JP3566002B2 - Diagnosis method of rolling bearing and rolling bearing device - Google Patents

Diagnosis method of rolling bearing and rolling bearing device Download PDF

Info

Publication number
JP3566002B2
JP3566002B2 JP27559396A JP27559396A JP3566002B2 JP 3566002 B2 JP3566002 B2 JP 3566002B2 JP 27559396 A JP27559396 A JP 27559396A JP 27559396 A JP27559396 A JP 27559396A JP 3566002 B2 JP3566002 B2 JP 3566002B2
Authority
JP
Japan
Prior art keywords
outer ring
strain gauge
rolling
rolling bearing
end surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27559396A
Other languages
Japanese (ja)
Other versions
JPH10104125A (en
Inventor
則夫 渡辺
秀隆 久保園
正則 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koyo Seiko Co Ltd
Original Assignee
Koyo Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Seiko Co Ltd filed Critical Koyo Seiko Co Ltd
Priority to JP27559396A priority Critical patent/JP3566002B2/en
Publication of JPH10104125A publication Critical patent/JPH10104125A/en
Application granted granted Critical
Publication of JP3566002B2 publication Critical patent/JP3566002B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/52Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions
    • F16C19/527Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions related to vibration and noise
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/04Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
    • F16C19/06Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with a single row or balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2233/00Monitoring condition, e.g. temperature, load, vibration

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Rolling Contact Bearings (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、たとえば圧延装置等のロールを支持する転がり軸受装置およびその診断方法に係り、特に、内部に発生した損傷を検出することができる技術に関する。
【0002】
【従来の技術】
一般に、圧延装置などに用いられる低速回転の転がり軸受装置では潤滑油が回り難く、しかも、高負荷で用いられるためコロなどの転動体の表面の油膜保持力が弱く損傷を受けやすい。このため、従来では、定期的に転がり軸受装置を圧延ラインから取り出して点検を行うようにしており、点検のために多大な労力を払っていた。
【0003】
一方、歪ゲージを設けた転がり軸受装置が従来より提案されている。たとえば、特開昭56−162033号では、軸受を支持する座金にひずみ測定素子を設け、軸受荷重の異常を検出するようにした技術が開示されている。しかしながら、この技術では、座金にひずみ測定素子を設けているため、軸受の損傷を検出するには感度が充分でなく、信頼性に欠けるという欠点がある。
【0004】
また、実公平6−24570号や特開平2−253009号などでは、軸受の外輪の外周面に凹部を設け、凹部に歪ゲージを固着して軸受荷重や軸受予圧量を検出する技術が開示されている。また、外輪の外周面に歪ゲージを貼着し、歪ゲージを避けるために軸受のケーシング(軸受箱)の内周面に凹部を設けた技術も提供されている。このような技術では、軸受に直接歪ゲージを設けているため、感度の点では問題はない。しかしながら、軸受の外輪に凹部を形成する技術では軸受の剛性が低下し、高負荷で用いることが不可能になる。また、既存の設備を改造して歪ゲージを設ける場合には、熱処理されている外輪に機械加工を施すのは困難であるとともに、ケーシングの機械加工もかなり煩雑である。さらに、低速回転で用いる場合には潤滑油の回りが悪いため、軸受に潤滑油をかけながら使用することがあるが、歪ゲージの貼着部に潤滑油がかかると接着剤がはがれてしまう等のトラブルが生じる。
【0005】
【発明が解決しようとする課題】
以上のように、従来より提案されている技術は、いずれも低速回転、高負荷で用いる装置の損傷を検出するには不向きであり、新たな改善が要望されていた。なお、損傷検出のために振動センサを用いることが従来より行われているが、振動センサは加速度を検出するものであるため、低速回転の場合には殆ど作動せず実用化は不可能である。
本発明は上記事情に鑑みてなされたもので、内部に発生した損傷を確実に検出することができるとともに、低速回転、高負荷という条件で潤滑油を多用することによるセンサへの悪影響を軽減し、よって、円滑な運転を可能にする転がり軸受の診断方法および転がり軸受装置を提供することを目的としている。
【0006】
【課題を解決するための手段】
本発明の転がり軸受の診断方法は、ケーシングに支持された外輪の内周側に複数の転動体を介して内輪を回転自在に支持した転がり軸受の上記内・外輪、転動体等に生じた傷を検出する転がり軸受の診断方法であって、上記ケーシングの開口部に上記外輪の端面を押圧する蓋体が設けられており、上記蓋体の内側に上記外輪の端面によって密閉される凹部が形成されており、上記凹部の内部における上記外輪の軸線方向に位置する端面(以下、外輪端面と称する)に、転動体が外輪の内周軌道面を転動することにより生じる外輪の負荷変動を検出して周期的かつ規則的な出力信号を出力する歪ゲージを固着し、この歪みゲージに接続した周波数解析手段によって傷を検出するようにしたことを特徴としている。
【0007】
上記転がり軸受の診断方法にあっては、転動体が転動して歪ゲージの付近を通過する毎に外輪に負荷変動が生じ、歪ゲージの出力信号は周期的かつ規則的に変動する。ここで、たとえば転動体の外周面に傷が生じていると、傷が内・外輪に接触する毎に傷による負荷変動が歪ゲージの出力信号に重畳される。なお、内輪の外周軌道面や外輪の内周軌道面(以下、これらの面を転動面と称する)に傷が生じていても同様の出力信号が得られる。そして、この出力信号が周波数解析手段に入力されて出力信号の高周波成分が傷として検出される。
【0008】
次に、本発明の第1の軸受装置は、ケーシングに支持された外輪の内周側に複数の転動体を介して内輪を回転自在に支持した転がり軸受装置において、上記ケーシングの開口部に上記外輪の端面を押圧する蓋体が設けられており、上記蓋体の内側に上記外輪の端面によって密閉される凹部が形成されており、上記凹部の内部における上記外輪端面に、転動体が外輪の内周軌道面を転動することにより生じる外輪の負荷変動を検出して周期的かつ規則的な出力信号を出力する歪ゲージを固着し、この歪みゲージに周波数解析手段を接続して内・外輪、転動体等に生じた傷を検出するようにしたことを特徴としている。
この軸受装置においては、本発明の転がり軸受の診断方法と同等の作用により内・外輪、転動体等に生じた傷を検出することができ、いわば自己診断機能を有する転がり軸受装置である点に特徴がある。
【0009】
このように、本発明においては、歪ゲージが発生する周期的かつ規則的な出力信号を加工して評価するから、低速回転であっても傷の発生を確実に検出することができる。また、外輪端面に歪ゲージを固着しているので、外輪を機械加工する必要がなく、よって、装置の剛性を低下させずに高負荷での運転に適用可能であるとともに、保守点検や既存の設備への適用が容易であるという利点もある。
【0010】
ここで、本発明の転がり軸受の診断方法または転がり軸受装置の周波数解析手段としては、たとえば、歪ゲージに接続されたハイパスフィルターと、このハイパスフィルターで顕著化された歪ゲージの出力信号の高周波成分を表示または報知する評価手段とを備えた構成とすることができる。この構成では、歪ゲージの出力信号がハイパスフィルターを通過することにより、出力波形の中の傷により生じた高周波成分が顕著化され、評価手段によって確認できるようになる。なお、評価手段としては、オッシロスコープが代表的であるが、顕著化された高周波成分の値が所定の閾値に達したときにブザーやランプが作動して報知するように構成することもできる。あるいは、傷が発見されたらシャフトの回転を自動停止するように構成することもできる。また、高周波成分の周期から公知の計算方法を用いて傷の部位を算出することもできる。さらに、周波数解析手段として高速フーリエ変換(FFT)装置を用いることも可能である。この場合において、FFT装置に記憶させた周波数領域関数は勿論のこと、時間領域関数を用いることもできる。すなわち、周波数解析手段は、周期解析手段も含んでいる。
【0011】
上記転がり軸受装置は、外輪をケーシングに支持させて固定し、内輪がシャフト等を回転自在に支持するようにして構成することができる。この場合、歪ゲージをケーシングの外側を向く外輪端面に固着すれば、保守点検や既存の設備への適用がより一層容易になる。たとえば、ケーシングの両端部に外輪をそれぞれ設けるような場合である。
【0012】
次に、本発明の第2の転がり軸受装置は、外輪をケーシングに支持させるとともに、この外輪の内周側に複数の転動体を介して内輪を回転自在に支持し、ケーシングの開口部に外輪端面を押圧する蓋体を設けた転がり軸受装置において、蓋体の内側の端面に外輪の端面によって密閉される凹部を設け、この凹部に歪ゲージを収容して歪ゲージを外輪端面に固着し、歪ゲージの出力信号に基づいて内・外輪、転動体等に生じた傷を検出することを特徴としている。
【0013】
上記構成の転がり軸受装置においても、転動体が歪ゲージの付近を通過する毎に外輪に負荷変動が生じ、歪ゲージの出力信号は周期的かつ規則的に変動する。そして、転動体の外周面や内・外輪の転動面に傷が生じていると、傷が相手部材に接触する毎に傷による負荷変動が歪ゲージの出力信号に重畳され、歪ゲージの出力信号の不規則部分から傷を検出することができる。特に、本発明の第2の転がり軸受装置では、蓋体の内側の端面に凹部を設け、この凹部に歪ゲージを収容して歪ゲージを外輪端面に固着しているから潤滑油が歪ゲージにかかり難く、潤滑油をかけながら運転しても歪ゲージへの支障は生じ難いという利点を有する。
【0014】
ここで、潤滑油は転動体に注ぐのが通常であるから、凹部の周壁部によって歪ゲージを転動体側の空間から遮蔽するのが望ましい。より望ましくは、凹部をほぼ密閉された空間にするのが良い。また、歪ゲージと凹部との間に歪ゲージを押圧する弾性部材を介装すれば、歪ゲージの接着剤が硬化するまで外輪に圧接しておくことができ、非常に便利である。
【0015】
ところで、外輪端面と外輪の外周面とにおける負荷変動を比較すると、外輪端面の負荷変動の方が小さい。よって、外輪端面に歪ゲージを固着した本発明では、検出精度に限界があり、転がり軸受装置が小型の場合には傷の検出が困難になることは否めない。本発明者等は、各種サイズの転がり軸受装置で傷の検出試験を行った結果、外輪端面の半径方向の幅が3mmを下回ると、傷の検出の信頼性が低くなることが判った。よって、外輪の幅は3mm以上であることが望ましく、より望ましくは5mm以上、8mm以上であればさらに望ましい。ただし、外輪の幅が3mmを下回っても傷の検出は可能であるから、かかる範囲に本発明が限定されるものではない。また、本発明は、シャフトが高速回転する場合でも適用可能であるが、シャフトの回転数が150rpm以下の場合に用いて好適であり、100rpm以下であればより好適である。さらに、70rpmであればなお好適であり、50rpm以下であれば最良である。
【0016】
【発明の実施の形態】
以下、図1ないし図4を参照して本発明の実施の形態を説明する。図1は実施の形態の転がり軸受装置を示す側断面図である。図において符号1はケーシングである。ケーシング1は円筒状をなし、その両端部(図では一端部のみ示す)にはベアリング2が取り付けられている。ベアリング2は、ケーシング1の内周面に嵌合する外輪20と、複数のボール(転動体)21と、これらボール21によって外輪の内周側で回転自在に支持された内輪22とからなっている。
【0017】
また、ケーシング1の開口部にはプラグ(蓋体)3が取り付けられている。プラグ3の内側を向く端面には、ほぼ全周にわたって延在する凸条30が形成されている。凸条30は、外輪20を押圧しており、ベアリング2の抜け止めとして機能している。凸条30の一部は半径方向に向けて切り欠かれ、そこに凹部31が形成されている。そして、凹部31には歪ゲージ4が収容され、歪ゲージ4は外輪20の端面に接着されている。歪ゲージ4の歪み方向は円周方向へ向けられているが、半径方向や斜め方向など他の方向へ向けることもできる。歪ゲージ4の導線40は、プラグ3に形成した孔32を通して外部に導かれ、ハイパスフィルターを介してオッシロスコープ(それぞれ図示略)に接続されている。なお、図中符号5はオイルシール、6はシャフトである。
【0018】
次に、上記構成の転がり軸受装置の作用について説明する。圧延ロールなどの負荷が設けられたシャフト6が回転すると、ベアリング2の内輪22が回転し、ボール21が外輪20の転動面に沿って転動する。そして、ボール21が歪ゲージ4を通過する毎に外輪20に負荷変動が生じ、歪ゲージ4の出力信号は、ほぼ正弦曲線のように変化する。図3は歪ゲージ4の出力波形を示す線図であり、縦軸は出力電圧である。ここで、内輪22の転動面に傷が生じていると、傷にボール21が接触する毎に傷による負荷変動が歪ゲージ4の出力信号に重畳され、図3に示すように、先鋭なピークとなって出力信号に現れる。この出力信号はハイパスフィルターによって処理され、図4に示すように、オッシロスコープに高周波数成分であるピークで大きな振幅を有する波形が表示される。よって、作業者は、オッシロスコープに表示された波形で傷の発生を知ることができる。あるいは、出力信号の振幅が所定の閾値を超えたときにブザー等の警報を発するようにしたり、シャフト6の回転を自動的に停止するように構成することもできる。また、ピークの周期ΔXから公知の計算方法を用いて傷の発生箇所を知ることもできる。なお、傷の発生箇所の計算方法については実機テストを参照して後に詳述する。また、波形のピークは、実際には周期的に連続して発生するが、図3では2つだけ示した。
【0019】
上記構成の転がり軸受装置においては、外輪20を機械加工する必要がないため装置の剛性が低下することがなく、高負荷での運転に適用可能であり、しかも、取外しが容易なプラグ3に凹部31を形成しているので、既存の設備への適用が極めて容易である。さらに、外輪20の端面に歪ゲージ4を固着しているので、保守点検が容易であるとともに、歪ゲージ4を凹部31に収容しているので潤滑油がかかり難い。さらに、ボール21に潤滑油をかけながら運転しても歪ゲージ4への支障は生じ難い等の効果が得られる。
【0020】
次に、図5および図6は上記実施の形態の変更例を示すものであり、この変更例は、凹部35の形状のみが異なっている。図に示すように、凹部35は、プラグ3の凸条を平面視略矩形状に彫り込んで形成されている。凹部35の外周側はケーシング1側に開放されているが、外周側はケーシング1の内周面によって閉塞されている。よって、凹部35は、周囲が閉塞されたほぼ密閉された空間となっている。なお、図中符号36は歪ゲージ4の導線40を外部へ導くための孔である。
【0021】
上記構成の転がり軸受装置では、凹部35に潤滑油が浸入しないため、歪ゲージ4の固着力を確実に保持することができ、傷の検査装置としての信頼性を向上させることができる。なお、凹部は、たとえば図6の二点鎖線で示すように、凸条を直線状に切り欠いて形成することもできる。このような形状であれば加工が容易であり、しかも同等の密閉性を得ることができる。また、凹部をプラグの表裏面に貫通する孔によって構成することもできる。さらに、歪ゲージ4と凹部との間にゴムや板バネなどの弾性部材を介装し、歪ゲージ4を外輪20に接着する接着剤が硬化するまで外輪20に圧接するように構成しても良い。
【0022】
[実機テスト]
次に、本発明の転がり軸受装置の実機テストを行ったので説明する。この実機テストでは、内輪の転動面に人工的に傷を付けてシャフトを回転させた。実機テストの条件を以下に示す。
1.実機仕様
(1)モータ:無段変速機付3相篭形モータ
2.2KW×4P×5.5〜33.3rpm
(2)中間減速機:ウオームギア式1段減速機(減速比1:12)
(3)転がり軸受装置
▲1▼回転数:0.46〜2.78rpm
▲2▼シャフト外径:80mm
▲3▼軸受箱(ケーシング)内径:170mm
(4)軸受仕様
▲1▼型式:コロ軸受 NU316,内径80mm,外径170mm,幅39mm
▲2▼コロの個数:14
▲3▼コロのピッチ円直径(D):125.0mm
▲4▼コロの直径(d):22.0mm
▲5▼コロの接触角(α):0゜
(5)ラジアル負荷
▲1▼負荷方式:軸受箱外部押しボルト式
▲2▼負荷検出方法:最大5000kgロードセル
【0023】
2.テスト条件
(1)傷寸法:幅6mm,長さ20mm(転動方向と直交する人工加工傷)
(2)軸受回転数(f):2.6rpm(0.043Hz)
(3)ラジアル負荷:34.3MN(3.5ton)
【0024】
次に、コロや内・外輪の転動面に傷が生じていると、固有振動数で衝撃振動を発生する。この衝撃振動は傷が相手部品に接触するごとに周期的に発生し、その振動数は以下の計算式で求めることができる。
▲1▼内輪に傷がある場合
=Z・1/2・f(1+d/D・cosα)(Hz)
▲2▼外輪に傷がある場合
=Z・1/2・f(1−d/D・cosα)(Hz)
▲3▼コロに傷がある場合
=Z・1/2・f・D/d・(1−(d/D)・cosα)(Hz)
【0025】
上記計算式に実機テストの各種数値を当てはめると以下のとおりである。
▲1▼内輪衝撃振動周波数:0.364Hz(周期2.75sec)
▲2▼外輪衝撃振動周波数:0.255Hz(周期3.92sec)
▲3▼コロ衝撃振動周波数:0.122Hz(周期8.20sec)
図4はこの実機テストでのオッシロスコープに表示された波形である。この波形から、衝撃振動周期はほぼ2.7secであり、内輪の傷の場合の理論計算値とほぼ合致した。
【0026】
【発明の効果】
以上説明したように本発明では、外輪を機械加工する必要がないため装置の剛性が低下することがなく、高負荷での運転に適用可能であり、しかも、取外しが容易な蓋体に凹部を設けているので、既存の設備への適用が極めて容易である等の効果が得られる。
【図面の簡単な説明】
【図1】本発明の実施の形態の転がり軸受装置を示す側断面図である。
【図2】図1のII−II線断面図である。
【図3】歪ゲージの出力波形を示す線図である。
【図4】歪ゲージの出力信号をハイパスフィルターに通した出力波形を示す線図である。
【図5】実施の形態の変更例を示す側断面図である。
【図6】図5のVI方向矢視である。
【符号の説明】
1…ケーシング、2…ベアリング、3…プラグ(蓋体)、4…歪ゲージ、
20…外輪、21…ボール(転動体)、22…内輪。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a rolling bearing device for supporting a roll such as a rolling device and a method for diagnosing the rolling bearing device, and more particularly to a technique capable of detecting damage generated inside.
[0002]
[Prior art]
In general, in a low-speed rolling bearing device used in a rolling device or the like, lubricating oil is difficult to turn, and since it is used under a high load, the surface of a rolling element such as a roller has a weak oil film holding force and is easily damaged. For this reason, conventionally, the rolling bearing device is periodically taken out from the rolling line for inspection, and a great deal of labor has been paid for the inspection.
[0003]
On the other hand, a rolling bearing device provided with a strain gauge has been conventionally proposed. For example, Japanese Patent Application Laid-Open No. 56-162033 discloses a technique in which a strain measuring element is provided on a washer supporting a bearing to detect an abnormality in a bearing load. However, in this technique, since the strain measuring element is provided on the washer, there is a disadvantage that the sensitivity is not sufficient for detecting damage to the bearing and the reliability is lacking.
[0004]
Further, Japanese Utility Model Publication No. Hei 6-24570 and Japanese Patent Application Laid-Open No. Hei 2-25309 disclose a technique in which a concave portion is provided on the outer peripheral surface of an outer ring of a bearing, and a strain gauge is fixed to the concave portion to detect a bearing load and a bearing preload amount. ing. There is also provided a technique in which a strain gauge is attached to an outer peripheral surface of an outer ring, and a concave portion is provided on an inner peripheral surface of a bearing casing (bearing box) to avoid the strain gauge. In such a technique, since the strain gauge is provided directly on the bearing, there is no problem in terms of sensitivity. However, the technique of forming a concave portion in the outer ring of the bearing lowers the rigidity of the bearing and makes it impossible to use the bearing under a high load. In addition, when existing strainers are modified to provide strain gauges, it is difficult to machine the outer ring that has been heat-treated, and the machining of the casing is rather complicated. Furthermore, when used at low speeds, the lubricating oil runs around poorly, so lubricating oil may be applied to the bearings, but if the lubricating oil is applied to the sticking part of the strain gauge, the adhesive may come off. Trouble occurs.
[0005]
[Problems to be solved by the invention]
As described above, any of the conventionally proposed technologies are not suitable for detecting damage to a device used at a low rotation speed and a high load, and new improvements have been demanded. Conventionally, a vibration sensor is used to detect damage, but since the vibration sensor detects acceleration, it hardly operates at low speed rotation, and practical use is impossible. .
The present invention has been made in view of the above circumstances, and it is possible to reliably detect damage generated inside and reduce the adverse effect on a sensor due to heavy use of lubricating oil under conditions of low speed rotation and high load. Therefore, an object of the present invention is to provide a method of diagnosing a rolling bearing and a rolling bearing device which enable smooth operation.
[0006]
[Means for Solving the Problems]
The method of diagnosing a rolling bearing according to the present invention is directed to a method of diagnosing a rolling bearing in which the inner ring is rotatably supported via a plurality of rolling elements on an inner peripheral side of an outer ring supported by a casing. In the method for diagnosing a rolling bearing, a lid for pressing an end face of the outer ring is provided at an opening of the casing, and a concave portion sealed by an end face of the outer ring is formed inside the lid. The load fluctuation of the outer ring caused by the rolling element rolling on the inner raceway surface of the outer ring is detected on an end surface (hereinafter, referred to as an outer ring end surface) of the outer ring located in the axial direction of the outer ring inside the concave portion. Then, a strain gauge for outputting a periodic and regular output signal is fixed, and the flaw is detected by frequency analysis means connected to the strain gauge.
[0007]
In the above-described method of diagnosing a rolling bearing, the load changes on the outer ring every time the rolling element rolls and passes near the strain gauge, and the output signal of the strain gauge periodically and regularly fluctuates. Here, for example, if the outer peripheral surface of the rolling element has a flaw, the load fluctuation due to the flaw is superimposed on the output signal of the strain gauge every time the flaw contacts the inner and outer rings. A similar output signal can be obtained even if the outer raceway surface of the inner race or the inner raceway surface of the outer race (hereinafter referred to as rolling surfaces) is damaged. Then, this output signal is input to the frequency analysis means, and the high frequency component of the output signal is detected as a flaw.
[0008]
Next, a first bearing device according to the present invention is a rolling bearing device in which an inner ring is rotatably supported via a plurality of rolling elements on an inner peripheral side of an outer ring supported by a casing. A lid that presses the end surface of the outer ring is provided, and a concave portion that is sealed by the end surface of the outer ring is formed inside the lid , and a rolling element is provided on the end surface of the outer ring inside the concave portion . A strain gauge that detects a load variation of the outer ring caused by rolling on the inner raceway surface and outputs a periodic and regular output signal is fixed, and a frequency analysis unit is connected to the strain gauge to connect the inner and outer rings. In addition, it is characterized in that a flaw generated in a rolling element or the like is detected.
In this bearing device, it is possible to detect a flaw generated in the inner / outer ring, the rolling element, etc. by the same operation as the method for diagnosing a rolling bearing of the present invention, that is, a so-called rolling bearing device having a self-diagnosis function. There are features.
[0009]
As described above, in the present invention, a periodic and regular output signal generated by the strain gauge is processed and evaluated, so that the occurrence of a flaw can be reliably detected even at low speed rotation. In addition, since the strain gauge is fixed to the end face of the outer ring, there is no need to machine the outer ring, so it can be applied to high-load operation without reducing the rigidity of the device, There is also an advantage that application to equipment is easy.
[0010]
Here, as a method for diagnosing a rolling bearing or a frequency analysis means of a rolling bearing device of the present invention, for example, a high-pass filter connected to a strain gauge and a high-frequency component of an output signal of the strain gauge which is prominent by the high-pass filter are used. And an evaluation means for displaying or notifying the user. In this configuration, when the output signal of the strain gauge passes through the high-pass filter, a high-frequency component caused by a flaw in the output waveform becomes prominent and can be confirmed by the evaluation means. Note that an oscilloscope is a typical example of the evaluation means, but a configuration may be adopted in which a buzzer or a lamp is activated to notify when the value of the prominent high-frequency component reaches a predetermined threshold. Alternatively, the configuration may be such that the rotation of the shaft is automatically stopped when a flaw is found. Further, the site of the wound can be calculated from the period of the high-frequency component using a known calculation method. Furthermore, it is also possible to use a fast Fourier transform (FFT) device as the frequency analysis means. In this case, not only the frequency domain function stored in the FFT device but also the time domain function can be used. That is, the frequency analysis means also includes the period analysis means.
[0011]
The above-described rolling bearing device can be configured such that the outer ring is supported and fixed on the casing, and the inner ring rotatably supports the shaft and the like. In this case, if the strain gauge is fixed to the end face of the outer ring facing the outside of the casing, maintenance and inspection and application to existing equipment are further facilitated. For example, there is a case where outer rings are provided at both ends of the casing.
[0012]
Next, the second rolling bearing device of the present invention is configured such that the outer ring is supported by the casing, and the inner ring is rotatably supported on the inner peripheral side of the outer ring via a plurality of rolling elements. In a rolling bearing device provided with a lid that presses the end surface, a concave portion sealed by the end surface of the outer ring is provided on the inner end surface of the lid, and a strain gauge is accommodated in this concave portion and the strain gauge is fixed to the outer ring end surface, It is characterized by detecting a flaw generated in the inner / outer ring, the rolling element and the like based on the output signal of the strain gauge.
[0013]
Also in the rolling bearing device having the above configuration, the load changes on the outer ring each time the rolling element passes near the strain gauge, and the output signal of the strain gauge periodically and regularly fluctuates. If the outer circumferential surface of the rolling element or the rolling surface of the inner or outer ring has a flaw, the load fluctuation due to the flaw is superimposed on the output signal of the strain gage every time the flaw contacts the mating member, and the output of the strain gage Flaws can be detected from irregular portions of the signal. In particular, in the second rolling bearing device of the present invention, a concave portion is provided on the inner end surface of the lid, and the strain gauge is housed in the concave portion and the strain gauge is fixed to the outer ring end surface. There is an advantage that the strain gauge is hardly applied, and the strain gauge is hardly hindered even when the operation is performed while lubricating oil is applied.
[0014]
Here, since the lubricating oil is usually poured into the rolling elements, it is desirable to shield the strain gauge from the space on the rolling element side by the peripheral wall portion of the concave portion. More desirably, the recess is preferably a substantially closed space. Also, if an elastic member for pressing the strain gauge is interposed between the strain gauge and the concave portion, the elastic member can be pressed against the outer ring until the adhesive of the strain gauge is hardened, which is very convenient.
[0015]
By the way, comparing the load fluctuation between the outer ring end face and the outer peripheral surface of the outer ring, the load fluctuation on the outer ring end face is smaller. Therefore, in the present invention in which the strain gauge is fixed to the end face of the outer ring, the detection accuracy is limited, and it is undeniable that it becomes difficult to detect a flaw when the rolling bearing device is small. The present inventors conducted a flaw detection test using rolling bearing devices of various sizes, and as a result, it was found that if the radial width of the outer ring end face was less than 3 mm, the reliability of flaw detection was reduced. Therefore, the width of the outer ring is preferably 3 mm or more, more preferably 5 mm or more, and even more preferably 8 mm or more. However, even if the width of the outer ring is less than 3 mm, the flaw can be detected, and thus the present invention is not limited to such a range. Further, the present invention is applicable even when the shaft rotates at high speed, but is preferably used when the rotational speed of the shaft is 150 rpm or less, and more preferably 100 rpm or less. Further, 70 rpm is more preferable, and 50 rpm or less is the best.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a side sectional view showing a rolling bearing device according to an embodiment. In the figure, reference numeral 1 denotes a casing. The casing 1 has a cylindrical shape, and bearings 2 are attached to both ends (only one end is shown in the figure). The bearing 2 includes an outer ring 20 fitted on the inner peripheral surface of the casing 1, a plurality of balls (rolling elements) 21, and an inner ring 22 rotatably supported by the balls 21 on the inner peripheral side of the outer ring. I have.
[0017]
A plug (lid) 3 is attached to the opening of the casing 1. On the end face facing the inside of the plug 3, a ridge 30 extending substantially over the entire circumference is formed. The ridge 30 presses the outer ring 20 and functions as a stopper for the bearing 2. A part of the ridge 30 is cut out in the radial direction, and a recess 31 is formed therein. The strain gauge 4 is accommodated in the recess 31, and the strain gauge 4 is adhered to the end surface of the outer ring 20. Although the strain direction of the strain gauge 4 is directed in the circumferential direction, it may be directed in other directions such as a radial direction and an oblique direction. The conducting wire 40 of the strain gauge 4 is guided to the outside through a hole 32 formed in the plug 3, and is connected to an oscilloscope (each not shown) via a high-pass filter. In the drawings, reference numeral 5 denotes an oil seal, and reference numeral 6 denotes a shaft.
[0018]
Next, the operation of the rolling bearing device having the above configuration will be described. When the shaft 6 provided with a load such as a rolling roll rotates, the inner ring 22 of the bearing 2 rotates, and the ball 21 rolls along the rolling surface of the outer ring 20. Each time the ball 21 passes through the strain gauge 4, a load change occurs in the outer race 20, and the output signal of the strain gauge 4 changes almost like a sine curve. FIG. 3 is a diagram showing the output waveform of the strain gauge 4, and the vertical axis is the output voltage. Here, if the rolling surface of the inner race 22 has a flaw, the load fluctuation due to the flaw is superimposed on the output signal of the strain gauge 4 every time the ball 21 comes into contact with the flaw, and as shown in FIG. It appears as a peak in the output signal. This output signal is processed by a high-pass filter, and as shown in FIG. 4, a waveform having a large amplitude at a peak which is a high frequency component is displayed on an oscilloscope. Therefore, the operator can know the occurrence of the scratch on the waveform displayed on the oscilloscope. Alternatively, an alarm such as a buzzer may be issued when the amplitude of the output signal exceeds a predetermined threshold value, or the rotation of the shaft 6 may be automatically stopped. Further, the location where the flaw is generated can be known from the peak period ΔX by using a known calculation method. The method of calculating the location where the flaw is generated will be described later in detail with reference to an actual machine test. In addition, although the peaks of the waveform actually occur continuously periodically, only two peaks are shown in FIG.
[0019]
In the rolling bearing device having the above-described configuration, the outer ring 20 does not need to be machined, so that the rigidity of the device does not decrease, and the rolling bearing device can be applied to operation under a high load. Since it forms 31, it is very easy to apply to existing equipment. Further, since the strain gauge 4 is fixed to the end face of the outer race 20, maintenance and inspection are easy, and since the strain gauge 4 is housed in the concave portion 31, lubricating oil is not easily applied. Further, even if the ball 21 is operated while lubricating oil is applied, the effect that the strain gauge 4 is hardly affected is obtained.
[0020]
Next, FIGS. 5 and 6 show a modification of the above-described embodiment. In this modification, only the shape of the concave portion 35 is different. As shown in the figure, the concave portion 35 is formed by engraving a ridge of the plug 3 into a substantially rectangular shape in plan view. The outer peripheral side of the recess 35 is open to the casing 1 side, but the outer peripheral side is closed by the inner peripheral surface of the casing 1. Therefore, the recess 35 is a substantially closed space whose periphery is closed. Reference numeral 36 in the figure is a hole for guiding the conductive wire 40 of the strain gauge 4 to the outside.
[0021]
In the rolling bearing device having the above configuration, since the lubricating oil does not enter the concave portion 35, the fixing force of the strain gauge 4 can be reliably held, and the reliability as a flaw inspection device can be improved. In addition, the concave portion may be formed by linearly notching the ridge as shown by a two-dot chain line in FIG. 6, for example. With such a shape, processing is easy, and equivalent sealing performance can be obtained. Further, the recess may be formed by a hole penetrating through the front and back surfaces of the plug. Further, an elastic member such as rubber or a leaf spring may be interposed between the strain gauge 4 and the concave portion so that the strain gauge 4 is pressed against the outer ring 20 until the adhesive bonding the outer ring 20 is cured. good.
[0022]
[Real machine test]
Next, the actual bearing test of the rolling bearing device of the present invention will be described. In this actual machine test, the shaft was rotated by artificially damaging the rolling surface of the inner ring. The conditions for the actual test are shown below.
1. Actual machine specifications (1) Motor: 3-phase cage type motor with continuously variable transmission 2.2KW × 4P × 5.5-33.3rpm
(2) Intermediate reducer: worm gear type single-stage reducer (reduction ratio 1:12)
(3) Rolling bearing device (1) Number of rotations: 0.46 to 2.78 rpm
(2) Outer diameter of shaft: 80mm
(3) Bearing box (casing) inner diameter: 170 mm
(4) Bearing specifications (1) Model: roller bearing NU316, inner diameter 80 mm, outer diameter 170 mm, width 39 mm
(2) Number of rollers: 14
(3) Roller pitch circle diameter (D): 125.0 mm
(4) Roller diameter (d): 22.0 mm
(5) Roller contact angle (α): 0 (5) Radial load (1) Load method: Push bolt type external to bearing box (2) Load detection method: 5000 kg load cell at maximum
2. Test conditions (1) Flaw dimensions: width 6 mm, length 20 mm (artificial scratches perpendicular to rolling direction)
(2) Bearing rotation speed (f 0 ): 2.6 rpm (0.043 Hz)
(3) Radial load: 34.3 MN (3.5 ton)
[0024]
Next, if the rollers or the rolling surfaces of the inner and outer races are damaged, impact vibration is generated at the natural frequency. This shock vibration is periodically generated each time the flaw comes into contact with the mating part, and the vibration frequency can be obtained by the following formula.
▲ 1 ▼ inner ring when there are scratches f i = Z · 1/2 · f 0 (1 + d / D · cosα) (Hz)
▲ 2 ▼ If the outer ring is scratched to f c = Z · 1/2 · f 0 (1-d / D · cosα) (Hz)
▲ 3 ▼ roller when there are scratches f b = Z · 1/2 · f 0 · D / d · in (1- (d / D) 2 · cos 2 α) (Hz)
[0025]
The following equations are applied to the above formulas with various numerical values of the actual machine test.
(1) Inner ring shock vibration frequency: 0.364 Hz (period 2.75 sec)
(2) Outer ring shock vibration frequency: 0.255 Hz (period: 3.92 sec)
(3) Roller impact vibration frequency: 0.122 Hz (period: 8.20 sec)
FIG. 4 shows a waveform displayed on an oscilloscope in the actual test. From this waveform, the cycle of impact vibration was approximately 2.7 sec, which almost coincided with the theoretically calculated value in the case of a scratch on the inner ring.
[0026]
【The invention's effect】
As described above, in the present invention, there is no need to machine the outer ring, so that the rigidity of the device does not decrease, and the present invention is applicable to operation under a high load, and furthermore, the concave portion is easily removed from the lid. Since it is provided, effects such as extremely easy application to existing facilities can be obtained.
[Brief description of the drawings]
FIG. 1 is a side sectional view showing a rolling bearing device according to an embodiment of the present invention.
FIG. 2 is a sectional view taken along line II-II of FIG.
FIG. 3 is a diagram showing an output waveform of a strain gauge.
FIG. 4 is a diagram showing an output waveform obtained by passing an output signal of a strain gauge through a high-pass filter.
FIG. 5 is a side sectional view showing a modification of the embodiment.
6 is a view in the direction of arrow VI in FIG. 5;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Casing, 2 ... Bearing, 3 ... Plug (lid), 4 ... Strain gauge,
20: outer ring, 21: ball (rolling element), 22: inner ring.

Claims (6)

ケーシングに支持された外輪の内周側に複数の転動体を介して内輪を回転自在に支持した転がり軸受の上記内・外輪、転動体等に生じた傷を検出する転がり軸受の診断方法であって、
上記ケーシングの開口部に上記外輪の端面を押圧する蓋体が設けられており、上記蓋体の内側に上記外輪の端面によって密閉される凹部が形成されており、上記凹部の内部における上記外輪の軸線方向に位置する端面に、上記転動体が上記外輪の内周軌道面を転動することにより生じる上記外輪の負荷変動を検出して周期的かつ規則的な出力信号を出力する歪ゲージを固着し、この歪みゲージに接続した周波数解析手段によって上記傷を検出するようにしたことを特徴とする転がり軸受の診断方法。
A method of diagnosing a rolling bearing for detecting a flaw generated in the inner / outer ring, a rolling element, and the like of a rolling bearing in which an inner ring is rotatably supported via a plurality of rolling elements on an inner peripheral side of an outer ring supported by a casing. hand,
A lid that presses the end surface of the outer ring is provided in the opening of the casing, and a concave portion that is sealed by the end surface of the outer ring is formed inside the lid, and the outer ring in the concave portion is formed . A strain gauge that detects a load change of the outer ring generated by the rolling element rolling on the inner raceway surface of the outer ring and outputs a periodic and regular output signal is fixed to an end surface located in the axial direction. A method for diagnosing a rolling bearing, wherein the flaw is detected by frequency analysis means connected to the strain gauge.
ケーシングに支持された外輪の内周側に複数の転動体を介して内輪を回転自在に支持した転がり軸受装置において、
上記ケーシングの開口部に上記外輪の端面を押圧する蓋体が設けられており、上記蓋体の内側に上記外輪の端面によって密閉される凹部が形成されており、上記凹部の内部における上記外輪の軸線方向に位置する端面に、上記転動体が上記外輪の内周軌道面を転動することにより生じる上記外輪の負荷変動を検出して周期的かつ規則的な出力信号を出力する歪ゲージを固着し、この歪みゲージに周波数解析手段を接続して上記内・外輪、転動体等に生じた傷を検出するようにしたことを特徴とする転がり軸受装置。
In a rolling bearing device rotatably supporting an inner ring via a plurality of rolling elements on an inner peripheral side of an outer ring supported by a casing ,
A lid that presses the end surface of the outer ring is provided in the opening of the casing, and a concave portion that is sealed by the end surface of the outer ring is formed inside the lid, and the outer ring in the concave portion is formed . A strain gauge that detects a load change of the outer ring generated by the rolling element rolling on the inner raceway surface of the outer ring and outputs a periodic and regular output signal is fixed to an end surface located in the axial direction. A rolling bearing device characterized in that a frequency analyzing means is connected to the strain gauge to detect a flaw generated in the inner / outer ring, rolling element and the like.
前記周波数解析手段は、前記歪ゲージに接続されたハイパスフィルターと、このハイパスフィルターで顕著化された前記出力信号の高周波成分を表示または報知する評価手段とを備えたことを特徴とする請求項2に記載の転がり軸受装置。3. The apparatus according to claim 2, wherein the frequency analysis unit includes a high-pass filter connected to the strain gauge, and an evaluation unit for displaying or notifying a high-frequency component of the output signal that has been conspicuous by the high-pass filter. 3. The rolling bearing device according to claim 1. 前記外輪をケーシングに支持させ、前記歪ゲージを上記ケーシングの外側を向く外輪の端面に固着したことを特徴とする請求項2または3に記載の転がり軸受装置。4. The rolling bearing device according to claim 2, wherein the outer ring is supported by a casing, and the strain gauge is fixed to an end surface of the outer ring facing the outside of the casing. 5. ケーシングに外輪を支持させるとともに、この外輪の内周側に複数の転動体を介して内輪を回転自在に支持し、上記ケーシングの開口部に上記外輪の端面を押圧する蓋体を設けた転がり軸受装置において、
上記蓋体の内側の端面に上記外輪の端面によって密閉される凹部を設け、この凹部に歪ゲージを収容して歪ゲージを上記外輪の端面に固着し、歪ゲージの出力信号に基づいて上記内・外輪、転動体等に生じた傷を検出することを特徴とする転がり軸受装置。
A rolling bearing in which a casing supports an outer ring, the inner ring is rotatably supported on the inner peripheral side of the outer ring via a plurality of rolling elements, and a lid that presses an end surface of the outer ring is provided at an opening of the casing. In the device,
A concave portion closed by the end surface of the outer ring is provided on the inner end surface of the lid, and a strain gauge is accommodated in the concave portion, the strain gauge is fixed to the end surface of the outer ring, and the inner portion is formed based on an output signal of the strain gauge. -A rolling bearing device for detecting a flaw generated on an outer ring, a rolling element, or the like.
前記歪ゲージを、前記凹部の周壁部により前記転動体側の空間から遮蔽し、前記歪ゲージと前記凹部との間に、歪ゲージを押圧する弾性部材を介装したことを特徴とする請求項5に記載の転がり軸受装置。The elastic member which presses the strain gauge is interposed between the strain gauge and the recess, and the strain gauge is shielded from the space on the rolling element side by a peripheral wall portion of the recess. 6. The rolling bearing device according to 5.
JP27559396A 1996-09-26 1996-09-26 Diagnosis method of rolling bearing and rolling bearing device Expired - Fee Related JP3566002B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27559396A JP3566002B2 (en) 1996-09-26 1996-09-26 Diagnosis method of rolling bearing and rolling bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27559396A JP3566002B2 (en) 1996-09-26 1996-09-26 Diagnosis method of rolling bearing and rolling bearing device

Publications (2)

Publication Number Publication Date
JPH10104125A JPH10104125A (en) 1998-04-24
JP3566002B2 true JP3566002B2 (en) 2004-09-15

Family

ID=17557617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27559396A Expired - Fee Related JP3566002B2 (en) 1996-09-26 1996-09-26 Diagnosis method of rolling bearing and rolling bearing device

Country Status (1)

Country Link
JP (1) JP3566002B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3225967A1 (en) 2016-03-31 2017-10-04 Skoda Auto a.s. A device for error diagnosis of low-speed bearings
EP3531100A1 (en) 2018-02-21 2019-08-28 Skoda Auto a.s. Device for monitoring at least one bearing and machine with at least one such device

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003083352A (en) * 2001-09-11 2003-03-19 Nsk Ltd Rolling bearing unit with senor
DE102004027800B4 (en) * 2004-06-08 2006-04-06 Fag Kugelfischer Ag & Co. Ohg Method and computer program for determining operating parameters in a rolling bearing and evaluable rolling bearing hereby
US7634913B2 (en) * 2005-03-30 2009-12-22 General Electric Company Bearing assembly and method of monitoring same
JP4631578B2 (en) * 2005-07-26 2011-02-16 株式会社デンソー Design method for grasping the damage form of rolling bearings
JP4608564B2 (en) * 2008-03-28 2011-01-12 株式会社高田工業所 Abnormality diagnosis method for low-speed rotating machinery
CN101813561B (en) * 2010-03-22 2013-09-18 昆山三一机械有限公司 Detection device for load of rolling bearing and detection method thereof
CN103335845B (en) * 2013-06-21 2016-05-04 东南大学 Taper dynamic pressure spiral grooved bearing axial carrying capacity testing arrangement
JP7484173B2 (en) * 2020-01-14 2024-05-16 日本精工株式会社 Bearing device and signal processing device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3225967A1 (en) 2016-03-31 2017-10-04 Skoda Auto a.s. A device for error diagnosis of low-speed bearings
EP3531100A1 (en) 2018-02-21 2019-08-28 Skoda Auto a.s. Device for monitoring at least one bearing and machine with at least one such device

Also Published As

Publication number Publication date
JPH10104125A (en) 1998-04-24

Similar Documents

Publication Publication Date Title
Saruhan et al. Vibration analysis of rolling element bearings defects
US3699806A (en) Early detection of damage to machine elements in rolling engagement
Taylor Identification of bearing defects by spectral analysis
JP4120099B2 (en) Bearing abnormality diagnosis method and abnormality diagnosis device
Patil et al. A theoretical model to predict the effect of localized defect on vibrations associated with ball bearing
JP3566002B2 (en) Diagnosis method of rolling bearing and rolling bearing device
EP3067683B1 (en) Bearing state detection device and bearing state detection method
JP7027782B2 (en) Rolling bearing abnormality diagnostic device
US8315826B2 (en) Diagnostic method for a ball bearing, in particular for an angular-contact ball bearing, a corresponding diagnostic system, and use of the diagnostic system
WO1994014038A1 (en) Envelope enhancement system for detecting anomalous vibration measurements
JP4424515B2 (en) Method for detecting solid conduction sound in rolling bearings
JP2003232674A (en) Abnormality diagnosing method and abnormality diagnosing device of machine equipment or apparatus
JP3036284U (en) Rolling bearing device
JP2695366B2 (en) Abnormality diagnosis method for low-speed rotating machinery
JP2019158514A (en) Inspection device of bearing for passenger conveyor, and inspection method of bearing for passenger conveyor
JP2004093357A (en) Evaluation method and evaluation device
CN107831329A (en) Velocity measuring device and measuring method
JPS6120734B2 (en)
JPS61199505A (en) Device for diagnosing deterioration of bearing for rolling roll
Mba et al. Condition monitoring of low-speed rotating machinery using stress waves Part 2
JPS61288126A (en) Abnormal detector for rolling bearing
US6347548B1 (en) Apparatus for and method of monitoring a rotating machine
JPH07270228A (en) Anomaly diagnosis method for low speed rotary machine
Hemmer et al. A comparison of acoustic emission and vibration measurements for condition monitoring of an offshore drilling machine
JPH05231992A (en) Abnormality detection method of low speed rotation bearing

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040526

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040609

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080618

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090618

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110618

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120618

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120618

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees