JP2009103525A - Method for diagnosing abnormality of tooth plane of gear and apparatus using same - Google Patents

Method for diagnosing abnormality of tooth plane of gear and apparatus using same Download PDF

Info

Publication number
JP2009103525A
JP2009103525A JP2007274262A JP2007274262A JP2009103525A JP 2009103525 A JP2009103525 A JP 2009103525A JP 2007274262 A JP2007274262 A JP 2007274262A JP 2007274262 A JP2007274262 A JP 2007274262A JP 2009103525 A JP2009103525 A JP 2009103525A
Authority
JP
Japan
Prior art keywords
gear
tooth surface
vibration acceleration
time series
model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007274262A
Other languages
Japanese (ja)
Inventor
Toretsu So
東烈 宋
Kunio Sunaga
国男 須永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Kikai Techno Kk
Gunma Prefecture
Original Assignee
Fuji Kikai Techno Kk
Gunma Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Kikai Techno Kk, Gunma Prefecture filed Critical Fuji Kikai Techno Kk
Priority to JP2007274262A priority Critical patent/JP2009103525A/en
Publication of JP2009103525A publication Critical patent/JP2009103525A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gear abnormality diagnostic apparatus using a gear diagnostic technique and its diagnostic method capable of accurately detecting and determining abnormality of a single gear item due to dents in a tooth plane of a gear and failures in the degree of roughness (surface roughness) in the tooth plane on the basis of time-series analysis of gear vibration signals when the gear is engaged and driven. <P>SOLUTION: Vibration and acceleration signals generated are measured when the single gear item is driven to perform time-series analysis on the vibration and acceleration signals. By determining a crest factor and the kurtosis of the residual between their estimated signals and observed signals and monitoring their changes, it is possible to determine (diagnose) gear abnormalities such as very small dents, etc. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、ギヤの歯面の表面あらさの不良や打痕があるか否かを検査する方法に関する。   The present invention relates to a method for inspecting whether there is a defect in surface roughness of a gear tooth surface or a dent.

従来、現在自動車のトランスミッションなどに使用するギヤ単品を最終生産ラインで組み立てる前にギヤ単品の全数検査を行っている。その検査方法としては、熟練作業者の手作業や振動、音を利用した簡単なギヤ検査機で打痕、異物質などによるギヤの異常判別を行っている。しかし、判定のほとんどを聴き取りなどの作業者の経験や五感に頼っていることから、定量かつ的確な検査が困難である。また、この検査段階で検出できなかった異常ギヤについて、トランスミッションとして組み立て終わっての最終検査で異常な駆動音などによって発見された際には、すべて分解して異常を探し出すなどの膨大な労力を要する。歯面の表面あらさ不良や打痕は駆動時の騒音原因となり、特に歯車(ギヤ)の製造工程中や工程間の搬送中に、他のギヤや加工機器等と衝突し、歯面に打痕(凹部とその周囲に凸部が出来る)が出来、偶発的な原因による打痕の発生を防止することは困難である。   Conventionally, 100% gears are currently inspected before assembling on the final production line. As an inspection method, gear abnormalities are discriminated by dents, foreign substances, etc. with a simple gear inspection machine using manual operation, vibration and sound of a skilled worker. However, since most of the judgment depends on the experience and five senses of the operator such as listening, it is difficult to perform a quantitative and accurate examination. In addition, when abnormal gears that could not be detected at this inspection stage were discovered by abnormal drive sound in the final inspection after being assembled as a transmission, it would require enormous labor such as disassembling all of them and searching for abnormalities. . Defective surface roughness and dents on the tooth surface can cause noise during driving, especially during the manufacturing process of gears (gears) and during transport between processes, colliding with other gears and processing equipment, etc. It is difficult to prevent the occurrence of a dent due to an accidental cause (a concave portion and a convex portion are formed around it).

なお、本願発明に関連する公知技術として次の特許文献1を挙げることが出来る。 In addition, the following patent document 1 can be mentioned as a well-known technique relevant to this invention.

特開2005―91232号公報JP 2005-91232 A

前記したように、従来技術に係る歯車(ギヤ)の噛み合い打痕検知方法及びその装置は、トランスミッションとして組み立て終わっての最終検査で異常な駆動音などによる検査であり、不具合が発見された際には、すべて分解して異常を探し出すなどの膨大な労力を要する。   As described above, the meshing dent detection method for gears (gears) according to the prior art and the apparatus thereof are inspections by abnormal driving sound in the final inspection after assembly as a transmission, and when a defect is discovered. Requires a tremendous amount of effort, such as disassembling all of them and finding abnormalities.

このため、不具合の手直しには手間がかかり、これに係る費用は毎年莫大であり、大きな経済的な損失である。   For this reason, it takes a lot of time to fix the problem, and the cost for this is enormous every year, which is a great economic loss.

本発明は、このような点に鑑みてなされたものであり、その目的は、ギヤの歯面の表面あらさ不良や打痕等によるギヤ単品の異常を噛み合い駆動時のギヤ振動加速度信号の時系列解析により精度良く検出、診断できる新しいギヤ歯面の異常診断方法及びこれを用いたギヤ歯面の異常診断装置を提供することにある。   The present invention has been made in view of the above points, and its purpose is to make a time series of gear vibration acceleration signals at the time of driving by engaging the abnormality of a single gear due to surface roughness defects or dents on the gear. It is an object of the present invention to provide a new gear tooth surface abnormality diagnosis method capable of detecting and diagnosing with high accuracy by analysis and a gear tooth surface abnormality diagnosis apparatus using the same.

上記の目的を達成する本発明の請求項1では、時系列解析の自己回帰AR(p)モデルを持ち、マスターギヤと診断対象ギヤとを噛み合わせて駆動モータにより回転駆動させた時に、発生する振動加速度を一カ所に設置された加速度センサで計測(観測)し、前記加速度センサで計測した振動加速度信号から前記自己回帰AR(p)モデルにより振動加速度の推定値を計算し、前記加速度センサで計測(観測)した振動加速度信号と、前記自己回帰AR(p)モデルにより計算された推定値との2信号の差(残差)を計算し、前記時系列解析の前記2信号の差(残差)の統計量の波高率又は尖り度を求め、これらの統計量の変化を監視することで前記診断対象ギヤの噛み合い歯面の表面あらさや微小な打痕等のギヤ歯面の異常の判別(診断)ができることを特徴とするギヤ歯面の異常診断方法である。   In the first aspect of the present invention, which achieves the above object, it occurs when an autoregressive AR (p) model for time series analysis is provided and the master gear and the diagnosis object gear are meshed and rotated by a drive motor. The vibration acceleration is measured (observed) with an acceleration sensor installed at one place, and an estimated value of vibration acceleration is calculated from the vibration acceleration signal measured by the acceleration sensor using the autoregressive AR (p) model. The difference (residual) of the two signals between the measured (observed) vibration acceleration signal and the estimated value calculated by the autoregressive AR (p) model is calculated, and the difference (residual) of the two signals in the time series analysis is calculated. By determining the crest factor or kurtosis of the statistics of the difference, and monitoring the changes in these statistics, it is possible to determine the surface roughness of the meshing tooth surface of the gear to be diagnosed and abnormalities of the gear tooth surface such as minute dents. (Diagnosis) An abnormality diagnosis method of the gear tooth surfaces, characterized in that possible.

請求項1の発明では、時系列解析の自己回帰AR(p)モデルから算出した加速度信号の推定値と実測値(測定値)との残差(ずれ)の変化を監視することで、ギヤ歯面の打痕や、歯面の微少な表面あらさ不良に起因する見かけ上打痕なしの正常ギヤと振動加速度波形に明確な違いがない不規則性のランダム信号の変化も捉えることができる。   According to the first aspect of the present invention, a change in the residual (deviation) between the estimated value of the acceleration signal calculated from the autoregressive AR (p) model of the time series analysis and the actual measurement value (measurement value) is monitored, so that the gear teeth It is also possible to capture irregular random signal changes with no apparent difference between the normal gear and the vibration acceleration waveform with no apparent dent due to surface dents or slight surface roughness failure of the tooth surface.

本発明の請求項2では、時系列解析の次数30である自己回帰AR(30)モデルを持ち、マスターギヤと診断対象ギヤとを噛み合わせて駆動モータにより回転駆動させた時に、発生する振動加速度を一カ所に設置された加速度センサで計測し、前記加速度センサで計測した振動加速度信号から前記自己回帰AR(30)モデルにより振動加速度の推定値を計算し、前記加速度センサで計測した振動加速度信号と、前記自己回帰AR(30)モデルにより計算された推定値との2信号の差(残差)を計算し、前記時系列解析の前記2信号の差(残差)の統計量の波高率又は尖り度を求め、これらの統計量の変化を監視することで前記診断対象ギヤの噛み合い歯面の表面あらさや微小な打痕等のギヤ歯面の異常の判別(診断)ができることを特徴とするギヤ歯面の異常診断方法である。   According to claim 2 of the present invention, there is an autoregressive AR (30) model having an order of 30 in time series analysis, and vibration acceleration generated when the master gear and the diagnosis object gear are meshed and rotated by a drive motor. Is measured by an acceleration sensor installed in one place, an estimated value of vibration acceleration is calculated from the vibration acceleration signal measured by the acceleration sensor by the autoregressive AR (30) model, and the vibration acceleration signal measured by the acceleration sensor is calculated. And the estimated value calculated by the autoregressive AR (30) model, the difference (residual) of the two signals is calculated, and the crest factor of the statistic of the difference (residual) of the two signals of the time series analysis Alternatively, by determining the kurtosis and monitoring changes in these statistics, it is possible to discriminate (diagnose) abnormalities in the gear tooth surface, such as the surface roughness of the meshing tooth surface of the gear to be diagnosed and minute dents. An abnormality diagnosis method of the gear tooth surfaces to.

請求項2の発明では、時系列解析の自己回帰AR(30)モデルから算出した加速度信号の推定値と実測値(測定値)との残差(ずれ)の変化を監視することで、ギヤ波面の打痕や、歯面の微少な表面あらさ不良に起因する見かけ上打痕なしの正常ギヤと振動加速度波形に明確な違いがない不規則性のランダム信号の変化も捉えることができる。   According to the invention of claim 2, the gear wavefront is monitored by monitoring the change in the residual (deviation) between the estimated value of the acceleration signal calculated from the autoregressive AR (30) model of time series analysis and the actual measurement value (measurement value). It is also possible to capture changes in random signals with irregularities with no apparent difference between a normal gear with no apparent dent and a vibration acceleration waveform due to a slight surface roughness of the tooth surface.

本発明の請求項3では、時系列解析の次数30である自己回帰AR(30)モデルを持ち、マスターギヤと診断対象ギヤとを噛み合わせてギヤ歯面の異常診断装置本体に組み込み、駆動モータにより回転駆動させた時に発生する振動加速度を一カ所に設置された加速度センサで計測(観測)し、この加速度センサが検出した振動加速度信号を増幅するセンサアンプと、増幅された振動加速度信号を内蔵するA/Dコンバータにより、例えば12〜24ビットのデジタル信号に変換するモジュールタイプ信号入出力ユニットを経由して信号処理PC内に取り込み、前記自己回帰AR(30)モデルにより計算された前記振動加速度信号の推定値と、前記加速度センサで計測した前記振動加速度信号の測定値との2信号の差(残差)を計算し、前記時系列解析の前記2信号の差(残差)により統計量の波高率又は尖り度を求め、これらの統計量の変化を記憶装置33に記憶させたり、ディスプレイ50に表示したり、プリンタ60に出力したりして、監視することで前記診断対象ギヤの噛み合い歯面の表面あらさや微小な打痕等のギヤ歯面の異常の判別(診断)ができることを特徴とするギヤ歯面の異常診断装置である。   According to a third aspect of the present invention, there is an autoregressive AR (30) model having an order of 30 in time series analysis, the master gear and the gear to be diagnosed are meshed and incorporated in the gear tooth surface abnormality diagnosis device body, and the drive motor Built-in sensor amplifier that amplifies the vibration acceleration signal detected by this acceleration sensor, and the vibration acceleration signal that is detected by this acceleration sensor. The vibration acceleration calculated by the autoregressive AR (30) model after being taken into the signal processing PC via a module type signal input / output unit that converts the digital signal into, for example, 12 to 24 bits by an A / D converter Calculate the difference (residual) of the two signals between the estimated value of the signal and the measured value of the vibration acceleration signal measured by the acceleration sensor. The crest factor or kurtosis of the statistic is obtained from the difference (residual) between the two signals in the time series analysis, and the change in these statistic is stored in the storage device 33, displayed on the display 50, or displayed on the printer 60. An abnormality diagnosis of a gear tooth surface characterized by being able to determine (diagnosis) an abnormality of the gear tooth surface such as the surface roughness of the meshing tooth surface of the gear to be diagnosed or a minute dent by monitoring the output Device.

請求項3の発明では、時系列解析の自己回帰AR(p)モデルから算出した加速度信号の推定値と実測値(測定値)との残差(ずれ)の変化を監視することで、ギヤ波面の打痕や、歯面の微少な表面あらさ不良に起因する見かけ上打痕なしの正常ギヤと振動加速度波形に明確な違いがない不規則性のランダム信号の変化も捉えることができる。   In the invention of claim 3, the gear wavefront is monitored by monitoring the change in the residual (deviation) between the estimated value of the acceleration signal calculated from the autoregressive AR (p) model of time series analysis and the actual measurement value (measurement value). It is also possible to capture changes in random signals with irregularities with no apparent difference between a normal gear with no apparent dent and a vibration acceleration waveform due to a slight surface roughness of the tooth surface.

そして、本発明のギヤ歯面の診断方法及びギヤ歯面の診断装置は、特に、ランダム信号の小さな変動を数学的モデルパラメータの変化として捉えられる時系列モデル解析手法を適用することで今まで周波数解析や振幅解析では非常に検出困難だった歯面の粗度(表面あらさ)や微小の打痕(例えば3μm以下の打痕)などのギヤ歯面の異常の検出に有効である。   The gear tooth surface diagnosis method and gear tooth surface diagnosis device according to the present invention, in particular, apply a time series model analysis method that can capture small fluctuations in random signals as changes in mathematical model parameters. This is effective for detecting gear tooth surface abnormalities such as tooth surface roughness (surface roughness) and minute dents (for example, dents of 3 μm or less) that were very difficult to detect by analysis and amplitude analysis.

本願発明で新しく提案した異常診断手法は、計測した振動加速度の時系列モデルから算出した推定信号と実測信号との残差(ずれ)を統計量である波高率(cresto factor)や尖り度(kurtosis、平均のまわりの4次の積率をσで割ったもの(σ:標準偏差である。))を監視することでギヤの異常検出を行うものである。そして、本願発明では、現場のギヤ単品検査段階で、誰でも定量的数値で簡単かつ正確に打痕や歯面粗度(表面あらさ)不良などのギヤ歯面の異常を判定できる信号処理PC(パーソナルコンピュータ)ベースのギヤ打痕診断システムを提供する。 The abnormality diagnosis method newly proposed in the present invention is based on a residual factor (deviation) calculated from a time-series model of measured vibration acceleration and an actual measurement signal, which is a statistic such as a crest factor and a kurtosis. The abnormality of the gear is detected by monitoring the quotient obtained by dividing the fourth-order product factor around the average by σ 4 (σ: standard deviation). In the present invention, at the on-site gear single product inspection stage, anyone can easily and accurately determine a gear tooth surface abnormality such as a dent or a tooth surface roughness (surface roughness) with a quantitative numerical value (PC) A personal computer) -based gear dent diagnosis system is provided.

この時系列解析による診断方法(手法)は、従来からよく用いられている統計解析によるギヤの異常診断に比べ診断感度が高く、今まで全く検出できなかった3μm以下のギヤの歯面の微小な打痕等の異常も十分に判別できることが分かった。また、統計解析では判定困難であった歯面粗度(歯の表面あらさ)不良によるギヤの異常も十分な精度で的確に判定することができて極めて有効な診断手法である。   The diagnosis method (method) based on the time series analysis has a higher diagnostic sensitivity than the conventionally used statistical analysis of gear abnormality, and the tooth surface of the gear of 3 μm or less, which has not been detected at all so far, is very small. It was found that abnormalities such as dents can be sufficiently discriminated. In addition, it is a very effective diagnostic technique because it can accurately determine a gear abnormality due to a tooth surface roughness (tooth surface roughness) defect, which is difficult to determine by statistical analysis, with sufficient accuracy.

以下、本発明の実施の形態を図面を参照しながら詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

(診断方法)
図1に示すギヤ歯面異常診断装置1は、基準器となる正常ギヤであるマスターギヤBと検査対象ギヤCとを互いに噛み合わせて組み込み、駆動モータDにて回転駆動させ得るギヤ歯面の異常診断装置本体2と、キーボード40からのスタート指令により、前記ギヤ同士を回転駆動させた時に発生する振動加速度を、発生源に近い一カ所に設置して計測(観測)させるための加速度センサAと、この加速度センサAが検出した振動加速度信号を増幅するセンサアンプEと、増幅された振動加速度信号を内蔵するA/Dコンバータにより、例えば12〜24ビットのデジタル信号に変換するモジュールタイプ信号入出力ユニットFと、測定した振動加速度信号であるデジタル信号を取り込み、補助記憶装置(HDD、FDD)33bに保管されているプログラムに従って、制御部32の管理の下に、主記憶装置33に一時記憶し、中央処理装置30に提供し、演算部31を介してプログラムされた時系列解析の自己回帰AR(p)モデルにより計算された推定値と測定値との2信号の差(残差)を計算し、前記時系列解析の前記2信号の差(残差)の統計量であるパラメータの波高率又は尖り度を求め、そのパラメータ(推定値と測定値との2信号の差(残差)の統計量の波高率又は尖り度)の変化を、入力装置であるキーボード40や、マウス40bの指示により、補助記憶装置33bに記憶させたり、出力装置であるディスプレイ50に表示したり、プリンタ60に出力したりする信号処理PC(パーソナルコンピュータ)Gとを具備し、前記パラメータの変化を監視することで歯面の微少な打痕や歯面の粗度(歯面の表面あらさ)の不良等のギヤ歯面の異常の判別(診断)ができることを特徴とするギヤ歯面の異常診断方法である。
(Diagnosis method)
The gear tooth surface abnormality diagnosis apparatus 1 shown in FIG. 1 includes a gear tooth surface that can be incorporated by meshing a master gear B that is a normal gear serving as a reference device and a gear C to be inspected, and rotated by a drive motor D. An acceleration sensor A for installing and measuring (observing) vibration acceleration generated when the gears are rotationally driven according to a start command from the abnormality diagnosis device main body 2 and the keyboard 40. And a sensor amplifier E that amplifies the vibration acceleration signal detected by the acceleration sensor A and an A / D converter that incorporates the amplified vibration acceleration signal. The output unit F and the digital signal that is the measured vibration acceleration signal are captured and stored in the auxiliary storage device (HDD, FDD) 33b. Time series analysis autoregressive AR (p) model that is temporarily stored in the main storage device 33 and provided to the central processing unit 30 under the management of the control unit 32 according to the program. The difference (residual) of the two signals between the estimated value and the measured value calculated by the above is calculated, and the crest factor or kurtosis of the parameter which is a statistic of the difference (residual) of the two signals in the time series analysis is calculated. A change in the parameter (the crest factor or kurtosis of the statistic of the difference between the two signals (estimated value and measured value) of the estimated value and the measured value) is stored in an auxiliary memory by an instruction from the keyboard 40 or the mouse 40b as an input device. A signal processing PC (personal computer) G that is stored in the device 33b, displayed on the display 50, which is an output device, or output to the printer 60, is monitored by monitoring changes in the parameters. Minute dents or tooth surface roughness of the abnormality determination of the gear tooth surfaces of defects or the like (the surface roughness of the tooth surface) (diagnosis) is abnormal diagnosis method of the gear tooth surfaces, characterized in that it is.

図14は、ギヤ歯面の診断装置1のブロック図を示す。図1、図14に図示されていないが信号処理PCのG、ギヤ歯面の異常診断装置本体2等には商用電源に接続された電源装置により各部に必要な電源が供給されている。   FIG. 14 shows a block diagram of the gear tooth surface diagnostic apparatus 1. Although not shown in FIGS. 1 and 14, the power of the signal processing PC G, the gear tooth surface abnormality diagnosis device main body 2, and the like are supplied with necessary power by each power source connected to a commercial power source.

ギヤ歯面の異常診断装置1のギヤ歯面の異常診断装置本体2を詳述すると、下面部に防振脚4を設けた基台3上において、モータ軸5にモータプーリ6を有する駆動モータDを図示してない防振ゴムを介して基台3上にボルトにて取り付けてある。そして、基台3上の左右端部において図示してない防振ゴムを介して基台3上にボルト等により固着された左右の支持枠7,8に、支えられ固着されている上板9が設けられている。尚、これらの図示されてない防振ゴムは、駆動モータD自身の振動が、基台3や左右の支持枠7,8を介して上板9に伝播しないようにして、第2の支持部材20(鉄系素材製)の側面の一カ所に取り付けられる加速度センサAにより駆動モータD自身の振動加速度が検出されないようにしている。   The gear tooth surface abnormality diagnosis device main body 2 of the gear tooth surface abnormality diagnosis device 1 will be described in detail. A drive motor D having a motor pulley 6 on a motor shaft 5 on a base 3 having an anti-vibration leg 4 on the lower surface portion. Is attached to the base 3 with bolts via a vibration-proof rubber (not shown). An upper plate 9 supported and fixed to left and right support frames 7 and 8 fixed on the base 3 with bolts or the like through vibration-proof rubber (not shown) at left and right end portions on the base 3. Is provided. These anti-vibration rubbers (not shown) prevent the vibration of the drive motor D itself from propagating to the upper plate 9 via the base 3 and the left and right support frames 7 and 8. The acceleration acceleration of the drive motor D itself is not detected by the acceleration sensor A attached to one side of the side surface 20 (made of iron-based material).

そして、上板9の略中央部にて、この上板9を貫いた第1の支持部材10が上板9にボルト等にて固着されている。第1の支持部材10は中心部が中空となっており、その中空部を駆動軸11が上下方向に貫き、その駆動軸11の上下端部近傍は第1の支持部材10の上下端部に設けられた軸受けに支承され回動自在に支持されている。そして、駆動軸11の下方端部に、モータプーリ6に対応する従動プーリ15が固着され、モータプーリ6と従動プーリ15とにベルト16(滑りの少ない静粛な動力伝達可能なベルトが望ましく、ここではVベルトとした。)を巻き掛けてある。更に、駆動軸11の上端部には雄ねじが設けられ、診断対象ギヤCがナット17にて着脱可能に設けてある。   A first support member 10 penetrating the upper plate 9 is fixed to the upper plate 9 with a bolt or the like at a substantially central portion of the upper plate 9. The center portion of the first support member 10 is hollow, the drive shaft 11 penetrates the hollow portion in the vertical direction, and the vicinity of the upper and lower end portions of the drive shaft 11 is at the upper and lower end portions of the first support member 10. It is supported by a provided bearing and is rotatably supported. A driven pulley 15 corresponding to the motor pulley 6 is fixed to the lower end portion of the drive shaft 11, and a belt 16 (a belt capable of quiet power transmission with little slippage is desirable between the motor pulley 6 and the driven pulley 15. A belt). Furthermore, a male screw is provided at the upper end portion of the drive shaft 11, and a diagnosis target gear C is detachably provided by a nut 17.

更に、上板9には、第1の支持部材10と駆動軸11に並行して、この上板9を貫いた第2の支持部材(鉄系素材製)20がボルト等にて固着されて設けてある。この第2の支持部材20も第1の支持部材10と同様に中心部が中空となっていて、その中空部を従動軸21が上下方向に貫いていていると共に、その上下端部近傍に設けられた軸受けに支承され回動自在となっている。そして、従動軸21の上端部には雄ねじが設けられ、マスタギヤBがナット24にて着脱可能に設けてある。更に、このマスタギヤBが取り付けられている従動軸21を回動自在に支持していて前記上板9を貫いてボルト等にて固着されている第2の支持部材20は、駆動軸11に対して従動軸21を近づけたり遠ざけたりして中心距離を移動可能に取付出来、これによりマスタギヤBと診断対象ギヤCとのかみ合いを適正に調整し得る構造となっている。   Further, a second support member (made of iron-based material) 20 penetrating the upper plate 9 is fixed to the upper plate 9 with a bolt or the like in parallel with the first support member 10 and the drive shaft 11. It is provided. Similarly to the first support member 10, the second support member 20 has a hollow central portion, and the hollow shaft is penetrated by the driven shaft 21 in the vertical direction, and is provided in the vicinity of the upper and lower end portions thereof. It is supported by a fixed bearing and is rotatable. A male screw is provided at the upper end of the driven shaft 21, and the master gear B is detachably provided by a nut 24. Further, a second support member 20 that rotatably supports the driven shaft 21 to which the master gear B is attached and is fixed by a bolt or the like through the upper plate 9 is attached to the drive shaft 11. Thus, the driven shaft 21 can be moved closer to or away from the center shaft so that the center distance can be moved, and the engagement between the master gear B and the diagnosis target gear C can be adjusted appropriately.

ギヤ診断は、基準器となるマスターギヤBと検査対象ギヤCを図1に示すようにギヤ歯面の異常診断装置本体2上に組み込み、マスターギヤBが取り付けられている第2の支持部材(鉄系素材製)20の側面の一カ所に加速度センサAをマグネットベース27にて取り付けて診断を行った。このマグネットベース27で取り付ける加速度センサAは第1の支持部材10の側面でもよい。この加速度センサAの取付場所はマスターギヤBと検査対象ギヤCとのかみ合い時に発生する振動加速度の発生源に近い所が望ましい。ここで、マスターギヤ(正常なギヤ)Bは、事前に検査員によって確認された打痕なし、表面仕上げが良好な基準器となるギヤ歯面が正常なギヤ(歯車)である。   In the gear diagnosis, a master gear B serving as a reference device and a gear C to be inspected are assembled on the gear tooth surface abnormality diagnosis device main body 2 as shown in FIG. Diagnosis was made by attaching the acceleration sensor A with a magnet base 27 at one location on the side of the iron-based material 20. The acceleration sensor A attached by the magnet base 27 may be a side surface of the first support member 10. The place where the acceleration sensor A is attached is preferably close to the source of vibration acceleration generated when the master gear B and the gear C to be inspected are engaged. Here, the master gear (normal gear) B is a gear (gear) having a normal gear tooth surface, which is a reference device having a good surface finish without a dent confirmed by an inspector in advance.

今回では、検査対象ギヤCとしては、事前に官能検査の検査員によって正常(打痕なし)、異常(打痕あり、歯面粗度(表面あらさ)不良)の判定が下された3種類(A型:歯数30、標準ピッチ円径52.93、歯の全高4.753、D型:歯数53、標準ピッチ円径99.86、歯の全高3.982、HA型:外形寸法等は前記A型と同一で、歯の表面あらさが相違するギヤ)のギヤを選定し、診断を行った。   This time, as the gear C to be inspected, three types (normally without dent) or abnormal (with dent, poor tooth surface roughness (surface roughness)) determined by the sensory inspection inspector ( A type: 30 teeth, standard pitch circle diameter 52.93, total tooth height 4.753, D type: 53 teeth, standard pitch circle diameter 99.86, total tooth height 3.982, HA type: external dimensions, etc. Was the same as the A type, and the gears with different tooth surface roughness were selected and diagnosed.

本診断ではキーボード40からのスタート指令により駆動モータDを500rev/minの一定回転数で駆動させ、その時、マスタギヤBと診断対象ギヤCとのギヤ同士のかみ合い時に発生するギヤの半径方向の振動加速度が加速度センサAにより検出される。その後、検出信号(測定信号)はセンサアンプEで増幅され、モジュールタイプ信号入出力ユニットFにて内蔵されるA/Dコンバータにより、例えば12〜24ビットのデジタル信号に変換されて、バスライン34を経由して、信号処理PC(パーソナルコンピュータ)Gに取り込まれる。その際モジュールタイプ信号入出力ユニットFのA/D変換のサンプリング周波数は5.12kHzである。そして、その測定信号は補助記憶装置33bに保管されているプログラムに従って、制御部32の管理の下に、主記憶装置33に一時記憶され、中央処理装置30に提供され、演算部31を介してプログラムされた時系列解析の自己回帰AR(p)モデルにより信号処理や解析、診断が行われる。すなわち、時系列解析の自己回帰AR(p)モデルにより計算された推定値と測定値との2信号の差(残差)を計算し、前記2信号の差(残差)の統計量であるパラメータの波高率又は尖り度を求めて、そのパラメータ(推定値と測定値との2信号の差(残差)の統計量の波高率又は尖り度)の変化を入力装置であるキーボード40や、マウス40bの指示により、補助記憶装置33bに記憶させたり、ディスプレイ50に表示したり、プリンタ60に出力したりして、監視することで歯面の微少な打痕や歯面の粗度(表面あらさ)不良等のギヤ歯面の異常の判別(診断)を行った。勿論、信号処理PC(パーソナルコンピュータ)Gは、記憶容量や処理スピードが適切であればデスクトップタイプのコンピュータでも、ノート型パソコンでも良い。   In this diagnosis, the drive motor D is driven at a constant rotation speed of 500 rev / min by a start command from the keyboard 40, and at that time, the radial vibration acceleration of the gear that occurs when the master gear B and the gear C to be diagnosed are engaged with each other. Is detected by the acceleration sensor A. Thereafter, the detection signal (measurement signal) is amplified by the sensor amplifier E, converted into a digital signal of 12 to 24 bits, for example, by an A / D converter built in the module type signal input / output unit F, and the bus line 34. To the signal processing PC (personal computer) G. At that time, the sampling frequency of the A / D conversion of the module type signal input / output unit F is 5.12 kHz. Then, the measurement signal is temporarily stored in the main storage device 33 under the management of the control unit 32 according to the program stored in the auxiliary storage device 33b, provided to the central processing unit 30, and via the calculation unit 31 Signal processing, analysis, and diagnosis are performed by the programmed autoregressive AR (p) model of time series analysis. That is, the difference between the two signals (residual) between the estimated value calculated by the autoregressive AR (p) model of time series analysis and the measured value is calculated, and is a statistic of the difference between the two signals (residual). The parameter crest factor or kurtosis is obtained, and the change of the parameter (the crest factor or kurtosis of the statistic of the difference (residual)) between the two signals of the estimated value and the measured value is input as a keyboard 40, According to the instruction of the mouse 40b, it is stored in the auxiliary storage device 33b, displayed on the display 50, output to the printer 60, and monitored, so that the minute dents on the tooth surface and the roughness of the tooth surface (surface (Roughness) Anomalies (diagnosis) of gear tooth surfaces such as defects were determined. Of course, the signal processing PC (personal computer) G may be a desktop computer or a notebook computer as long as the storage capacity and processing speed are appropriate.

(時系列モデル解析手法)
本解析では、ギヤ同士の噛み合い時に発生する振動加速度信号を時系列解析のAR(autoregressive model:自己回帰)モデルによって表現することを試みる。
(Time-series model analysis method)
In this analysis, an attempt is made to express a vibration acceleration signal generated when the gears are engaged with each other by an AR (autoregressive model) model of time series analysis.

時系列解析の自己回帰AR(p)モデルとは、ある時点における出力(xn)が過去の出力の線形結合(xn-1, xn-2---xn-p)と現在の入力(ωn)の和として得られるシステムを表すモデルであり、時系列解析を行う際に一般的に用いられ、次のように表される。ここで、pは次数、aiはモデルパラメータ(回帰係数)、ωnは白色雑音系列(white noise ホワイトノイズ)である。
The autoregressive AR (p) model for time series analysis is that the output (x n ) at a certain point in time is a linear combination of past outputs (x n-1 , x n-2 --- x np ) and the current input ( This model represents a system obtained as the sum of ω n ), and is generally used when performing time series analysis, and is expressed as follows. Here, p is the order, a i is a model parameter (regression coefficient), and ω n is a white noise sequence (white noise white noise).

計測(測定)時に振動系からの振動加速度などの出力のみが入手可能な場合には、入力を白色雑音信号(white noise ホワイトノイズ)とみなした時系列モデルによる解析が有効である。   When only an output such as vibration acceleration from the vibration system is available at the time of measurement (measurement), an analysis based on a time series model in which the input is regarded as a white noise signal (white noise white noise) is effective.

一方、時系列解析の自己回帰AR(p)モデルの次数pの決定は、正常ギヤに対して検査対象ギヤの噛み合い時に発生し、測定(計測)した振動加速度の時系列データxnと次数pを増加させながら時系列解析の自己回帰AR(p)モデルで推定した値と測定値との差(残差、ずれ)を求め、その誤差の自己相関(autocorrelation function:ACF)および偏自己相関 (partial autocorrelation function:PACF)が白色雑音(white noise ホワイトノイズ)になるように選べばよい。ここで白色雑音は,平均がゼロで、分散が正規定常分布を示すもので、タイムラグがゼロの時を除けば自己相関がゼロと仮定する信号である。 On the other hand, the determination of the order p of the autoregressive AR (p) model for time series analysis occurs when the gear to be inspected meshes with the normal gear, and the time series data x n and the order p of the measured (measured) vibration acceleration. The difference (residual, deviation) between the value estimated by the autoregressive AR (p) model of time series analysis and the measured value is calculated while increasing the autocorrelation function (ACF) and partial autocorrelation ( The partial autocorrelation function (PACF) may be selected so as to become white noise (white noise). Here, the white noise is a signal having an average of zero and a variance showing a normal steady distribution, and assuming that autocorrelation is zero except when the time lag is zero.

本時系列解析で得られた自己回帰AR(p)モデルの最適次数pは30である。図2は自己回帰AR(30)の時系列モデルから算出した推定値と実際に正常ギヤと測定対象ギヤとの噛み合い駆動時に測定された信号の残差(ずれ)の自己相関 (ACF)と偏自己相関 (PACF)を示す。このとき、ACF、PACF値にピークがなく完全な雑音に近いほどモデルの精度が良いことを意味する   The optimal order p of the autoregressive AR (p) model obtained by this time series analysis is 30. FIG. 2 shows the autocorrelation (ACF) and deviation of the estimated value calculated from the time series model of the autoregressive AR (30) and the residual (deviation) of the signal actually measured when the normal gear and the gear to be measured are engaged. Autocorrelation (PACF) is shown. At this time, there is no peak in the ACF and PACF values, and the closer to perfect noise, the better the accuracy of the model.

図2(a)、(b)の横軸はタイムラグ値、縦軸はACF値(自己相関係数)およびPACF値(偏自己相関係数)である。図2を見るとほぼ信頼限界内に収まっており、得られた自己回帰AR(30)の時系列モデルが十分な精度を有していることがわかる。このとき、時系列解析の自己回帰AR(30)モデルのパラメータa1、a2、----- 、a30は補助記憶装置33bに保管されているプログラムに従って、最尤法(Maximum likelihood method)を用いて求める。 2A and 2B, the horizontal axis represents the time lag value, and the vertical axis represents the ACF value (autocorrelation coefficient) and the PACF value (partial autocorrelation coefficient). As can be seen from FIG. 2, the time series model of the autoregressive AR (30) obtained has a sufficient accuracy because it is within the reliability limit. At this time, the parameters a 1 , a 2 , ----- and a 30 of the autoregressive AR (30) model of the time series analysis are the maximum likelihood method (Maximum likelihood method) according to the program stored in the auxiliary storage device 33b. ).

本時系列解析では、時系列の振動加速度データから自己回帰AR(p)モデルの次数P、推定値と実測値の残差(ずれ)及びモデルパラメータ(a1、a2、----- 、a)の算出は補助記憶装置33bに保管されているプログラムに従って行い、モデルの次数Pは30、及びモデルパラメータ(a1、a2、----- 、a30)を求めた。 In this time series analysis, the order P of the autoregressive AR (p) model, the residual (deviation) between the estimated value and the measured value, and the model parameters (a 1 , a 2 , ------ , A n ) were calculated according to a program stored in the auxiliary storage device 33b, and the model order P was 30 and model parameters (a 1 , a 2 , -----, a 30 ) were obtained.

時系列解析に用いるデータ数は32,768点とした。データ採取時間の長さについては、ある程度長時間のデータを用いる方が望ましいため、モータD(500rev/min)や検査対象(診断対象)ギヤCの回転数を考慮して6〜8秒間とした。これは検査対象ギヤCが3回程回転する時間に相当する。さらに、今回のギヤ歯面の異常診断の実験では、ギヤの形状(はすば歯車 helical gear)によって、回転方向による力の伝達方向が異なっていることから回転方向を時計方向(cw)と反時計方向(ccw)の2つの方向における振動加速度信号を測定し異常診断を行った。   The number of data used for time series analysis was 32,768 points. As for the length of the data collection time, it is desirable to use data for a long time to some extent. Therefore, the rotation time of the motor D (500 rev / min) and the inspection object (diagnosis object) gear C is considered to be 6 to 8 seconds. . This corresponds to the time required for the inspection target gear C to rotate about three times. Furthermore, in this experiment of abnormality diagnosis of the gear tooth surface, since the transmission direction of force depends on the shape of the gear (helical gear helical gear), the rotational direction is counterclockwise (cw). Abnormality diagnosis was performed by measuring vibration acceleration signals in two directions (clockwise).

(時系列モデル解析による異常診断結果)
前述のように、正常ギヤに対する検査対象ギヤCの噛み合い時の振動加速度信号が時系列解析の自己回帰AR(30)モデルとして表現できることがわかった。ここでは、補助記憶装置33bに保管されているプログラムに従って、時系列解析の自己回帰AR(30)モデルから算出した推定信号値と実際の加速度信号値(実測信号値又は測定信号値)とのズレ(残差)を監視することで、ギヤ打痕やギヤの歯の表面あらさの異常の有無の判断を行う。
(Results of abnormality diagnosis by time series model analysis)
As described above, it has been found that the vibration acceleration signal when the inspection target gear C is engaged with the normal gear can be expressed as an autoregressive AR (30) model of time series analysis. Here, the difference between the estimated signal value calculated from the autoregressive AR (30) model of the time series analysis and the actual acceleration signal value (actual signal value or measured signal value) according to the program stored in the auxiliary storage device 33b. By monitoring (residual), it is determined whether or not there is an abnormality in the gear dents or the surface roughness of the gear teeth.

すなわち、打痕のサイズが非常に小さい場合は推定信号値と実測信号値との残差(ずれ)は小さいが、比較的大きい打痕や歯面(表面あらさ)不良などが存在する場合は実測信号に含まれる非線形的要素が増大して残差(ずれ)が大きくなる。このような残差(ずれ)の変動を捉えてギヤの異常を診断する。図3に残差を求める方法を模式的に示す。(ただし、yiは式(1)のxiに相当するものである。) In other words, when the size of the dent is very small, the residual (deviation) between the estimated signal value and the measured signal value is small, but when there is a relatively large dent or tooth surface (surface roughness) defect, the actual measurement is performed. Nonlinear elements included in the signal increase and the residual (deviation) increases. The abnormality of the gear is diagnosed by detecting such a variation of the residual (deviation). FIG. 3 schematically shows a method for obtaining the residual. (However, y i corresponds to x i in equation (1).)

本願発明では、時系列解析による残差(ずれ)を、統計パラメータである波高率(crest factor)および尖り度(kurtosis)を用いて表し、ギヤの異常判定を行っている。波高率(crest factor)は波形の波の高さの指標で、尖り度(kurtosis)は振動の波形がいかに衝撃的であるか、または波形がいかに尖っているかを示す値である。転がり軸受やギヤ装置に局部的な欠陥があると、その信号は衝撃的になることから転がり軸受やギヤ装置の診断に盛んに利用されている。しかし、時系列解析を使用しない統計量だけの診断では、微小の打痕(例えば3μm以下の打痕)や波形で特徴的な衝撃性のピークが見られないギヤ歯面の粗度(表面あらさ)などの異常の検出は困難であった。(後出、図13の説明参照)   In the present invention, the residual (deviation) by the time series analysis is represented by using the statistical parameters crest factor and kurtosis, and the abnormality of the gear is determined. The crest factor is an index of the wave height of the waveform, and the kurtosis is a value indicating how shocking the vibration waveform is or how sharp the waveform is. If there is a local defect in the rolling bearing or gear device, the signal becomes shocking, so it is actively used for diagnosis of the rolling bearing or gear device. However, in the diagnosis using only the statistics without using the time series analysis, the roughness of the gear tooth surface (surface roughness) in which there is no minute impact mark (for example, an impact mark of 3 μm or less) or a characteristic impact peak in the waveform. ) And other abnormalities were difficult to detect. (Refer to the description of FIG. 13 below)

(統計解析による異常診断)
ここでは、本願発明に係る時系列解析を用いた診断方法と、従来から用いられている統計的解析の診断方法を比較するために、尖り度(kurtosis)、歪み度(skewness)および波高率(crest factor)といった統計解析によるパラメータを用いる。これらパラメータは以下のように定義できる。
一般に、時系列信号x(t)の確率密度関数をp(x)とすると、時系列信号x(t)の期待値あるいは平均値μは、次式で表すことができる。
(Abnormal diagnosis by statistical analysis)
Here, in order to compare the diagnostic method using the time series analysis according to the present invention with the conventionally used statistical analysis diagnostic method, the kurtosis, the skewness, and the crest factor ( parameter based on statistical analysis such as (crest factor). These parameters can be defined as follows:
In general, when the probability density function of the time series signal x (t) is p (x), the expected value or the average value μ of the time series signal x (t) can be expressed by the following equation.

p(x)の平均値周りのk次モーメントは、次式となる
The kth moment around the mean value of p (x) is

式(3)のk次モーメントを離散系で表現すると次式のようになる。ここで、Nはデータ数、kはモーメントの次数である。
When the k-th moment of Equation (3) is expressed in a discrete system, the following equation is obtained. Here, N is the number of data, and k is the order of the moment.

また、標準偏差σは、次式のようになる。
Further, the standard deviation σ is expressed by the following equation.

以上を用いて歪み度(skewness)、尖り度(kurtosis、平均のまわりの4次の積率をσで割ったもの(σ:標準偏差である。))および波高率(crest factor)は以下のように定義できる。ただし、式(8)中のMax peakは時系列波形中の最大値を示す。

Using the above, the skewness, the kurtosis (kurtosis, the fourth-order product factor around the mean divided by σ 4 (σ: standard deviation)), and the crest factor (crest factor) are as follows: Can be defined as However, Max peak in the equation (8) indicates the maximum value in the time series waveform.

(代表的なギヤ状態別振動信号波形)
図4、5、6に、図1のマスターギヤBに対して、打痕あり、打痕なしのギヤ(A型、D型)及び歯面粗度(歯の表面あらさ)不良のギヤ(HA型)をかみ合わせて一定の速度で回転させた際に得られた代表的な時系列信号の振動加速度の測定波形をそれぞれ示す。
(Typical vibration signal waveform for each gear state)
4, 5, and 6, with respect to the master gear B in FIG. 1, there are gears (A type, D type) without dents and gears with poor tooth surface roughness (tooth surface roughness) (HA). The measurement waveforms of vibration acceleration of typical time-series signals obtained when the molds are engaged and rotated at a constant speed are shown respectively.

図4、5から、打痕なしと判定されたギヤの場合は、振動波形の大きな乱れは見られなかったが、打痕ありと判定されたものの場合は振動波形に規則的(周期的な)な衝撃性のピークが見られた。これは、ギヤの歯面に打痕などの局部的な欠陥が存在するときに見られる典型的な現象である(規則的(周期的な)な衝撃性のピークが見られる。)。この図によりギヤに比較的大きい打痕などのキズが存在する場合は、時間信号(時系列信号の振動加速度)の測定波形の様相からギヤ異常は判定できる。   4 and 5, in the case of the gear determined to have no dent, a large disturbance in the vibration waveform was not seen, but in the case of the gear determined to have a dent, the vibration waveform was regular (periodic). Shocking peaks were observed. This is a typical phenomenon observed when a local defect such as a dent is present on the gear tooth surface (a regular (periodic) impact peak is observed). As shown in this figure, when there is a relatively large scratch on the gear, it is possible to determine the gear abnormality from the aspect of the measured waveform of the time signal (vibration acceleration of the time series signal).

一方、図6には歯面粗度(歯の表面あらさ)不良による時系列信号の振動加速度の測定波形を示しており、打痕ありギヤの波形(図4,5)と比べて全体的に振幅が約3倍ほど大きくなっていることがわかる。しかし、波形では特徴的な衝撃性のピークはなく、見かけ上打痕なしのギヤA型、D型の波形様相との違いは認められない。   On the other hand, FIG. 6 shows a measurement waveform of vibration acceleration of a time series signal due to a poor tooth surface roughness (tooth surface roughness), which is generally compared with the waveform of a gear with a dent (FIGS. 4 and 5). It can be seen that the amplitude is about 3 times larger. However, there is no characteristic impact peak in the waveform, and apparently no difference from the waveform aspect of the gear A type and D type without dents is recognized.

以下に時系列解析を用いたギヤの異常診断結果と、比較のために統計解析による診断結果を示す。   The gear abnormality diagnosis result using time series analysis and the diagnosis result by statistical analysis are shown below for comparison.

(振動加速度信号の時系列解析によるギヤ診断)
ここでは、前述で示した自己回帰AR(30)モデルから算出した推定信号と実際の加速度信号(実測信号)との残差を用いてギヤの状態診断を行った結果を示す。評価には統計パラメータの一つである波高率および尖り度を用いて残差を表している。
(Gear diagnosis by time series analysis of vibration acceleration signal)
Here, the result of performing a gear state diagnosis using the residual between the estimated signal calculated from the autoregressive AR (30) model described above and the actual acceleration signal (measured signal) is shown. In the evaluation, the residual is expressed using the crest factor and the kurtosis which are one of the statistical parameters.

A型ギヤにて、図7(a)、(b)に測定した6.4秒間の32,768データ点を用いて計算した残差(ずれ)の波高率および尖り度を、事前に検査者によって打痕なしと判定されたギヤ(ギヤ番号2)における残差の波高率と尖り度で割って標準化した値を示す。(ギヤ番号2の正常ギヤを基準とした。)   Using the A-type gear, the crest factor and kurtosis of the residual (deviation) calculated using 32,768 data points for 6.4 seconds measured in FIGS. 7 (a) and 7 (b) Shows the value normalized by dividing by the crest factor and the kurtosis of the residual in the gear (gear number 2) determined as having no dent. (Based on normal gear with gear number 2)

この図から波高率によるギヤ異常の判定感度が尖り度の方より高いことがわかる。すなわち、両者のある診断基準(ここでは、診断基準値は、波高率では、正常ギヤに対して算出した値を1とした場合、これより1.5倍以上大きくなった場合、尖り度の場合は、正常値の約2倍以上大きくなった場合をそれぞれ異常と仮定した)値からギヤの打痕があるか、ないかを判定する場合、標準波高率では全体23個のサンプル中から17個のギヤにサイズの大小はあるものの打痕ありの判定を示す(図7(a))が、標準波尖り度の場合は、10個のサンプルで異常があることを示している(図7(b))。   From this figure, it can be seen that the gear abnormality determination sensitivity due to the crest factor is higher than the kurtosis. That is, when there is a diagnostic criterion for both (in this case, the diagnostic criterion value is a wave height factor of 1 when the value calculated for normal gear is 1, when it is 1.5 times larger than this, or in the case of kurtosis Is assumed to be abnormal when each value is larger than about twice the normal value) When determining whether there is a gear dent or not from the value, 17 out of a total of 23 samples at the standard crest factor FIG. 7A shows that there is a dent, although the size of the gear of FIG. 7 is small (in FIG. 7A), the standard wave kurtosis indicates that there are abnormalities in 10 samples (FIG. 7 ( b)).

この判定結果は図4のように比較的大きい打痕がギヤの歯面に存在し、信号波形に規則的な衝撃性のピークが見られる場合では尖り度による異常判定ができるが、打痕が小さい場合は対応する尖り度から正常なギヤと区別し異常判定は困難であることを示唆する。(全体23個のサンプル中から、10個のサンプルで異常としか認められないためである。)これに対して、波高率は打痕などのキズが小さい場合でも感度よくギヤの異常判定が可能であることがわかる。(全体23個のサンプル中から、17個のサンプルで異常と認められるためである。)   As a result of the determination, when a relatively large dent is present on the gear tooth surface as shown in FIG. 4 and a regular impact peak is observed in the signal waveform, an abnormality can be determined based on the kurtosis. If it is small, it is distinguished from the normal gear from the corresponding kurtosis and suggests that it is difficult to determine abnormality. (This is because only 10 samples out of the total of 23 samples are recognized as abnormal.) On the other hand, even if the crest factor is small in scratches such as dents, it is possible to determine the gear abnormality with high sensitivity. It can be seen that it is. (This is because it is recognized as abnormal in 17 samples out of a total of 23 samples.)

一方、図8(a)、(b)にD型ギヤに対して調べた残差の標準波高率と標準尖り度を示す。この図より、ギヤ番号1の正常ギヤを基準とすると、A型ギヤ(図7(a)、図7(b))でみられる結果と同様に、残差の波高率や尖り度を用いることでギヤ異常の判定ができることがわかる。また、A型ギヤでみられる結果と同様に、尖り度と比べて波高率による異常判定の感度が少々高い傾向を示していることがわかる。   On the other hand, FIGS. 8A and 8B show the standard crest factor and the standard kurtosis of the residual investigated for the D-type gear. From this figure, if the normal gear with gear number 1 is used as a reference, the crest factor and kurtosis of the residual should be used, as in the results seen with the A-type gear (FIGS. 7A and 7B). It can be seen that a gear abnormality can be determined. Moreover, it turns out that the sensitivity of the abnormality determination by a crest factor tends to be a little high compared with the sharpness similarly to the result seen in A type gear.

図9(a)、(b)には歯面粗度(歯の表面あらさ)不良のギヤHAに対して行った診断結果を示す。この図より、ギヤ番号6の正常ギヤを基準とすると、すべてのギヤに対して波高率や尖り度が大きい値を示し、異常という判定結果が見られた。これらのギヤに対しては、事前に熟練者の検査者によって異常も判断されたものである。   FIGS. 9A and 9B show the results of diagnosis performed on the gear HA having a poor tooth surface roughness (tooth surface roughness). From this figure, when the normal gear with the gear number 6 is used as a reference, the crest factor and the sharpness are large for all gears, and the determination result is abnormal. For these gears, abnormalities were also judged in advance by a skilled inspector.

一方、歯面粗度(歯の表面あらさ)不良のギヤHAの場合は、判定結果は同じであるが、A型、D型と違って、尖り度による異常判定の方がより感度が高いことが認められる。これは、歯面粗度(歯の表面あらさ)不良のギヤHA 型が、A型、D型ギヤのように打痕がある場合の波形で見られる顕著な衝撃性のピークがなく、全体的にランダムな不規則の波形を示していることと関連があると考えられる。   On the other hand, in the case of the gear HA having a poor tooth surface roughness (tooth surface roughness), the determination result is the same, but unlike the A type and the D type, the abnormality determination based on the sharpness is more sensitive. Is recognized. This is because the gear HA type with poor tooth surface roughness (tooth surface roughness) does not have a significant impact peak seen in the waveform when there is a dent like the A type and D type gears. This is considered to be related to the fact that random irregular waveforms are shown.

以上の結果から、時系列モデルから算出した推定信号(推定値)と実際の振動加速度信号(測定値)との残差を監視することで、打痕や歯面粗度(歯の表面あらさ)不良などによるギヤ異常診断が可能であることがわかる。   Based on the above results, by monitoring the residual between the estimated signal (estimated value) calculated from the time series model and the actual vibration acceleration signal (measured value), the impression mark and tooth surface roughness (tooth surface roughness) It turns out that the gear abnormality diagnosis by a defect etc. is possible.

(ギヤ歯面における打痕の大きさの測定結果)
図10に代表的なA型ギヤに対して歯面に生じた打痕を表面粗さ測定器で調べた結果を示す。(図中の粗さ曲線が基準線より上にあると打痕が存在することである)。この図からギヤ番号7の場合は2μm、番号8の場合は2.5μm、番号19では1μm、番号21では1.5μm程度の小さい打痕が存在することが確認できた。本診断では、ギヤ番号7については検査者によって打痕ありと判定されたものの、それ以外のギヤ番号8、番号19、番号21については検査者によって打痕の存在が確認できなく、正常と判断されたものであった。(図7(a)において、ギヤ番号7、ギヤ番号8,ギヤ番号19、ギヤ番号21の場合の波高率では各々異常となっていることが読み取れる。)
(Measurement result of dent size on gear tooth surface)
FIG. 10 shows the result of examining a dent on the tooth surface of a typical A-type gear with a surface roughness measuring instrument. (If the roughness curve in the figure is above the reference line, there is a dent). From this figure, it was confirmed that there was a small dent of about 2 μm for gear number 7, 2.5 μm for number 8, 1 μm for number 19, and 1.5 μm for number 21. In this diagnosis, the gear number 7 is determined to be normal by the inspector, but the other gear numbers 8, 19, and 21 are determined to be normal because the inspector cannot confirm the presence of the dent. It was what was done. (In FIG. 7 (a), it can be seen that the crest factors for gear number 7, gear number 8, gear number 19, and gear number 21 are abnormal.)

このように3μm以下の微小な打痕を有するギヤに対しては、熟練の検査者の五感や経験によっても打痕があるかないかの判定は非常に難しいことがわかる。これに対して、図7(a)において、ギヤ番号7、ギヤ番号8,ギヤ番号19、ギヤ番号21の場合の波高率では各々異常となっていることが読み取れる。   As described above, it is found that it is very difficult to determine whether or not there is a dent for a gear having a minute dent of 3 μm or less, based on the five senses and experience of a skilled inspector. On the other hand, in FIG. 7A, it can be read that the crest factors for gear number 7, gear number 8, gear number 19, and gear number 21 are abnormal.

(時系列解析と統計解析によるギヤ判定(診断)結果の比較)
図11〜13にA型、D型、HA型ギヤについて求めた振動加速度信号の時系列解析と統計解析による異常判定結果を示す。
(Comparison of gear judgment (diagnosis) results by time series analysis and statistical analysis)
FIGS. 11 to 13 show abnormality determination results by time series analysis and statistical analysis of vibration acceleration signals obtained for A-type, D-type, and HA-type gears.

これらの図より、ギヤ形態に関係なく全体的に時系列解析による判定が統計解析と比べ感度が高いことがわかる。特に、打痕や表面粗さの程度が大きくなるにつれて、時系列解析によるギヤ異常判定の感度はより大きくなる傾向を示しており、明確に異常診断ができる。   From these figures, it can be seen that the determination based on the time series analysis is generally more sensitive than the statistical analysis regardless of the gear form. In particular, as the degree of dents and surface roughness increases, the sensitivity of gear abnormality determination by time series analysis tends to increase, and a clear abnormality diagnosis can be performed.

図10のA型ギヤについて、表面あらさ測定器の測定値において打痕のサイズが3μmより小さい番号7、21ギヤの場合、統計解析から正常か否かを的確に判定することは困難であるが、時系列解析では、打痕なしの正常な場合と区別して異常判定が可能となることがわかる。7(a)において、ギヤ番号7、ギヤ番号21の場合の波高率では各々異常となっていることが読み取れる。   With respect to the A-type gear of FIG. 10, in the case of the number 7 and 21 gears whose dent size is smaller than 3 μm in the measurement value of the surface roughness measuring device, it is difficult to accurately determine whether or not the size is normal from statistical analysis. In the time series analysis, it can be seen that the abnormality determination can be made distinct from the normal case without the dent. 7 (a), it can be seen that each of the crest factors in the case of gear number 7 and gear number 21 is abnormal.

また、図11より従来、軸受けやギヤなどの異常判定とよく用いられている尖り度、ひずみ度(本願発明では、これによる判定結果は尖り度の結果とほぼ同一な結果を示したので、尖り度による結果を用いた)と比べて波高率を用いた異常判定の感度は高いことがわかる。   Also, from FIG. 11, the kurtosis degree and the distortion degree that are conventionally used for abnormality determination of bearings, gears and the like (in the present invention, the judgment result by this shows almost the same result as the kurtosis degree. It can be seen that the sensitivity of abnormality determination using the crest factor is higher than that using the result of degree.

従って、ギヤ打痕異常を判定する場合では、尖り度より波高率を用いて異常判定を行うことがより有効であるといえる。   Therefore, it can be said that it is more effective to determine the abnormality using the crest factor than the kurtosis when determining the gear dent abnormality.

一方、図12のD型ギヤにおける異常判定の場合でも、時系列モデルから算出した推定信号と実際の振動加速度信号との残差の波高率による異常判定の感度が一番高いことがわかる。   On the other hand, even in the case of abnormality determination in the D-type gear in FIG. 12, it can be seen that the sensitivity of abnormality determination is highest due to the crest factor of the residual between the estimated signal calculated from the time series model and the actual vibration acceleration signal.

図13には、歯面粗度(歯の表面あらさ)不良による異常ギヤに対して統計解析や時系列解析によるギヤ異常診断を行った結果を示す。   FIG. 13 shows the result of gear abnormality diagnosis by statistical analysis or time series analysis for an abnormal gear due to a poor tooth surface roughness (tooth surface roughness).

この図13より、A型、D型ギヤの打痕異常のように局部的な欠陥の存在により生じる衝撃性のピークがほとんど見られないHA型ギヤの場合は、従来の統計解析による方法では正常な場合と区別し、歯面粗度(歯の表面あらさ)不良によるギヤ異常を的確に判定することは困難であることがわかる。   From FIG. 13, in the case of the HA type gear in which almost no impact peak caused by the presence of a local defect such as an abnormal dent of the A type and D type gears is seen, the conventional statistical analysis method is normal. It can be seen that it is difficult to accurately determine a gear abnormality due to a poor tooth surface roughness (tooth surface roughness).

これに対して、時系列解析による方法では、十分な精度で歯面粗度(歯の表面あらさ)不良による異常を確実に捉えることができる。これは、時系列モデルから算出した推定信号と実測信号とのズレ、すなわちモデルの変化を監視することで、見かけ上打痕なしの正常ギヤと波形に明確な違いがない不規則性のランダム信号の変化も捉えることができるためである。   On the other hand, in the method based on the time series analysis, it is possible to reliably capture an abnormality due to a poor tooth surface roughness (tooth surface roughness) with sufficient accuracy. This is a random signal with irregularity that does not have a clear difference between the normal gear and the waveform with no apparent dent by monitoring the difference between the estimated signal calculated from the time series model and the measured signal, that is, the change in the model. It is because the change of can be caught.

本願発明では、現場のギヤ単品検査段階で、誰でも定量的数値で簡単かつ正確に打痕や歯面粗度(歯の表面あらさ)などのギヤ異常を判定できる信号処理PCのGベースのギヤ打痕診断システム1を提供する。本願発明で新しく提案した異常診断手法は、計測した振動加速度の時系列モデルから算出した推定信号と実測信号との残差の波高率や尖り度を監視することでギヤ異常検出を行うものである。   In the present invention, a G-based gear of a signal processing PC that allows anyone to easily and accurately determine gear abnormalities such as dents and tooth surface roughness (tooth surface roughness) with quantitative numerical values at the on-site gear single item inspection stage. A dent diagnosis system 1 is provided. The abnormality diagnosis method newly proposed in the present invention performs gear abnormality detection by monitoring the crest factor and kurtosis of the residual between the estimated signal calculated from the time series model of the measured vibration acceleration and the actual measurement signal. .

この診断手法は、従来からよく用いられている統計解析による異常診断に比べ診断感度が高く、今まで全く検出できなかった3μm以下の微小な打痕異常も十分に判別できることが分かった。また、統計解析では判定困難であった歯面粗度(歯の表面あらさ)不良によるギヤ異常も十分な精度で的確に判定することができて便利である。   This diagnostic method has higher diagnostic sensitivity than abnormality diagnosis by statistical analysis that has been frequently used in the past, and it has been found that minute dent abnormality of 3 μm or less that could not be detected at all can be sufficiently discriminated. Further, it is convenient that a gear abnormality due to a defective tooth surface roughness (tooth surface roughness), which is difficult to determine by statistical analysis, can be accurately determined with sufficient accuracy.

以上、本発明の実施の形態を説明したが、本発明の範囲は、これに限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   Although the embodiment of the present invention has been described above, the scope of the present invention is not limited to this, and it goes without saying that various modifications can be made without departing from the scope of the present invention.

本発明は各種ギヤを製造、販売する産業分野で利用することが出来る。   The present invention can be used in the industrial field where various gears are manufactured and sold.

ギヤ歯面の異常診断装置を示す図The figure which shows the abnormality diagnosis apparatus of a gear tooth surface AR(30)モデルによる推定値と実測値との残差のACF値及びPACF値ACF value and PACF value of the residual between the estimated value and the actual measurement value by the AR (30) model 残差(ずれ)を求める方法の模式図Schematic diagram of how to calculate the residual (deviation) A型ギヤにおける代表的な時間信号の波形Typical time signal waveform in A-type gear D型ギヤにおける代表的な時間信号の波形Typical time signal waveform in D-type gear HA型ギヤにおける代表的な時間信号の波形Typical time signal waveform in HA type gear 図7(a) A型ギヤにおける残差の標準波高率 図7(b) A型ギヤにおける残差の標準尖り度Fig.7 (a) Standard crest factor of residual in A type gear Fig.7 (b) Standard kurtosis of residual in A type gear 図8(a) D型ギヤにおける残差の標準波高 図8(b) D型ギヤにおける残差の標準尖り度Fig.8 (a) Standard wave height of residual in D type gear Fig.8 (b) Standard kurtosis of residual in D type gear 図9(a) HA型ギヤにおける残差の標準波高率 図9(b) HA型ギヤにおける残差の標準尖り度Fig.9 (a) Standard wave height factor of residual in HA type gear Fig.9 (b) Standard kurtosis of residual in HA type gear 代表的なA型ギヤの歯面に生じた打痕の測定結果Measurement results of dents on the tooth surface of a typical A-type gear A型ギヤにおける統計解析結果と時系列解析結果の比較Comparison of statistical analysis results and time series analysis results for A-type gears D型ギヤにおける統計解析結果と時系列解析結果の比較Comparison of statistical analysis results and time series analysis results for D-type gears HA型ギヤにおける統計解析結果と時系列解析結果の比較Comparison of statistical analysis results and time series analysis results for HA gears ギヤ歯面の診断装置のブロック図Block diagram of gear tooth surface diagnosis device

符号の説明Explanation of symbols

A…加速度センサー、B…マスターギヤ、C…診断対象ギヤ、D…駆動モータ、E…センサアンプ、F…モジュールタイプ信号入出力ユニット、G…信号処理PC(パーソナルコンピュータ)。 A ... acceleration sensor, B ... master gear, C ... diagnostic gear, D ... drive motor, E ... sensor amplifier, F ... module type signal input / output unit, G ... signal processing PC (personal computer).

Claims (3)

時系列解析の自己回帰AR(p)モデルを持ち、マスターギヤと診断対象ギヤとを噛み合わせて駆動モータにより回転駆動させた時に、発生する振動加速度を一カ所に設置された加速度センサで計測し、前記加速度センサで計測した振動加速度信号から前記自己回帰AR(p)モデルにより振動加速度の推定値を計算し、前記加速度センサで計測した振動加速度信号と、前記自己回帰AR(p)モデルにより計算された推定値との2信号の差(残差)を計算し、前記時系列解析の前記2信号の差(残差)の統計量の波高率又は尖り度を求め、これらの統計量の変化を監視することで前記診断対象ギヤの噛み合い歯面の表面あらさや微小な打痕等のギヤ歯面の異常の診断ができることを特徴とするギヤ歯面の異常診断方法。   It has an autoregressive AR (p) model for time series analysis. When the master gear and the gear to be diagnosed are meshed and driven by a drive motor, the vibration acceleration generated is measured by an acceleration sensor installed in one place. The estimated value of vibration acceleration is calculated from the vibration acceleration signal measured by the acceleration sensor using the autoregressive AR (p) model, and is calculated using the vibration acceleration signal measured by the acceleration sensor and the autoregressive AR (p) model. The difference (residual) of the two signals from the estimated value obtained is calculated, the crest factor or the kurtosis of the statistic of the difference (residual) of the two signals in the time series analysis is obtained, and the change of these statistics An abnormality diagnosis method for a gear tooth surface, characterized in that a gear tooth surface abnormality such as a surface roughness of a meshing tooth surface of the gear to be diagnosed or a minute dent can be diagnosed by monitoring the gear. 時系列解析の次数30である自己回帰AR(30)モデルを持ち、マスターギヤと診断対象ギヤとを噛み合わせて駆動モータにより回転駆動させた時に、発生する振動加速度を一カ所に設置された加速度センサで計測し、前記加速度センサで計測した振動加速度信号から前記自己回帰AR(30)モデルにより振動加速度の推定値を計算し、前記加速度センサで計測した振動加速度信号と、前記自己回帰AR(30)モデルにより計算された推定値との2信号の差(残差)を計算し、前記時系列解析の前記2信号の差(残差)の統計量の波高率又は尖り度を求め、これらの統計量の変化を監視することで前記診断対象ギヤの噛み合い歯面の表面あらさや微小な打痕等のギヤ歯面の異常の診断ができることを特徴とするギヤ歯面の異常診断方法。   A self-regression AR (30) model with an order of 30 in time series analysis. When the master gear and the diagnosis target gear are meshed and driven to rotate by the drive motor, the vibration acceleration generated is the acceleration installed at one place. An estimated value of vibration acceleration is calculated by the autoregressive AR (30) model from the vibration acceleration signal measured by the sensor, and the vibration acceleration signal measured by the acceleration sensor and the autoregressive AR (30 ) Calculate the difference (residual) of the two signals from the estimated value calculated by the model, obtain the crest factor or kurtosis of the statistic of the difference (residual) of the two signals of the time series analysis, An abnormality diagnosis method for a gear tooth surface, characterized by monitoring a change in statistics and diagnosing a gear tooth surface abnormality such as a surface roughness of the meshing tooth surface of the gear to be diagnosed or a minute dent. 時系列解析の次数30である自己回帰AR(30)モデルを持ち、マスターギヤと診断対象ギヤとを噛み合わせてギヤ歯面の異常診断装置本体に組み込み、駆動モータにより回転駆動させた時に発生する振動加速度を一カ所に設置された加速度センサで計測(観測)し、この加速度センサが検出した振動加速度信号を増幅するセンサアンプと、増幅された振動加速度信号を内蔵するA/Dコンバータにより、例えば12〜24ビットのデジタル信号に変換するモジュールタイプ信号入出力ユニットを経由して信号処理PC内に取り込み、前記自己回帰AR(30)モデルにより計算された前記振動加速度信号の推定値と、前記加速度センサで計測した前記振動加速度信号の測定値との2信号の差(残差)を計算し、前記時系列解析の前記2信号の差(残差)により統計量の波高率又は尖り度を求め、
これらの統計量の変化を記憶装置33に記憶させたり、ディスプレイ50に表示したり、プリンタ60に出力したりして、監視することで前記診断対象ギヤの噛み合い歯面の表面あらさや微小な打痕等のギヤ歯面の異常の診断ができることを特徴とするギヤ歯面の異常診断装置。
Occurs when it has an autoregressive AR (30) model with degree 30 of time series analysis, meshes with the master gear and the gear to be diagnosed, is incorporated in the gear tooth surface abnormality diagnosis device body, and is rotated by a drive motor. The vibration acceleration is measured (observed) by an acceleration sensor installed in one place, and a sensor amplifier that amplifies the vibration acceleration signal detected by the acceleration sensor and an A / D converter that incorporates the amplified vibration acceleration signal, for example, An estimated value of the vibration acceleration signal calculated by the autoregressive AR (30) model, which is taken into the signal processing PC via a module type signal input / output unit for converting into a 12-24 bit digital signal, and the acceleration The difference (residual) of the two signals from the measured value of the vibration acceleration signal measured by the sensor is calculated, and the two signals of the time series analysis are calculated. Seeking crest factor or kurtosis statistics by the difference (residual),
Changes in these statistics are stored in the storage device 33, displayed on the display 50, or output to the printer 60 for monitoring to monitor the surface roughness of the meshing tooth surface of the gear to be diagnosed and minute strikes. An apparatus for diagnosing an abnormality in a gear tooth surface, such as an abnormality in a gear tooth surface such as a mark.
JP2007274262A 2007-10-22 2007-10-22 Method for diagnosing abnormality of tooth plane of gear and apparatus using same Pending JP2009103525A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007274262A JP2009103525A (en) 2007-10-22 2007-10-22 Method for diagnosing abnormality of tooth plane of gear and apparatus using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007274262A JP2009103525A (en) 2007-10-22 2007-10-22 Method for diagnosing abnormality of tooth plane of gear and apparatus using same

Publications (1)

Publication Number Publication Date
JP2009103525A true JP2009103525A (en) 2009-05-14

Family

ID=40705336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007274262A Pending JP2009103525A (en) 2007-10-22 2007-10-22 Method for diagnosing abnormality of tooth plane of gear and apparatus using same

Country Status (1)

Country Link
JP (1) JP2009103525A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011163883A (en) * 2010-02-08 2011-08-25 Honda Elesys Co Ltd Electronic scanning radar apparatus, and method and program for estimating direction of received wave
CN102288286A (en) * 2011-06-16 2011-12-21 中国科学院沈阳自动化研究所 Method for analyzing and evaluating measure point precision of gearbox in vibration acceleration sensor
CN103323517A (en) * 2012-03-22 2013-09-25 现代岱摩斯有限公司 Inspection method for tooth face of differential gear assembly
JP2014010139A (en) * 2012-07-03 2014-01-20 National Fisheries Univ State monitoring system for dynamic facility and its method and its program
CN103712792A (en) * 2013-12-16 2014-04-09 西安交通大学 Fault diagnosis method for wind-power gear case
CN103940606A (en) * 2014-04-03 2014-07-23 中国石油大学(北京) Gearbox fault diagnosis experiment platform
CN103940607A (en) * 2014-04-04 2014-07-23 西安交通大学 Epicyclic gearbox signal separating and diagnostic method independent of time domain average
CN105300688A (en) * 2015-10-10 2016-02-03 浙江大学 RMS-based self-adaptive quick evaluating method for rotating speed of gearbox
CN107121283A (en) * 2017-06-19 2017-09-01 苏州微著设备诊断技术有限公司 A kind of gear condition monitoring index extracting method based on Discrete Stochastic separation algorithm
JP2018004319A (en) * 2016-06-28 2018-01-11 マツダ株式会社 Gear tooth surface abnormality detection device and gear tooth surface abnormality detection method
WO2018230645A1 (en) * 2017-06-14 2018-12-20 株式会社東芝 Anomaly detection device, anomaly detection method, and program
CN113970440A (en) * 2021-10-22 2022-01-25 南京高精齿轮集团有限公司 Method for judging abnormal sound of gear box, diagnosis system and storage medium
CN114370998A (en) * 2022-03-22 2022-04-19 西安因联信息科技有限公司 Automatic diagnosis method and system for gear fault of gear box
CN116292371A (en) * 2023-03-30 2023-06-23 苏州市轨道交通集团有限公司 Fault table for simulating subway fan state, fault classification method and device

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011163883A (en) * 2010-02-08 2011-08-25 Honda Elesys Co Ltd Electronic scanning radar apparatus, and method and program for estimating direction of received wave
CN102288286A (en) * 2011-06-16 2011-12-21 中国科学院沈阳自动化研究所 Method for analyzing and evaluating measure point precision of gearbox in vibration acceleration sensor
CN103323517A (en) * 2012-03-22 2013-09-25 现代岱摩斯有限公司 Inspection method for tooth face of differential gear assembly
JP2014010139A (en) * 2012-07-03 2014-01-20 National Fisheries Univ State monitoring system for dynamic facility and its method and its program
CN103712792A (en) * 2013-12-16 2014-04-09 西安交通大学 Fault diagnosis method for wind-power gear case
CN103940606A (en) * 2014-04-03 2014-07-23 中国石油大学(北京) Gearbox fault diagnosis experiment platform
CN103940607A (en) * 2014-04-04 2014-07-23 西安交通大学 Epicyclic gearbox signal separating and diagnostic method independent of time domain average
CN105300688A (en) * 2015-10-10 2016-02-03 浙江大学 RMS-based self-adaptive quick evaluating method for rotating speed of gearbox
JP2018004319A (en) * 2016-06-28 2018-01-11 マツダ株式会社 Gear tooth surface abnormality detection device and gear tooth surface abnormality detection method
JPWO2018230645A1 (en) * 2017-06-14 2020-05-21 株式会社東芝 Abnormality detection device, abnormality detection method, and program
WO2018230645A1 (en) * 2017-06-14 2018-12-20 株式会社東芝 Anomaly detection device, anomaly detection method, and program
CN107121283B (en) * 2017-06-19 2019-02-01 苏州微著设备诊断技术有限公司 A kind of gear condition monitoring index extracting method based on Discrete Stochastic separation algorithm
CN107121283A (en) * 2017-06-19 2017-09-01 苏州微著设备诊断技术有限公司 A kind of gear condition monitoring index extracting method based on Discrete Stochastic separation algorithm
CN113970440A (en) * 2021-10-22 2022-01-25 南京高精齿轮集团有限公司 Method for judging abnormal sound of gear box, diagnosis system and storage medium
CN114370998A (en) * 2022-03-22 2022-04-19 西安因联信息科技有限公司 Automatic diagnosis method and system for gear fault of gear box
CN116292371A (en) * 2023-03-30 2023-06-23 苏州市轨道交通集团有限公司 Fault table for simulating subway fan state, fault classification method and device
CN116292371B (en) * 2023-03-30 2023-09-19 苏州市轨道交通集团有限公司 Fault table for simulating subway fan state, fault classification method and device

Similar Documents

Publication Publication Date Title
JP2009103525A (en) Method for diagnosing abnormality of tooth plane of gear and apparatus using same
JP3609982B2 (en) Fault diagnosis method and apparatus
EP2434266B1 (en) Sideband energy ratio method for gear mesh fault detection
CA2010097C (en) Method and apparatus for detecting gear defects
JP2008292288A (en) Bearing diagnostic device for reduction gear
US20190301975A1 (en) Abnormality diagnostic method and abnormality diagnostic device for rolling bearing
JP6508017B2 (en) Evaluation method of machinery and equipment
JP4120099B2 (en) Bearing abnormality diagnosis method and abnormality diagnosis device
JP2017219469A (en) State monitoring device and state monitoring method
JP6714806B2 (en) Status monitoring device and status monitoring method
EP3588078B1 (en) Inspection apparatus and inspection method for inspection target
JP2018179735A (en) Abnormality diagnostic method and abnormality diagnostic device for rotary component
JP4581860B2 (en) Machine equipment abnormality diagnosis apparatus and abnormality diagnosis method
JPH08108205A (en) Method for detecting chattering of rolling mill
CN113092114B (en) Bearing fault diagnosis method, device and storage medium
Ulus et al. An experimental study on gear diagnosis by using acoustic emission technique
KR20110122483A (en) Built-in vibration monitor having order spectrum analysis function and fault diagnosis method of variable rotating speed machine using the monitor
JP3871054B2 (en) Machine equipment condition monitoring method and apparatus
JP6714844B2 (en) Abnormality diagnosis method
JP2018185311A (en) Method and device for monitoring anomalies
JP4031745B2 (en) Gear diagnosis method and gear diagnosis device
JP5017678B2 (en) Signal inspection method and signal inspection module
JP5476413B2 (en) Diagnostic method for soundness of rotating machinery
JP2011180082A (en) Diagnostic method and device of sliding bearing
JP2016114960A (en) Rotor and method and system for diagnosing facility including bearing thereof