JP4806851B2 - Particulate matter detection device such as seeding machine - Google Patents

Particulate matter detection device such as seeding machine Download PDF

Info

Publication number
JP4806851B2
JP4806851B2 JP2001037111A JP2001037111A JP4806851B2 JP 4806851 B2 JP4806851 B2 JP 4806851B2 JP 2001037111 A JP2001037111 A JP 2001037111A JP 2001037111 A JP2001037111 A JP 2001037111A JP 4806851 B2 JP4806851 B2 JP 4806851B2
Authority
JP
Japan
Prior art keywords
fertilizer
seed
particulate matter
sensor
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001037111A
Other languages
Japanese (ja)
Other versions
JP2002238314A (en
Inventor
治光 十亀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iseki and Co Ltd
Original Assignee
Iseki and Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iseki and Co Ltd filed Critical Iseki and Co Ltd
Priority to JP2001037111A priority Critical patent/JP4806851B2/en
Publication of JP2002238314A publication Critical patent/JP2002238314A/en
Application granted granted Critical
Publication of JP4806851B2 publication Critical patent/JP4806851B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、播種機等の粒状物検出装置の改良に関するものである。
【0002】
【従来技術】
播種機等の種子等の粒状物の流下路に対向させて、発光素子及び受光素子からなる光学的粒状物センサを配置して、粒状物を検出するものがある。
【0003】
【発明が解決しようとする問題点】
前記従来装置にあっては、粒状物が比較的ゆっくり流下する場合には、正確に検出できるが、粒状物を加速して高速で流下させる高能率型の播種機にあっては、検出精度が低下するという問題点があった。そこで、この発明はこのような問題点を解消しようとするものである。
【0004】
【問題を解決するための手段】
このような技術的課題を解決するための請求項1の発明は、播種機等の粒状物の流下路に粒状物センサ(41)の検出電極部(41a)を対向配置し、該検出電極部(41a)により通過する粒状物の静電容量の変化に基づき粒状物を検出する構成とし、粒状物センサ(41)の検出電極部(41a)の検出信号を増幅手段(42)により増幅し、次いで、ピークホールド手段(43)によりピーク値の増幅信号を出力して粒状物の通過を検出することを特徴とする播種機等の粒状物検出装置とする。
【0005】
【発明の作用及び効果】
請求項1の発明は、粒状物センサ41の検出電極部41aを粒状物が通過する際に周辺に存在する物体により静電容量の検出値が変化しても、周辺物体により変動した基準検出値を基にした静電容量の変化量により粒状物の通過を検出するので、精度よく粒状物を検出できる。
【0006】
また粒状物センサ41の検出電極部41aの検出信号を増幅手段42により増幅し、次いで、ピークホールド手段43によりピーク値の増幅信号を出力して粒状物の通過を検出するので、塵埃や水分等が付着してセンサの周辺状況が変動しても、小さな検出値の変化で精度よく粒状物を検出できる
【0007】
【0008】
【発明の実施の形態】
以下、本発明の好ましい実施例の形態について説明する。
図1は、水田に直接種籾を播種する播種機に粒状の肥料を施肥する施肥装置1の装着された施肥播種機2を示している。この施肥播種機2は、主として乗用型走行車体3と8条分の施肥装置1及び播種装置4により構成されている。
【0009】
走行車体3には、左・右前輪5,5及び左・右後輪6,6を備えている。機体の前部に配したミッションケース7の左右両側に前輪ファイナルケース8,8を設けて、この前輪ファイナルケース8,8の下部から横側方に突出する前車輪軸に左・右前輪5,5を取り付けている。また、ミッションケース7の背面部に主フレーム9の前端を固着し、その主フレーム9の後端中央部に前後方向水平の後輪ローリング軸を支点にして後輪ギヤケース10,10をローリング自在に支持し、その後輪ギヤケース10,10から横側方に突出する後車軸に左・右後輪6,6を取り付けている。
【0010】
主フレーム9上にエンジン11を搭載し、エンジン11の左側面に突出しているエンジン出力軸に回転動力を取り出し、この回転動力を第1ベルト伝動装置12を介して油圧ポンプ12aの駆動軸に伝動し、更に、無段変速可能な第2ベルト伝動装置13を経由してミッションケース7に伝達している。
【0011】
ミッションケース7に伝動された回転動力は、ケース内の主変速装置(図示省略)で変速して走行動力と作業機動力に分岐して取り出し、走行動力を前輪ファイナルケース8,8経由で左・右前輪5,5に伝動すると共に、後輪ギヤケース10,10経由で左・右後輪6,6に伝動する。また、作業機動力をPTO軸から取り出して施肥装置1に伝達し、更に、屈折自在の作業機伝動軸15を経て播種装置4に伝達して、その作動部を駆動している。
【0012】
エンジン11の上部をエンジンカバー16で被覆し、エンジンカバー16上に操縦席17を設けている。操縦席17の前方に左・右前輪5,5を操舵操作するハンドル18を設けている。
走行車体3の後部には昇降リンク装置19を設けている。この昇降リンク装置19は平行リンク構成で、1本の上部リンク19aと左右一対の下部リンク19b,19bにより構成している。これらのリンク19a,19b,19bの基部側を主フレーム9の後端部に立設したリンク前フレーム20に回動自在に軸支し、リンク19a,19b,19bの先端部にリンク後フレーム21を連結している。そして、リンク後フレーム21に播種装置4をローリング自在に装着している。
【0013】
主フレーム9に固着した支持部材と上部リンク19aに一体形成したスイングアーム22先端との間に、油圧昇降シリンダ23を介装し、この油圧昇降シリンダ23を油圧により伸縮させて、上部リンク19aを上下に回動させ、リンク後フレーム21に連結した播種装置4を略一定姿勢で昇降させる。油圧昇降シリンダ23は走行車体3に設けた油圧昇降バルブ(図示省略)により伸縮制御される。
【0014】
施肥装置1は、粒状の肥料を貯溜する肥料ホッパ24、該肥料ホッパ24内の肥料を所定量づつ繰り出す複数条の肥料繰出部25…、該肥料繰出部25から繰り出された肥料を流下案内する複数条の肥料案内管26…、肥料案内管26…に圧力風を供給する施肥エアチャンバー27、及び、施肥エアチャンバー27に圧力風を供給する施肥用送風機28を備えている。
【0015】
そして、施肥装置1は、肥料繰出部25…から繰り出される肥料を肥料案内管26に落下供給し、施肥エアチャンバー27からの圧力風により肥料案内管26…及び複数条の第2肥料案内管26a…を介して複数条の施肥部29…へ肥料を送る構成である。
【0016】
前記施肥部29は、肥料案内管26a…にブーツ30を介して接続されていて、圃場面を滑走整地する整地フロート31に取り付けられている。施肥部29の前方には施肥作溝器32を設けて、機体の前進により施肥作溝器32で作溝し、肥料が施肥部29から供給され、施肥覆土器(図示省略)により覆土する構成である。
【0017】
次に、播種装置4について説明する。
播種装置4の下方には、2つのセンター整地フロート31a,…と、左・右のサイド整地フロート31b,…が設けられており、これらの整地フロート31a,…、31b,…は前後傾斜姿勢が自由に変更できる構成で、播種作業時に圃場面を滑走整地する構成である。
【0018】
播種装置4の播種部は、種子を貯溜する種子ホッパ34、種子ホッパ34内の種子を所定量づつ繰り出す複数条の種子繰出部35、種子繰出部35から繰り出される種子を流下案内する複数条の種子案内管36…、該種子案内管36…に繰り出された種子を受けて下方に向けて加速して放出する種子放出装置37…と、該種子放出装置37…から加速放出された種子を播種作溝器38…まで案内する種子案内体39…等により構成されている。
【0019】
41は種子が落下してくるのを検出する種子センサ(粒状物センサ)であり、播種作溝器38…の上部の種子案内部40に設けられている。しかして、種子案内部40内に泥や種子が詰まって播種できなくなった時や、上方の種子繰出部35に種子が詰まって繰り出されなくなった時に、播種されていないことを検出して、作業者の前方の運転パネルに警報を発する為のものである。この警報が発せられると、作業者は直ぐに機体を停止し、異常部の確認及び整備をし、播種作業を再開する。
【0020】
前記構成により、種子繰出部35から繰り出された種子を播種作溝器38上方近くに配置した種子放出装置37が一旦受けとめて下方に向けて順次加速しながら放出し、種子を圃場に間歇的に播種し、点播状態での播種作業を良好に行なうことができる。
【0021】
次に、図4に基づき種子センサ(粒状物センサ)41の他の実施例について説明する。
種子の流下路に種子センサ41を配置し、種子センサ41の検出電極部41aで種子等の粒状物の静電容量の変化を検出し、その検出電圧値のアナログ信号中のピーク値を増幅しホールドして検出信号として出力する機能を有するものである。
【0022】
図4(1)に示すように、種子センサ41の検出信号Aは増幅回路42、ピークホールド回路43を経由してCPU内臓の制御部に入力される構成である。図4(2)に示すように、種子センサ41の検出電極部41aで電圧値Aが検出されて増幅回路42に送られ、増幅回路42ではピーク電圧値が増幅Bされ、次いで、ピークホールド回路43ではピーク値の増幅信号Cが検出信号として出力され、種子の通過を検出する。
【0023】
種子センサ41の検出電極部41aを種子が通過する際には、周辺に存在する物体により静電容量の検出値は変化するが、この実施例では周辺事情により変動した静電容量検出値における変化量を基にして籾粒を検出するので、塵埃や水分等が付着してセンサの周辺状況が変化しても、精度よく粒状物を検出できる。
【0024】
また、図5に示すように、前記のように静電容量の変化によって籾粒等の種子の通過を検出する種子センサ41において、検出電極部41aをシールド膜44により被覆する構成としてもよい。籾一粒によって変化する静電容量は非常に小さく、周囲に物が存在すると電界が変化し、出力信号も変化する。しかし、前記のように種子センサ41の検出電極部41aをシールドすることにより、このような不具合を解消し検出精度を向上させることができる。
【0025】
次に、図6に基づき種子センサ41の他の実施例について説明する。
種子の放出流下路に種子センサ41を配置し、種子センサ41の検出電極部41aで種子の静電容量を検出し、その検出電圧値のアナログ信号中のピーク値とボトム値を検出し、これをホールドした検出信号として出力するものである。
【0026】
図6(1)に示すように、種子センサ41の検出信号はピークボトム検出回路45、ピークホールド回路43を経てCPU内臓の制御部に入力する構成である。種子センサ41の検出電極部41aでは、図6(2)に示すように電圧値Aが検出され、ピーク電圧値及びボトム電圧値が検出され。次いで、ピークボトム検出回路45では、図6(3)に示すように、ピーク値及びボトム値が検出され、次いで、ピークホールド回路43では図6(4)に示すように、ピークホールド信号及びボトムホールド信号が出力され、種子の通過を検出する。
【0027】
流下通路内を流下する種子(あるいは粒状肥料)の速度は時速25km程度で籾粒のパルス幅は1ミリセック程度と非常に短い。この実施例では、籾粒の通過によるピーク電圧値、及び、ボトム電圧値をホールドし増幅した電圧値として検出するため、短い処理プログラムで籾粒の通過を検出でき、しかも、種子センサ41の周辺の水分や埃の状態が変動しても、基準電圧値を基にして変化したピーク電圧値及びボトム電圧値により検出されるので、高速移動の籾粒を精度よく検出できる。
【図面の簡単な説明】
【図1】 施肥播種機の体側面図である。
【図2】 施肥播種機の全体平面図である。
【図3】 播種装置の一部切断側面図である。
【図4】 要部のブロック図、検出信号のタイムチャートである。
【図5】 要部の斜視図、切断平面図である。
【図6】 要部のブロック図、検出信号のタイムチャートである。
【符号の説明】
1 施肥装置
2 施肥播種機
3 走行車体
4 播種装置
41 種子センサ(粒状物センサ)
41a 検出電極部
42 増幅回路(増幅手段)
43 ピークホールド回路(ピークホールド手段)
45 ピークボトム検出回路(ピークボトム検出手段)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an improvement of a particulate matter detection device such as a seeder.
[0002]
[Prior art]
There is one that detects a particulate matter by arranging an optical particulate matter sensor composed of a light emitting element and a light receiving element so as to face a flow path of the particulate matter such as a seed of a seeder.
[0003]
[Problems to be solved by the invention]
In the conventional apparatus, when the granular material flows down relatively slowly, it can be accurately detected. However, in the high efficiency type seeder that accelerates the granular material and flows down at high speed, the detection accuracy is high. There was a problem that it decreased. Thus, the present invention is intended to solve such problems.
[0004]
[Means for solving problems]
The invention of claim 1 for solving such a technical problem is such that the detection electrode portion (41a) of the particulate matter sensor (41) is disposed opposite to the flow passage of the particulate matter such as a seeder, and the detection electrode portion. (41a) is configured to detect the particulate matter based on the change in capacitance of the particulate matter passing through, and the detection signal of the detection electrode portion (41a) of the particulate matter sensor (41) is amplified by the amplification means (42), Next, a particulate matter detection apparatus such as a seeding machine is characterized in that the peak hold means (43) outputs a peak value amplification signal to detect passage of the particulate matter .
[0005]
[Action and effect of the invention]
According to the first aspect of the present invention, even if the detection value of the capacitance changes due to an object existing in the vicinity when the granular material passes through the detection electrode portion 41a of the granular material sensor 41, the reference detection value fluctuated depending on the peripheral object. Since the passage of the particulate matter is detected based on the amount of change in the electrostatic capacity based on the particulate matter, the particulate matter can be detected with high accuracy.
[0006]
Further , the detection signal of the detection electrode portion 41a of the granular material sensor 41 is amplified by the amplification means 42, and then the peak hold means 43 outputs a peak value amplification signal to detect the passage of the granular material. Even if the surroundings of the sensor fluctuate due to adhesion, etc., the particulate matter can be detected with high accuracy by a small change in the detection value .
[0007]
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described.
FIG. 1 shows a fertilizer seeder 2 equipped with a fertilizer application device 1 for applying granular fertilizer to a seeder that sows seed rice directly in a paddy field. This fertilizer sowing machine 2 is mainly composed of a riding type traveling vehicle body 3, a fertilizer application device 1 for 8 strips, and a seeding device 4.
[0009]
The traveling vehicle body 3 includes left and right front wheels 5 and 5 and left and right rear wheels 6 and 6. Front wheel final cases 8, 8 are provided on the left and right sides of the transmission case 7 arranged at the front of the aircraft, and the left and right front wheels 5, 5 are projected on the front wheel shaft protruding laterally from the lower portion of the front wheel final cases 8, 8. 5 is attached. Further, the front end of the main frame 9 is fixed to the rear portion of the transmission case 7, and the rear wheel gear cases 10 and 10 can be freely rolled around the center of the rear end of the main frame 9 with the horizontal rear wheel rolling shaft as a fulcrum. The left and right rear wheels 6 and 6 are attached to a rear axle that supports and projects laterally from the rear wheel gear cases 10 and 10.
[0010]
The engine 11 is mounted on the main frame 9, the rotational power is taken out to the engine output shaft protruding from the left side surface of the engine 11, and this rotational power is transmitted to the drive shaft of the hydraulic pump 12 a via the first belt transmission device 12. Furthermore, the transmission is transmitted to the transmission case 7 via the second belt transmission 13 capable of continuously variable transmission.
[0011]
The rotational power transmitted to the transmission case 7 is shifted by a main transmission (not shown) in the case, branched into driving power and work equipment power, and taken out to the left via the front wheel final cases 8 and 8. The power is transmitted to the right front wheels 5 and 5 and is also transmitted to the left and right rear wheels 6 and 6 via the rear wheel gear cases 10 and 10. Further, the work machine power is taken out from the PTO shaft and transmitted to the fertilizer application apparatus 1, and further transmitted to the seeding device 4 through the bendable work machine transmission shaft 15 to drive the operating portion.
[0012]
An upper portion of the engine 11 is covered with an engine cover 16, and a cockpit 17 is provided on the engine cover 16. A handle 18 for steering the left and right front wheels 5 and 5 is provided in front of the cockpit 17.
An elevating link device 19 is provided at the rear of the traveling vehicle body 3. The elevating link device 19 has a parallel link configuration, and includes an upper link 19a and a pair of left and right lower links 19b and 19b. The base side of these links 19a, 19b, 19b is pivotally supported by a front link frame 20 erected on the rear end of the main frame 9, and the rear link frame 21 is attached to the front ends of the links 19a, 19b, 19b. Are connected. The seeding device 4 is mounted on the post-link frame 21 so as to be able to roll.
[0013]
A hydraulic elevating cylinder 23 is interposed between the support member fixed to the main frame 9 and the tip of the swing arm 22 integrally formed with the upper link 19a. The hydraulic elevating cylinder 23 is expanded and contracted by hydraulic pressure, and the upper link 19a is extended. The seeding device 4 that is pivoted up and down and connected to the post-link frame 21 is moved up and down in a substantially constant posture. The hydraulic lift cylinder 23 is extended and contracted by a hydraulic lift valve (not shown) provided on the traveling vehicle body 3.
[0014]
The fertilizer applicator 1 provides a fertilizer hopper 24 that stores granular fertilizer, a plurality of fertilizer feed sections 25 that feed out the fertilizer in the fertilizer hopper 24 by a predetermined amount, and guides the fertilizer fed from the fertilizer feed section 25 to flow down. A plurality of fertilizer guide tubes 26, a fertilizer air chamber 27 that supplies pressure air to the fertilizer guide tubes 26, and a fertilizer blower 28 that supplies pressure air to the fertilizer air chamber 27 are provided.
[0015]
Then, the fertilizer applying apparatus 1 drops and supplies the fertilizer fed from the fertilizer feeding section 25 to the fertilizer guide pipe 26, and the fertilizer guide pipe 26 ... and a plurality of second fertilizer guide pipes 26a by the pressure wind from the fertilizer air chamber 27. It is the structure which sends a fertilizer to the multiple fertilizer application part 29 ... via ....
[0016]
The fertilizer application section 29 is connected to the fertilizer guide pipes 26a through boots 30, and is attached to a leveling float 31 that slides on a farm scene. A structure in which a fertilizer groove 32 is provided in front of the fertilizer 29, the groove is formed by the fertilizer groove 32 as the machine advances, and fertilizer is supplied from the fertilizer 29 and covered with a fertilizer cover (not shown). It is.
[0017]
Next, the sowing apparatus 4 will be described.
Below the seeding device 4, two center leveling floats 31a, ... and left and right side leveling floats 31b, ... are provided, and these leveling floats 31a, ..., 31b, ... have a front-back inclined posture. It is a configuration that can be freely changed, and is configured to make the field scene gliding during seeding work.
[0018]
The seeding unit of the seeding device 4 includes a seed hopper 34 for storing seeds, a plurality of seed feeding units 35 for feeding seeds in the seed hopper 34 by a predetermined amount, and a plurality of strips for guiding the seeds fed from the seed feeding unit 35 to flow down. Seed guide pipes 36, seed release devices 37 that receive seeds fed into the seed guide tubes 36, and accelerate and release them downward, and seeds accelerated and released from the seed release devices 37 It is comprised by the seed guide body 39 ... etc. which guide to the groove producing device 38 ....
[0019]
41 is a seed sensor (granular substance sensor) for detecting the falling of seeds, and is provided in the seed guide part 40 at the upper part of the sowing groovers 38. Thus, when the seed guide unit 40 is clogged with mud or seeds, or when seeds are clogged and cannot be fed out in the upper seed feeding unit 35, it is detected that the seeds are not sowed. This is to issue an alarm to the driving panel in front of the person. When this alarm is issued, the operator immediately stops the aircraft, checks and maintains the abnormal part, and resumes the sowing work.
[0020]
With the above-described configuration, the seed discharge device 37 in which the seeds fed from the seed feeding unit 35 are arranged near the upper part of the sowing grooving device 38 is received once and released while being accelerated downward sequentially, and the seeds are intermittently introduced into the field. Sowing and seeding work in the spot sowing state can be performed well.
[0021]
Next, another embodiment of the seed sensor (granular substance sensor) 41 will be described with reference to FIG.
A seed sensor 41 is arranged in the seed flow path, a change in electrostatic capacitance of a granular material such as a seed is detected by the detection electrode portion 41a of the seed sensor 41, and a peak value in the analog signal of the detected voltage value is amplified. It has a function of holding and outputting as a detection signal.
[0022]
As shown in FIG. 4 (1), the detection signal A of the seed sensor 41 is input to the control unit built in the CPU via the amplifier circuit 42 and the peak hold circuit 43. As shown in FIG. 4 (2), the voltage value A is detected by the detection electrode portion 41a of the seed sensor 41 and sent to the amplifier circuit 42. The amplifier circuit 42 amplifies the peak voltage value B, and then the peak hold circuit. In 43, the peak value amplification signal C is output as a detection signal to detect the passage of seeds.
[0023]
When the seed passes through the detection electrode portion 41a of the seed sensor 41, the detected capacitance value varies depending on the surrounding objects, but in this embodiment, the variation in the detected capacitance value varies depending on the surrounding circumstances. Since the soot particles are detected based on the amount, the particulate matter can be accurately detected even if dust, moisture, or the like adheres and the surrounding conditions of the sensor change.
[0024]
In addition, as shown in FIG. 5, in the seed sensor 41 that detects the passage of seeds such as pods by changing the capacitance as described above, the detection electrode portion 41a may be covered with the shield film 44.静電 Capacitance that changes with each grain is very small, and if there is an object around it, the electric field changes and the output signal also changes. However, by shielding the detection electrode portion 41a of the seed sensor 41 as described above, such problems can be solved and detection accuracy can be improved.
[0025]
Next, another embodiment of the seed sensor 41 will be described with reference to FIG.
A seed sensor 41 is arranged in the seed discharge flow path, the capacitance of the seed is detected by the detection electrode portion 41a of the seed sensor 41, and the peak value and the bottom value in the analog signal of the detected voltage value are detected. Is output as a detection signal.
[0026]
As shown in FIG. 6 (1), the detection signal of the seed sensor 41 is input to the control unit built in the CPU via the peak bottom detection circuit 45 and the peak hold circuit 43. In the detection electrode portion 41a of the seed sensor 41, the voltage value A is detected as shown in FIG. 6 (2), and the peak voltage value and the bottom voltage value are detected. Next, the peak / bottom detection circuit 45 detects the peak value and the bottom value as shown in FIG. 6 (3), and then the peak hold circuit 43 detects the peak hold signal and the bottom as shown in FIG. 6 (4). A hold signal is output to detect the passage of seeds.
[0027]
The speed of the seed (or granular fertilizer) flowing down the flow passage is about 25 km / h, and the pulse width of the pods is very short, about 1 millisec. In this embodiment, since the peak voltage value and the bottom voltage value due to the passage of the pods are detected and detected as amplified voltage values, the passage of the pods can be detected with a short processing program, and the periphery of the seed sensor 41 can be detected. Even if the moisture or dust state fluctuates, it is detected based on the peak voltage value and the bottom voltage value that have changed based on the reference voltage value, so that it is possible to accurately detect the fast-moving granules.
[Brief description of the drawings]
FIG. 1 is a side view of a body of a fertilizer seeding machine.
FIG. 2 is an overall plan view of a fertilizer seeding machine.
FIG. 3 is a partially cut side view of the seeding device.
FIG. 4 is a block diagram of a main part and a time chart of detection signals.
FIG. 5 is a perspective view and a cut-out plan view of the main part.
FIG. 6 is a block diagram of a main part and a time chart of detection signals.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Fertilizer 2 Fertilizer seeder 3 Car body 4 Seeder 41 Seed sensor (granular substance sensor)
41a Detection electrode part 42 Amplifying circuit (amplifying means)
43 Peak hold circuit (peak hold means)
45 Peak bottom detection circuit (peak bottom detection means)

Claims (1)

播種機等の粒状物の流下路に粒状物センサ(41)の検出電極部(41a)を対向配置し、該検出電極部(41a)により通過する粒状物の静電容量の変化に基づき粒状物を検出する構成とし、粒状物センサ(41)の検出電極部(41a)の検出信号を増幅手段(42)により増幅し、次いで、ピークホールド手段(43)によりピーク値の増幅信号を出力して粒状物の通過を検出することを特徴とする播種機等の粒状物検出装置 The detection electrode part (41a) of the granular substance sensor (41) is arranged opposite to the flow path of the granular substance such as a seeder, and the granular substance is based on the change in the capacitance of the granular substance passing through the detection electrode part (41a) . The detection signal of the detection electrode part (41a) of the granular material sensor (41) is amplified by the amplification means (42), and then the peak value amplification signal is output by the peak hold means (43). A particulate matter detection device such as a seeder, which detects passage of particulate matter .
JP2001037111A 2001-02-14 2001-02-14 Particulate matter detection device such as seeding machine Expired - Fee Related JP4806851B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001037111A JP4806851B2 (en) 2001-02-14 2001-02-14 Particulate matter detection device such as seeding machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001037111A JP4806851B2 (en) 2001-02-14 2001-02-14 Particulate matter detection device such as seeding machine

Publications (2)

Publication Number Publication Date
JP2002238314A JP2002238314A (en) 2002-08-27
JP4806851B2 true JP4806851B2 (en) 2011-11-02

Family

ID=18900289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001037111A Expired - Fee Related JP4806851B2 (en) 2001-02-14 2001-02-14 Particulate matter detection device such as seeding machine

Country Status (1)

Country Link
JP (1) JP4806851B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105758657B (en) * 2016-04-12 2019-02-05 华北电力大学 Precision seeder working performance on-line measuring device based on electrostatic transducer

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0530577Y2 (en) * 1985-04-24 1993-08-05
JPH03117411U (en) * 1990-03-16 1991-12-04

Also Published As

Publication number Publication date
JP2002238314A (en) 2002-08-27

Similar Documents

Publication Publication Date Title
JP6523898B2 (en) Farm work machine
BR102017009022A2 (en) AGRICULTURAL VEHICLE, AND, METHOD FOR MODIFYING TIRE PRESSURE.
EP3607810B1 (en) A work vehicle and method of inhibiting dry material clogs in such a work vehicle
JP4806851B2 (en) Particulate matter detection device such as seeding machine
US7166808B2 (en) Apparatus for measuring the weight force of a load processed by a machine
JP2010220573A (en) Feed control mechanism of working machine
JP2004057121A (en) Granular material discharge machine
JP2002027812A (en) Fertilizer applicator
JP4870286B2 (en) Granular material feeding device
US20190045702A1 (en) Planter with full tandem offset pivot
JP2004065097A (en) Granule feeder with broken powder sensor
JPH0335060Y2 (en)
JP2002027810A (en) Fertilizer applicator
JP6091131B2 (en) Granule spray vehicle
JP2000166343A (en) Fertilizer applicator
JP2002315409A (en) Direct seeder
JPH03103111A (en) Fertilizer applicator of fertilizer application rice transplanter
JP4969226B2 (en) Transplanter
JPH03103110A (en) Apparatus for detecting clogging of fertilizing and sowing machine
JP2003116309A (en) Granule extruder
JP2002027811A (en) Fertilizer applicator
US2995001A (en) Apparatus for picking and husking indian corn
JP2808272B2 (en) 5-row rice transplanter with fertilizer application
JP3697773B2 (en) Rice transplanter
JP2004024170A (en) Machine for sowing in cluster

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110719

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110801

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140826

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees