JP6899109B2 - Abnormality diagnosis method of the part to be diagnosed in the rotation drive device and the abnormality diagnosis device used for it. - Google Patents

Abnormality diagnosis method of the part to be diagnosed in the rotation drive device and the abnormality diagnosis device used for it. Download PDF

Info

Publication number
JP6899109B2
JP6899109B2 JP2016085207A JP2016085207A JP6899109B2 JP 6899109 B2 JP6899109 B2 JP 6899109B2 JP 2016085207 A JP2016085207 A JP 2016085207A JP 2016085207 A JP2016085207 A JP 2016085207A JP 6899109 B2 JP6899109 B2 JP 6899109B2
Authority
JP
Japan
Prior art keywords
diagnosis
time
diagnosed
characteristic data
parameters related
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016085207A
Other languages
Japanese (ja)
Other versions
JP2017194371A (en
Inventor
陳山 鵬
鵬 陳山
森 圭史
圭史 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mie University NUC
Tokuyama Corp
Original Assignee
Mie University NUC
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mie University NUC, Tokuyama Corp filed Critical Mie University NUC
Priority to JP2016085207A priority Critical patent/JP6899109B2/en
Publication of JP2017194371A publication Critical patent/JP2017194371A/en
Application granted granted Critical
Publication of JP6899109B2 publication Critical patent/JP6899109B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Description

本発明は、 回転駆動装置における診断対象部の異常診断方法と、それに用いる異常診断装置に関する。詳しくは、センサから出力される振動特性データを使用して、特に、低速で回転する駆動装置における軸受け、歯車、チエーン等の診断対象部の異常の検出を確実に実施することが可能な異常診断方法と、それに用いる異常診断装置を提供することにある。 The present invention relates to a method for diagnosing an abnormality of a diagnosis target portion in a rotary drive device and an abnormality diagnosing device used therein. Specifically, using the vibration characteristic data output from the sensor, it is possible to reliably detect abnormalities in the parts to be diagnosed, such as bearings, gears, and chains, especially in drive devices that rotate at low speeds. The purpose is to provide a method and an abnormality diagnostic device used for the method.

バケットエレベータなどの輸送装置、ロータリーキルン、鉱山装置等の駆動部の如き、200rpm以下の低速で回転する軸受けを含む駆動装置において、その異常診断をセンサから出力される振動特性データにより行おうとした場合、得られる信号のS(シグナル)/N(ノイズ)比が低く、異常の検出を正確に行うことができないという問題が指摘されている。
そのため、従来の異常診断は、専ら、検査者の五感主体で行われ、その正確性を確保するには、高度な熟練を要するものであった。
In the case of a drive device including a bearing that rotates at a low speed of 200 rpm or less, such as a transport device such as a bucket elevator, a rotary kiln, or a drive unit of a mining device, if an abnormality diagnosis is to be performed using the vibration characteristic data output from the sensor. It has been pointed out that the S (signal) / N (noise) ratio of the obtained signal is low, and it is not possible to accurately detect an abnormality.
Therefore, the conventional abnormality diagnosis is performed exclusively by the five senses of the inspector, and a high degree of skill is required to ensure its accuracy.

一方、S/N比が低い信号より、ノイズを除去する手段として、以下の方法が知られている。
たとえば、特許文献1に記載されるような、ハイパスフィルターによる軸受診断方法や、特許文献2に記載されるような、パワースペクトル比による異常信号の抽出法がある。しかしながら、前者の方法は、カットオフ周波数の決定が難しく、異常信号の選別抽出ができない問題があり、異常信号を十分正確に抽出することが困難であった。また、後者の方法は、衝撃的な振動が伴う設備の異常信号抽出に適していない問題があり、異常信号を十分正確に抽出することが困難であった。
On the other hand, the following method is known as a means for removing noise from a signal having a low S / N ratio.
For example, there are a bearing diagnosis method using a high-pass filter as described in Patent Document 1 and a method for extracting an abnormal signal based on a power spectral ratio as described in Patent Document 2. However, the former method has a problem that it is difficult to determine the cutoff frequency and it is not possible to select and extract the abnormal signal, and it is difficult to extract the abnormal signal sufficiently accurately. Further, the latter method has a problem that it is not suitable for extracting an abnormal signal of equipment accompanied by shocking vibration, and it is difficult to extract an abnormal signal sufficiently accurately.

特開2001−033353号公報Japanese Unexamined Patent Publication No. 2001-033353 特許第3920715号公報Japanese Patent No. 3920715

本発明の目的は、前記の従来の問題点に鑑み、センサから出力される振動特性データを使用して、特に、低速で回転する駆動装置における軸受け、歯車、チエーン等の診断対象部の異常の検出を確実に実施することが可能な異常診断方法と、それに用いる異常診断装置を提供することにある。 An object of the present invention is to use the vibration characteristic data output from the sensor in view of the above-mentioned conventional problems, and to use the vibration characteristic data, in particular, to detect an abnormality in a diagnosis target portion such as a bearing, a gear, or a chain in a drive device rotating at a low speed. An object of the present invention is to provide an abnormality diagnosis method capable of reliably performing detection and an abnormality diagnosis device used for the method.

本発明者らは、前記目的を達成するために鋭意研究を重ねた結果、 異常信号の選別抽出を行う従来の統計情報フィルタによる処理に加えて、診断信号のフーリエ変換により得られる周波数領域のデータについて新規な特徴パラメータによる解析を行うと共に、時間領域のデータについても、特定の特徴パラメータによる解析を行い、これらの結果を主成分分析により評価することにより、前記目的を達成し得ることを見出し、本発明を提案するに至った。 As a result of diligent research to achieve the above object, the present inventors have conducted data in the frequency domain obtained by Fourier transform of a diagnostic signal in addition to processing by a conventional statistical information filter that selects and extracts anomalous signals. We found that the above objectives can be achieved by analyzing the data in the time domain using new feature parameters, analyzing the time domain data using specific feature parameters, and evaluating these results by principal component analysis. We have come to propose the present invention.

本発明によると、上記目的は、次のような手段によって解決される。
(1)回転駆動装置における診断対象部の異常診断方法であって、
1)正常時(基準時)と、診断時に、前記診断対象部の振動測定部位に設置したセンサから出力される振動特性データを統計情報フィルタで処理して、それぞれ正常時抽出振動特性データ、診断時抽出振動特性データを得る第1工程と、
2)前記正常時抽出振動特性データ及び前記診断時抽出振動特性データについて正規化を行い、下記の式1〜式4の任意の1以上についての時間領域に係る特徴パラメータを求めるとともに、前記正常時抽出振動特性データ及び前記診断時抽出振動特性データについて包絡線処理を行った後、各データをフーリエ変換し、下記の式5〜式10の任意の1以上についての周波数領域に係る特徴パラメータを求める第2工程と、
3)前記第2工程において求めた時間領域に係る特徴パラメータ及び周波数領域に係る特徴パラメータについて主成分分析を行い、得られた主成分の座標空間における正常時と診断時の分布域の重複割合により回転駆動装置における駆動部の異常を判断する第3工程と
からなることを特徴とする回転駆動装置における診断対象部の異常診断方法である。

a) 時間領域に係る特徴パラメータ

Figure 0006899109
b)時間領域に係る特徴パラメータ
Figure 0006899109
c)時間領域に係る特徴パラメータ
Figure 0006899109
d)時間領域に係る特徴パラメータ
Figure 0006899109
e) 診断対象部の低周波帯域の安定指数を表わす特徴パラメータ
Figure 0006899109
f)診断対象部の低周波帯域のパワースペクトルの総和を表わす特徴パラメータ
Figure 0006899109
g)診断対象部のパス周波数成分率を表わす特徴パラメータ
Figure 0006899109
h)診断対象部の損傷指数を表わす特徴パラメータ
Figure 0006899109
i)診断対象部のパス周波数2次高調波率を表わす特徴パラメータ
Figure 0006899109
j)診断対象部のパス周波数3次高調波率を表わす特徴パラメータ
Figure 0006899109

Figure 0006899109
According to the present invention, the above object is solved by the following means.
(1) A method for diagnosing an abnormality in a part to be diagnosed in a rotary drive device.
1) At normal time (reference time) and at the time of diagnosis, the vibration characteristic data output from the sensor installed at the vibration measurement part of the diagnosis target part is processed by the statistical information filter, and the vibration characteristic data extracted at normal time and the diagnosis are performed, respectively. The first step to obtain time-extracted vibration characteristic data,
2) The normal extraction vibration characteristic data and the diagnosis extraction vibration characteristic data are normalized to obtain the characteristic parameters related to the time domain for any one or more of the following equations 1 to 4, and the normal operation is performed. After performing the envelope processing on the extracted vibration characteristic data and the extracted vibration characteristic data at the time of diagnosis, each data is Fourier transformed to obtain the characteristic parameters related to the frequency domain for any one or more of the following equations 5 to 10. Second step and
3) Principal component analysis was performed on the characteristic parameters related to the time domain and the characteristic parameters related to the frequency domain obtained in the second step, and the overlapping ratio of the distribution areas at the time of normal diagnosis and the distribution area at the time of diagnosis in the obtained coordinate space of the principal components was used. This is a method for diagnosing an abnormality in a portion to be diagnosed in a rotary drive device, which comprises a third step of determining an abnormality in the drive unit in the rotary drive device.

a) Feature parameters related to the time domain
Figure 0006899109
b) Feature parameters related to the time domain
Figure 0006899109
c) Feature parameters related to the time domain
Figure 0006899109
d) Feature parameters related to the time domain
Figure 0006899109
e) Feature parameter representing the stability index of the low frequency band of the part to be diagnosed
Figure 0006899109
f) Feature parameter representing the total power spectrum of the low frequency band of the diagnostic target
Figure 0006899109
g) Feature parameter representing the path frequency component ratio of the part to be diagnosed
Figure 0006899109
h) Feature parameter representing the damage index of the part to be diagnosed
Figure 0006899109
i) Feature parameter representing the path frequency second harmonic rate of the part to be diagnosed
Figure 0006899109
j) Characteristic parameter representing the path frequency third harmonic rate of the part to be diagnosed
Figure 0006899109

Figure 0006899109

このような構成とすることにより、軸受を含む回転駆動装置の適宜の場所に設置したセンサによって得られる振動特性データを、特定のフィルタ処理、特定のパラメータによる処理、更には、主成分分析の手法を組み合わせることにより処理することにより、低速で回転する軸受けを含む駆動装置における該振動特性データのようにS/N比が低いものであっても、正確に異常信号を抽出することが可能となる。 With such a configuration, the vibration characteristic data obtained by the sensor installed at an appropriate position of the rotary drive device including the bearing can be processed by specific filtering, processing by specific parameters, and further, a method of principal component analysis. By processing by combining the above, it is possible to accurately extract an abnormal signal even if the S / N ratio is low as in the vibration characteristic data in a drive device including a bearing that rotates at a low speed. ..

(2)上記(1)項において、式5〜式10の任意の1以上についての周波数領域に係る特徴パラメータのうちの少なくとも1を、式5〜式8の特徴パラメータから選択するものとする。 (2) In the above item (1), at least one of the feature parameters related to the frequency domain for any one or more of the formulas 5 to 10 shall be selected from the feature parameters of the formulas 5 to 8.

このような構成とすることにより、上記(1)項の発明を、簡易に効率よく実施することができる。 With such a configuration, the invention of the above item (1) can be easily and efficiently carried out.

(3)上記(1)項又は(2)項において、主成分分析を、累積率の総和が予め定めた所定値以上となる複数の主成分を用いて行うものとする。 (3) In the above item (1) or (2), the principal component analysis shall be performed using a plurality of principal components whose total cumulative rate is equal to or higher than a predetermined value.

このような構成とすることにより、元のデータの特徴が良好に表せるものとなり、異常診断の精度を向上させることができる。 With such a configuration, the characteristics of the original data can be expressed well, and the accuracy of abnormality diagnosis can be improved.

(4)上記(1)項〜(3)項のいずれかにおいて、座標空間にプロットした、診断時の特徴パラメータの分布域が、正常時の特徴パラメータの分布域と重複する割合が予め定めた値以下であるときに、診断対象部が異常であると判断するものとする。 (4) In any of the above items (1) to (3), the ratio at which the distribution area of the characteristic parameter at the time of diagnosis overlapped with the distribution area of the characteristic parameter at the time of diagnosis plotted in the coordinate space is predetermined. When it is less than or equal to the value, it is determined that the part to be diagnosed is abnormal.

このような構成とすることにより、異常診断の判断を、簡易かつ精度良く行うことができる。 With such a configuration, it is possible to easily and accurately determine the abnormality diagnosis.

(5)上記(1)項〜(4)項のいずれかにおいて、駆動装置が、低速回転機械のチェーン伝動機構であるものとする。 (5) In any of the above items (1) to (4), it is assumed that the drive device is a chain transmission mechanism of a low-speed rotating machine.

このような構成とすることにより、従来は診断が困難であった低速回転機械のチェーン伝動機構における異常診断を容易に行うことができる。 With such a configuration, it is possible to easily perform an abnormality diagnosis in the chain transmission mechanism of a low-speed rotating machine, which has been difficult to diagnose in the past.

(6)上記(1)項〜(5)項のいずれかにおいて、回転駆動装置における診断対象部が、軸受または歯車であるものとする。 (6) In any of the above items (1) to (5), it is assumed that the diagnostic target portion in the rotary drive device is a bearing or a gear.

このような構成とすることにより、従来は診断が困難であった軸受または歯車における異常診断を、本発明により、容易かつ確実に行うことができる。 With such a configuration, according to the present invention, it is possible to easily and surely perform an abnormality diagnosis in a bearing or a gear, which has been difficult to diagnose in the past.

(7)回転駆動装置における診断対象部の異常診断装置であって、
1)正常時(基準時)に、前記診断対象部の振動測定部位に設置したセンサから出力される振動特性データを統計情報フィルタで処理して、正常時抽出振動特性データを得る正常時抽出振動特性データ取得手段と、
2)診断時に、前記診断対象部の振動測定部位に設置したセンサから出力される振動特性データを統計情報フィルタで処理して、診断時抽出振動特性データを得る診断時抽出振動特性データ取得手段と、
3)前記正常時抽出振動特性データ及び前記診断時抽出振動特性データについて正規化を行い、下記の式1〜式4の任意の1以上についての時間領域に係る特徴パラメータを求める時間領域特徴パラメータ取得手段と、
4)前記正常時抽出振動特性データ及び前記診断時抽出振動特性データについて包絡線処理を行った後、各データをフーリエ変換し、下記の式5〜式10の任意の1以上についての周波数領域に係る特徴パラメータを求める周波数領域特徴パラメータ取得手段と、
5)前記求めた時間領域に係る特徴パラメータ及び周波数領域に係る特徴パラメータについて主成分分析を行い、得られた主成分の座標空間における正常時と診断時の分布域の重複割合により、回転駆動装置における診断対象部の異常を判断する異常判断手段と
を備えることを特徴とする回転駆動装置における診断対象部の異常診断装置とする。

a) 時間領域に係る特徴パラメータ

Figure 0006899109
b)時間領域に係る特徴パラメータ
Figure 0006899109
c)時間領域に係る特徴パラメータ
Figure 0006899109
d)時間領域に係る特徴パラメータ
Figure 0006899109
e) 診断対象部の低周波帯域の安定指数を表わす特徴パラメータ
Figure 0006899109
f)診断対象部の低周波帯域のパワースペクトルの総和を表わす特徴パラメータ
Figure 0006899109
g)診断対象部のパス周波数成分率を表わす特徴パラメータ
Figure 0006899109
h)診断対象部の損傷指数を表わす特徴パラメータ
Figure 0006899109
i)診断対象部のパス周波数2次高調波率を表わす特徴パラメータ
Figure 0006899109
j)診断対象部のパス周波数3次高調波率を表わす特徴パラメータ
Figure 0006899109

Figure 0006899109
(7) An abnormality diagnosis device for a part to be diagnosed in a rotary drive device.
1) Normal extraction vibration to obtain normal extraction vibration characteristic data by processing the vibration characteristic data output from the sensor installed at the vibration measurement site of the diagnosis target part with a statistical information filter during normal operation (reference time). Characteristic data acquisition means and
2) As a means for acquiring vibration characteristic data extracted at the time of diagnosis, which obtains the vibration characteristic data extracted at the time of diagnosis by processing the vibration characteristic data output from the sensor installed at the vibration measurement part of the diagnosis target part with the statistical information filter at the time of diagnosis. ,
3) Acquisition of time domain feature parameters by normalizing the normal extraction vibration characteristic data and the diagnosis extraction vibration characteristic data, and obtaining the characteristic parameters related to the time domain for any one or more of the following equations 1 to 4. Means and
4) After performing the envelope processing on the normal extraction vibration characteristic data and the diagnosis extraction vibration characteristic data, each data is Fourier transformed into the frequency domain for any one or more of the following equations 5 to 10. Frequency domain feature parameter acquisition means for obtaining such feature parameters,
5) Principal component analysis is performed on the characteristic parameters related to the obtained time domain and the characteristic parameters related to the frequency domain, and the rotation drive device is based on the overlapping ratio of the distribution areas at the time of normal diagnosis and the distribution area at the time of diagnosis in the obtained coordinate space of the main components. It is an abnormality diagnosis device of a diagnosis target part in a rotary drive device, which is provided with an abnormality determination means for determining an abnormality of the diagnosis target part in the above.

a) Feature parameters related to the time domain
Figure 0006899109
b) Feature parameters related to the time domain
Figure 0006899109
c) Feature parameters related to the time domain
Figure 0006899109
d) Feature parameters related to the time domain
Figure 0006899109
e) Feature parameter representing the stability index of the low frequency band of the part to be diagnosed
Figure 0006899109
f) Feature parameter representing the total power spectrum of the low frequency band of the diagnostic target
Figure 0006899109
g) Feature parameter representing the path frequency component ratio of the part to be diagnosed
Figure 0006899109
h) Feature parameter representing the damage index of the part to be diagnosed
Figure 0006899109
i) Feature parameter representing the path frequency second harmonic rate of the part to be diagnosed
Figure 0006899109
j) Characteristic parameter representing the path frequency third harmonic rate of the part to be diagnosed
Figure 0006899109

Figure 0006899109

このような構成とすることにより、回転駆動装置の適宜の場所に設置したセンサから出力される振動特性データを使用して、特に、低速で回転する駆動装置における軸受け、歯車、チエーン等の診断対象部の異常の検出を確実に実施することができる異常診断装置が提供される。 With such a configuration, the vibration characteristic data output from the sensor installed at an appropriate position of the rotary drive device is used to diagnose the bearing, gear, chain, etc. of the drive device that rotates at a low speed. An abnormality diagnostic device capable of reliably detecting an abnormality in a part is provided.

上記(7)項において、回転駆動装置における診断対象部が、軸受または歯車であるものとする。 In the above item (7), it is assumed that the diagnostic target portion in the rotary drive device is a bearing or a gear.

このような構成とすることにより、従来は診断が困難であった軸受または歯車における異常診断を、容易かつ確実に行うことができる異常診断装置が提供される。 With such a configuration, an abnormality diagnosis device capable of easily and surely performing an abnormality diagnosis in a bearing or a gear, which has been difficult to diagnose in the past, is provided.

本発明は、回転駆動装置の適宜の場所に設置したセンサから出力される振動特性データを使用して、特に、低速で回転する駆動装置における軸受け、歯車、チエーン等の診断対象部の異常の検出を確実に実施することができる。 The present invention uses vibration characteristic data output from sensors installed at appropriate locations in a rotary drive device to detect abnormalities in parts to be diagnosed, such as bearings, gears, and chains, especially in a drive device that rotates at a low speed. Can be reliably implemented.

本発明の処理の流れ図である。It is a flow chart of the process of this invention. 本発明における軸受を含む駆動装置の一例としての低速回転装置及び振動加速度センサを示す図である。It is a figure which shows the low-speed rotating device and the vibration acceleration sensor as an example of the drive device including a bearing in this invention. 本発明における軸受の外輪傷、内輪傷、転動体傷の一例を示す図である。It is a figure which shows an example of the outer ring scratch, the inner ring scratch, and the rolling body scratch of a bearing in this invention. 比較例1として、本発明を、統計情報フィルターで処理せずに実施した場合の結果を示す図である。As Comparative Example 1, it is a figure which shows the result when this invention was carried out without processing by a statistical information filter. 実施例1として、本発明を、統計情報フィルターで処理して実施した場合の結果を示す図である。As Example 1, it is a figure which shows the result when this invention was processed with a statistical information filter, and was carried out. 比較例2として、本発明を、統計情報フィルターで処理せずに実施した場合の結果を示す図である。As Comparative Example 2, it is a figure which shows the result when this invention was carried out without processing by a statistical information filter. 実施例2として、本発明を、統計情報フィルターで処理して実施した場合の結果を示す図である。As a second embodiment, it is a figure which shows the result when the present invention was processed by a statistical information filter, and was carried out. 本発明における軸受を含む駆動装置の一例としての材料輸送機と診断対象の軸受を示す図である。It is a figure which shows the material transport aircraft as an example of the drive device including a bearing in this invention, and the bearing to be diagnosed. 診断対象の軸受の内輪に生じた異常を示す図である。It is a figure which shows the abnormality which occurred in the inner ring of the bearing to be diagnosed. 診断対象の軸受の外輪に生じた異常を示す図である。It is a figure which shows the abnormality which occurred in the outer ring of the bearing to be diagnosed. 実施例3の主成分分析結果を示す図面である。It is a drawing which shows the principal component analysis result of Example 3. FIG. 実施例4の主成分分析結果を示す図面である。It is a drawing which shows the principal component analysis result of Example 4. FIG. 実施例5の主成分分析結果を示す図面である。It is a drawing which shows the principal component analysis result of Example 5. 実施例6の主成分分析結果を示す図面である。It is a drawing which shows the principal component analysis result of Example 6. 実施例7の主成分分析結果を示す図面である。It is a drawing which shows the principal component analysis result of Example 7. 実施例8の主成分分析結果を示す図面である。It is a drawing which shows the principal component analysis result of Example 8. 実施例9の主成分分析結果を示す図面である。It is a drawing which shows the principal component analysis result of Example 9. 実施例10の主成分分析結果を示す図面である。It is a drawing which shows the principal component analysis result of Example 10. 実施例11の主成分分析結果を示す図面である。It is a drawing which shows the principal component analysis result of Example 11. 実施例12の主成分分析結果を示す図面である。It is a drawing which shows the principal component analysis result of Example 12. 実施例13の主成分分析結果を示す図面である。It is a drawing which shows the principal component analysis result of Example 13. 実施例14の主成分分析結果を示す図面である。It is a drawing which shows the principal component analysis result of Example 14. 実施例15の主成分分析結果を示す図面である。It is a drawing which shows the principal component analysis result of Example 15. 実施例16の主成分分析結果を示す図面である。It is a drawing which shows the principal component analysis result of Example 16. 実施例17の主成分分析結果を示す図面である。It is a drawing which shows the principal component analysis result of Example 17. 実施例18の主成分分析結果を示す図面である。It is a drawing which shows the principal component analysis result of Example 18. 実施例19の主成分分析結果を示す図面である。It is a drawing which shows the principal component analysis result of Example 19. 実施例20の主成分分析結果を示す図面である。It is a drawing which shows the principal component analysis result of Example 20. 実施例21の主成分分析結果を示す図面である。It is a drawing which shows the principal component analysis result of Example 21. 実施例22の主成分分析結果を示す図面である。It is a drawing which shows the principal component analysis result of Example 22. 実施例23の主成分分析結果を示す図面である。It is a drawing which shows the principal component analysis result of Example 23. 実施例24の主成分分析結果を示す図面である。It is a drawing which shows the principal component analysis result of Example 24. 実施例25の主成分分析結果を示す図面である。It is a drawing which shows the principal component analysis result of Example 25. 実施例26の主成分分析結果を示す図面である。It is a drawing which shows the principal component analysis result of Example 26. 実施例27の主成分分析結果を示す図面である。It is a drawing which shows the principal component analysis result of Example 27. 実施例28の主成分分析結果を示す図面である。It is a drawing which shows the principal component analysis result of Example 28. 実施例29の主成分分析結果を示す図面である。It is a drawing which shows the principal component analysis result of Example 29. 実施例30の主成分分析結果を示す図面である。It is a drawing which shows the principal component analysis result of Example 30. 実施例31の主成分分析結果を示す図面である。It is a drawing which shows the principal component analysis result of Example 31. 実施例32の主成分分析結果を示す図面である。It is a drawing which shows the principal component analysis result of Example 32. 実施例33の主成分分析結果を示す図面である。It is a drawing which shows the principal component analysis result of Example 33. 実施例34の主成分分析結果を示す図面である。It is a drawing which shows the principal component analysis result of Example 34. 実施例35の主成分分析結果を示す図面である。It is a drawing which shows the principal component analysis result of Example 35. 実施例36の主成分分析結果を示す図面である。It is a drawing which shows the principal component analysis result of Example 36. 実施例37の主成分分析結果を示す図面である。It is a drawing which shows the principal component analysis result of Example 37. 実施例38の主成分分析結果を示す図面である。It is a drawing which shows the principal component analysis result of Example 38. 実施例39の主成分分析結果を示す図面である。It is a drawing which shows the principal component analysis result of Example 39. 実施例40の主成分分析結果を示す図面である。It is a drawing which shows the principal component analysis result of Example 40. 実施例41の主成分分析結果を示す図面である。It is a drawing which shows the principal component analysis result of Example 41. 実施例42の主成分分析結果を示す図面である。It is a drawing which shows the principal component analysis result of Example 42. 実施例43の主成分分析結果を示す図面である。It is a drawing which shows the principal component analysis result of Example 43. 実施例44の主成分分析結果を示す図面である。It is a drawing which shows the principal component analysis result of Example 44. 実施例45の主成分分析結果を示す図面である。It is a drawing which shows the principal component analysis result of Example 45. 実施例46の主成分分析結果を示す図面である。It is a drawing which shows the principal component analysis result of Example 46. 実施例47の主成分分析結果を示す図面である。It is a drawing which shows the principal component analysis result of Example 47. 実施例48の主成分分析結果を示す図面である。It is a drawing which shows the principal component analysis result of Example 48. 比較例3の主成分分析結果を示す図面である。It is a figure which shows the principal component analysis result of the comparative example 3. FIG.

以下、本発明の実施形態を詳細に説明する。図1は、本発明の処理の流れ図である。
本発明において、軸受を含む駆動装置にセンサを取り付ける位置、すなわち、振動測定部位は、軸受けの振動を検出し得る位置であれば特に制限されるものではない。一般には、軸受けに直接的又は間接的に接する固定部材、具体的には、駆動装置のケーシング、設置台等が好適である。
本発明において、上記振動特性データの検出に使用するセンサは、公知のものが特に制限無く使用される。
Hereinafter, embodiments of the present invention will be described in detail. FIG. 1 is a flow chart of the process of the present invention.
In the present invention, the position where the sensor is attached to the drive device including the bearing, that is, the vibration measuring portion is not particularly limited as long as it is a position where the vibration of the bearing can be detected. In general, a fixing member that directly or indirectly contacts a bearing, specifically, a casing of a drive device, an installation base, or the like is suitable.
In the present invention, a known sensor is used without particular limitation as the sensor used for detecting the vibration characteristic data.

(1)まず、正常時(基準時)と、診断時に、前記診断対象部の振動測定部位に設置したセンサから出力される振動特性データを統計情報フィルタで処理して、それぞれ正常時抽出振動特性データ、診断時抽出振動特性データを得る第1工程について説明する。 (1) First, the vibration characteristic data output from the sensor installed at the vibration measurement part of the diagnosis target portion is processed by the statistical information filter at the time of normal (reference time) and at the time of diagnosis, and the vibration characteristics extracted at normal time are respectively. The first step of obtaining the data and the vibration characteristic data extracted at the time of diagnosis will be described.

本発明の診断方法は、通常の場合、先ず、正常時振動特性データを取得する。ここで、正常時(基準時)とは、診断対象の設備を精密診断を行った結果により異常が発生していない状態の事をいう
上記正常時振動特性データは、 統計処理を行うため、また、正確性を向上するため、十分な時間長(たとえば、5回転分)の診断信号を測定するように取得することが好ましい。
In the usual case, the diagnostic method of the present invention first acquires normal vibration characteristic data. Here, the normal state (reference time) means a state in which no abnormality has occurred as a result of performing a detailed diagnosis of the equipment to be diagnosed. In order to improve accuracy, it is preferable to acquire the diagnostic signal for a sufficient time length (for example, 5 rotations).

次いで、前記取得された正常時振動特性データは、ノイズを除去するため統計情報フィルタにより処理する。
統計情報フィルタによる処理は、センサより出力される時間波形である、振動特性データをフーリエ変換、好ましくは高速フーリエ変換により、スペクトル波形に変換した後、実施される。フーリエ変換に先立ち、必要により、データの正規化、データの分割を行うことが処理を効率良く行う上で好ましい。
Next, the acquired normal vibration characteristic data is processed by a statistical information filter in order to remove noise.
The processing by the statistical information filter is performed after converting the vibration characteristic data, which is a time waveform output from the sensor, into a spectral waveform by Fourier transform, preferably fast Fourier transform. Prior to the Fourier transform, it is preferable to normalize the data and divide the data, if necessary, in order to efficiently perform the processing.

上記データの正規化は、下記の式11により実施される。

Figure 0006899109

Figure 0006899109
Normalization of the above data is carried out by the following equation 11.
Figure 0006899109

Figure 0006899109


Figure 0006899109

Figure 0006899109


Figure 0006899109
Figure 0006899109

Figure 0006899109

Figure 0006899109
Figure 0006899109

Figure 0006899109

本発明において、上記統計情報フィルタで処理されたスペクトルデータは、必要によりハイパスフィルタにより処理した後、逆フーリエ変換、好ましくは逆高速フーリエ変換により時間波形に変換し、正常時抽出振動特性データを得る。 In the present invention, the spectrum data processed by the above statistical information filter is processed by a high-pass filter if necessary, and then converted into a time waveform by an inverse Fourier transform, preferably an inverse fast Fourier transform, to obtain normal-time extracted vibration characteristic data. ..

本発明の診断方法は、通常は、正常時振動特性データの取得後、診断を行う対象となる診断時振動特性データを取得する。
上記診断時振動特性データは、正常時振動特性データと同様、統計処理を行うため、また、正確性を向上するため、 十分な時間長(たとえば5回転分)の診断信号を測定するように取得することが好ましい。また、データの取得は、継続してデータを収集し、その中から対象とするデータを取り出してもよいし、診断時のみ必要量のデータを取得してもよい。
In the diagnostic method of the present invention, usually, after acquiring the normal vibration characteristic data, the diagnostic vibration characteristic data to be diagnosed is acquired.
Similar to the normal vibration characteristic data, the above diagnostic vibration characteristic data is acquired so as to measure a diagnostic signal for a sufficient time length (for example, for 5 rotations) in order to perform statistical processing and improve accuracy. It is preferable to do so. Further, in the acquisition of data, the data may be continuously collected and the target data may be extracted from the data, or the required amount of data may be acquired only at the time of diagnosis.

次いで、前記取得された診断時振動特性データは、前記正常時振動特性データと同様にして統計情報フィルタにより処理する。
また、同様に、上記統計情報フィルタで処理されたスペクトルデータは、必要によりハイパスフィルタにより処理した後、逆フーリエ変換、好ましくは逆高速フーリエ変換により時間波形に変換し、診断時抽出振動特性データを得る。
なお、統計情報フィルタの処理によるノイズの除去は十分でなく、得られた抽出振動特性データは、以下の処理により、異常データが検出し易くできるように処理を行う。
なお、前記したように、通常は、正常時振動特性データの取得後、診断時振動特性データを取得するが、これに限らず、診断時振動特性データを取得した後に、正常時振動特性データの取得を行って、本発明を実施してもよい。
Next, the acquired vibration characteristic data at diagnosis is processed by a statistical information filter in the same manner as the vibration characteristic data at normal time.
Similarly, the spectrum data processed by the above statistical information filter is processed by a high-pass filter if necessary, and then converted into a time waveform by an inverse Fourier transform, preferably an inverse fast Fourier transform, and the vibration characteristic data extracted at the time of diagnosis is obtained. obtain.
It should be noted that the noise removal by the processing of the statistical information filter is not sufficient, and the obtained extracted vibration characteristic data is processed so that the abnormal data can be easily detected by the following processing.
As described above, normally, after acquiring the normal vibration characteristic data, the diagnostic vibration characteristic data is acquired, but the present invention is not limited to this, and after the diagnostic vibration characteristic data is acquired, the normal vibration characteristic data is acquired. The present invention may be carried out by obtaining the data.

(2)次に、前記正常時抽出振動特性データ及び前記診断時抽出振動特性データについて正規化を行い、下記の式1〜式4の任意の1以上についての時間領域に係る特徴パラメータを求めるとともに、前記正常時抽出振動特性データ及び前記診断時抽出振動特性データについて包絡線処理を行った後、各データをフーリエ変換し、下記の式5〜式10の任意の1以上についての周波数領域に係る特徴パラメータを求める第2工程について説明する。 (2) Next, the normal extraction vibration characteristic data and the diagnosis extraction vibration characteristic data are normalized to obtain the characteristic parameters related to the time domain for any one or more of the following equations 1 to 4. After performing the envelope processing on the vibration characteristic data extracted at the time of normal and the vibration characteristic data extracted at the time of diagnosis, each data is subjected to Fourier transform to relate to the frequency domain for any one or more of the following equations 5 to 10. The second step of obtaining the feature parameters will be described.

正規化は、下記の式11により行う。

Figure 0006899109

Figure 0006899109
Normalization is performed by the following equation 11.
Figure 0006899109

Figure 0006899109

次いで、下記の式1〜式4により時間領域に係る特徴パラメータを求める
a) 時間領域に係る特徴パラメータ

Figure 0006899109
b)時間領域に係る特徴パラメータ
Figure 0006899109
c)時間領域に係る特徴パラメータ
Figure 0006899109
d)時間領域に係る特徴パラメータ
Figure 0006899109

Figure 0006899109
Next, the feature parameters related to the time domain are obtained by the following equations 1 to 4.
a) Feature parameters related to the time domain
Figure 0006899109
b) Feature parameters related to the time domain
Figure 0006899109
c) Feature parameters related to the time domain
Figure 0006899109
d) Feature parameters related to the time domain
Figure 0006899109

Figure 0006899109

正常時抽出振動特性データ及び診断時抽出振動特性データについて包絡線処理を求めるために、計測した時系列信号にハイパスフィルタをかけた後、波形の包絡線を求める。
また、各データを周波数データに変換する。すなわち、包絡線が得られた後、フーリエ変換により包絡線のスペクトルを求める。
さらに、下記の式5〜式10の任意の1以上についての周波数領域に係る特徴パラメータを求める。
In order to obtain the envelope processing for the vibration characteristic data extracted during normal operation and the vibration characteristic data extracted during diagnosis, the measured time series signal is subjected to a high-pass filter, and then the envelope of the waveform is obtained.
Also, each data is converted into frequency data. That is, after the envelope is obtained, the spectrum of the envelope is obtained by Fourier transform.
Further, the feature parameters related to the frequency domain for any one or more of the following equations 5 to 10 are obtained.

e) 診断対象部の低周波帯域の安定指数を表わす特徴パラメータ

Figure 0006899109
f)診断対象部の低周波帯域のパワースペクトルの総和を表わす特徴パラメータ
Figure 0006899109
g)診断対象部のパス周波数成分率を表わす特徴パラメータ
Figure 0006899109
h)診断対象部の損傷指数表わす特徴パラメータ
Figure 0006899109
i)診断対象部のパス周波数2次高調波率を表わす特徴パラメータ
Figure 0006899109
j)診断対象部のパス周波数3次高調波率を表わす特徴パラメータ
Figure 0006899109

Figure 0006899109
e) Feature parameter representing the stability index of the low frequency band of the part to be diagnosed
Figure 0006899109
f) Feature parameter representing the total power spectrum of the low frequency band of the diagnostic target
Figure 0006899109
g) Feature parameter representing the path frequency component ratio of the part to be diagnosed
Figure 0006899109
h) Characteristic parameters representing the damage index of the part to be diagnosed
Figure 0006899109
i) Feature parameter representing the path frequency second harmonic rate of the part to be diagnosed
Figure 0006899109
j) Characteristic parameter representing the path frequency third harmonic rate of the part to be diagnosed
Figure 0006899109

Figure 0006899109

(3)次に、前記第2工程において求めた時間領域に係る特徴パラメータ及び周波数領域に係る特徴パラメータについて主成分分析を行い、得られた主成分の座標空間における正常時と診断時の分布域の重複割合により回転駆動装置における駆動部の異常を判断する第3工程について説明する。 (3) Next, principal component analysis is performed on the characteristic parameters related to the time domain and the characteristic parameters related to the frequency domain obtained in the second step, and the distribution areas at the time of normal and diagnosis in the obtained coordinate space of the principal components are performed. The third step of determining the abnormality of the drive unit in the rotary drive device based on the overlap ratio of the above will be described.

まず、時間領域の特徴パラメータ及び周波数領域の特徴パラメータについて主成分分析を行う。

Figure 0006899109
Figure 0006899109

Figure 0006899109
First, principal component analysis is performed on the characteristic parameters in the time domain and the characteristic parameters in the frequency domain.

Figure 0006899109
Figure 0006899109

Figure 0006899109


Figure 0006899109
Figure 0006899109

Figure 0006899109

Figure 0006899109
Figure 0006899109

Figure 0006899109

得られた主成分を座標軸上での分布域の重複割合により、駆動装置における異常を判断する。

Figure 0006899109

Figure 0006899109
であれば、「正常」と判定し、
Figure 0006899109

Figure 0006899109
The obtained principal component is judged to be abnormal in the drive device based on the overlapping ratio of the distribution areas on the coordinate axes.

Figure 0006899109

Figure 0006899109
If so, it is judged as "normal" and
Figure 0006899109

Figure 0006899109

また、本発明は、前記した異常診断方法に用いる異常診断装置も提供する。すなわち、回転駆動装置における診断対象部の異常診断装置であって、
1)正常時(基準時)に、前記診断対象部の振動測定部位に設置したセンサから出力される振動特性データを統計情報フィルタで処理して、正常時抽出振動特性データを得る正常時抽出振動特性データ取得手段と、
2)診断時に、前記診断対象部の振動測定部位に設置したセンサから出力される振動特性データを統計情報フィルタで処理して、診断時抽出振動特性データを得る診断時抽出振動特性データ取得手段と、
3)前記正常時抽出振動特性データ及び前記診断時抽出振動特性データについて正規化を行い、下記の式1〜式4の任意の1以上についての時間領域に係る特徴パラメータを求める時間領域特徴パラメータ取得手段と、
4)前記正常時抽出振動特性データ及び前記診断時抽出振動特性データについて包絡線処理を行った後、各データをフーリエ変換し、下記の式5〜式10の任意の1以上についての周波数領域に係る特徴パラメータを求める周波数領域特徴パラメータ取得手段と、
5)前記求めた時間領域に係る特徴パラメータ及び周波数領域に係る特徴パラメータについて主成分分析を行い、得られた主成分の座標空間における正常時と診断時の分布域の重複割合により、回転駆動装置における診断対象部の異常を判断する異常判断手段と
を備えることを特徴とする回転駆動装置における診断対象部の異常診断装置を提供する。
なお、 時間領域に係る特徴パラメータについての式1〜式4、および周波数領域に係る特徴パラメータについての式5〜式10、並びに符号の意味は、前記の異常診断方法におけるものと同一である。
The present invention also provides an abnormality diagnosis device used in the above-mentioned abnormality diagnosis method. That is, it is an abnormality diagnosis device of the diagnosis target part in the rotation drive device.
1) Normal extraction vibration to obtain normal extraction vibration characteristic data by processing the vibration characteristic data output from the sensor installed at the vibration measurement site of the diagnosis target part with a statistical information filter during normal operation (reference time). Characteristic data acquisition means and
2) As a means for acquiring vibration characteristic data extracted at the time of diagnosis, which obtains the vibration characteristic data extracted at the time of diagnosis by processing the vibration characteristic data output from the sensor installed at the vibration measurement part of the diagnosis target part with the statistical information filter at the time of diagnosis. ,
3) Acquisition of time domain feature parameters by normalizing the normal extraction vibration characteristic data and the diagnosis extraction vibration characteristic data, and obtaining the characteristic parameters related to the time domain for any one or more of the following equations 1 to 4. Means and
4) After performing the envelope processing on the normal extraction vibration characteristic data and the diagnosis extraction vibration characteristic data, each data is Fourier transformed into the frequency domain for any one or more of the following equations 5 to 10. Frequency domain feature parameter acquisition means for obtaining such feature parameters,
5) Principal component analysis is performed on the characteristic parameters related to the obtained time domain and the characteristic parameters related to the frequency domain, and the rotation drive device is based on the overlapping ratio of the distribution areas at the time of normal diagnosis and the distribution area at the time of diagnosis in the obtained coordinate space of the main components. Provided is an abnormality diagnosis device for a diagnosis target part in a rotation drive device, which comprises an abnormality determination means for determining an abnormality of the diagnosis target part in the above.
The meanings of Equations 1 to 4 for the feature parameters related to the time domain, Equations 5 to 10 for the feature parameters related to the frequency domain, and the symbols are the same as those in the above-mentioned abnormality diagnosis method.

前記の異常診断方法および異常診断装置は、他の部品(歯車や滑り軸受など)の診断用の特徴パラメータを定義すれば、同様にこれらの部品の状態診断に適用できる。 The above-mentioned abnormality diagnosis method and abnormality diagnosis device can be similarly applied to the state diagnosis of these parts by defining the characteristic parameters for diagnosis of other parts (gears, slide bearings, etc.).

(実施例1,2)(比較例1,2)
図2に示す低速回転機械シミュレータの軸受ホルダの振動を測定するために適宜の位置に取り付けたセンサで振動の加速度信号を計測した.
サンプリング周波数は100kHz,サンプリング時間は,10〜40rpm計測時は200sec,50〜100rpm計測時は60secとした.
また,現場での早期異常を想定して,図3に示すような,幅5.0mm×深さ0.5mmのスポット傷施した3種類(外輪傷,内輪傷,転動体傷)の軸受を用意した.
実験により取得した信号を本発明の手法により処理し、最終的に得られた主成分分析の結果を示す.本手法の有効性を示すために,統計情報フィルタ処理の前後を比較するような形で10rpmと70rpmの結果を掲載する.
まず,10rpmについては,図4(比較例1:統計情報フィルタ処理前)と図5(実施例1:統計情報フィルタ処理後)に示すように、第1主成分を横座標に、第2主成分を縦座標にして、座標空間に示した。なお、各図における下側の図は、上側の図における座標の原点近傍を拡大して示したものである。以下の実施例、比較例においても同様である。正常状態時の主成分値(○印で示す)は、原点近傍に集中しているとともに、正常状態時の主成分値と異常状態の主成分値(外輪傷を□印、内輪傷を△印、転動体傷を×印でそれぞれ示す)との離間距離は、統計情報フィルタ処理前より処理後の方が大幅に向上していることが明らかである。
次に,70rpmについては,図6(比較例2:統計情報フィルタ処理前)に示すように、統計情報フィルタ前の結果でも,群ごとに固まる傾向は見られるが,正常状態(○印)の群の上に異常状態(□印、△印、×印)の群が重なっており,正確に診断できない。しかし,図7(実施例2:統計情報フィルタ処理後)に示すように、統計情報フィルタ処理後では,一目瞭然に識別できることが明らかである。
次に現場設備による検証例を示す。本発明で考案した方法の有効性を確認するために、現場設備による検証も行った。ここで、検証の一例を示す。
図8は検証対象の設備、表1は軸受の仕様をそれぞれ示す。診断対象の軸受の近傍に主鎖車があり、ローラチェーン(バケット付き)が駆動されているから、正常状態でも衝撃的な振動を伴う。
診断対象の軸受は図9、10に示すように、内輪と外輪にフレーキングや傷が生じていた。この軸受を交換する前後に振動加速度信号を測定し、本発明で考案した方法を用いて診断した結果を図11(実施例3)に示す。軸受交換する前の異常状態の主成分値は交換後の正常状態から大きく離間しており、異常状態が明白に検出・診断できることが明らかである。
(Examples 1 and 2) (Comparative Examples 1 and 2)
In order to measure the vibration of the bearing holder of the low-speed rotating machine simulator shown in Fig. 2, the acceleration signal of the vibration was measured with a sensor attached at an appropriate position.
The sampling frequency was 100 kHz, and the sampling time was 200 sec when measuring 10 to 40 rpm and 60 sec when measuring 50 to 100 rpm.
In addition, assuming an early abnormality in the field, we prepared three types of bearings (outer ring scratch, inner ring scratch, rolling body scratch) with spot scratches of width 5.0 mm x depth 0.5 mm as shown in Fig. 3. ..
The signal obtained by the experiment is processed by the method of the present invention, and the final result of the principal component analysis is shown. In order to show the effectiveness of this method, the results of 10 rpm and 70 rpm are posted in a form that compares before and after the statistical information filtering process.
First, for 10 rpm, as shown in FIG. 4 (Comparative Example 1: Before statistical information filter processing) and FIG. 5 (Example 1: After statistical information filter processing), the first principal component is in abscissa and the second main component. The components are in ordinates and are shown in the coordinate space. The lower figure in each figure is an enlarged view of the vicinity of the origin of the coordinates in the upper figure. The same applies to the following examples and comparative examples. The main component values in the normal state (indicated by ○) are concentrated near the origin, and the main component values in the normal state and the main component values in the abnormal state (□ mark for outer ring scratches, △ mark for inner ring scratches). It is clear that the distance from the rolling body injury (indicated by a cross) is significantly improved after the statistical information filter processing than before the processing.
Next, at 70 rpm, as shown in Fig. 6 (Comparative example 2: before statistical information filter processing), even in the results before the statistical information filter, there is a tendency for each group to solidify, but it is in the normal state (marked with a circle). The group of abnormal conditions (□ mark, △ mark, × mark) overlaps the group, and it is not possible to make an accurate diagnosis. However, as shown in FIG. 7 (Example 2: after statistical information filtering), it is clear that the identification can be made clearly after the statistical information filtering.
Next, an example of verification using on-site equipment is shown. In order to confirm the effectiveness of the method devised in the present invention, verification with on-site equipment was also performed. Here, an example of verification is shown.
FIG. 8 shows the equipment to be verified, and Table 1 shows the bearing specifications. Since there is a main chain wheel near the bearing to be diagnosed and the roller chain (with bucket) is driven, it is accompanied by shocking vibration even in the normal state.
As shown in FIGS. 9 and 10, the bearing to be diagnosed had flaking and scratches on the inner ring and the outer ring. The vibration acceleration signal is measured before and after the bearing is replaced, and the result of diagnosis using the method devised in the present invention is shown in FIG. 11 (Example 3). The main component value of the abnormal state before the bearing replacement is far from the normal state after the replacement, and it is clear that the abnormal state can be clearly detected and diagnosed.

Figure 0006899109
Figure 0006899109

(実施例4〜実施例48)
実施例1、2と同様に図2に示す低速回転機械シミュレータの診断対象部である軸受ホルダに設置したセンサで振動特性信号を計測した。
診断時の振動特性信号の計測には、実施例1、2と同様に、図3に示すような、幅5.0mm×深さ0.5mmのスポット傷を施した3種類(外輪傷、内輪傷、転動体傷)の軸受を用いて行った。
なお、サンプリング周波数についても実施例1、2と同様であり、また回転数は10rpmとして実施した。
表2−1〜表2−3に示すように、時間領域に係る特徴パラメータを求める式と、周波数領域に係る特徴パラメータを求める式の種々の組合せについて、本発明の手法により処理した。また、得られた主成分分析の結果を座標空間にプロットした図面の番号を表中に示した。
これらの図12〜図56の図面から、いずれの組合せの場合にも、本発明の有効性が明らかである。
(Examples 4 to 48)
Similar to Examples 1 and 2, the vibration characteristic signal was measured by a sensor installed in the bearing holder, which is the diagnostic target portion of the low-speed rotating machine simulator shown in FIG.
Similar to Examples 1 and 2, there are three types of spot scratches (outer ring scratch, inner ring) with a width of 5.0 mm and a depth of 0.5 mm, as shown in FIG. 3, for measuring the vibration characteristic signal at the time of diagnosis. Scratches, rolling body scratches) bearings were used.
The sampling frequency was the same as in Examples 1 and 2, and the rotation speed was 10 rpm.
As shown in Tables 2-1 to 2-3, various combinations of the formula for obtaining the feature parameter related to the time domain and the formula for obtaining the feature parameter related to the frequency domain were processed by the method of the present invention. In addition, the numbers of the drawings in which the obtained principal component analysis results are plotted in the coordinate space are shown in the table.
From these drawings of FIGS. 12 to 56, the effectiveness of the present invention is clear in any combination.

Figure 0006899109
Figure 0006899109

Figure 0006899109
Figure 0006899109

Figure 0006899109
Figure 0006899109

(比較例3)
時間領域に係る特徴パラメータを求める式を用いず、周波数領域に係る特徴パラメータを求める式のうち、式5と式7の両者のみを用いた以外は、実施例4〜48と同様にして本発明の手法により処理した結果を図57に示す。正常状態(○印)の群の上に異常状態(□印、△印、×印)の群が重なっており,正常状態にあるか、あるいは異常状態にあるかを、診断できない結果となっている。
(Comparative Example 3)
The present invention is the same as in Examples 4 to 48, except that only equations 5 and 7 are used among the equations for obtaining the characteristic parameters related to the frequency domain without using the equation for obtaining the characteristic parameters related to the time domain. The result of processing by the method of FIG. 57 is shown in FIG. The group of abnormal states (marked with □, △, and ×) overlaps the group of normal states (marked with ○), and it is not possible to diagnose whether the state is normal or abnormal. There is.

Claims (8)

回転駆動装置における診断対象部の異常診断方法であって、
1)正常時(基準時)と、診断時に、前記診断対象部の振動測定部位に設置したセンサから出力される振動特性データをノイズを除去するノイズ除去フィルタで処理して、それぞれ正常時抽出振動特性データ、診断時抽出振動特性データを得る第1工程と、
2)前記正常時抽出振動特性データ及び前記診断時抽出振動特性データについて正規化を行い、下記の式1〜式4の任意の以上についての時間領域に係る特徴パラメータを求めるとともに、前記正常時抽出振動特性データ及び前記診断時抽出振動特性データについて包絡線処理を行った後、各データをフーリエ変換し、下記の式5〜式10の任意の以上についての周波数領域に係る特徴パラメータを求める第2工程と、
3)前記第工程において求めた時間領域に係る特徴パラメータ及び周波数領域に係る特徴パラメータについて主成分分析を行い、得られた主成分の座標空間における正常時と診断時の分布域の重複割合により回転駆動装置における駆動部の異常を判断する第3工程と
からなることを特徴とする回転駆動装置における診断対象部の異常診断方法。

a)時間領域に係る特徴パラメータ
Figure 0006899109
b)時間領域に係る特徴パラメータ
Figure 0006899109
c)時間領域に係る特徴パラメータ
Figure 0006899109
d)時間領域に係る特徴パラメータ
Figure 0006899109
e)診断対象部の低周波帯域の安定指数を表わす特徴パラメータ
Figure 0006899109
f)診断対象部の低周波帯域のパワースペクトルの総和を表わす特徴パラメータ
Figure 0006899109
g)診断対象部のパス周波数成分率を表わす特徴パラメータ
Figure 0006899109
h)診断対象部の損傷指数を表わす特徴パラメータ
Figure 0006899109
i)診断対象部のパス周波数2次高調波率を表わす特徴パラメータ
Figure 0006899109
j)診断対象部のパス周波数3次高調波率を表わす特徴パラメータ
Figure 0006899109
This is a method for diagnosing abnormalities in the part to be diagnosed in the rotary drive device.
1) At normal time (reference time) and at the time of diagnosis, the vibration characteristic data output from the sensor installed at the vibration measurement part of the diagnosis target part is processed by a noise removal filter that removes noise, and the vibration extracted at normal time respectively. The first step to obtain characteristic data and vibration characteristic data extracted at the time of diagnosis,
2) The normal extraction vibration characteristic data and the diagnosis extraction vibration characteristic data are normalized to obtain the characteristic parameters related to the time domain for any one or more of the following equations 1 to 4, and the normal operation is performed. After performing the envelope processing on the extracted vibration characteristic data and the extracted vibration characteristic data at the time of diagnosis, each data is Fourier transformed to obtain the characteristic parameters related to the frequency domain for any one or more of the following equations 5 to 10. Second step and
3) Principal component analysis was performed on the characteristic parameters related to the time domain and the characteristic parameters related to the frequency domain obtained in the second step, and the overlapping ratio of the distribution areas at the time of normal diagnosis and the distribution area at the time of diagnosis in the obtained coordinate space of the principal components was used. A method for diagnosing an abnormality in a portion to be diagnosed in a rotary drive device, which comprises a third step of determining an abnormality in the drive unit in the rotary drive device.

a) Feature parameters related to the time domain
Figure 0006899109
b) Feature parameters related to the time domain
Figure 0006899109
c) Feature parameters related to the time domain
Figure 0006899109
d) Feature parameters related to the time domain
Figure 0006899109
e) Feature parameter representing the stability index of the low frequency band of the part to be diagnosed
Figure 0006899109
f) Feature parameter representing the total power spectrum of the low frequency band of the diagnosis target part
Figure 0006899109
g) Feature parameter representing the path frequency component ratio of the part to be diagnosed
Figure 0006899109
h) Feature parameter representing the damage index of the part to be diagnosed
Figure 0006899109
i) Feature parameter representing the path frequency second harmonic rate of the part to be diagnosed
Figure 0006899109
j) Characteristic parameter representing the path frequency third harmonic rate of the part to be diagnosed
Figure 0006899109
式5〜式10の任意の1以上についての周波数領域に係る特徴パラメータのうちの少なくとも1を、式5〜式8の特徴パラメータから選択する請求項1に記載の回転駆動装置における診断対象部の異常診断方法。 The diagnostic target portion in the rotary drive device according to claim 1, wherein at least one of the characteristic parameters related to the frequency domain for any one or more of the equations 5 to 10 is selected from the characteristic parameters of the equations 5 to 8. Abnormality diagnosis method. 主成分の個数をmとしたとき、第1主成分の標準偏差から第m主成分の標準偏差までの合計値に占める、第1主成分の標準偏差から第i主成分の標準偏差までの合計値に占める割合である累積率が、予め定めた所定値以上となるような第1主成分から第i主成分までを用いて、主成分分析を行う、請求項1又は2に記載の回転駆動装置における診断対象部の異常診断方法。 When the number of principal components is m, the total from the standard deviation of the first principal component to the standard deviation of the i-principal component, which is the total value from the standard deviation of the first principal component to the standard deviation of the m-th principal component. The rotational drive according to claim 1 or 2 , wherein the principal component analysis is performed using the first principal component to the i principal component such that the cumulative rate, which is a ratio to the value, is equal to or more than a predetermined predetermined value. A method for diagnosing abnormalities in the part to be diagnosed in the device. 座標空間にプロットした、診断時の特徴パラメータの分布域が、正常時の特徴パラメータの分布域と重複する割合が予め定めた値以下であるときに、診断対象部が異常であると判断する請求項1〜3のいずれかに記載の回転駆動装置における診断対象部の異常診断方法。 Claim that the diagnosis target part is judged to be abnormal when the distribution area of the feature parameter at the time of diagnosis plotted in the coordinate space is equal to or less than a predetermined value in the distribution area of the feature parameter at the time of normal diagnosis. Item 3. The method for diagnosing an abnormality in a portion to be diagnosed in the rotary drive device according to any one of Items 1 to 3. 駆動装置が、低速回転機械のチェーン伝動機構である請求項1〜4のいずれかに記載の回転駆動装置における診断対象部の異常診断方法。 The method for diagnosing an abnormality in a portion to be diagnosed in a rotary drive device according to any one of claims 1 to 4, wherein the drive device is a chain transmission mechanism of a low-speed rotary machine. 回転駆動装置における診断対象部が、軸受または歯車である請求項1〜5のいずれかに記載の回転駆動装置における診断対象部の異常診断方法。 The method for diagnosing an abnormality in a portion to be diagnosed in a rotary drive device according to any one of claims 1 to 5, wherein the diagnostic target portion in the rotary drive device is a bearing or a gear. 回転駆動装置における診断対象部の異常診断装置であって、
1)正常時(基準時)に、前記診断対象部の振動測定部位に設置したセンサから出力される振動特性データをノイズを除去するノイズ除去フィルタで処理して、正常時抽出振動特性データを得る正常時抽出振動特性データ取得手段と、
2)診断時に、前記診断対象部の振動測定部位に設置したセンサから出力される振動特性データを統計情報フィルタで処理して、診断時抽出振動特性データを得る診断時抽出振動特性データ取得手段と、
3)前記正常時抽出振動特性データ及び前記診断時抽出振動特性データについて正規化を行い、下記の式1〜式4の任意の以上についての時間領域に係る特徴パラメータを求める時間領域特徴パラメータ取得手段と、
4)前記正常時抽出振動特性データ及び前記診断時抽出振動特性データについて包絡線処理を行った後、各データをフーリエ変換し、下記の式5〜式10の任意の以上についての周波数領域に係る特徴パラメータを求める周波数領域特徴パラメータ取得手段と、
5)前記求めた時間領域に係る特徴パラメータ及び周波数領域に係る特徴パラメータについて主成分分析を行い、得られた主成分の座標空間における正常時と診断時の分布域の重複割合により、回転駆動装置における診断対象部の異常を判断する異常判断手段と
を備えることを特徴とする回転駆動装置における診断対象部の異常診断装置。

a)時間領域に係る特徴パラメータ
Figure 0006899109
b)時間領域に係る特徴パラメータ
Figure 0006899109
c)時間領域に係る特徴パラメータ
Figure 0006899109
d)時間領域に係る特徴パラメータ
Figure 0006899109
e)診断対象部の低周波帯域の安定指数を表わす特徴パラメータ
Figure 0006899109
f)診断対象部の低周波帯域のパワースペクトルの総和を表わす特徴パラメータ
Figure 0006899109
g)診断対象部のパス周波数成分率を表わす特徴パラメータ
Figure 0006899109
h)診断対象部の損傷指数を表わす特徴パラメータ
Figure 0006899109
i)診断対象部のパス周波数2次高調波率を表わす特徴パラメータ
Figure 0006899109
j)診断対象部のパス周波数3次高調波率を表わす特徴パラメータ
Figure 0006899109
It is an abnormality diagnosis device of the diagnosis target part in the rotation drive device.
1) In the normal state (reference time), the vibration characteristic data output from the sensor installed at the vibration measurement part of the diagnosis target part is processed by a noise removal filter for removing noise to obtain the vibration characteristic data extracted in the normal state. Normal extraction vibration characteristic data acquisition means and
2) As a means for acquiring vibration characteristic data extracted at the time of diagnosis, which obtains the vibration characteristic data extracted at the time of diagnosis by processing the vibration characteristic data output from the sensor installed at the vibration measurement part of the diagnosis target part with the statistical information filter at the time of diagnosis. ,
3) Acquisition of time domain feature parameters by normalizing the normal extraction vibration characteristic data and the diagnosis extraction vibration characteristic data, and obtaining the characteristic parameters related to the time domain for any one or more of the following equations 1 to 4. Means and
4) After performing the envelope processing on the normal extraction vibration characteristic data and the diagnosis extraction vibration characteristic data, each data is Fourier transformed into the frequency domain for any one or more of the following equations 5 to 10. Frequency domain feature parameter acquisition means for obtaining such feature parameters,
5) Principal component analysis is performed on the characteristic parameters related to the obtained time domain and the characteristic parameters related to the frequency domain, and the rotation drive device is based on the overlapping ratio of the distribution areas at the time of normal diagnosis and the distribution area at the time of diagnosis in the obtained coordinate space of the main components. An abnormality diagnosis device for a diagnosis target part in a rotation drive device, which comprises an abnormality determination means for determining an abnormality of the diagnosis target part in the above.

a) Feature parameters related to the time domain
Figure 0006899109
b) Feature parameters related to the time domain
Figure 0006899109
c) Feature parameters related to the time domain
Figure 0006899109
d) Feature parameters related to the time domain
Figure 0006899109
e) Feature parameter representing the stability index of the low frequency band of the part to be diagnosed
Figure 0006899109
f) Feature parameter representing the total power spectrum of the low frequency band of the diagnosis target part
Figure 0006899109
g) Feature parameter representing the path frequency component ratio of the part to be diagnosed
Figure 0006899109
h) Feature parameter representing the damage index of the part to be diagnosed
Figure 0006899109
i) Feature parameter representing the path frequency second harmonic rate of the part to be diagnosed
Figure 0006899109
j) Characteristic parameter representing the path frequency third harmonic rate of the part to be diagnosed
Figure 0006899109
回転駆動装置における診断対象部が、軸受または歯車である請求項7に記載の回転駆動装置における診断対象部の異常診断装置。 The abnormality diagnosis device for a diagnosis target portion in a rotation drive device according to claim 7, wherein the diagnosis target portion in the rotation drive device is a bearing or a gear.
JP2016085207A 2016-04-21 2016-04-21 Abnormality diagnosis method of the part to be diagnosed in the rotation drive device and the abnormality diagnosis device used for it. Active JP6899109B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016085207A JP6899109B2 (en) 2016-04-21 2016-04-21 Abnormality diagnosis method of the part to be diagnosed in the rotation drive device and the abnormality diagnosis device used for it.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016085207A JP6899109B2 (en) 2016-04-21 2016-04-21 Abnormality diagnosis method of the part to be diagnosed in the rotation drive device and the abnormality diagnosis device used for it.

Publications (2)

Publication Number Publication Date
JP2017194371A JP2017194371A (en) 2017-10-26
JP6899109B2 true JP6899109B2 (en) 2021-07-07

Family

ID=60155501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016085207A Active JP6899109B2 (en) 2016-04-21 2016-04-21 Abnormality diagnosis method of the part to be diagnosed in the rotation drive device and the abnormality diagnosis device used for it.

Country Status (1)

Country Link
JP (1) JP6899109B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108196986B (en) * 2017-12-29 2021-03-30 东软集团股份有限公司 Equipment abnormality detection method and device, computer equipment and storage medium
CN108318249B (en) * 2018-01-24 2020-04-17 广东石油化工学院 Fault diagnosis method for rotary mechanical bearing
CN109001492A (en) * 2018-06-19 2018-12-14 南京中车浦镇海泰制动设备有限公司 A kind of train shaft speed sensor method for diagnosing faults
JP7311861B2 (en) * 2019-10-16 2023-07-20 株式会社トクヤマ Abnormality Diagnosis Device, Abnormality Diagnosis Method, and Abnormality Diagnosis Program
JP7306967B2 (en) * 2019-11-06 2023-07-11 株式会社日本製鋼所 Anomaly detection device, anomaly detection method and computer program
JP7306968B2 (en) * 2019-11-06 2023-07-11 株式会社日本製鋼所 Anomaly detection device, anomaly detection method and computer program
CN112268688B (en) * 2020-09-04 2022-06-07 上海士翌测试技术有限公司 Error data identification method and device
CN112668417B (en) * 2020-12-17 2023-02-03 武汉理工大学 Rolling bearing intelligent fault diagnosis method based on vibration signals
CN117042895A (en) * 2021-03-31 2023-11-10 杰富意钢铁株式会社 Abnormal vibration detection method for rolling mill, abnormal detection device, rolling method, and metal strip manufacturing method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000070310A1 (en) * 1999-05-12 2000-11-23 Kyushu Kyohan Co., Ltd. Signal identification device using genetic algorithm and on-line identification system
JPWO2004068078A1 (en) * 2003-01-10 2006-05-25 陳山 鵬 State determination method, state prediction method and apparatus
JP2004301671A (en) * 2003-03-31 2004-10-28 Toshiba Corp Bearing diagnostic system for rotary machine, bearing diagnostic device for rotary machine, and stud for rotary machine
JP4232162B2 (en) * 2004-12-07 2009-03-04 三菱電機株式会社 Compressor inspection device
JP4417318B2 (en) * 2005-10-17 2010-02-17 三菱電機株式会社 Equipment diagnostic equipment
JP5067542B2 (en) * 2007-04-27 2012-11-07 オムロン株式会社 Composite information processing apparatus, composite information processing method, program, and recording medium
JP5991042B2 (en) * 2011-06-29 2016-09-14 Jfeスチール株式会社 Anomaly monitoring system and anomaly monitoring method

Also Published As

Publication number Publication date
JP2017194371A (en) 2017-10-26

Similar Documents

Publication Publication Date Title
JP6899109B2 (en) Abnormality diagnosis method of the part to be diagnosed in the rotation drive device and the abnormality diagnosis device used for it.
US7602985B2 (en) Multi-scale enveloping spectrogram signal processing for condition monitoring and the like
Saruhan et al. Vibration analysis of rolling element bearings defects
Pan et al. Using appropriate IMFs for envelope analysis in multiple fault diagnosis of ball bearings
Singh et al. Motor current signature analysis for bearing fault detection in mechanical systems
EP0693176B1 (en) Method and apparatus for analyzing and detecting faults in bearings and other rotating components that slip
JP2016048267A5 (en)
EP0982579B1 (en) Device for inspecting bearings of main motors of rolling stock
Klausen et al. Multi-band identification for enhancing bearing fault detection in variable speed conditions
EP2434266A2 (en) Sideband Energy Ratio Method For Gear Mesh Fault Detection
JP2009020090A5 (en)
JP2008292288A (en) Bearing diagnostic device for reduction gear
Klausen et al. Cross-correlation of whitened vibration signals for low-speed bearing diagnostics
CN113092114B (en) Bearing fault diagnosis method, device and storage medium
Kass et al. Self-running bearing diagnosis based on scalar indicator using fast order frequency spectral coherence
JP2017032520A (en) State monitoring device and state monitoring method
De Almeida et al. New technique for evaluation of global vibration levels in rolling bearings
Peter et al. The sparsogram: A new and effective method for extracting bearing fault features
JP2003232674A (en) Abnormality diagnosing method and abnormality diagnosing device of machine equipment or apparatus
Mendel et al. Rolling element bearing fault diagnosis in rotating machines of oil extraction rigs
CN114689298A (en) Fault detection method and device for walking part of coal mining machine
JPH01152335A (en) Abnormality diagnostic apparatus for roller bearing
JP3920715B2 (en) Vibration signal processing method
JP2019158514A (en) Inspection device of bearing for passenger conveyor, and inspection method of bearing for passenger conveyor
EP3842780A1 (en) Method and device for diagnosing abnormality in rolling bearing

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20170328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170328

RD07 Notification of extinguishment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7427

Effective date: 20170626

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190320

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190320

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200108

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200417

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200707

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20200929

C116 Written invitation by the chief administrative judge to file amendments

Free format text: JAPANESE INTERMEDIATE CODE: C116

Effective date: 20201013

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20201013

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20210406

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20210511

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20210511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210603

R150 Certificate of patent or registration of utility model

Ref document number: 6899109

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150