JP4806741B2 - Sphere floating device - Google Patents

Sphere floating device Download PDF

Info

Publication number
JP4806741B2
JP4806741B2 JP2008037557A JP2008037557A JP4806741B2 JP 4806741 B2 JP4806741 B2 JP 4806741B2 JP 2008037557 A JP2008037557 A JP 2008037557A JP 2008037557 A JP2008037557 A JP 2008037557A JP 4806741 B2 JP4806741 B2 JP 4806741B2
Authority
JP
Japan
Prior art keywords
bearing
spherical
sectional area
surface opening
introduction path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008037557A
Other languages
Japanese (ja)
Other versions
JP2009197831A (en
Inventor
雄一 津田
洋次 白澤
敏男 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aerospace Exploration Agency JAXA
Original Assignee
Japan Aerospace Exploration Agency JAXA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aerospace Exploration Agency JAXA filed Critical Japan Aerospace Exploration Agency JAXA
Priority to JP2008037557A priority Critical patent/JP4806741B2/en
Publication of JP2009197831A publication Critical patent/JP2009197831A/en
Application granted granted Critical
Publication of JP4806741B2 publication Critical patent/JP4806741B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Description

本発明は、静圧気体軸受を応用した球体浮上装置に関するものである。   The present invention relates to a spherical levitation apparatus to which a static pressure gas bearing is applied.

従来から、圧力気体を用いて球体を浮上させる装置は実用化されているが、その流量は数十〜数百[l/sec]と大きく、そのため圧力気体が球体に与える擾乱トルクは大きいものであった。浮上球体の回転運動は作動流体による擾乱トルクの影響を受けやすく、これが問題となるようなアプリケーションにおいては,微小差圧・微小流量であることによる擾乱トルクの削減が重要である。しかし、これを実現するための浮上装置の包括的設計手法は確立されていない。また、従来に比して小規模のポンプで圧力空気を供給できるため、省エネルギー・省スペース・軽量化・高信頼性化・騒音低減の観点でも、微小差圧・微小流量を実現することは望ましい。   Conventionally, a device that floats a sphere using pressure gas has been put into practical use, but its flow rate is as large as several tens to several hundreds [l / sec], and therefore the disturbance torque that the pressure gas gives to the sphere is large. there were. The rotational motion of the floating sphere is easily affected by the disturbance torque due to the working fluid. In applications where this is a problem, it is important to reduce the disturbance torque due to the minute differential pressure and minute flow rate. However, a comprehensive design method for the levitation device to achieve this has not been established. In addition, since compressed air can be supplied with a small-scale pump compared to the conventional system, it is desirable to realize a minute differential pressure and minute flow rate from the viewpoint of energy saving, space saving, weight reduction, high reliability, and noise reduction. .

従来、静圧気体軸受を利用した平面軸受については数多く実用化されており、その給気絞り型によって性能計算の方法が確立されている(非特許文献1)。   Conventionally, many planar bearings using static pressure gas bearings have been put into practical use, and a performance calculation method has been established by the supply throttle type (Non-Patent Document 1).

その給気絞り型の1つとしてスロット絞り型がある。これは軸受面内に点状ではなく線状に給気し、軸受面内に一様で広がりのない流れを生み出すものである。さらにこのスロット形状を円形にした、円形スロット絞り気体軸受が考えられ、軸受剛性・負荷容量が高く、流量・差圧が小さいという特徴を持った軸受が実現されている。   One of the supply throttle types is a slot throttle type. This supplies air in the form of a line rather than a point in the bearing surface, and produces a uniform and unspread flow in the bearing surface. Further, a circular slot throttle gas bearing in which the slot shape is circular is conceivable, and a bearing having characteristics such as high bearing rigidity / load capacity and low flow rate / differential pressure is realized.

「気体軸受ハンドブック」十合晋一著 共立出版“Gas Bearing Handbook” by Junichi Jugo Kyoritsu Publishing

上記の平面軸受における給気絞りの特性は、球面静圧気体軸受においても同様の特性を有すると期待できるが、その性能計算の手法は確立されていない。平面軸受においては、浮上幅が軸受面全体にわたって一様であるが、球面軸受においては浮上状態によって軸受面の場所により浮上幅が異なる。このために平面軸受における性能計算をそのまま球面軸受に適用することはできない。   The characteristics of the air supply throttle in the above-described plane bearing can be expected to have the same characteristics in the spherical static pressure gas bearing, but a method for calculating its performance has not been established. In planar bearings, the flying width is uniform over the entire bearing surface, but in spherical bearings, the flying width varies depending on the location of the bearing surface depending on the flying state. For this reason, it is not possible to apply the performance calculation for a plain bearing to a spherical bearing as it is.

また、上記のスロット絞りによって、流量・差圧が小さい軸受を実現するためには、そのスロット幅を極めて狭くする必要がある。従来の平面軸受においては、これを実現するためにスロット幅に相当する厚さを持ったシムを、スロットを形成する軸受部材間に挟む方式が提供されていた。しかしこの手法を球面軸受に適用すると、軸受面の球面精度を保持できなくなるという問題がある。またシムを薄く製作することは非常に困難であり、この手法には限界があった。   Further, in order to realize a bearing with a small flow rate and differential pressure by the above-described slot restriction, the slot width needs to be extremely narrow. In the conventional planar bearing, in order to realize this, there has been provided a system in which a shim having a thickness corresponding to the slot width is sandwiched between bearing members forming the slot. However, when this method is applied to a spherical bearing, there is a problem that the spherical accuracy of the bearing surface cannot be maintained. In addition, it is very difficult to produce a thin shim, and this method has its limitations.

本発明の目的は、微小流量・微小差圧で作動可能な球体浮上装置を提供することにある。このために平面静圧気体軸受において用いられてきた軸受性能計算の手法を、球面静圧気体軸受においても用いることができるように定式化を行う。さらにこの定式化を元にした軸受の設計手法を確立し、微小流量、微小差圧での作動を実現する軸受を設計する。この設計結果を実現するために、加工方法が容易かつ球面軸受においても適用可能な微小な幅の円形スロット絞りの製作手法を提案する。   An object of the present invention is to provide a sphere floating device that can be operated with a minute flow rate and a minute differential pressure. For this reason, the method for calculating the bearing performance that has been used in the plane hydrostatic gas bearing is formulated so that it can be used in the spherical hydrostatic gas bearing. Furthermore, we will establish a bearing design method based on this formulation, and design a bearing that can be operated with a minute flow rate and minute differential pressure. In order to realize this design result, we propose a method of manufacturing a circular slot diaphragm with a very small width that can be easily applied to spherical bearings.

本発明に係る球体浮上装置は、球状の剛体と、球面状の軸受面を有し、前記剛体を圧力気体により非接触で浮上させるための球面静圧気体軸受と、該球面静圧気体軸受に圧力気体を供給する給気機構と、を具備し、前記剛体、前記球面静圧気体軸受及び前記給気機構が、定式化された前記軸受面における前記剛体の浮上幅に基づいて設計されている、ことを特徴とする。   A spherical levitation apparatus according to the present invention includes a spherical rigid body, a spherical bearing surface, a spherical static pressure gas bearing for levitating the rigid body in a non-contact manner with a pressure gas, and the spherical static pressure gas bearing. An air supply mechanism for supplying a pressure gas, and the rigid body, the spherical static pressure gas bearing and the air supply mechanism are designed on the basis of the floating width of the rigid body on the formulated bearing surface. It is characterized by that.

本発明に球面静圧気体軸受の性能計算方法は、球面状の軸受面を有し、球状の剛体を圧力気体により非接触で浮上させるための球面静圧気体軸受について、前記軸受面各所における浮上幅を算出するステップと、前記浮上幅及び前記軸受面における圧力分布から前記軸受面における流量を算出するステップと、前記軸受面における圧力分布から負荷容量を算出するステップと、を含むことを特徴とする。   The spherical hydrostatic gas bearing performance calculation method according to the present invention relates to a spherical hydrostatic gas bearing that has a spherical bearing surface and floats a spherical rigid body in a non-contact manner with a pressure gas. A step of calculating a width; a step of calculating a flow rate at the bearing surface from the flying height and a pressure distribution at the bearing surface; and a step of calculating a load capacity from the pressure distribution at the bearing surface. To do.

本発明に係る球体浮上装置の設計方法は、球状の剛体と、球面状の軸受面を有し、前記剛体を圧力気体により非接触で浮上させるための球面静圧気体軸受であって、前記軸受面内に給気する絞りの形状が環状スロットとなっている球面静圧気体軸受と、該球面静圧気体軸受に圧力気体を供給する給気機構と、を具備する球体浮上装置の設計方法であって、前記軸受面各所における浮上幅を算出するステップと、前記浮上幅及び前記軸受面における圧力分布から前記軸受面における流量を算出するステップと、前記軸受面における圧力分布から負荷容量を算出するステップと、前記負荷容量を用いて軸受剛性を算出するステップと、算出された前記負荷容量、前記流量及び前記軸受剛性を達成することのできる、給気圧力、周辺圧力、前記球面静圧気体軸受の軸受半径、前記環状スロットの半径、前記環状スロットの幅、及び、前記環状スロットの深さを決定するステップと、を含むことを特徴とする。   A design method for a spherical levitation apparatus according to the present invention is a spherical static pressure gas bearing having a spherical rigid body and a spherical bearing surface, and for levitating the rigid body in a non-contact manner with a pressure gas. A spherical levitation device design method comprising: a spherical static pressure gas bearing in which a shape of a throttle for supplying air in a plane is an annular slot; and an air supply mechanism for supplying pressure gas to the spherical static pressure gas bearing. A step of calculating a flying height at each part of the bearing surface, a step of calculating a flow rate at the bearing surface from the flying width and a pressure distribution at the bearing surface, and a load capacity from the pressure distribution at the bearing surface. A step of calculating a bearing rigidity using the load capacity, and a supply pressure, an ambient pressure, and a spherical surface capable of achieving the calculated load capacity, the flow rate, and the bearing rigidity. Bearing radius of the gas bearing, the radius of the annular slot, the width of the annular slot, and characterized in that it comprises the steps of: determining the depth of the annular slot.

本発明に係る軸受は、球面状の上面に上面開口部が形成され下面に下面開口部が形成された上部部材であって、前記上面開口部と外部から空気を取り入れる給気口とに連通する導入路、及び、該導入路と前記下面開口部とに連通し下方向に進むにつれて断面積が増加するテーパ部を含む係合穴、を含む上部部材と、前記導入路より小さい断面積を有し、前記係合穴を通って該導入路に挿入されることにより該導入路との間に環状のスロットを形成する円柱状の挿入部、該挿入部に結合され前記係合穴に係合するように下方向に進むにつれて断面積が増加するテーパ部を含む係合部、及び、該係合部を上面に載置するベース部、を含む下部部材と、を具備し、前記下部部材のテーパ部の略全体が前記上部部材のテーパ部に覆われたときに、前記上部部材の前記下面と前記下部部材の前記ベース部の上面との間に間隙が形成されるように構成されている、ことを特徴とする。   The bearing according to the present invention is an upper member having an upper surface opening formed on a spherical upper surface and a lower surface opening formed on a lower surface, and communicates with the upper surface opening and an air supply port for taking in air from the outside. An upper member including an introduction path, an engagement hole including a tapered portion that communicates with the introduction path and the lower surface opening and increases in cross-sectional area as it proceeds downward, and has a smaller cross-sectional area than the introduction path. A cylindrical insertion part that forms an annular slot between the insertion path and the engagement hole, and is engaged with the engagement hole. A lower member including an engagement part including a taper part whose cross-sectional area increases as it progresses downward, and a base part on which the engagement part is placed on the upper surface. When substantially the entire tapered portion is covered with the tapered portion of the upper member, Gap between the lower surface of the part member and the upper surface of the base portion of the lower member is configured to be formed, characterized in that.

本発明に係る軸受は、球面状の上面に上面開口部が形成され下面に下面開口部が形成された上部部材であって、前記上面開口部と外部から空気を取り入れる給気口とに連通する導入路、及び、該導入路と前記下面開口部とに連通し下方向に進むにつれて断面積が増加するテーパ部を含む係合穴、を含む上部部材と、
前記導入路より小さい断面積を有し、前記係合穴を通って該導入路に挿入されることにより該導入路との間に環状のスロットを形成する円柱状の挿入部、及び、該挿入部に結合され前記係合穴に係合するように下方向に進むにつれて断面積が増加するテーパ部を含む係合部、を含む下部部材と、を具備することを特徴とする。
The bearing according to the present invention is an upper member having an upper surface opening formed on a spherical upper surface and a lower surface opening formed on a lower surface, and communicates with the upper surface opening and an air supply port for taking in air from the outside. An upper member including an introduction path, and an engagement hole including a tapered portion that communicates with the introduction path and the lower surface opening and increases in cross-sectional area as it progresses downward;
A cylindrical insertion portion having a smaller cross-sectional area than the introduction path and forming an annular slot between the introduction path by being inserted into the introduction path through the engagement hole, and the insertion And a lower member including an engaging portion including a tapered portion whose cross-sectional area increases as it proceeds downward so as to be engaged with the engaging hole.

本発明に係る軸受製造方法は、球面状の上面に上面開口部が形成され下面に下面開口部が形成された上部部材であって、前記上面開口部と外部から空気を取り入れる給気口とに連通する導入路、及び、該導入路と前記下面開口部とに連通し下方向に進むにつれて断面積が増加するテーパ部を含む係合穴、を含む上部部材を製造するステップと、前記導入路より小さい断面積を有し、前記係合穴を通って該導入路に挿入されることにより該導入路との間に環状のスロットを形成する円柱状の挿入部、該挿入部に結合され前記係合穴に係合するように下方向に進むにつれて断面積が増加するテーパ部を含む係合部であって、該テーパ部の略全体が前記上部部材の前記係合穴のテーパ部に覆われたときに該係合穴から延出する間隙形成部を有する係合部、及び、該係合部を上面に載置するベース部、を含む下部部材を製造するステップと、前記係合部のテーパ部の略全体が前記係合穴のテーパ部に覆われるように、前記上部部材と前記下部部材とを組み合わせるステップと、前記上部部材の前記下面と前記下部部材の前記ベース部とをネジを用いて締め付けるステップと、を含むことを特徴とする。   The bearing manufacturing method according to the present invention is an upper member in which an upper surface opening is formed on a spherical upper surface and a lower surface opening is formed on a lower surface, and the upper surface opening and an air supply port for taking in air from the outside. Producing an upper member including an introduction path that communicates, and an engagement hole including a tapered portion that communicates with the introduction path and the lower surface opening and increases in cross-sectional area as it proceeds downward; and A cylindrical insertion portion having a smaller cross-sectional area and inserted into the introduction passage through the engagement hole to form an annular slot between the introduction passage and the insertion portion coupled to the insertion portion. An engaging portion including a tapered portion whose cross-sectional area increases as it advances downward so as to engage with the engaging hole, and substantially the entire tapered portion covers the tapered portion of the engaging hole of the upper member. Engagement member having a gap forming portion extending from the engagement hole when broken And a step of manufacturing a lower member including a base portion on which the engaging portion is placed on the upper surface, and substantially the entire tapered portion of the engaging portion is covered with the tapered portion of the engaging hole. And combining the upper member and the lower member, and tightening the lower surface of the upper member and the base portion of the lower member with a screw.

本発明に係る軸受製造方法は、球面状の上面に上面開口部が形成され下面に下面開口部が形成された上部部材であって、前記上面開口部と外部から空気を取り入れる給気口とに連通する導入路、及び、該導入路と前記下面開口部とに連通し下方向に進むにつれて断面積が増加するテーパ部を含む係合穴、を含む上部部材を製造するステップと、前記導入路より小さい断面積を有し、前記係合穴を通って該導入路に挿入されることにより該導入路との間に環状のスロットを形成する円柱状の挿入部、及び、該挿入部に結合され前記係合穴に係合するように下方向に進むにつれて断面積が増加するテーパ部を含む係合部、を含む下部部材を製造するステップと、前記係合部のテーパ部が前記係合穴のテーパ部に係合するように、前記上部部材と前記下部部材とを組み合わせるステップと、を含むことを特徴とする。   The bearing manufacturing method according to the present invention is an upper member in which an upper surface opening is formed on a spherical upper surface and a lower surface opening is formed on a lower surface, and the upper surface opening and an air supply port for taking in air from the outside. Producing an upper member including an introduction path that communicates, and an engagement hole including a tapered portion that communicates with the introduction path and the lower surface opening and increases in cross-sectional area as it proceeds downward; and A cylindrical insertion part having a smaller cross-sectional area and inserted into the introduction path through the engagement hole to form an annular slot with the introduction path, and coupled to the insertion part A lower member including an engagement portion including a taper portion whose cross-sectional area increases as it proceeds downward to engage with the engagement hole, and the taper portion of the engagement portion is the engagement portion. The upper member and the front to engage the taper of the hole Characterized in that it comprises the steps of: combining the lower member.

本発明においては、球面軸受における浮上幅、さらには圧力分布に対する負荷容量を、軸受面上において鉛直下方向からの位相に依存するパラメータとして扱い、軸受性能計算を行う。具体的にその定式化手法を示す。   In the present invention, the bearing width is calculated by treating the flying height of the spherical bearing and the load capacity with respect to the pressure distribution as parameters depending on the phase from the vertically downward direction on the bearing surface. The formulation method is shown concretely.

平面軸受においては、軸受面の各所において浮上幅は一定となる。しかし球面軸受においては軸受面の場所によって浮上幅が異なり、さらには軸受面の曲率半径、浮上させる球の半径にも依存して変化する。ここでは、軸受面の曲率半径が、浮上させる球の半径Rと一致し、軸受面の中心の直上に浮上球の中心が来るものとする。そこで図1のように浮上球1と軸受面2の関係を考える。浮上幅h*は軸受面の最下面部7からの位相差θの関数となる。図1における斜線の三角形に余弦定理を適用すると、次の関係式が得られる。

Figure 0004806741
ここでhは軸受面最下面7における浮上幅である。これを解くと、関数h*は次式のように表される。
Figure 0004806741
この関数h*(θ)は、hがRに比して十分小さい場合、以下のように近似して計算しても誤差は十分小さく、軸受性能の計算にはほとんど影響しない。
Figure 0004806741
負荷容量は、浮上球1に加わる圧力の上向きの成分を軸受面2全体で積分することにより求められる。軸受面2上で浮上球1に加わる圧力はその球面に垂直に加わることから、負荷容量は次式で計算される。
Figure 0004806741
ここでθaは軸受最下面7に対する軸受端8の位相、paは周辺圧力である。 In planar bearings, the flying width is constant at various locations on the bearing surface. However, in a spherical bearing, the flying width varies depending on the location of the bearing surface, and also varies depending on the radius of curvature of the bearing surface and the radius of the ball to be floated. Here, it is assumed that the radius of curvature of the bearing surface coincides with the radius R of the ball to be levitated, and the center of the levitating ball comes directly above the center of the bearing surface. Therefore, consider the relationship between the floating ball 1 and the bearing surface 2 as shown in FIG. The flying width h * is a function of the phase difference θ from the lowermost surface portion 7 of the bearing surface. When the cosine theorem is applied to the hatched triangle in FIG. 1, the following relational expression is obtained.
Figure 0004806741
Here, h is the flying width on the lowermost bearing surface 7. Solving this, the function h * is expressed as:
Figure 0004806741
If h is sufficiently smaller than R, the function h * (θ) has a sufficiently small error even if it is approximated as follows, and hardly affects the calculation of the bearing performance.
Figure 0004806741
The load capacity is obtained by integrating the upward component of the pressure applied to the floating ball 1 over the entire bearing surface 2. Since the pressure applied to the floating ball 1 on the bearing surface 2 is applied perpendicularly to the spherical surface, the load capacity is calculated by the following equation.
Figure 0004806741
Here theta a is the bearing end 8 with respect to the bearing bottom surface 7 phase, the p a is ambient pressure.

以上の球面軸受の定式化を用いれば、従来提案されている平面軸受での性能計算手法をそのまま拡張して用いることが可能となる。ここではその一例として円形スロット絞りスラスト軸受を用いた球面軸受の性能計算を行う。   If the above spherical bearing formulation is used, it is possible to extend and use the conventionally proposed performance calculation method for a flat bearing as it is. Here, as an example, the performance of a spherical bearing using a circular slot throttle thrust bearing is calculated.

非特許文献1より、軸受性能の計算には、以下の狭い隙間を流れる粘性流についての流量導出式を用いる。

Figure 0004806741
ここで、qxはx方向の流れにおける流量、Bは流路幅、hは浮上幅、μは気体の粘性係数、pは圧力である。 From Non-Patent Document 1, the flow rate derivation formula for the viscous flow flowing through the narrow gap below is used to calculate the bearing performance.
Figure 0004806741
Here, q x is a flow rate in the flow in the x direction, B is a flow path width, h is a flying width, μ is a viscosity coefficient of gas, and p is a pressure.

図2に、円形スロット絞りを用いた球面静圧気体軸受の模式的断面図を示す。この絞り形式を用いた軸受においては、チャンバー4から絞り出口6までのスロット3内の流れを同軸円筒形平行隙間内流れとして、また絞り出口6から軸受端8までの軸受面2上の流れを球面隙間内の放射状流れとして扱うことができる。このそれぞれについて、給気条件、設計条件から各隙間内流れの流量を求める。   FIG. 2 is a schematic sectional view of a spherical static pressure gas bearing using a circular slot diaphragm. In the bearing using this throttle type, the flow in the slot 3 from the chamber 4 to the throttle outlet 6 is defined as the flow in the coaxial cylindrical parallel gap, and the flow on the bearing surface 2 from the throttle outlet 6 to the bearing end 8 is defined as the flow. It can be treated as a radial flow in a spherical gap. For each of these, the flow rate of the flow in each gap is determined from the air supply condition and the design condition.

まず、スロット3内の流量は、次式のように求められる。

Figure 0004806741
ここで、hslはスロット幅、lslはスロット深さ、psは給気口5における圧力、p0は絞り出口6における圧力、Raは一般気体定数、Tは温度である。 First, the flow rate in the slot 3 is obtained as follows.
Figure 0004806741
Here, h sl is the slot width, l sl is the slot depth, p s is the pressure at the inlet 5, p 0 is the pressure at the throttle outlet 6, R a is the general gas constant, and T is the temperature.

次に軸受面2上の流量を求める。軸受面各所における浮上幅h*は、(2)式で求めたようにθの関数となる。この関数h*(θ)を用いると、軸受面2上の流量は次式で求められる。

Figure 0004806741
ここで、θ0は軸受最下面7に対する絞り出口6の位相であり、またF(θ)は、以下に示すf(θ)の積分関数である。
Figure 0004806741
F(θ)を解析的に求めることは困難である。しかし、hがRに比して十分小さい場合、f(θ)を以下のように近似して用いることにより、解析的に求めることは可能となる。
Figure 0004806741
この近似を用いると、F(θ)は以下のように求められる。
Figure 0004806741
軸受内の流れに対する連続条件により、(6)、(7)式から次式が得られる。
Figure 0004806741
ただし、
Figure 0004806741
である。この絞り出口圧力が与えられれば、(6)あるいは(7)式に代入することで流量を計算することができる。 Next, the flow rate on the bearing surface 2 is obtained. The flying width h * at various locations on the bearing surface is a function of θ as determined by equation (2). When this function h * (θ) is used, the flow rate on the bearing surface 2 is obtained by the following equation.
Figure 0004806741
Here, θ 0 is the phase of the throttle outlet 6 with respect to the bearing lowermost surface 7, and F (θ) is an integral function of f (θ) shown below.
Figure 0004806741
It is difficult to analytically determine F (θ). However, when h is sufficiently smaller than R, it can be obtained analytically by approximating f (θ) as follows.
Figure 0004806741
Using this approximation, F (θ) can be obtained as follows.
Figure 0004806741
The following equation can be obtained from equations (6) and (7) depending on the continuous conditions for the flow in the bearing.
Figure 0004806741
However,
Figure 0004806741
It is. If this throttle outlet pressure is given, the flow rate can be calculated by substituting into the equation (6) or (7).

次に、絞り出口圧力p0と周囲圧力paから軸受面2上の圧力分布を計算する。
しかし、圧力分布を実際に計算することは難しく、ここでは圧力p(θ)をθの一次関数として近似する。すなわち、

Figure 0004806741
ただし、θ<θ0においてはp=p0で一定であるとする。 Next, calculate the pressure distribution on the bearing surface 2 from the stop outlet pressure p 0 and ambient pressure p a.
However, it is difficult to actually calculate the pressure distribution. Here, the pressure p (θ) is approximated as a linear function of θ. That is,
Figure 0004806741
However, it is assumed that p = p 0 is constant when θ <θ 0 .

この圧力分布を(4)式に代入することにより、負荷容量を求めることができる。(9)の近似式を用いた場合、負荷容量は具体的に以下の式で計算できる。

Figure 0004806741
軸受剛性は浮上幅hの増加量に対する負荷容量の減少量の割合である。すなわち、
Figure 0004806741
で求めることができる。 負荷容量の計算の場合と同様に(9)の近似式を用いた場合、(14)式をhで微分することにより軸受剛性は以下の式で計算できる。
Figure 0004806741
ここで、
Figure 0004806741
である。 By substituting this pressure distribution into equation (4), the load capacity can be obtained. When the approximate expression (9) is used, the load capacity can be specifically calculated by the following expression.
Figure 0004806741
The bearing rigidity is the ratio of the decrease amount of the load capacity to the increase amount of the flying width h. That is,
Figure 0004806741
Can be obtained. As in the case of calculating the load capacity, when the approximate expression (9) is used, the bearing rigidity can be calculated by the following expression by differentiating the expression (14) by h.
Figure 0004806741
here,
Figure 0004806741
It is.

以上のように、給気圧力ps、周辺圧力pa、絞り出口位相θ0、軸受端位相θa、スロット幅hsl、スロット深さlsl、浮上幅hをパラメータとして、流量、軸受の負荷容量すなわち浮上させることが可能な球の質量、軸受剛性を算出することが可能となる。実際の設計手順としては、ps、pa、θ0、θa、hsl、lslを固定した上でhを目標設計値近辺で変化させ、流量、負荷容量、軸受剛性の計算を行う。 As described above, the supply pressure p s, ambient pressure p a, throttle outlet phase theta 0, bearing end phase theta a, slot width h sl, slot depth l sl, the floating width h as parameters, flow rates, bearing It is possible to calculate the load capacity, that is, the mass of the ball that can be levitated and the bearing rigidity. As an actual design procedure, p s , p a , θ 0 , θ a , h sl , and l sl are fixed and h is changed around the target design value to calculate the flow rate, load capacity, and bearing stiffness. .

ここではスロット絞り形式の場合について軸受性能の計算手法を提示したが、この手法は他の絞り形状、例えば自成絞りやオリフィス絞りの点状給気の軸受にも適用可能である。本手法の新しいところは球面状の軸受面において浮上幅を定式化し、球面状の軸受面における圧力分布から負荷容量、流量、軸受剛性を算出する手法を与えたことにあり、これは絞り形状を問わず適用可能である。   Here, a method for calculating the bearing performance in the case of the slot throttle type is presented, but this method can also be applied to other throttle shapes, for example, a self-contained throttle or a point supply bearing of an orifice throttle. The new part of this method is to formulate the flying width on the spherical bearing surface and provide a method to calculate the load capacity, flow rate, and bearing rigidity from the pressure distribution on the spherical bearing surface. It is applicable regardless.

自成絞り、オリフィス絞りといった通常の軸受の絞り形式が点状の給気孔であるのに対して、スロット絞りは線状に給気する。球面上スラスト軸受においては円形にこの絞りを配置することにより、同心円状の圧力分布が形成され放射状にほぼ一様な流れを形成することができる。これにより、給気圧力に対して効率的に負荷容量を上げることが可能となる。逆に、目的の負荷容量を得るために必要な給気圧力は小さくて済み、同時に流量も少なくすることができる。このようにスロット絞りを球面軸受に適用することにより、微小差圧、微小流量での球の浮上が可能となる。   The throttle type of a normal bearing such as a self-contained throttle or an orifice throttle is a point-like air supply hole, whereas the slot throttle supplies air linearly. In the spherical thrust bearing, the concentric pressure distribution is formed by arranging the throttles in a circular shape, and a substantially uniform flow can be formed radially. As a result, the load capacity can be increased efficiently with respect to the supply air pressure. Conversely, the supply air pressure required to obtain the target load capacity is small, and at the same time the flow rate can be reduced. By applying the slot restriction to the spherical bearing in this way, it is possible to float the ball with a minute differential pressure and a minute flow rate.

球面軸受上を流れる気体による粘性力は、球に対し回転擾乱を与える。しかし微小差圧・微小流量での給気条件が達成されたことにより、軸受面上は安定な一様流れが支配することになり、この流れが球に及ぼす粘性トルクを低減することができる。   The viscous force caused by the gas flowing on the spherical bearing gives a rotational disturbance to the sphere. However, since the air supply condition with a minute differential pressure and a minute flow rate is achieved, a stable uniform flow dominates on the bearing surface, and the viscous torque exerted on the sphere by this flow can be reduced.

円形スロット絞りを球面軸受に応用した軸受性能計算に基づくと、微小流量、微小差圧、高剛性の性能を得るためには、浮上幅をできる限り小さく設計すればよいことがわかる。しかし、微小な浮上幅においても軸受面上に一様な流れを作り出す流路を構成するためには、軸受面、剛体球ともに高精度で仕上げられている必要がある。また、浮上幅を小さくする軸受を実現するには、スロット幅もできる限り小さくする必要性が生じる。円形スロットにおいて、一様な流れを作り出す流路を構成するためには、全周にわたって均一な幅を実現する必要がある。このような高精度の軸受面かつ微小で全周にわたって均一な幅の環状スロットを有する軸受の製作において、従来の機構設計および機械加工手法における難点を以下のように解決した。   Based on the bearing performance calculation in which the circular slot diaphragm is applied to a spherical bearing, it can be seen that the flying height should be designed to be as small as possible in order to obtain a minute flow rate, minute differential pressure, and high rigidity. However, in order to configure a flow path that creates a uniform flow on the bearing surface even with a small flying width, both the bearing surface and the rigid sphere need to be finished with high accuracy. Further, in order to realize a bearing that reduces the flying width, it is necessary to reduce the slot width as much as possible. In order to construct a flow path that creates a uniform flow in a circular slot, it is necessary to achieve a uniform width over the entire circumference. In the manufacture of such a bearing having a high precision bearing surface and a small annular slot having a uniform width over the entire circumference, the problems in the conventional mechanical design and machining techniques have been solved as follows.

円形スロット絞りを形成するスロット内側の部材とスロット外側の部材において、スロット幅はスロット内側の外周半径とスロット外側の内周半径の差で表される。円形のスロットにおいてそのスロット幅を極めて小さく、また全周において均一化するためには、このスロット内側部材の中心軸とスロット外側部材の中心軸を高精度で一致させ保持する必要がある。本発明では、図3に示すように、このスロット内側9とスロット外側10の部材の中心軸を高精度で一致させるために、両者の合わせ部分11をテーパー形状にした。その結果、スロット幅は全周において容易に均一化することが可能となる。   In the member inside the slot and the member outside the slot forming the circular slot stop, the slot width is expressed by the difference between the outer peripheral radius inside the slot and the inner peripheral radius outside the slot. In order to make the slot width of the circular slot very small and uniform over the entire circumference, it is necessary to keep the central axis of the inner member of the slot and the central axis of the outer member of the slot coincide with each other with high accuracy. In the present invention, as shown in FIG. 3, in order to make the center axes of the members of the slot inner side 9 and the slot outer side 10 coincide with each other with high accuracy, the mating portion 11 of both is tapered. As a result, the slot width can be easily made uniform over the entire circumference.

実際にはスロット内側9とスロット外側10のテーパー部合わせ面11については、完全同一のテーパー角度に機械加工仕上げをするのは困難である。
そこで、本発明では、スロット内側9とスロット外側10の直線接合部12において約0.1mmの隙間13を設け、両者を数箇所でネジ止め14で調整する方式を採用した。そして、実際に、給気口5より空気を給気し、スロットから吐き出される空気については水中で気泡の大きさを確認しながら、数箇所のネジ締付け具合を微調整することにより、スロット全周部における空気吐出し量の均一化を実現した。
Actually, it is difficult to machine finish the taper portion mating surfaces 11 of the slot inner side 9 and the slot outer side 10 to the completely same taper angle.
Therefore, the present invention employs a system in which a gap 13 of about 0.1 mm is provided at the straight joint 12 between the slot inner side 9 and the slot outer side 10 and both are adjusted by screwing 14 at several places. Actually, air is supplied from the air supply port 5, and the air discharged from the slot is finely adjusted at several locations while confirming the size of the bubbles in the water. The air discharge amount in the part was made uniform.

この手法により、スロット内側9とスロット外側10のテーパー部合わせ面11の完全結合も実現し、テーパー部における僅少の空気漏れも防止可能となったので、空気の吐き出しが安定するようになった。   By this method, the taper portion mating surface 11 of the slot inner side 9 and the slot outer side 10 can be completely coupled, and a slight air leakage at the taper portion can be prevented, so that the air discharge becomes stable.

球面軸受においては、スロット内側9とスロット外側10の位置を調整することにより軸受面2の球面形が崩れてしまう。そこで本発明では、スロット内側9とスロット外側10の位置関係を調整して組み上げた後に、軸受面2を一体機械加工で仕上げる手法を採用した。これにより、高精度で球面形状を実現できるようになる。   In the spherical bearing, the spherical shape of the bearing surface 2 is broken by adjusting the positions of the slot inner side 9 and the slot outer side 10. Therefore, in the present invention, a method of adjusting the positional relationship between the slot inner side 9 and the slot outer side 10 and then assembling and then finishing the bearing surface 2 by integral machining is employed. Thereby, a spherical shape can be realized with high accuracy.

軸受性能の定式化において採用した浮上幅の近似は、浮上球1の半径と軸受面2の曲率半径が一致するものとして計算された。浮上球1の半径と軸受面2の曲率半径が異なる場合、浮上幅によって圧力分布が異なり、浮上する際の気体の流れが不安定になるという問題がある。本発明では、浮上球1の半径と軸受面2の曲率半径が高精度で一致するよう仕上げるために、軸受面2にラッピング仕上げ(磨き加工)を施した。これにより、浮上球1の半径と軸受面2の曲率半径が高精度で一致し、球面軸受上の気体の流れを安定にすることできる。   The approximation of the flying width adopted in the formulation of the bearing performance was calculated on the assumption that the radius of the flying ball 1 and the radius of curvature of the bearing surface 2 coincide. When the radius of the levitating sphere 1 and the radius of curvature of the bearing surface 2 are different, there is a problem that the pressure distribution varies depending on the levitating width, and the gas flow becomes unstable when ascending. In the present invention, the bearing surface 2 is lapped (polished) so that the radius of the floating ball 1 and the radius of curvature of the bearing surface 2 coincide with each other with high accuracy. Thereby, the radius of the floating sphere 1 and the curvature radius of the bearing surface 2 coincide with each other with high accuracy, and the gas flow on the spherical bearing can be stabilized.

ここで、上記図3に示した球面静圧気体軸受の構成は、次のように別の表現により示すこともできる。   Here, the configuration of the spherical static pressure gas bearing shown in FIG. 3 can be expressed by another expression as follows.

球面静圧気体軸受100は、上部部材200とこれに組み合わせられる下部部材300とを含む。
上部部材200は、内部に貫通穴が形成された円筒型の形状を有する。この上部部材200の上面201は球面状に形成されている。この上面201には、開口部(上面開口部)202が形成されている。また、下面203にも、開口部(下面開口部)204が形成されている。上部部材200には、これら上面開口部202と下面開口部204とを連通させる貫通穴が形成されている。
The spherical static pressure gas bearing 100 includes an upper member 200 and a lower member 300 combined therewith.
The upper member 200 has a cylindrical shape with a through hole formed therein. The upper surface 201 of the upper member 200 is formed in a spherical shape. An opening (upper surface opening) 202 is formed on the upper surface 201. An opening (lower surface opening) 204 is also formed in the lower surface 203. The upper member 200 is formed with a through hole that allows the upper surface opening 202 and the lower surface opening 204 to communicate with each other.

このような貫通穴は、上面開口部202と外部から空気を取り入れる給気口205とに連通する導入路206を含む。さらにこの貫通穴は、この導入路206に連通する係合穴207をも含む。この係合穴207は、下方向に進むにつれて増加する断面積を有するテーパ部207a(このテーパ部207aが合わせ面11を形成することになる)と、断面積が一定の部分207bと、を含む。この係合穴207は、下面開口部204と連通する。   Such a through hole includes an introduction path 206 that communicates with the upper surface opening 202 and an air supply port 205 that takes in air from the outside. The through hole further includes an engagement hole 207 communicating with the introduction path 206. The engagement hole 207 includes a tapered portion 207a having a cross-sectional area that increases as it proceeds downward (the tapered portion 207a forms the mating surface 11), and a portion 207b having a constant cross-sectional area. . The engagement hole 207 communicates with the lower surface opening 204.

下部部材300は、上部部材200の導入路206より小さい断面積を有し、係合穴207を通って導入路206に挿入される円柱状の挿入部301と、この挿入部301に結合され係合穴207に係合するように形成された係合部302と、この係合部302を上面303の上に載置するベース部304と、を含む。   The lower member 300 has a smaller cross-sectional area than the introduction path 206 of the upper member 200, and a columnar insertion section 301 that is inserted into the introduction path 206 through the engagement hole 207, and is coupled to the insertion section 301. An engaging portion 302 formed to engage with the joint hole 207 and a base portion 304 for placing the engaging portion 302 on the upper surface 303 are included.

挿入部301は、上部部材200の導入路206に挿入されることにより、導入路との間に環状のスロット3を形成する。この挿入部の上端と下端との間には、この挿入部の他の部分よりも断面積が小さい部分301aが形成されており、この部分301aは、導入路206とともにチャンバー4を形成する。このチャンバー4は給気口205と連通する。
さらに、挿入部301の上面301bは、上部部材200の上面201とともに球面を形成するように構成されている。
The insertion portion 301 is inserted into the introduction path 206 of the upper member 200, thereby forming an annular slot 3 between the insertion section 301 and the introduction path. A portion 301 a having a smaller cross-sectional area than other portions of the insertion portion is formed between the upper end and the lower end of the insertion portion, and this portion 301 a forms the chamber 4 together with the introduction path 206. The chamber 4 communicates with the air supply port 205.
Further, the upper surface 301 b of the insertion portion 301 is configured to form a spherical surface together with the upper surface 201 of the upper member 200.

係合部302は、その上端において挿入部301の下端と結合されている。この係合部302は、下方向に進むにつれて断面積が増加するテーパ部302a(このテーパ部302aが合わせ面11を形成することになる)を含むように形成されている。このテーパ部302aは、上部部材200のテーパ部207aに係合し、その外周面がテーパ部207aの内周面にほぼ一致するように形成されている。   The engaging portion 302 is coupled to the lower end of the insertion portion 301 at the upper end thereof. The engaging portion 302 is formed to include a tapered portion 302a (the tapered portion 302a forms the mating surface 11) whose cross-sectional area increases as it goes downward. The tapered portion 302a is formed so as to engage with the tapered portion 207a of the upper member 200 and its outer peripheral surface substantially coincides with the inner peripheral surface of the tapered portion 207a.

さらに、係合部302は、テーパ部302に結合され断面積が略一定の部分302bを含む。この部分302bは、テーパ部302aの略全体が上部部材200のテーパ部207aに覆われたときに、上部部材200の係合穴の外部に延出するように、構成されている。この部分302bにおける上部部材200の係合穴の外部に延出する部分(間隙形成部)が、上述した隙間13すなわち間隙13を与えることになる。よって、間隙13の大きさは、例えば、係合部302の部分302bの高さを調整することにより、変化させることができる。   Further, the engaging portion 302 includes a portion 302b coupled to the tapered portion 302 and having a substantially constant cross-sectional area. The portion 302b is configured to extend to the outside of the engagement hole of the upper member 200 when substantially the entire tapered portion 302a is covered with the tapered portion 207a of the upper member 200. A portion (gap forming portion) extending to the outside of the engagement hole of the upper member 200 in this portion 302b provides the above-described gap 13, that is, the gap 13. Therefore, the size of the gap 13 can be changed by adjusting the height of the portion 302b of the engaging portion 302, for example.

さらに、上部部材200の下面203及び下部部材300のベース部304には、上部部材200と下部部材300とを互いに締め付けて間隙13の大きさを変化させるためのネジを通すネジ穴208、305が形成されている。   Furthermore, the lower surface 203 of the upper member 200 and the base portion 304 of the lower member 300 have screw holes 208 and 305 through which screws for tightening the upper member 200 and the lower member 300 to change the size of the gap 13 are passed. Is formed.

なお、図3には、上部部材200及び下部部材300のそれぞれにテーパ部207a及びテーパ部302aを形成して、上部部材200の導入路206の中心軸と下部部材300の挿入部301の中心軸とを高精度に一致させる構成(テーパ部加工方式)、及び、これらのテーパ部の完全な結合を実現するために間隙13を設ける構成(間隙加工方式)の両方を実施した球面静圧気体軸受が、本発明の最良の実施の形態として示されているが、本発明は、これに限定されるものではなく、テーパ部加工方式のみを実施した球面静圧気体軸受も含む。   In FIG. 3, tapered portions 207 a and tapered portions 302 a are formed in the upper member 200 and the lower member 300, respectively, so that the central axis of the introduction path 206 of the upper member 200 and the central axis of the insertion portion 301 of the lower member 300 are formed. Is a spherical static pressure gas bearing that implements both a configuration (taper processing method) that matches with a high precision and a configuration (gap processing method) in which a gap 13 is provided in order to realize perfect coupling of these taper portions (gap processing method). Although shown as the best mode of the present invention, the present invention is not limited to this, and includes a spherical static pressure gas bearing that performs only the taper processing method.

このような構成を有する上部部材200と下部部材300とを、次のような手順に従って組み付けることにより、球面静圧気体軸受が製造される。   A spherical hydrostatic gas bearing is manufactured by assembling the upper member 200 and the lower member 300 having such a configuration in accordance with the following procedure.

まず、上述した構成を有する上部部材200及び下部部材300がそれぞれ個別に製造される。次に、上部部材200と下部部材300とが、下部部材300のテーパ部302aの略全体が上部部材200のテーパ部207aに覆われるように、組み合わされる。これにより、下部部材300の係合部302のうち部分302bの一部分(すなわち間隙形成部)のみが、上部部材200の係合穴の外部に延出することになる。この結果、上部部材200の下面203と下部部材300のベース部304の上面304との間には、間隙が形成される。   First, the upper member 200 and the lower member 300 having the above-described configuration are individually manufactured. Next, the upper member 200 and the lower member 300 are combined so that substantially the entire tapered portion 302a of the lower member 300 is covered by the tapered portion 207a of the upper member 200. As a result, only part of the portion 302 b (that is, the gap forming portion) of the engaging portion 302 of the lower member 300 extends to the outside of the engaging hole of the upper member 200. As a result, a gap is formed between the lower surface 203 of the upper member 200 and the upper surface 304 of the base portion 304 of the lower member 300.

この後、上部部材200のネジ穴208及び下部部材300のネジ穴305にネジが挿入され、上部部材200と下部部材300とが互いに締め付けられる。この締め付けを調整することにより、上部部材200のテーパ部207aの中心軸と下部部材300のテーパ部302aの中心軸と(ひいては導入路206の中心軸と挿入部301の中心軸とを)を高精度で合わせることができる。この結果、導入路206と挿入部301との間に形成される環状スロット3の幅を高精度で均一にすることができる。   Thereafter, screws are inserted into the screw holes 208 of the upper member 200 and the screw holes 305 of the lower member 300, and the upper member 200 and the lower member 300 are tightened together. By adjusting this tightening, the central axis of the tapered portion 207a of the upper member 200 and the central axis of the tapered portion 302a of the lower member 300 (and consequently the central axis of the introduction path 206 and the central axis of the insertion portion 301) are increased. Can be adjusted with accuracy. As a result, the width of the annular slot 3 formed between the introduction path 206 and the insertion portion 301 can be made uniform with high accuracy.

なお、このような締め付けを行う際には、上部部材200の上部部材200に対して給気口205から空気を供給するとともに、上部部材200の上面開口部202を水中に浸すこともできる。この結果、環状スロット3を通って上面開口部202から吐出される空気の量に従って、ネジの締め付けを微調整することにより、環状スロット3の幅をより高精度に調整することができる。   When performing such tightening, air can be supplied from the air supply port 205 to the upper member 200 of the upper member 200 and the upper surface opening 202 of the upper member 200 can be immersed in water. As a result, the width of the annular slot 3 can be adjusted with higher accuracy by finely adjusting the tightening of the screw according to the amount of air discharged from the upper surface opening 202 through the annular slot 3.

このような締め付けが完了した後、上部部材200の上面201と下部部材300の挿入部301の上面301bとにより形成される球面に対して、磨き加工が施される。   After such tightening is completed, a polishing process is performed on the spherical surface formed by the upper surface 201 of the upper member 200 and the upper surface 301b of the insertion portion 301 of the lower member 300.

球体浮上装置の性能計算を行うために、球面軸受を数学的に定式化した。これにより、要求性能を実現するための定量的設計が可能になった。   In order to calculate the performance of the sphere levitation device, a spherical bearing was mathematically formulated. This enables quantitative design to achieve the required performance.

本発明で採用している円形スロット絞りスラスト軸受を適用することにより、従来にない低擾乱トルクの球体浮上装置が実現できる。これにより、3次元回転自由度を持つ球体をより高精度で綿密に制御を行う対象に適用可能となる。また、本浮上装置を作動させるためのポンプの規模を小さくすることができ、省エネルギー・省スペース・軽量化・高信頼性化・騒音低減の観点で従来のものより有利となる。たとえば従来機械式ポンプが必要であったような球体浮上装置においても、圧電振動ポンプが適用可能となり、応用範囲は非常に広範にわたる。   By applying the circular slot throttle thrust bearing employed in the present invention, an unprecedented low turbulence torque ball floating device can be realized. This makes it possible to apply a sphere having a three-dimensional rotational degree of freedom to a target to be precisely controlled with higher accuracy. In addition, the scale of the pump for operating the levitation device can be reduced, which is more advantageous than the conventional one in terms of energy saving, space saving, weight reduction, high reliability, and noise reduction. For example, a piezoelectric vibration pump can also be applied to a spherical levitation apparatus that conventionally requires a mechanical pump, and the application range is very wide.

加工・精度管理手法の観点では、球面軸受に適用するのが困難であった円板形スロット絞りスラスト軸受の加工精度の確保を、本発明で提示する加工手法・機構により容易に実現できるようになった。これは従来の平面軸受にも適用可能であり、その加工精度の確保も同様に容易に実現できるようになった。   From the viewpoint of machining / accuracy management technique, ensuring the machining accuracy of the disk-shaped slot throttle thrust bearing, which was difficult to apply to spherical bearings, can be easily realized by the machining technique / mechanism presented in the present invention. became. This can also be applied to conventional planar bearings, and it has become possible to easily ensure the machining accuracy as well.

一例として、人工衛星の姿勢制御装置(3次元球体リアクションホイール)の試験機として製作した、直径11/8インチの鋼球を浮上させる装置例を図4に示す。図4は給気口を含む断面図である。ポンプにより給気口5から流入した気体は、リング形のチャンバー4を介して、円筒状に配したスロット3へと供給される。スロット3から軸受面2内に噴出されると、気体は軸受面2を放射状に広がり、軸受端8において開放される。この試作機における設計パラメータは、絞り出口位相θ0は27.27[deg]、軸受端位相θaは66.38[deg]、スロット深さlslは10[mm]、スロット幅hslは5[μm]である。この設計条件において給気圧力psを0.03[MPa]とすると鋼球は浮上した。このとき流量Mは0.016[l/min]であった。給気圧力と流量の関係について、本発明における定式化による理論値と製作した装置による実験値は良く一致していることがわかっており,設計段階において性能を見積もることが可能であることが確認できている。 As an example, FIG. 4 shows an example of an apparatus for levitating a steel ball having an 11/8 inch diameter manufactured as a testing machine for an attitude control device (three-dimensional spherical reaction wheel) of an artificial satellite. FIG. 4 is a cross-sectional view including an air supply port. The gas flowing in from the air supply port 5 by the pump is supplied to the slot 3 arranged in a cylindrical shape via the ring-shaped chamber 4. When the gas is ejected from the slot 3 into the bearing surface 2, the gas spreads radially on the bearing surface 2 and is released at the bearing end 8. The design parameters of this prototype are: throttle aperture phase θ 0 is 27.27 [deg], bearing end phase θ a is 66.38 [deg], slot depth l sl is 10 [mm], and slot width h sl is 5 [μm]. It is. Under this design condition, when the supply air pressure p s was 0.03 [MPa], the steel ball surfaced. At this time, the flow rate M was 0.016 [l / min]. Regarding the relationship between supply pressure and flow rate, it is known that the theoretical value obtained by the formulation in the present invention and the experimental value obtained by the manufactured device are in good agreement, and it is confirmed that the performance can be estimated at the design stage. is made of.

本試作機の製作では、図5の分解図に示すように内側スロット9と外側スロット10をテーパー形状の面11を合わせて組み上げた。これにより内側スロット9と外側スロット10の中心軸を同一化し、スロット3の溝幅5[μm]を全周において均一に達成することに成功した。その後、組み上げた軸受面2を一体機械加工を施し、さらにラッピング加工で仕上げることにより、軸受面2全体で流れを安定化する高精度の球面を実現した。   In the production of the prototype, as shown in the exploded view of FIG. 5, the inner slot 9 and the outer slot 10 are assembled together with the tapered surface 11. As a result, the central axes of the inner slot 9 and the outer slot 10 were made identical, and the groove width 5 [μm] of the slot 3 was successfully achieved uniformly over the entire circumference. After that, the assembled bearing surface 2 was subjected to integral machining and finished by lapping, thereby realizing a highly accurate spherical surface that stabilizes the flow of the entire bearing surface 2.

なお、スロット3の幅が一例として5[μm]である場合について説明してきたが、本発明は、これに限定されるものではない。微小流量・微小差圧・高剛性を実現するには、浮上幅をできる限り小さい値に設計する必要があり、これを実現するためにスロット幅もできる限り設計する必要がある。一方で、浮上幅、スロット幅を極端に小さく設計すると工作上の誤差の影響が大きくなり、期待した性能が得られなくなる。本試作機では、圧電振動ポンプでも作動可能となるような軸受性能を実現し、かつ工作誤差の影響が大きくならない程度の設計値として、スロット3の幅を5[μm]とし、実際に性能計算で得た値に近い性能を得ることができた。   Although the case where the width of the slot 3 is 5 [μm] has been described as an example, the present invention is not limited to this. In order to realize a minute flow rate, minute differential pressure, and high rigidity, it is necessary to design the flying width as small as possible, and in order to realize this, it is necessary to design the slot width as much as possible. On the other hand, if the flying width and slot width are designed to be extremely small, the influence of work errors increases, and the expected performance cannot be obtained. In this prototype, the bearing performance that enables operation with a piezoelectric vibration pump is realized, and the design value that does not increase the influence of machining errors is set to a slot 3 width of 5 [μm]. The performance close to the value obtained in step 1 was obtained.

本発明は、ロボットアームの関節、低擾乱機械式ジャイロ、慣性諸元測定装置、3次元自由運動模擬装置(無重力模擬)、人工衛星の姿勢制御装置、超精密リニアガイド、耐震及び防振装置、遊園地の機械遊具、非接触パラレルリンク機構装置、超精密定盤、僅小接触感応型回転ドア、僅小接触感応型回転舞台、ワークテーブル、トラックボール(マウスの球が上になっている物)、全方向移動台車、大型スピーカー台(防振用途)、その他介護・健康・医療機器への応用化が可能である。   The present invention includes a robot arm joint, a low-disturbance mechanical gyroscope, an inertial specification measurement device, a three-dimensional free motion simulation device (weightless simulation), an artificial satellite attitude control device, an ultra-precision linear guide, an anti-seismic and vibration-proof device, Amusement park playground equipment, non-contact parallel link mechanism, ultra-precision surface plate, slight contact-sensitive revolving door, small contact-sensitive revolving stage, work table, trackball (thing with mouse ball on top) ), Omnidirectional mobile trolley, large speaker stand (anti-vibration use), and other nursing, health and medical equipment.

これらのうち一例として、本発明を非接触パラレルリンク機構装置に適用した具体例について、図6を参照して説明する。   As an example, a specific example in which the present invention is applied to a non-contact parallel link mechanism device will be described with reference to FIG.

図6(a)は、本発明に係る球面静圧気体軸受を利用した非接触パラレルリンク機構の構成を示す模式図であり、図6(b)は、図6(a)に示した非接触パラレルリンク機構の構成を示す分解図である。   FIG. 6A is a schematic diagram showing a configuration of a non-contact parallel link mechanism using a spherical static pressure gas bearing according to the present invention, and FIG. 6B is a non-contact diagram shown in FIG. 6A. It is an exploded view which shows the structure of a parallel link mechanism.

図6(a)に示すように、非接触パラレルリンク機構は、主に、板状のテーブル601と、板状のベース602と、複数の支持機構603と、を含む。この図6(a)には、複数の支持機構603の一例として、3つの支持機構603が用いられている。   As shown in FIG. 6A, the non-contact parallel link mechanism mainly includes a plate-like table 601, a plate-like base 602, and a plurality of support mechanisms 603. In FIG. 6A, three support mechanisms 603 are used as an example of the plurality of support mechanisms 603.

図6(b)に示すように、支持機構603は、支柱603aと、この支柱603aとテーブル601及びベース602との間にそれぞれ配置される1つの浮上球603b及び2つの軸受支柱603cと、を含む。軸受支柱603cとして、本発明に係る球面静圧気体軸受が用いられている。   As shown in FIG. 6B, the support mechanism 603 includes a support column 603a and one floating ball 603b and two bearing support columns 603c disposed between the support column 603a, the table 601, and the base 602, respectively. Including. A spherical static pressure gas bearing according to the present invention is used as the bearing post 603c.

一般的なパラレルリンク機構と同様に、図6に示した非接触パラレルリンク機構によれば、複数のリンク機構すなわち支持機構603をそれぞれ並列に制御して、1点の動き(すなわちテーブル601の動き)を決めることができる。   Similar to a general parallel link mechanism, the non-contact parallel link mechanism shown in FIG. 6 controls a plurality of link mechanisms, that is, the support mechanisms 603 in parallel, and moves one point (that is, the movement of the table 601). ) Can be decided.

さらには、図6に示した非接触パラレルリンク機構によれば、リンク機構すなわち支持機構603において、浮上球603bと軸受支柱603cとが非接触となるので、摩擦抵抗のないリンク機構を実現することができる。よって、本発明に係る球面静圧気体軸受を利用した非接触パラレルリンク機構は、産業上の利用用途が大きいものとなる。   Furthermore, according to the non-contact parallel link mechanism shown in FIG. 6, the floating mechanism 603b and the bearing post 603c are not in contact with each other in the link mechanism, that is, the support mechanism 603, thereby realizing a link mechanism having no frictional resistance. Can do. Therefore, the non-contact parallel link mechanism using the spherical static pressure gas bearing according to the present invention has a large industrial application.

球面軸受における浮上幅の説明図である。It is explanatory drawing of the floating width in a spherical bearing. 円形スロット絞りスラスト球面軸受の模式図である。It is a schematic diagram of a circular slot throttle thrust spherical bearing. 本発明に係る球面静圧気体軸受の構成を示す模式図である。It is a schematic diagram which shows the structure of the spherical surface static pressure gas bearing which concerns on this invention. 本発明に係る球面静圧気体軸受を用いた姿勢制御装置の構成を示す断面図である。It is sectional drawing which shows the structure of the attitude | position control apparatus using the spherical surface static pressure gas bearing which concerns on this invention. 本発明に係る球面静圧気体軸受を用いた姿勢制御装置の構成を示す分解図である。It is an exploded view which shows the structure of the attitude | position control apparatus using the spherical surface static pressure gas bearing which concerns on this invention. 本発明に係る球面静圧気体軸受を利用した非接触パラレルリンク機構の構成を示す模式図である。It is a schematic diagram which shows the structure of the non-contact parallel link mechanism using the spherical surface static pressure gas bearing which concerns on this invention.

符号の説明Explanation of symbols

1 浮上球
2 軸受面
3 スロット
4 チャンバー
5 給気口
6 絞り出口
7 軸受最下面
8 軸受端
9 スロット内側
10 スロット外側
11 合わせ面
12 直線結合部
13 隙間(間隙)
14 ねじ止め
DESCRIPTION OF SYMBOLS 1 Floating ball 2 Bearing surface 3 Slot 4 Chamber 5 Air supply port 6 Restriction outlet 7 Bearing bottom surface 8 Bearing end 9 Slot inner side 10 Slot outer side 11 Matching surface 12 Linear coupling part 13 Clearance (gap)
14 Screwing

Claims (12)

球状の剛体と、球面状の軸受面を有し、前記剛体を圧力気体により非接触で浮上させるための球面静圧気体軸受と、該球面静圧気体軸受に圧力気体を供給する給気機構と、を具備し、
前記剛体、前記球面静圧気体軸受及び前記給気機構が、定式化された前記軸受面における前記剛体の浮上幅に基づいて設計されたものであり
前記球面静圧気体軸受の流量、負荷容量及び軸受剛性が、前記浮上幅を用いて算出されたものであり、
前記球面静圧気体軸受において、前記軸受面内に給気する絞りの形状が、環状スロットとなっており、
前記球面静圧気体軸受が、
球面状の上面に上面開口部が形成され下面に下面開口部が形成された上部部材であって、前記上面開口部と外部から空気を取り入れる給気口とに連通する導入路、及び、該導入路と前記下面開口部とに連通し下方向に進むにつれて断面積が増加するテーパ部を含む係合穴、を含む上部部材と、
前記導入路より小さい断面積を有し、前記係合穴を通って該導入路に挿入されることにより該導入路との間に環状のスロットを形成する円柱状の挿入部、及び、該挿入部に結合され前記係合穴に係合するように下方向に進むにつれて断面積が増加するテーパ部を含む係合部、を含む下部部材と、
を具備するものである、
ことを特徴とする、球体浮上装置。
A spherical rigid body, a spherical bearing surface having a spherical shape, and a spherical static pressure gas bearing for levitating the rigid body in a non-contact manner with a pressure gas; and an air supply mechanism for supplying pressure gas to the spherical static pressure gas bearing , And
The rigid, the spherical externally pressurized gas bearing and the air supply mechanism, which has been designed based on the floating width of the rigid in the bearing surface that is formulated,
The flow rate, load capacity and bearing rigidity of the spherical hydrostatic gas bearing are calculated using the flying width,
In the spherical static pressure gas bearing, the shape of the throttle for supplying air into the bearing surface is an annular slot,
The spherical hydrostatic gas bearing is
An upper member having an upper surface opening formed on a spherical upper surface and a lower surface opening formed on a lower surface, the introduction path communicating with the upper surface opening and an air supply port for taking in air from outside, and the introduction An upper member including an engagement hole including a tapered portion that communicates with the path and the lower surface opening and increases in cross-sectional area as it proceeds downward;
A cylindrical insertion portion having a smaller cross-sectional area than the introduction path and forming an annular slot between the introduction path by being inserted into the introduction path through the engagement hole, and the insertion A lower member including an engaging portion including a tapered portion that is coupled to the portion and has a cross-sectional area that increases in a downward direction so as to engage with the engaging hole;
Comprising
A sphere floating device characterized by the above.
球面状の軸受面を有し、球状の剛体を圧力気体により非接触で浮上させるための球面静圧気体軸受であって、
球面状の上面に上面開口部が形成され下面に下面開口部が形成された上部部材であって、前記上面開口部と外部から空気を取り入れる給気口とに連通する導入路、及び、該導入路と前記下面開口部とに連通し下方向に進むにつれて断面積が増加するテーパ部を含む係合穴、を含む上部部材と、
前記導入路より小さい断面積を有し、前記係合穴を通って該導入路に挿入されることにより該導入路との間に環状のスロットを形成する円柱状の挿入部、及び、該挿入部に結合され前記係合穴に係合するように下方向に進むにつれて断面積が増加するテーパ部を含む係合部、を含む下部部材と、
を具備する球面静圧気体軸受について、
前記軸受面各所における浮上幅を算出するステップと、
前記浮上幅及び前記軸受面における圧力分布から前記軸受面における流量を算出するステップと、
前記軸受面における圧力分布から負荷容量を算出するステップと、
を含むことを特徴とする、球面静圧気体軸受の性能計算方法。
A spherical hydrostatic gas bearing having a spherical bearing surface, for floating a spherical rigid body in a non-contact manner with a pressure gas ,
An upper member having an upper surface opening formed on a spherical upper surface and a lower surface opening formed on a lower surface, the introduction path communicating with the upper surface opening and an air supply port for taking in air from outside, and the introduction An upper member including an engagement hole including a tapered portion that communicates with the path and the lower surface opening and increases in cross-sectional area as it proceeds downward;
A cylindrical insertion portion having a smaller cross-sectional area than the introduction path and forming an annular slot between the introduction path by being inserted into the introduction path through the engagement hole, and the insertion A lower member including an engaging portion including a tapered portion that is coupled to the portion and has a cross-sectional area that increases in a downward direction so as to engage with the engaging hole;
For spherical static pressure gas bearings with
Calculating the flying width at various locations on the bearing surface;
Calculating the flow rate at the bearing surface from the flying width and the pressure distribution at the bearing surface;
Calculating a load capacity from a pressure distribution on the bearing surface;
A method for calculating the performance of a spherical hydrostatic gas bearing, comprising:
前記負荷容量を用いて軸受剛性を算出するステップをさらに含む、請求項に記載の性能計算方法。 The performance calculation method according to claim 2 , further comprising a step of calculating bearing rigidity using the load capacity. 球状の剛体と、球面状の軸受面を有し、前記剛体を圧力気体により非接触で浮上させるための球面静圧気体軸受であって、前記軸受面内に給気する絞りの形状が環状スロットとなっている球面静圧気体軸受と、該球面静圧気体軸受に圧力気体を供給する給気機構と、を具備し、前記球面静圧気体軸受が、球面状の上面に上面開口部が形成され下面に下面開口部が形成された上部部材であって、前記上面開口部と外部から空気を取り入れる給気口とに連通する導入路、及び、該導入路と前記下面開口部とに連通し下方向に進むにつれて断面積が増加するテーパ部を含む係合穴、を含む上部部材と、前記導入路より小さい断面積を有し、前記係合穴を通って該導入路に挿入されることにより該導入路との間に環状のスロットを形成する円柱状の挿入部、及び、該挿入部に結合され前記係合穴に係合するように下方向に進むにつれて断面積が増加するテーパ部を含む係合部、を含む下部部材と、を具備する、ように構成された球体浮上装置の設計方法であって、
前記軸受面各所における浮上幅を算出するステップと、
前記浮上幅及び前記軸受面における圧力分布から前記軸受面における流量を算出するステップと、
前記軸受面における圧力分布から負荷容量を算出するステップと、
前記負荷容量を用いて軸受剛性を算出するステップと、
算出された前記負荷容量、前記流量及び前記軸受剛性を達成することのできる、給気圧力、周辺圧力、前記球面静圧気体軸受の軸受半径、前記環状スロットの半径、前記環状スロットの幅、及び、前記環状スロットの深さを決定するステップと、
を含むことを特徴とする球体浮上装置の設計方法。
A spherical static pressure gas bearing having a spherical rigid body and a spherical bearing surface, and for floating the rigid body in a non-contact manner with a pressure gas, wherein the shape of the throttle for supplying air into the bearing surface is an annular slot. A spherical static pressure gas bearing, and an air supply mechanism for supplying pressure gas to the spherical static pressure gas bearing. An upper member having a lower surface opening formed on the lower surface, wherein the upper surface opening communicates with the air supply port for taking in air from the outside, and communicates with the introduction path and the lower surface opening. An upper member including an engagement hole including a tapered portion whose cross-sectional area increases in the downward direction, and has a smaller cross-sectional area than the introduction path, and is inserted into the introduction path through the engagement hole. Columnar insertion to form an annular slot with the introduction path And a lower member including an engagement portion including a taper portion coupled to the insertion portion and having a cross-sectional area that increases in a downward direction so as to engage with the engagement hole. A method for designing a configured sphere levitation device, comprising:
Calculating the flying width at various locations on the bearing surface;
Calculating the flow rate at the bearing surface from the flying width and the pressure distribution at the bearing surface;
Calculating a load capacity from a pressure distribution on the bearing surface;
Calculating a bearing stiffness using the load capacity;
The calculated load capacity, the flow rate and the bearing stiffness, the supply pressure, the ambient pressure, the bearing radius of the spherical hydrostatic gas bearing, the radius of the annular slot, the width of the annular slot, and Determining the depth of the annular slot;
A method for designing a sphere levitation device, comprising:
球面状の上面に上面開口部が形成され下面に下面開口部が形成された上部部材であって、前記上面開口部と外部から空気を取り入れる給気口とに連通する導入路、及び、該導入路と前記下面開口部とに連通し下方向に進むにつれて断面積が増加するテーパ部を含む係合穴、を含む上部部材と、
前記導入路より小さい断面積を有し、前記係合穴を通って該導入路に挿入されることにより該導入路との間に環状のスロットを形成する円柱状の挿入部、該挿入部に結合され前記係合穴に係合するように下方向に進むにつれて断面積が増加するテーパ部を含む係合部、及び、該係合部を上面に載置するベース部、を含む下部部材と、
を具備し、
前記下部部材のテーパ部の全体が前記上部部材のテーパ部に覆われたときに、前記上部部材の前記下面と前記下部部材の前記ベース部の上面との間に間隙が形成されるように構成されている、ことを特徴とする軸受。
An upper member having an upper surface opening formed on a spherical upper surface and a lower surface opening formed on a lower surface, the introduction path communicating with the upper surface opening and an air supply port for taking in air from outside, and the introduction An upper member including an engagement hole including a tapered portion that communicates with the path and the lower surface opening and increases in cross-sectional area as it proceeds downward;
A cylindrical insertion portion that has a smaller cross-sectional area than the introduction passage and is inserted into the introduction passage through the engagement hole to form an annular slot between the introduction passage and the insertion portion. A lower member including an engaging portion including a tapered portion that increases in cross-sectional area as it is coupled and engages with the engaging hole in a downward direction; and a base portion on which the engaging portion is placed on the upper surface; ,
Comprising
When the entire taper portion of the lower member is covered with the taper portion of the upper member, a gap is formed between the lower surface of the upper member and the upper surface of the base portion of the lower member. A bearing characterized by that.
前記上部部材の前記下面及び前記下部部材の前記ベース部には、互いを締め付けるネジを通すネジ穴が形成されている、請求項に記載の軸受。 The bearing according to claim 5 , wherein a screw hole through which a screw for tightening each other is formed in the lower surface of the upper member and the base portion of the lower member. 前記下部部材の前記挿入部は、上面が前記上部部材の上面開口部に到達したときに該上部部材の上面とともに球面を成すように、形成されており、
さらに、前記上部部材の上面及び前記下部部材の前記挿入部の上面は、前記ネジによる締め付けがなされた後に、磨き加工を施されたものである、請求項に記載の軸受。
The insertion portion of the lower member is formed so as to form a spherical surface together with the upper surface of the upper member when the upper surface reaches the upper surface opening of the upper member,
Furthermore, the upper surface of the said upper member and the upper surface of the said insertion part of the said lower member are the bearings of Claim 6 which were given the polishing process after being tightened with the said screw.
球面状の上面に上面開口部が形成され下面に下面開口部が形成された上部部材であって、前記上面開口部と外部から空気を取り入れる給気口とに連通する導入路、及び、該導入路と前記下面開口部とに連通し下方向に進むにつれて断面積が増加するテーパ部を含む係合穴、を含む上部部材と、
前記導入路より小さい断面積を有し、前記係合穴を通って該導入路に挿入されることにより該導入路との間に環状のスロットを形成する円柱状の挿入部、及び、該挿入部に結合され前記係合穴に係合するように下方向に進むにつれて断面積が増加するテーパ部を含む係合部、を含む下部部材と、
を具備することを特徴とする軸受。
An upper member having an upper surface opening formed on a spherical upper surface and a lower surface opening formed on a lower surface, the introduction path communicating with the upper surface opening and an air supply port for taking in air from outside, and the introduction An upper member including an engagement hole including a tapered portion that communicates with the path and the lower surface opening and increases in cross-sectional area as it proceeds downward;
A cylindrical insertion portion having a smaller cross-sectional area than the introduction path and forming an annular slot between the introduction path by being inserted into the introduction path through the engagement hole, and the insertion A lower member including an engaging portion including a tapered portion that is coupled to the portion and has a cross-sectional area that increases in a downward direction so as to engage with the engaging hole;
The bearing characterized by comprising.
球面状の上面に上面開口部が形成され下面に下面開口部が形成された上部部材であって、前記上面開口部と外部から空気を取り入れる給気口とに連通する導入路、及び、該導入路と前記下面開口部とに連通し下方向に進むにつれて断面積が増加するテーパ部を含む係合穴、を含む上部部材を製造するステップと、
前記導入路より小さい断面積を有し、前記係合穴を通って該導入路に挿入されることにより該導入路との間に環状のスロットを形成する円柱状の挿入部、該挿入部に結合され前記係合穴に係合するように下方向に進むにつれて断面積が増加するテーパ部を含む係合部であって、該テーパ部の全体が前記上部部材の前記係合穴のテーパ部に覆われたときに該係合穴から延出する間隙形成部を有する係合部、及び、該係合部を上面に載置するベース部、を含む下部部材を製造するステップと、
前記係合部のテーパ部の全体が前記係合穴のテーパ部に覆われるように、前記上部部材と前記下部部材とを組み合わせるステップと、
前記上部部材の前記下面と前記下部部材の前記ベース部とをネジを用いて締め付けるステップと、
を含むことを特徴とする軸受製造方法。
An upper member having an upper surface opening formed on a spherical upper surface and a lower surface opening formed on a lower surface, the introduction path communicating with the upper surface opening and an air supply port for taking in air from outside, and the introduction Producing an upper member including an engagement hole including a tapered portion that communicates with the path and the lower surface opening and increases in cross-sectional area as it progresses downward;
A cylindrical insertion portion that has a smaller cross-sectional area than the introduction passage and is inserted into the introduction passage through the engagement hole to form an annular slot between the introduction passage and the insertion portion. An engagement portion including a tapered portion that is coupled and that has a cross-sectional area that increases in a downward direction so as to engage with the engagement hole, and the entire taper portion is a taper portion of the engagement hole of the upper member. Manufacturing a lower member including an engagement portion having a gap forming portion extending from the engagement hole when covered with a base portion, and a base portion on which the engagement portion is placed on the upper surface;
Combining the upper member and the lower member such that the entire tapered portion of the engaging portion is covered by the tapered portion of the engaging hole;
Tightening the lower surface of the upper member and the base portion of the lower member using screws;
A bearing manufacturing method comprising:
前記締め付けるステップが、
前記上部部材の前記上面開口部を水中に浸すステップと、
前記上部部材の前記給気口に空気を供給し、前記上部部材の前記導入路と前記下部部材の前記挿入部との間に形成された環状スロットを通って前記上面開口部から吐出される空気の量に従って、前記ネジの締め付けを調整するステップと、
を含む、請求項に記載の軸受製造方法。
The tightening step comprises:
Immersing the upper surface opening of the upper member in water;
Air is supplied to the air supply port of the upper member, and is discharged from the upper surface opening through an annular slot formed between the introduction path of the upper member and the insertion portion of the lower member. Adjusting the tightening of the screw according to the amount of
The bearing manufacturing method of Claim 9 containing these.
前記締め付けるステップの後に、前記上部部材の上面と前記下部部材の前記挿入部の上面とにより形成された球面に対して磨き加工を施すステップ、をさらに含む、請求項又は請求項10に記載の軸受製造方法。 After said tightening step, the upper surface and the step of performing a polishing process with respect to formed spherical by the upper surface of the insertion portion of the lower member of the upper member further comprises, according to claim 9 or claim 10 Bearing manufacturing method. 球面状の上面に上面開口部が形成され下面に下面開口部が形成された上部部材であって、前記上面開口部と外部から空気を取り入れる給気口とに連通する導入路、及び、該導入路と前記下面開口部とに連通し下方向に進むにつれて断面積が増加するテーパ部を含む係合穴、を含む上部部材を製造するステップと、
前記導入路より小さい断面積を有し、前記係合穴を通って該導入路に挿入されることにより該導入路との間に環状のスロットを形成する円柱状の挿入部、及び、該挿入部に結合され前記係合穴に係合するように下方向に進むにつれて断面積が増加するテーパ部を含む係合部、を含む下部部材を製造するステップと、
前記係合部のテーパ部が前記係合穴のテーパ部に係合するように、前記上部部材と前記下部部材とを組み合わせるステップと、
を含むことを特徴とする軸受製造方法。
An upper member having an upper surface opening formed on a spherical upper surface and a lower surface opening formed on a lower surface, the introduction path communicating with the upper surface opening and an air supply port for taking in air from outside, and the introduction Producing an upper member including an engagement hole including a tapered portion that communicates with the path and the lower surface opening and increases in cross-sectional area as it progresses downward;
A cylindrical insertion portion having a smaller cross-sectional area than the introduction path and forming an annular slot between the introduction path by being inserted into the introduction path through the engagement hole, and the insertion A lower member including an engagement portion including a taper portion that is coupled to the portion and has a cross-sectional area that increases in a downward direction so as to engage with the engagement hole;
Combining the upper member and the lower member such that the tapered portion of the engaging portion engages with the tapered portion of the engaging hole;
A bearing manufacturing method comprising:
JP2008037557A 2008-02-19 2008-02-19 Sphere floating device Active JP4806741B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008037557A JP4806741B2 (en) 2008-02-19 2008-02-19 Sphere floating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008037557A JP4806741B2 (en) 2008-02-19 2008-02-19 Sphere floating device

Publications (2)

Publication Number Publication Date
JP2009197831A JP2009197831A (en) 2009-09-03
JP4806741B2 true JP4806741B2 (en) 2011-11-02

Family

ID=41141564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008037557A Active JP4806741B2 (en) 2008-02-19 2008-02-19 Sphere floating device

Country Status (1)

Country Link
JP (1) JP4806741B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103970032B (en) * 2014-05-16 2016-12-07 中国人民解放军装备学院 Satellite platform and mechanical arm collaborative simulation simulator
CN113428391B (en) * 2021-08-09 2022-04-29 哈尔滨工业大学 Single-ball air-floating pulley device combining air-floating ball bearing and air-floating plane thrust bearing

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5740719A (en) * 1980-08-25 1982-03-06 Nec Corp Magnetic recorder
JPS58170421A (en) * 1982-03-31 1983-10-07 ダイワ精工株式会社 Up and down control apparatus of fishing electromotive reel
JPS63312514A (en) * 1987-06-11 1988-12-21 Nabeya:Kk Air bearing device

Also Published As

Publication number Publication date
JP2009197831A (en) 2009-09-03

Similar Documents

Publication Publication Date Title
Luo et al. Design of ultraprecision machine tools with applications to manufacture of miniature and micro components
Takeuchi et al. Development of a 5-axis control ultraprecision milling machine for micromachining based on non-friction servomechanisms
JP2010096311A (en) Hydrostatic bearing pad, linear guide apparatus, and rotation guide apparatus
WO2016187837A1 (en) Two-degree-of-freedom rotation control device and application system therewith
JP4806741B2 (en) Sphere floating device
TWI517371B (en) Optical alignment structures and associated methods
Ning et al. Ultra-precision machining of a large amplitude umbrella surface based on slow tool servo
CN105856057B (en) Link mechanism, substrate grinding device, rotation center localization method, maximum pressing load determination method and recording medium
CN201309113Y (en) Device for processing high-precision product with complicated shape by using micro-grinding process
TWI491815B (en) Static pressure gas bearings and the use of the static pressure gas bearing linear motion guide device
CN117515036A (en) Air bearing rotor system and air floatation gap regulating and controlling method thereof
Zhang et al. Experimental investigations of machining characteristics on polydimethylsiloxane (PDMS) by cryogenic abrasive air-jet machining
CN115263924B (en) Mixed type air bearing with air path and loop based on porous material and air path mechanism
US9151369B2 (en) Aerostatic air bearing, assembling method thereof, and aerostatic lead screw actuator using the same
CN111120512A (en) Throttle air bearing and fast axle servo based on this bearing
KR101437640B1 (en) Aerostatic air bearing, assembling method thereof and aerostatic lead screw actuator using the same
JP4113732B2 (en) Air bearing
US6120004A (en) Variable capillary apparatus for hydrostatic bearing and motion error compensating method using same
JP4740605B2 (en) Gas control rotary movement device and gas control actuator
JP2019202358A (en) Grinding device
US20240044364A1 (en) Ultra-low profile aerostatic bearing and the method of manufacturing the same
Khakse et al. Analytical Study of Non-Recessed Conical Hole Entry Hybrid/Hydrostatic Journal Bearing with Constant Flow Valve Restrictor
JP2006029395A (en) Static pressure slide
JPS63232959A (en) Turning gear
Chen et al. Effects of working conditions on the nonlinear dynamic performances of a rigid rotor for air journal bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110120

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20110120

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20110221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110506

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110523

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110801

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140826

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4806741

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250