on the frequency spectrum data. So,
Vibration detecting means for detecting the sound or vibration generated by the rolling bearing as an electric signal is attached to a stationary portion of the rolling bearing in a no-load zone, and the electric signal output from the vibration detecting means is filtered by a filter processing means. An evaluation method, wherein a signal in a high frequency band is cut, and only a signal in a low frequency band is converted into frequency spectrum data by the waveform processing.
ラジアル荷重を受ける転がり軸受の発生する音又は振動を電気信号として検出すると共に、検出した電気信号を所定の波形処理によって周波数スペクトルデータに変換し、予めその軸受の特定部位の異常時に発生する周波数成分値を基準値として用意しておいて、前記周波数スペクトルデータ上の前記基準値の対応箇所にピークが表出するか否かで前記転がり軸受の特定部位に対する異常の有無の診断を行う評価装置であって、
前記転がり軸受の無負荷圏の静止部に取り付けられて前記転がり軸受の発生する音又は振動を電気信号として検出する振動検出手段と、前記振動検出手段の出力する電気信号から高い周波数帯域の信号をカットするフィルタ処理手段と、前記フィルタ処理手段を通過した低い周波数帯域の電気信号を所定の波形処理によって周波数スペクトルデータに変換する波形処理手段と、予め前記転がり軸受の特定部位の異常時に発生する周波数成分値を基準値として記憶しておいて、前記周波数スペクトルデータ上の前記基準値の対応箇所にピークが表出するか否かで前記転がり軸受の特定部位に対する異常の有無の診断を行う比較判定手段とを備えたことを特徴とする評価装置。
The sound or vibration generated by a rolling bearing subjected to a radial load is detected as an electric signal, and the detected electric signal is converted into frequency spectrum data by a predetermined waveform processing, and a frequency component generated in advance when a specific portion of the bearing is abnormal. An evaluation device that prepares a value as a reference value and diagnoses whether or not there is an abnormality with respect to a specific portion of the rolling bearing by whether or not a peak appears at a location corresponding to the reference value on the frequency spectrum data. So,
A vibration detection unit attached to a stationary portion of the no-load zone of the rolling bearing to detect sound or vibration generated by the rolling bearing as an electric signal, and a signal in a high frequency band from an electric signal output by the vibration detection unit. Filter processing means for cutting, a waveform processing means for converting an electric signal of a low frequency band which has passed through the filter processing means into frequency spectrum data by predetermined waveform processing, and a frequency generated in advance when a specific portion of the rolling bearing is abnormal. A comparison determination in which the component values are stored as reference values, and a diagnosis is made as to whether or not there is an abnormality in a specific portion of the rolling bearing based on whether a peak appears at a location corresponding to the reference value on the frequency spectrum data. And an evaluation device.
JP2002254978A 2002-08-30 2002-08-30 Evaluation method and evaluation device Pending JP2004093357A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002254978A JP2004093357A (en) 2002-08-30 2002-08-30 Evaluation method and evaluation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002254978A JP2004093357A (en) 2002-08-30 2002-08-30 Evaluation method and evaluation device

Publications (1)

Publication Number Publication Date
JP2004093357A true JP2004093357A (en) 2004-03-25

Family

ID=32060624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002254978A Pending JP2004093357A (en) 2002-08-30 2002-08-30 Evaluation method and evaluation device

Country Status (1)

Country Link
JP (1) JP2004093357A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006058052A (en) * 2004-08-18 2006-03-02 Ntn Corp Bearing device for wheel
JP2007178347A (en) * 2005-12-28 2007-07-12 Fujifilm Corp Method for detecting minute flaw in bearing for coating machine rotating at low speed, and device therefor
DE112007000483T5 (en) 2006-02-28 2009-01-15 Thk Co., Ltd. State detecting device, state detecting method, state detecting program and information recording medium
JP2010041771A (en) * 2008-08-01 2010-02-18 Nsk Ltd Method and apparatus for inspecting electric motor
CN102809487A (en) * 2012-08-09 2012-12-05 浙江传媒学院 Mute life testing machine of rolling bearing
CN102809486A (en) * 2012-08-09 2012-12-05 浙江传媒学院 Driving mechanism of mute life testing machine of rolling bearing
CN106248379A (en) * 2016-08-19 2016-12-21 北京航空航天大学 A kind of bearing with solid lubricant accelerated life test loading spectrum method for designing

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006058052A (en) * 2004-08-18 2006-03-02 Ntn Corp Bearing device for wheel
JP2007178347A (en) * 2005-12-28 2007-07-12 Fujifilm Corp Method for detecting minute flaw in bearing for coating machine rotating at low speed, and device therefor
DE112007000483T5 (en) 2006-02-28 2009-01-15 Thk Co., Ltd. State detecting device, state detecting method, state detecting program and information recording medium
US8214160B2 (en) 2006-02-28 2012-07-03 THK. Co., Ltd. State detection device, state detection method, state detection program, and information recording medium
DE112007000483B4 (en) 2006-02-28 2019-08-22 Thk Co., Ltd. State detecting device, state detecting method, state detecting program and information recording medium
JP2010041771A (en) * 2008-08-01 2010-02-18 Nsk Ltd Method and apparatus for inspecting electric motor
CN102809487A (en) * 2012-08-09 2012-12-05 浙江传媒学院 Mute life testing machine of rolling bearing
CN102809486A (en) * 2012-08-09 2012-12-05 浙江传媒学院 Driving mechanism of mute life testing machine of rolling bearing
CN106248379A (en) * 2016-08-19 2016-12-21 北京航空航天大学 A kind of bearing with solid lubricant accelerated life test loading spectrum method for designing

Similar Documents

Publication Publication Date Title
JP4120099B2 (en) Bearing abnormality diagnosis method and abnormality diagnosis device
WO2004063680A2 (en) Multiple discriminate analysis and data integration of vibration in rotation machinery
WO2006030786A1 (en) Abnormality diagnosis device and abnormality diagnosis method
JP2005062154A (en) Abnormality diagnostic device and roller bearing device comprising the same
JPWO2016175322A1 (en) Abnormality diagnosis system
JP2017032520A (en) State monitoring device and state monitoring method
JP2007278895A (en) Device and method for diagnosing abnormality
JP2010234403A (en) Device and method for diagnosing abnormality of rotary shaft of rolling mill
JP2003232674A (en) Abnormality diagnosing method and abnormality diagnosing device of machine equipment or apparatus
JP2004093357A (en) Evaluation method and evaluation device
JPS6293620A (en) Diagnostic device for rotary machine
JPH07218334A (en) Method and device for diagnosing bearing
KR102068077B1 (en) A Diagnosis Apparatus For Rotating Machinery Using Complex Signals
JP2019158514A (en) Inspection device of bearing for passenger conveyor, and inspection method of bearing for passenger conveyor
JP5673382B2 (en) Abnormal diagnosis method
JP4253104B2 (en) Abnormal diagnosis method for rotating machinery
JP3566002B2 (en) Diagnosis method of rolling bearing and rolling bearing device
JP3876976B2 (en) Evaluation apparatus and evaluation method
JP6966497B2 (en) Bearing diagnostic equipment, bearing diagnostic method, and escalator
JP2004184400A (en) System for monitoring mechanical equipment
KR101482511B1 (en) Diagnosis System and Method of Bearing Defect by Phase Lag and Data Dispersion Shape Factor
KR20140058900A (en) Apparatus and method for monitoring initial imperfection of spindle in rolling mill
US6347548B1 (en) Apparatus for and method of monitoring a rotating machine
Mba et al. Condition monitoring of low-speed rotating machinery using stress waves Part 2
JP7476440B2 (en) Method for diagnosing abnormalities in the shock system of rotating machinery