JP4807675B2 - Method for producing high purity piperazine derivative hydrochloride - Google Patents
Method for producing high purity piperazine derivative hydrochloride Download PDFInfo
- Publication number
- JP4807675B2 JP4807675B2 JP2001050017A JP2001050017A JP4807675B2 JP 4807675 B2 JP4807675 B2 JP 4807675B2 JP 2001050017 A JP2001050017 A JP 2001050017A JP 2001050017 A JP2001050017 A JP 2001050017A JP 4807675 B2 JP4807675 B2 JP 4807675B2
- Authority
- JP
- Japan
- Prior art keywords
- group
- carbon atoms
- methylpiperazine
- unsubstituted
- piperazine derivative
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 0 CC1NC(*)C(*)N(*)C1C Chemical compound CC1NC(*)C(*)N(*)C1C 0.000 description 2
Landscapes
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Description
【0001】
本発明は、高純度ピペラジン誘導体塩酸塩を製造する方法に関するものである。
【0002】
【従来の技術】
通常、一般式(2)
【0003】
【化11】
(式中、R1、R2、R3、R4は同じであっても異なっていても良く、i)水素原子、ii)ハロゲン原子、iii)炭素数1から4のアルキル基、iv)炭素数1から4のアルコキシル基、v)ニトロ基、vi)シアノ基、vii)カルボキシル基、viii)カルバモイル基、またはix)アルキル基の炭素数が1から4のN−アルキルカルバモイル基を示し、R5はi)無置換、または炭素数1から4のアルキル基、炭素数1から4のアルコキシル基、ニトロ基もしくはハロゲン基で置換されたアリール基、ii)無置換、または炭素数1から4のアルキル基、炭素数1から4のアルコキシル基、ニトロ基もしくはハロゲン基で置換されたアラルキル基を示す。)、あるいは一般式(3)
【0004】
【化12】
(式中、R1、R2、R3、R4は同じであっても異なっていても良く、i)水素原子、ii)ハロゲン原子、iii)炭素数1から4のアルキル基、iv)炭素数1から4のアルコキシル基、v)ニトロ基、vi)シアノ基、vii)カルボキシル基、viii)カルバモイル基、またはix)アルキル基の炭素数が1から4のN−アルキルカルバモイル基を示し、R6はi)無置換、または炭素数1から4のアルキル基、炭素数1から4のアルコキシル基、ニトロ基もしくはハロゲン基で置換されたアリール基、ii)無置換、または炭素数1から4のアルキル基、炭素数1から4のアルコキシル基、ニトロ基もしくはハロゲン基で置換されたアラルキル基を示す。)で表されるピペラジン誘導体の塩酸塩を製造する方法として、相当するピペラジン誘導体に等モル程度の酸クロライド、あるいはスルホニルクロライドを反応させる方法が知られている。
【0005】
【発明が解決しようとする課題】
しかしながら、このような方法で製造した場合、反応において副生した塩酸が反応原料であるピペラジン誘導体と塩を形成してアシル化、あるいはスルホニル化反応を阻害するために原料であるピペラジン誘導体の転化率が低く、得られる製品は原料ピペラジン誘導体を多く含有する低純度ピペラジン誘導体塩酸塩である。このようなことから原料ピペラジン誘導体の含有率が0.3重量%以下の高純度品は今まで全く知られていなかった。
【0006】
【課題を解決するための手段】
本発明者らはこのような問題を解決すべく鋭意検討を重ねた結果、アシル化またはスルホニル化反応に際して三級アミンを共存させることにより、原料ピペラジン誘導体の含有率が0.3重量%以下の高純度ピペラジン誘導体塩酸塩が得られることを見出した。
【0007】
すなわち本発明は「
【0008】
一般式
【0009】
【化14】
(式中、R 1 、R 3 、R 4 が水素原子、R 2 がメチル基を示し、R5はi)無置換、または炭素数1から4のアルキル基、炭素数1から4のアルコキシル基、ニトロ基もしくはハロゲン基で置換されたアリール基、ii)無置換、または炭素数1から4のアルキル基、炭素数1から4のアルコキシル基、ニトロ基もしくはハロゲン基で置換されたアラルキル基を示す。)で表される高純度ピペラジン誘導体塩酸塩の製造方法」、および「
【0010】
一般式
【0011】
【化16】
(式中、R 1 、R 3 、R 4 が水素原子、R 2 がメチル基を示し、R6はi)無置換、または炭素数1から4のアルキル基、炭素数1から4のアルコキシル基、ニトロ基もしくはハロゲン基で置換されたアリール基、ii)無置換、または炭素数1から4のアルキル基、炭素数1から4のアルコキシル基、ニトロ基もしくはハロゲン基で置換されたアラルキル基を示す。)で表される高純度ピペラジン誘導体塩酸塩の製造方法」である。
【0012】
ここで、本発明における高純度ピペラジン誘導体の塩酸塩にはラセミ体、あるいは光学活性体も含まれる。
【0013】
本発明におけるピペラジン誘導体は一般式
【0014】
【化17】
(式中、R 1 、R 3 、R 4 が水素原子、R 2 がメチル基を示し、R5はi)無置換、または炭素数1から4のアルキル基、炭素数1から4のアルコキシル基、ニトロ基もしくはハロゲン基で置換されたアリール基、ii)無置換、または炭素数1から4のアルキル基、炭素数1から4のアルコキシル基、ニトロ基もしくはハロゲン基で置換されたアラルキル基を示す。)、あるいは一般式
【0015】
【化18】
(式中、R 1 、R 3 、R 4 が水素原子、R 2 がメチル基を示し、R6はi)無置換、または炭素数1から4のアルキル基、炭素数1から4のアルコキシル基、ニトロ基もしくはハロゲン基で置換されたアリール基、ii)無置換、または炭素数1から4のアルキル基、炭素数1から4のアルコキシル基、ニトロ基もしくはハロゲン基で置換されたアラルキル基を示す。)で表されるものである。
【0016】
特に一般式中、R1、R3、R4が水素原子、R2がメチル基、R5、R6がフェニル基または4−メチルフェニル基であるものが好ましい。また、本発明のピペラジン誘導体は光学活性体であることが好ましい。このようなピペラジン誘導体の塩酸塩の具体例としては、1−ベンゾイル−3−メチルピペラジン塩酸塩、1−p−トルオイル−3−メチルピペラジン塩酸塩、1−ベンゼンスルホニル−3−メチルピペラジン塩酸塩、1−p−トルエンスルホニル−3−メチルピペラジン塩酸塩などのラセミ体や光学活性体が挙げられる。
【0017】
高純度ピペラジン誘導体塩酸塩を製造する際の原料は、
【0018】
2−メチルピペラジンである。
【0019】
原料の2−メチルピペラジンは光学活性体であることが好ましい。原料は、2−メチルピペラジンのラセミ体や光学活性体が挙げられる。
【0020】
アシル化剤としては、例えば塩化ベンゾイル、塩化p−トルオイル、塩化アニソイルなどが挙げられ、スルホニル化剤としては、例えば塩化ベンゼンスルホニル、塩化p−トルエンスルホニルなどが挙げられる。その添加量は、通常原料ピペラジン誘導体1モルに対して0.95〜1.1モル、好ましくは1.00〜1.05モルであり、その全量を添加する時間に特に制限はないが、通常2〜10時間である。
【0021】
反応に際して添加する三級アミンとしては、例えばトリメチルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミンなどのトリアルキルアミン、ピリジン、N,N−ジメチルアニリン、N,N−ジエチルアニリンなどの芳香族三級アミン、あるいはトリエタノールアミンなどが挙げられ、好ましくはトリエチルアミンである。その添加は、2−メチルピペラジン1モルに対して0.05〜0.2モルであり、反応初期、あるいは反応途中に一括、あるいは分割して添加することができる。
【0022】
反応に使用する溶媒としては、例えばメタノール、エタノール、n−プロパノール、2−プロパノール、n−ブタノール、tert−ブタノールなどのアルコール類、アセトン、メチルエチルケトン、メチルイソブチルケトンなどのケトン類、あるいはアセトニトリル、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ジメチルスホキシドなどが挙げられる。
【0023】
原料ピペラジン誘導体とアシル化剤、あるいはスルホニル化剤とを反応させる温度に特に制限はないが、通常−20〜60℃、好ましくは0〜40℃である。
【0024】
本発明の高純度ピペラジン誘導体の塩酸塩は通常次の操作によって取得できる。すなわち、2−メチルピペラジンを溶媒に溶かした溶液に、反応初期あるいは反応途中に三級アミンを一括あるいは分割添加し、通常2〜10時間かけてアシル化剤、あるいはスルホニル化剤を添加して反応させ、反応終了後に、必要に応じて冷却あるいは溶媒を濃縮した後、析出した結晶を濾別後乾燥することによって取得できる。本発明の方法によれば、三級アミンを添加しない場合に較べて高純度のピペラジン誘導体の塩酸塩が取得できる。また、三級アミンを添加したことによる二次的な効果として、析出するピペラジン誘導体塩酸塩の結晶粒子の成長が観られ、スラリー性や濾過性が改善することによる生産性向上に寄与する。
【0025】
かくして得られたピペラジン誘導体塩酸塩は、医薬品の原料として有用な化合物である。
【0026】
【実施例】
以下、実施例により本発明をさらに詳細に説明するが、本発明はこれに限定するものではない。
【0027】
なお、実施例において取得したピペラジン誘導体塩酸塩の分析はガスクロマトグラフィーで実施した。
【0028】
使用機器:島津GC−14B
カラム :Unisole 10T+KOH(10%+3%)、Uniport HP 80/100、ガラス製3.2mmI.D.*1.1m
カラム温度:80℃(5min)→(10℃/min)→220℃(15min)
注入口温度:250℃
検出器温度:250℃
キャリアー:ヘリウム
検出方法 :FID
試料の調製:サンプルをメタノールに溶解し、等モル量の1N−NaOHaq.を加えてフリー化する。
【0029】
実施例1
温度計、滴下ロート、攪拌機を装着した容量300mlの反応容器に、(S)−2−メチルピペラジン20.03g(200mmol)とn−ブタノール160.1gを仕込んだ。室温下に攪拌して溶解した。滴下ロートに塩化ベンゾイル23.90g(170mmol)を仕込み、このものを5時間かけて滴下して反応させた。次いで、トリエチルアミン2.02g(20mmol)を添加した。滴下ロートに塩化ベンゾイル5.62g(40mmol)を仕込み、このものを1時間かけて滴下して反応させた。滴下終了後、同温度下で1時間攪拌して熟成した。反応スラリーを約2時間かけて3℃まで冷却し、更に1時間攪拌を続けた。析出した結晶を遠心濾過し、ケークを20.0gのn−ブタノールで洗浄した。得られたケークを乾燥して(S)−1−ベンゾイル−3−メチルピペラジン塩酸塩41.66gを得た。収率は86.3%であった。この結晶の一部を採取し、メタノール中で1N−NaOHaq.で中和したのちガスクマトグラフィー分析したところ、原料2−メチルピペラジンの含有率は0.05%以下であった。
【0030】
実施例2
温度計、滴下ロート、攪拌機を装着した容量300mlの反応容器に、(S)−2−メチルピペラジン20.03(200mmol)とn−ブタノール160.1gを仕込んだ。室温下に攪拌して溶解した。滴下ロートに塩化ベンゾイル23.90g(170mmol)を仕込み、このものを5時間かけて滴下して反応させた。次いで、トリエチルアミン1.01g(10mmol)を添加した。滴下ロートに塩化ベンゾイル5.62g(40mmol)を仕込み、このものを1時間かけて滴下して反応させた。滴下終了後、同温度下で1時間攪拌して熟成した。反応スラリーを約2時間かけて3℃まで冷却し、更に1時間攪拌を続けた。析出した結晶を遠心濾過し、ケークを20.0gのn−ブタノールで洗浄した。得られたケークを乾燥して(S)−1−ベンゾイル−3−メチルピペラジン塩酸塩40.40gを得た。収率は83.5%であった。この結晶の一部を採取し、メタノール中で1N−NaOHaq.で中和したのちガスクマトグラフィー分析したところ、原料2−メチルピペラジンの含有率は0.20%であった。
【0031】
実施例3
温度計、滴下ロート、攪拌機を装着した容量300mlの反応容器に、(S)−2−メチルピペラジン20.03(200mmol)とn−ブタノール160.1gを仕込んだ。4〜8℃まで冷却・攪拌して溶解した。滴下ロートに塩化ベンゾイル26.70g(190mmol)を仕込み、このものを5時間かけて滴下して反応させた。このとき、反応液の温度を4〜8℃に保持した。次いで、トリエチルアミン1.01g(10mmol)を添加した。滴下ロートに塩化ベンゾイル2.80g(20mmol)を仕込み、このものを1時間かけて滴下して反応させた。滴下終了後、4〜8℃で1時間攪拌した後、更に20〜25℃で1時間熟成した。反応スラリーを約2時間かけて3℃まで冷却し、更に1時間攪拌を続けた。析出した結晶を遠心濾過し、ケークを20.0gのn−ブタノールで洗浄した。得られたケークを乾燥して(S)−1−ベンゾイル−3−メチルピペラジン塩酸塩39.63gを得た。収率は81.9%であった。この結晶の一部を採取し、メタノール中で1N−NaOHaq.で中和したのちガスクマトグラフィー分析したところ、原料2−メチルピペラジンの含有率は0.23%であった。
【0032】
実施例4
温度計、滴下ロート、攪拌機を装着した容量300mlの反応容器に、ラセミ2−メチルピペラジン20.03(200mmol)と変性エタノール(ソルミックスAT−15、エタノール84%、トルエン15%、イソプロパノール1%)80.2gを仕込んだ。室温下に攪拌して溶解した。滴下ロートに塩化ベンゾイル24.18g(172mmol)を仕込み、このものを5時間かけて滴下して反応させた。次いで、トリエチルアミン2.02g(20mmol)を添加した。滴下ロートに塩化ベンゾイル5.62g(40mmol)を仕込み、このものを1時間かけて滴下して反応させた。滴下終了後、同温度下で1時間攪拌して熟成した。反応スラリーを約2時間かけて3℃まで冷却し、更に1時間攪拌を続けた。析出した結晶を遠心濾過し、ケークを20.0gの変性エタノールで洗浄した。得られたケークを乾燥してラセミ1−ベンゾイル−3−メチルピペラジン塩酸塩42.16gを得た。収率は87.2%であった。この結晶の一部を採取し、メタノール中で1N−NaOHaq.で中和したのちガスクマトグラフィー分析したところ、原料2−メチルピペラジンの含有率は0.05%以下であった。
【0033】
実施例5
温度計、滴下ロート、攪拌機を装着した容量300mlの反応容器に、(S)−2−メチルピペラジン20.03(200mmol)とエタノール80.2gを仕込んだ。室温下に攪拌して溶解した。滴下ロートに塩化ベンゼンスルホニル29.67g(168mmol)を仕込み、このものを5時間かけて滴下して反応させた。次いで、トリエチルアミン2.02g(20mmol)を添加した。滴下ロートに塩化ベンゼンスルホニル7.42g(42mmol)を仕込み、このものを1時間かけて滴下して反応させた。滴下終了後、同温度下で1時間攪拌して熟成した。反応スラリーを約2時間かけて3℃まで冷却し、更に1時間攪拌を続けた。析出した結晶を遠心濾過し、ケークを20.0gの変性エタノールで洗浄した。得られたケークを乾燥してラセミ1−ベンゼンスルホニル−3−メチルピペラジン塩酸塩41.00gを得た。収率は74.1%であった。この結晶の一部を採取し、メタノール中で1N−NaOHaq.で中和したのちガスクマトグラフィー分析したところ、原料2−メチルピペラジンの含有率は0.05%以下であった。
【0034】
参考例1
温度計、滴下ロート、攪拌機を装着した容量300mlの反応容器に、ラセミN−tert−ブチル−2−ピペラジンカルボキサミド37.05(200mmol)とエタノール370.2gを仕込んだ。室温下に攪拌して溶解した。滴下ロートに塩化ベンゾイル23.90g(170mmol)を仕込み、このものを5時間かけて滴下して反応させた。次いで、トリエチルアミン2.02g(20mmol)を添加した。滴下ロートに塩化ベンゾイル5.62g(40mmol)を仕込み、このものを1時間かけて滴下して反応させた。滴下終了後、同温度下で1時間攪拌して熟成した。反応スラリーを約2時間かけて3℃まで冷却し、更に1時間攪拌を続けた。析出した結晶を遠心濾過し、ケークを20.0gのエタノールで洗浄した。得られたケークを乾燥してラセミ2−tert−ブチルカルボキサミド−4−ベンゾイルピペラジン塩酸塩39.52gを得た。収率は60.7%であった。この結晶の一部を採取し、メタノール中で1N−NaOHaq.で中和したのちガスクマトグラフィー分析したところ、原料N−tert−ブチル−2−ピペラジンカルボキサミドの含有率は0.28%であった。
【0035】
比較例1
温度計、滴下ロート、攪拌機を装着した容量300mlの反応容器に、(S)−2−メチルピペラジン20.03g(200mmol)とn−ブタノール160.1gを仕込んだ。室温下に攪拌して溶解した。滴下ロートに塩化ベンゾイル29.52g(210mmol)を仕込み、このものを6時間かけて滴下して反応させた。滴下終了後、同温度下で1時間攪拌して熟成した。反応スラリーを約2時間かけて3℃まで冷却し、更に1時間攪拌を続けた。析出した結晶を遠心濾過し、ケークを20.0gのn−ブタノールで洗浄した。得られたケークを乾燥して(S)−1−ベンゾイル−3−メチルピペラジン塩酸塩40.29gを得た。収率は81.6%であった。この結晶の一部を採取し、メタノール中で1N−NaOHaq.で中和したのちガスクマトグラフィー分析したところ、原料2−メチルピペラジンの含有率は2.08%であった。
【0036】
比較例2
温度計、滴下ロート、攪拌機を装着した容量300mlの反応容器に、ラセミ2−メチルピペラジン20.03(200mmol)と変性エタノール(ソルミックスAT−15、エタノール84%、トルエン15%、イソプロパノール1%)80.2gを仕込んだ。室温下に攪拌して溶解した。滴下ロートに塩化ベンゾイル29.80g(212mmol)を仕込み、このものを6時間かけて滴下して反応させた。滴下終了後、同温度下で1時間攪拌して熟成した。反応スラリーを約2時間かけて3℃まで冷却し、更に1時間攪拌を続けた。析出した結晶を遠心濾過し、ケークを20.0gの変性エタノールで洗浄した。得られたケークを乾燥してラセミ1−ベンゾイル−3−メチルピペラジン塩酸塩44.94gを得た。収率は86.8%であった。この結晶の一部を採取し、メタノール中で1N−NaOHaq.で中和したのちガスクマトグラフィー分析したところ、原料2−メチルピペラジンの含有率は0.58%であった。
【0037】
比較例3
温度計、滴下ロート、攪拌機を装着した容量300mlの反応容器に、(S)−2−メチルピペラジン20.03(200mmol)とエタノール80.2gを仕込んだ。室温下に攪拌して溶解した。滴下ロートに塩化ベンゼンスルホニル37.09g(210mmol)を仕込み、このものを6時間かけて滴下して反応させた。滴下終了後、同温度下で1時間攪拌して熟成した。反応スラリーを約2時間かけて3℃まで冷却し、更に1時間攪拌を続けた。析出した結晶を遠心濾過し、ケークを20.0gのエタノールで洗浄した。得られたケークを乾燥して(S)−1−ベンゼンスルホニル−3−メチルピペラジン塩酸塩40.52gを得た。収率は73.2%であった。この結晶の一部を採取し、メタノール中で1N−NaOHaq.で中和したのちガスクマトグラフィー分析したところ、原料2−メチルピペラジンの含有率は0.54%であった。
【0038】
比較例4
温度計、滴下ロート、攪拌機を装着した容量1000mlの反応容器に、ラセミN−tert−ブチル−2−ピペラジンカルボキサミド37.05(200mmol)とエタノール370.8gを仕込んだ。室温下に攪拌して溶解した。滴下ロートに塩化ベンゾイル29.52g(210mmol)を仕込み、このものを6時間かけて滴下して反応させた。滴下終了後、同温度下で1時間攪拌して熟成した。反応スラリーを約2時間かけて3℃まで冷却し、更に1時間攪拌を続けた。析出した結晶を遠心濾過し、ケークを20.0gのエタノールで洗浄した。
得られたケークを乾燥してラセミ2−tert−ブチルカルボキサミド−4−ベンゾイルピペラジン塩酸塩39.76gを得た。収率は61.0%であった。この結晶の一部を採取し、メタノール中で1N−NaOHaq.で中和したのちガスクマトグラフィー分析したところ、原料N−tert−ブチル−2−ピペラジンカルボキサミドの含有率は0.71%であった。
【0039】
2−メチルピペラジンをアシル化、あるいはスルホニル化する反応に際し、三級アミンを添加することによって高純度のアシルピペラジン誘導体塩酸塩、あるいはスルホニルピペラジン誘導体塩酸塩を得ることができ、更に二次的な効果として、析出するピペラジン誘導体塩酸塩の結晶粒子の成長により生産性が向上する。[0001]
The present invention relates to a method for producing a high- purity piperazine derivative hydrochloride.
[0002]
[Prior art]
Usually, general formula (2)
[0003]
Embedded image
Wherein R 1 , R 2 , R 3 and R 4 may be the same or different, i) a hydrogen atom, ii) a halogen atom, iii) an alkyl group having 1 to 4 carbon atoms, iv) An alkoxyl group having 1 to 4 carbon atoms, v) a nitro group, vi) a cyano group, vii) a carboxyl group, viii) a carbamoyl group, or ix) an N-alkylcarbamoyl group having an alkyl group having 1 to 4 carbon atoms, R 5 is i) unsubstituted or an alkyl group having 1 to 4 carbon atoms, an alkoxyl group having 1 to 4 carbon atoms, an aryl group substituted with a nitro group or a halogen group, ii) unsubstituted, or 1 to 4 carbon atoms An aralkyl group substituted with an alkyl group, an alkoxyl group having 1 to 4 carbon atoms, a nitro group or a halogen group. ) Or general formula (3)
[0004]
Embedded image
Wherein R 1 , R 2 , R 3 and R 4 may be the same or different, i) a hydrogen atom, ii) a halogen atom, iii) an alkyl group having 1 to 4 carbon atoms, iv) An alkoxyl group having 1 to 4 carbon atoms, v) a nitro group, vi) a cyano group, vii) a carboxyl group, viii) a carbamoyl group, or ix) an N-alkylcarbamoyl group having an alkyl group having 1 to 4 carbon atoms, R 6 is i) unsubstituted or an alkyl group having 1 to 4 carbon atoms, an alkoxyl group having 1 to 4 carbon atoms, an aryl group substituted with a nitro group or a halogen group, ii) unsubstituted, or 1 to 4 carbon atoms An aralkyl group substituted with an alkyl group, an alkoxyl group having 1 to 4 carbon atoms, a nitro group or a halogen group. As a method for producing the hydrochloride salt of the piperazine derivative represented by), the acid chloride of about equimolar to the corresponding piperazine derivative or a method of reacting a sulfone e Nirukuroraido, are known.
[0005]
[Problems to be solved by the invention]
However, when produced by such a method, the hydrochloric acid produced as a by-product in the reaction forms a salt with the piperazine derivative, which is the reaction raw material, thereby inhibiting the acylation or sulfonylation reaction. The resulting product is a low-purity piperazine derivative hydrochloride containing a large amount of a raw material piperazine derivative. For this reason, no high-purity product having a content of the raw piperazine derivative of 0.3% by weight or less has been known so far.
[0006]
[Means for Solving the Problems]
As a result of intensive studies to solve such problems, the present inventors have made a tertiary amine coexist in the acylation or sulfonylation reaction, so that the content of the raw piperazine derivative is 0.3% by weight or less. It has been found that high purity piperazine derivative hydrochloride can be obtained.
[0007]
That is, the present invention “
[0008]
General formula [0009]
Embedded image
( Wherein R 1 , R 3 and R 4 are hydrogen atoms, R 2 is a methyl group , R 5 is i) unsubstituted, an alkyl group having 1 to 4 carbon atoms, or an alkoxyl group having 1 to 4 carbon atoms. , An aryl group substituted with a nitro group or a halogen group, ii) unsubstituted, an alkyl group having 1 to 4 carbon atoms, an alkoxyl group having 1 to 4 carbon atoms, an aralkyl group substituted with a nitro group or a halogen group . ) The method of producing highly pure piperazine derivative hydrochloride that is represented by "and"
[0010]
General formula [0011]
Embedded image
( Wherein R 1 , R 3 and R 4 are hydrogen atoms, R 2 is a methyl group , R 6 is i) unsubstituted, an alkyl group having 1 to 4 carbon atoms, or an alkoxyl group having 1 to 4 carbon atoms. , An aryl group substituted with a nitro group or a halogen group, ii) unsubstituted, an alkyl group having 1 to 4 carbon atoms, an alkoxyl group having 1 to 4 carbon atoms, an aralkyl group substituted with a nitro group or a halogen group . ) Is a manufacturing method of high purity piperazine derivative hydrochloride that is expressed. "
[0012]
Here, the highly pure piperazine derivative hydrochloride in the present invention includes a racemate or an optically active substance.
[0013]
The piperazine derivative in the present invention has the general formula :
Embedded image
( Wherein R 1 , R 3 and R 4 are hydrogen atoms, R 2 is a methyl group , R 5 is i) unsubstituted, an alkyl group having 1 to 4 carbon atoms, or an alkoxyl group having 1 to 4 carbon atoms. , An aryl group substituted with a nitro group or a halogen group, ii) unsubstituted, an alkyl group having 1 to 4 carbon atoms, an alkoxyl group having 1 to 4 carbon atoms, an aralkyl group substituted with a nitro group or a halogen group . ) Or general formula [0015]
Embedded image
( Wherein R 1 , R 3 and R 4 are hydrogen atoms, R 2 is a methyl group , R 6 is i) unsubstituted, an alkyl group having 1 to 4 carbon atoms, or an alkoxyl group having 1 to 4 carbon atoms. , An aryl group substituted with a nitro group or a halogen group, ii) unsubstituted, an alkyl group having 1 to 4 carbon atoms, an alkoxyl group having 1 to 4 carbon atoms, an aralkyl group substituted with a nitro group or a halogen group . ).
[0016]
Particularly in the general formulas, R 1, R 3, R 4 is a hydrogen atom, R 2 is a methyl group, R 5, and R 6 is a phenyl group or a 4-methylphenyl group is preferred. The piperazine derivative of the present invention is preferably an optically active substance. Specific examples of the hydrochloride of such piperazine derivatives include 1-benzoyl-3-methylpiperazine hydrochloride, 1-p-toluoyl-3-methylpiperazine hydrochloride, 1-benzenesulfonyl-3-methylpiperazine hydrochloride, 1-p-toluenesulfonyl-3-methylpiperazine hydrochloride of any racemic or optically active form thereof.
[0017]
Raw materials in the production of high purity piperazine derivative hydrochloride,
[0018]
2-methylpiperazine .
[0019]
The raw material 2-methylpiperazine is preferably an optically active substance . Raw material, racemic or optically active form of 2-Mechirupiperaji emissions and the like.
[0020]
Examples of the acylating agent include benzoyl chloride, p-toluoyl chloride and anisoyl chloride. Examples of the sulfonylating agent include benzenesulfonyl chloride and p-toluenesulfonyl chloride. The amount added is usually 0.95 to 1.1 mol, preferably 1.00 to 1.05 mol per mol of the raw piperazine derivative, and there is no particular limitation on the time for adding the total amount. 2 to 10 hours.
[0021]
Examples of the tertiary amine added during the reaction include trialkylamines such as trimethylamine, triethylamine, tripropylamine and tributylamine, aromatic tertiary amines such as pyridine, N, N-dimethylaniline and N, N-diethylaniline, Or triethanolamine etc. are mentioned, Preferably it is a triethylamine. The addition is to 2-methylpiperazine 1 mole 0. The amount is from 0.5 to 0.2 mol, and can be added at the beginning of the reaction or during the reaction in a lump or divided.
[0022]
Examples of the solvent used in the reaction include alcohols such as methanol, ethanol, n-propanol, 2-propanol, n-butanol and tert-butanol, ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone, acetonitrile, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide and the like can be mentioned.
[0023]
Although there is no restriction | limiting in particular in the temperature which makes a raw material piperazine derivative, an acylating agent, or a sulfonylating agent react, It is -20-60 degreeC normally, Preferably it is 0-40 degreeC.
[0024]
The high purity piperazine derivative hydrochloride of the present invention can be usually obtained by the following operation. That is, a tertiary amine is added to a solution in which 2-methylpiperazine is dissolved in a solvent at the initial stage or in the middle of the reaction in a batch or dividedly, and usually an acylating agent or a sulfonylating agent is added over 2 to 10 hours to react. After completion of the reaction, it can be obtained by cooling or concentrating the solvent as necessary, and then separating and drying the precipitated crystals. According to the method of the present invention, a highly pure piperazine derivative hydrochloride can be obtained as compared with the case where no tertiary amine is added. Further, as a secondary effect by adding the tertiary amine, the growth of the crystal particles of the precipitated piperazine derivative hydrochloride is observed, which contributes to the improvement of productivity by improving the slurry property and filterability.
[0025]
The piperazine derivative hydrochloride thus obtained is a useful compound as a raw material for pharmaceuticals.
[0026]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to this.
[0027]
In addition, the analysis of the piperazine derivative hydrochloride obtained in the examples was performed by gas chromatography.
[0028]
Equipment used: Shimadzu GC-14B
Column: Unisole 10T + KOH (10% + 3%), Uniport HP 80/100, glass 3.2 mm I.D. D. * 1.1m
Column temperature: 80 ° C. (5 min) → (10 ° C./min)→220° C. (15 min)
Inlet temperature: 250 ° C
Detector temperature: 250 ° C
Carrier: Helium detection method: FID
Sample preparation: Samples were dissolved in methanol and equimolar amounts of 1N NaOH aq. To make it free.
[0029]
Example 1
(S) -2-methylpiperazine (20.03 g, 200 mmol) and n-butanol (160.1 g) were charged into a 300-ml reaction vessel equipped with a thermometer, a dropping funnel, and a stirrer. The solution was dissolved by stirring at room temperature. The dropping funnel was charged with 23.90 g (170 mmol) of benzoyl chloride, and this was dropped over 5 hours to be reacted. Then, 2.02 g (20 mmol) of triethylamine was added. To the dropping funnel was charged 5.62 g (40 mmol) of benzoyl chloride, and this was added dropwise over 1 hour to react. After completion of dropping, the mixture was aged by stirring for 1 hour at the same temperature. The reaction slurry was cooled to 3 ° C. over about 2 hours, and stirring was continued for another hour. The precipitated crystals were subjected to centrifugal filtration, and the cake was washed with 20.0 g of n-butanol. The obtained cake was dried to obtain 41.66 g of (S) -1-benzoyl-3-methylpiperazine hydrochloride. The yield was 86.3%. A part of the crystals was collected and 1N NaOHaq. After neutralization with gas chromatographic analysis, the content of raw material 2-methylpiperazine was 0.05% or less.
[0030]
Example 2
(S) -2-methylpiperazine 20.03 (200 mmol) and n-butanol 160.1 g were charged into a 300-ml reaction vessel equipped with a thermometer, a dropping funnel and a stirrer. The solution was dissolved by stirring at room temperature. The dropping funnel was charged with 23.90 g (170 mmol) of benzoyl chloride, and this was dropped over 5 hours to be reacted. Subsequently, 1.01 g (10 mmol) of triethylamine was added. To the dropping funnel was charged 5.62 g (40 mmol) of benzoyl chloride, and this was added dropwise over 1 hour to react. After completion of dropping, the mixture was aged by stirring for 1 hour at the same temperature. The reaction slurry was cooled to 3 ° C. over about 2 hours, and stirring was continued for another hour. The precipitated crystals were subjected to centrifugal filtration, and the cake was washed with 20.0 g of n-butanol. The obtained cake was dried to obtain 40.40 g of (S) -1-benzoyl-3-methylpiperazine hydrochloride. The yield was 83.5%. A part of the crystals was collected and 1N NaOHaq. After neutralization with gas chromatographic analysis, the content of the raw material 2-methylpiperazine was 0.20%.
[0031]
Example 3
(S) -2-methylpiperazine 20.03 (200 mmol) and n-butanol 160.1 g were charged into a 300-ml reaction vessel equipped with a thermometer, a dropping funnel and a stirrer. It melt | dissolved by cooling and stirring to 4-8 degreeC. The dropping funnel was charged with 26.70 g (190 mmol) of benzoyl chloride, and this was dropped over 5 hours to be reacted. At this time, the temperature of the reaction solution was kept at 4 to 8 ° C. Subsequently, 1.01 g (10 mmol) of triethylamine was added. The dropping funnel was charged with 2.80 g (20 mmol) of benzoyl chloride, and this was added dropwise over 1 hour to react. After completion of the dropwise addition, the mixture was stirred at 4-8 ° C for 1 hour, and further aged at 20-25 ° C for 1 hour. The reaction slurry was cooled to 3 ° C. over about 2 hours, and stirring was continued for another hour. The precipitated crystals were subjected to centrifugal filtration, and the cake was washed with 20.0 g of n-butanol. The obtained cake was dried to obtain 39.63 g of (S) -1-benzoyl-3-methylpiperazine hydrochloride. The yield was 81.9%. A part of the crystals was collected and 1N NaOHaq. After neutralization with gas chromatographic analysis, the content of raw material 2-methylpiperazine was 0.23%.
[0032]
Example 4
Racemic 2-methylpiperazine 20.03 (200 mmol) and denatured ethanol (Solmix AT-15, ethanol 84%, toluene 15%, isopropanol 1%) in a 300 ml reaction vessel equipped with a thermometer, dropping funnel and stirrer 80.2 g was charged. The solution was dissolved by stirring at room temperature. The dropping funnel was charged with 24.18 g (172 mmol) of benzoyl chloride, and this was added dropwise over 5 hours to react. Then, 2.02 g (20 mmol) of triethylamine was added. To the dropping funnel was charged 5.62 g (40 mmol) of benzoyl chloride, and this was added dropwise over 1 hour to react. After completion of dropping, the mixture was aged by stirring for 1 hour at the same temperature. The reaction slurry was cooled to 3 ° C. over about 2 hours, and stirring was continued for another hour. The precipitated crystals were subjected to centrifugal filtration, and the cake was washed with 20.0 g of denatured ethanol. The obtained cake was dried to obtain 42.16 g of racemic 1-benzoyl-3-methylpiperazine hydrochloride. The yield was 87.2%. A part of the crystals was collected and 1N NaOHaq. After neutralization with gas chromatographic analysis, the content of raw material 2-methylpiperazine was 0.05% or less.
[0033]
Example 5
(S) -2-Methylpiperazine 20.03 (200 mmol) and 80.2 g of ethanol were charged into a 300-ml reaction vessel equipped with a thermometer, a dropping funnel and a stirrer. The solution was dissolved by stirring at room temperature. The dropping funnel was charged with 29.67 g (168 mmol) of benzenesulfonyl chloride, which was added dropwise over 5 hours to react. Then, 2.02 g (20 mmol) of triethylamine was added. The dropping funnel was charged with 7.42 g (42 mmol) of benzenesulfonyl chloride, which was added dropwise over 1 hour to react. After completion of dropping, the mixture was aged by stirring for 1 hour at the same temperature. The reaction slurry was cooled to 3 ° C. over about 2 hours, and stirring was continued for another hour. The precipitated crystals were subjected to centrifugal filtration, and the cake was washed with 20.0 g of denatured ethanol. The obtained cake was dried to obtain 41.00 g of racemic 1-benzenesulfonyl-3-methylpiperazine hydrochloride. The yield was 74.1%. A part of the crystals was collected and 1N NaOHaq. After neutralization with gas chromatographic analysis, the content of raw material 2-methylpiperazine was 0.05% or less.
[0034]
Reference example 1
Racemic N-tert-butyl-2-piperazinecarboxamide 37.05 (200 mmol) and 370.2 g of ethanol were charged into a 300 ml reaction vessel equipped with a thermometer, a dropping funnel and a stirrer. The solution was dissolved by stirring at room temperature. The dropping funnel was charged with 23.90 g (170 mmol) of benzoyl chloride, and this was dropped over 5 hours to be reacted. Then, 2.02 g (20 mmol) of triethylamine was added. To the dropping funnel was charged 5.62 g (40 mmol) of benzoyl chloride, and this was added dropwise over 1 hour to react. After completion of dropping, the mixture was aged by stirring for 1 hour at the same temperature. The reaction slurry was cooled to 3 ° C. over about 2 hours, and stirring was continued for another hour. The precipitated crystals were subjected to centrifugal filtration, and the cake was washed with 20.0 g of ethanol. The obtained cake was dried to obtain 39.52 g of racemic 2-tert-butylcarboxamide-4-benzoylpiperazine hydrochloride. The yield was 60.7%. A part of the crystals was collected and 1N NaOHaq. After neutralization with gas chromatographic analysis, the content of raw material N-tert-butyl-2-piperazinecarboxamide was 0.28%.
[0035]
Comparative Example 1
(S) -2-methylpiperazine (20.03 g, 200 mmol) and n-butanol (160.1 g) were charged into a 300-ml reaction vessel equipped with a thermometer, a dropping funnel, and a stirrer. The solution was dissolved by stirring at room temperature. The dropping funnel was charged with 29.52 g (210 mmol) of benzoyl chloride, and this was added dropwise over 6 hours to react. After completion of dropping, the mixture was aged by stirring for 1 hour at the same temperature. The reaction slurry was cooled to 3 ° C. over about 2 hours, and stirring was continued for another hour. The precipitated crystals were subjected to centrifugal filtration, and the cake was washed with 20.0 g of n-butanol. The obtained cake was dried to obtain 40.29 g of (S) -1-benzoyl-3-methylpiperazine hydrochloride. The yield was 81.6%. A part of the crystals was collected and 1N NaOHaq. After neutralization with gas chromatographic analysis, the content of raw material 2-methylpiperazine was 2.08%.
[0036]
Comparative Example 2
Racemic 2-methylpiperazine 20.03 (200 mmol) and denatured ethanol (Solmix AT-15, ethanol 84%, toluene 15%, isopropanol 1%) in a 300 ml reaction vessel equipped with a thermometer, dropping funnel and stirrer 80.2 g was charged. The solution was dissolved by stirring at room temperature. The dropping funnel was charged with 29.80 g (212 mmol) of benzoyl chloride, which was added dropwise over 6 hours to react. After completion of dropping, the mixture was aged by stirring for 1 hour at the same temperature. The reaction slurry was cooled to 3 ° C. over about 2 hours, and stirring was continued for another hour. The precipitated crystals were subjected to centrifugal filtration, and the cake was washed with 20.0 g of denatured ethanol. The obtained cake was dried to obtain 44.94 g of racemic 1-benzoyl-3-methylpiperazine hydrochloride. The yield was 86.8%. A part of the crystals was collected and 1N NaOHaq. After neutralization with gas chromatographic analysis, the content of raw material 2-methylpiperazine was 0.58%.
[0037]
Comparative Example 3
(S) -2-Methylpiperazine 20.03 (200 mmol) and 80.2 g of ethanol were charged into a 300-ml reaction vessel equipped with a thermometer, a dropping funnel and a stirrer. The solution was dissolved by stirring at room temperature. The dropping funnel was charged with 37.09 g (210 mmol) of benzenesulfonyl chloride, which was added dropwise over 6 hours to react. After completion of dropping, the mixture was aged by stirring for 1 hour at the same temperature. The reaction slurry was cooled to 3 ° C. over about 2 hours, and stirring was continued for another hour. The precipitated crystals were subjected to centrifugal filtration, and the cake was washed with 20.0 g of ethanol. The obtained cake was dried to obtain 40.52 g of (S) -1-benzenesulfonyl-3-methylpiperazine hydrochloride. The yield was 73.2%. A part of the crystals was collected and 1N NaOHaq. After neutralization with gas chromatographic analysis, the content of raw material 2-methylpiperazine was 0.54%.
[0038]
Comparative Example 4
Racemic N-tert-butyl-2-piperazinecarboxamide 37.05 (200 mmol) and ethanol 370.8 g were charged into a 1000 ml reaction vessel equipped with a thermometer, dropping funnel and stirrer. The solution was dissolved by stirring at room temperature. The dropping funnel was charged with 29.52 g (210 mmol) of benzoyl chloride, and this was added dropwise over 6 hours to react. After completion of dropping, the mixture was aged by stirring for 1 hour at the same temperature. The reaction slurry was cooled to 3 ° C. over about 2 hours, and stirring was continued for another hour. The precipitated crystals were subjected to centrifugal filtration, and the cake was washed with 20.0 g of ethanol.
The obtained cake was dried to obtain 39.76 g of racemic 2-tert-butylcarboxamide-4-benzoylpiperazine hydrochloride. The yield was 61.0%. A part of the crystals was collected and 1N NaOHaq. After neutralization with gas chromatographic analysis, the content of the raw material N-tert-butyl-2-piperazinecarboxamide was 0.71%.
[0039]
In the reaction of acylating or sulfonylating 2-methylpiperazine , it is possible to obtain a highly pure acylpiperazine derivative hydrochloride or sulfonylpiperazine derivative hydrochloride by adding a tertiary amine. As a result, productivity is improved by the growth of the crystal particles of the precipitated piperazine derivative hydrochloride.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001050017A JP4807675B2 (en) | 2001-02-26 | 2001-02-26 | Method for producing high purity piperazine derivative hydrochloride |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001050017A JP4807675B2 (en) | 2001-02-26 | 2001-02-26 | Method for producing high purity piperazine derivative hydrochloride |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2002255943A JP2002255943A (en) | 2002-09-11 |
JP2002255943A5 JP2002255943A5 (en) | 2008-03-27 |
JP4807675B2 true JP4807675B2 (en) | 2011-11-02 |
Family
ID=18911041
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001050017A Expired - Fee Related JP4807675B2 (en) | 2001-02-26 | 2001-02-26 | Method for producing high purity piperazine derivative hydrochloride |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4807675B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2480481A1 (en) * | 2002-03-29 | 2003-10-16 | Schering Corporation | Stereoselective alkylation of chiral 2-methyl-4-protected piperazines |
GB0713930D0 (en) * | 2007-07-18 | 2007-08-29 | Generics Uk Ltd | Novel assay methods |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5218708B2 (en) * | 1972-09-13 | 1977-05-24 | ||
FR2553414B1 (en) * | 1983-10-18 | 1986-08-14 | Choay Sa | NOVEL N-CYCLISTED BENZENESULFONAMIDES, PROCESS FOR THEIR PREPARATION AND THEIR USE AS ACTIVE SUBSTANCE OF PHARMACEUTICAL COMPOSITIONS |
CA1248531A (en) * | 1984-04-17 | 1989-01-10 | Jeffrey C. Watkins | 4-substituted piperazine-2-carboxylic acids |
JPS63215672A (en) * | 1987-03-04 | 1988-09-08 | Mitsubishi Kasei Corp | Pyridazinone derivative or salts thereof |
US5693804A (en) * | 1994-11-17 | 1997-12-02 | Molecular Geriatrics Corporation | Substituted 1-aryl-3-piperazin-1'-yl propanones |
JPH10226689A (en) * | 1996-04-24 | 1998-08-25 | Takeda Chem Ind Ltd | Condensed imidazopyridine derivative, its production and agent |
US6469006B1 (en) * | 1999-06-15 | 2002-10-22 | Bristol-Myers Squibb Company | Antiviral indoleoxoacetyl piperazine derivatives |
-
2001
- 2001-02-26 JP JP2001050017A patent/JP4807675B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2002255943A (en) | 2002-09-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2007508293A (en) | Method for producing O-carbamoyl compound in the presence of active amine group | |
JP5649971B2 (en) | Process for producing 2-hydroxy-5-phenylalkylaminobenzoic acid derivatives and salts thereof | |
JP2007503476A (en) | Improved production of rebamipide | |
JP4807675B2 (en) | Method for producing high purity piperazine derivative hydrochloride | |
CN114014864B (en) | Preparation process of traasiril compound | |
CN111349045A (en) | Synthetic method of lenvatinib and novel intermediate | |
JP2598703B2 (en) | Method for producing butyl 3 '-(1H-tetrazol-5-yl) oxanilate | |
JP4545911B2 (en) | Method for producing camostat mesylate | |
TW202210486A (en) | Method for preparing glp-1 receptor agonist | |
JP4406482B2 (en) | Process for producing optically active 2-aminocyclohexanol derivative | |
JP5119927B2 (en) | Method for producing 2-oxindole compounds | |
JP2002255943A5 (en) | ||
JPH0140833B2 (en) | ||
JP3028168B2 (en) | Method for producing benzenesulfonamide derivative | |
JP3870431B2 (en) | Process for producing 4,6-bis (substituted) phenylazoresorcinol and its intermediate | |
JP3790325B2 (en) | Method for producing N-acetylcysteine derivative | |
JPH072742A (en) | New production method of 4-amino-3-methyl-n-ethyl-n-(beta-hydroxyethyl)aniline sulfuric acid salt | |
JPH0558985A (en) | Production of cyanoguanidine derivative | |
JP2815476B2 (en) | Improved process for producing benzenesulfonamide compounds | |
JP4587139B2 (en) | A method for producing an aminoalkoxycarbostyril derivative. | |
US4945161A (en) | Process for the preparation of N,N'-bis-(2-hydroxy-ethyl) piperazine | |
JPH05310646A (en) | Production of di-tert-butyl dicarbonate | |
JPH10287650A (en) | Production of 1-chlorocarbonyl-4-piperidinopiperidine, or hydrochloride salt thereof | |
JPH11228513A (en) | 4-acetylamino-3-methylbenzoic acid compound, its production and production of 1h-indazole-5-carboxylic acid using the same | |
JP3622409B2 (en) | β-anilinoethanethiol derivative, method for producing the same, and method for producing 3,4-dihydro-2H-1,4-benzothiazine derivatives using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20080110 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080111 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080111 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20080110 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20100303 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20100303 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110426 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20110526 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20110526 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110620 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110802 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110808 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140826 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4807675 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |