JP4740605B2 - Gas control rotary movement device and gas control actuator - Google Patents

Gas control rotary movement device and gas control actuator Download PDF

Info

Publication number
JP4740605B2
JP4740605B2 JP2005020947A JP2005020947A JP4740605B2 JP 4740605 B2 JP4740605 B2 JP 4740605B2 JP 2005020947 A JP2005020947 A JP 2005020947A JP 2005020947 A JP2005020947 A JP 2005020947A JP 4740605 B2 JP4740605 B2 JP 4740605B2
Authority
JP
Japan
Prior art keywords
gas
movable
control
movable member
movable body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005020947A
Other languages
Japanese (ja)
Other versions
JP2006210659A5 (en
JP2006210659A (en
Inventor
勝美 佐々木
朋子 平山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PNEUMATIC SERVO CONTROLS Ltd
Original Assignee
PNEUMATIC SERVO CONTROLS Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PNEUMATIC SERVO CONTROLS Ltd filed Critical PNEUMATIC SERVO CONTROLS Ltd
Priority to JP2005020947A priority Critical patent/JP4740605B2/en
Publication of JP2006210659A publication Critical patent/JP2006210659A/en
Publication of JP2006210659A5 publication Critical patent/JP2006210659A5/ja
Application granted granted Critical
Publication of JP4740605B2 publication Critical patent/JP4740605B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は気体制御回転移動装置及び気体制御アクチュエータに係り、特にテーブルを平面内で移動又は軸周りに回転させる気体制御回転移動装置及びそれに用いることができる気体制御アクチュエータに関する。 The present invention relates to a gas-controlled rotary movement device and a gas control actuator, and more particularly to a gas-controlled rotary movement device that moves a table in a plane or rotates around an axis and a gas control actuator that can be used therefor.

物を保持して移動させ位置決めを行うために、テーブルの移動、回転機構が広く用いられている。例えば、半導体製造において、露光装置やボンディング装置等でウエファ等をテーブルに保持し、精密な位置決めの下で作業が行われるが、ここではX軸とY軸方向の精密な移動と、Z軸周りのθ回転が行われる。   In order to hold and move an object for positioning, a table moving / rotating mechanism is widely used. For example, in semiconductor manufacturing, a wafer or the like is held on a table by an exposure apparatus or a bonding apparatus, and work is performed under precise positioning. Here, precise movement in the X-axis and Y-axis directions and around the Z-axis are performed. Θ rotation is performed.

これらテーブルの移動、回転機構のうち、X軸とY軸方向の精密な移動には、いわゆるXYテーブル移動機構が用いられ、例えば、X軸方向に移動可能なXテーブルと、Y軸方向に移動可能なYテーブルとを2段重ねにし、それぞれを精密モータで移動させるものが周知である。   Among these table movement and rotation mechanisms, a so-called XY table movement mechanism is used for precise movement in the X-axis and Y-axis directions. For example, an X table movable in the X-axis direction and a movement in the Y-axis direction. It is well known that two possible Y tables are stacked and moved by a precision motor.

この他に、モータによる騒音や振動等の問題がない気体制御アクチュエータが用いられる。気体制御アクチュエータとは、いわゆるシリンダ・ピストン機構を用いるもので、シリンダとピストンの協働によりシリンダ内部のピストンの前後に気体室を形成し、両気体室に供給する気体圧を制御することでピストンを精密に移動させるものである。たとえば、特許文献1には、流体圧サーボ機構を用い、流体圧を制御することで移動体を駆動する流体圧アクチュエータが開示される。気体制御アクチュエータのピストンにテーブルを接続することにより、気体圧により駆動されるテーブル送り機構を得ることができる。 In addition to this, the gas system control actuator there is no noise or vibration of the problem by the motor is used. The air system control actuator, in which a so-called cylinder-piston mechanism, that the gas chamber is formed around the cylinder interior of the piston by the cylinder cooperating with the piston to control the gas pressure supplied to each gas chamber The piston is moved precisely. For example, Patent Document 1 discloses a fluid pressure actuator that uses a fluid pressure servo mechanism and controls a fluid pressure to drive a moving body. By connecting the table to the piston of the air system control actuator, can be obtained table feed mechanism driven by the gas pressure.

テーブルの回転機構には、円形の回転テーブルを用い、その回転軸をやはり精密な回転モータで駆動させるものを用いることが多い。精度を向上させるために、回転軸にモータを直結することや、精密な減速機構を用いる場合もある。   In many cases, the table rotating mechanism uses a circular rotating table and its rotary shaft is driven by a precise rotating motor. In order to improve accuracy, a motor may be directly connected to the rotating shaft, or a precise reduction mechanism may be used.

特開昭57−51002号公報JP-A-57-5102

このように、精密モータを用いたXYθ移動回転機構は広く用いられている。また、気体制御アクチュエータを用いて、振動を抑制して高精度化を図ることも提案されている。しかし、気体制御アクチュエータは、いわゆるシリンダ・ピストン機構で代表されるように、直進機構が基本であるため、テーブルのθ回転がそのままでは実現できない。   Thus, the XYθ moving and rotating mechanism using a precision motor is widely used. It has also been proposed to use a gas control actuator to suppress vibrations and achieve high accuracy. However, since the gas control actuator is basically a linear mechanism, as represented by a so-called cylinder / piston mechanism, the θ rotation of the table cannot be realized as it is.

そこで、コンタミネーションが少ないほか、電磁的ノイズを発生せず、振動、騒音も少ない気体制御アクチュエータによる精密なXYθ移動回転機構が望まれる。   Therefore, there is a demand for a precise XYθ moving and rotating mechanism using a gas control actuator that generates less electromagnetic noise, vibration, and noise in addition to low contamination.

本発明の目的は、テーブルのθ回転を可能とする気体制御回転移動装置及び気体制御アクチュエータを提供することである。また、他の目的は、テーブルのXYθ位置決めを可能とする気体制御回転移動装置及び気体制御アクチュエータを提供することである。   An object of the present invention is to provide a gas-controlled rotational movement device and a gas-controlled actuator that enable θ rotation of a table. Another object is to provide a gas control rotary movement device and a gas control actuator that enable XYθ positioning of a table.

また、本発明に係る気体制御回転移動装置は、基台である本体部と、多角形軸を有し、前記本体部に対し前記多角形軸の軸方向に垂直な平面内で移動可能なテーブルと、前記テーブルの前記多角形軸の各辺に対応してそれぞれ設けられる複数の駆動部であって、各駆動部は、前記多角形軸に向かって連動して移動する可動体として、底面が前記本体部に向かい合い先端に球面座を有する第1可動体と、先端面が前記多角形軸の対応する前記辺に向かい合い底面が前記第1可動体の前記球面座に対応する曲面を有する第2可動体とを含み前記多角形軸の対応する前記辺を気体受面として、前記第2可動体の前記先端面と前記気体受面との間に供給される気体を介して前記多角形軸を非接触で駆動する複数の気体制御駆動部と、前記各気体制御駆動部の駆動を協働的に制御し、前記テーブルの前記平面内移動また前記多角形軸の前記軸周りの任意角度の回転の少なくともいずれか1の制御を含む制御部と、を備え、前記各気体制御駆動部は、前記本体部と前記第1可動体の底面との間の隙間、前記第1可動体の前記球面座と前記第2可動体の底面との間の隙間、及び前記第2可動体の前記先端前記気体受面との間の隙間にそれぞれ気体を供給する気体供給路を含み、前記制御部は、前記気体供給路に供給する気体圧を隙間量調整用気体圧として制御し、他の前記気体制御駆動部より受ける押付力と釣り合わせつつ、前記本体部と前記第1可動体の底面との間の隙間量、前記第1可動体の前記球面座と前記第2可動体の底面との間の隙間量、及び前記第2可動体の前記先端面と前記気体受面との間の隙間量を調整して前記テーブルを前記平面内の微小移動または前記軸周りの微小回転させることを特徴とする。 In addition, the gas-controlled rotational movement device according to the present invention has a main body portion that is a base and a polygonal shaft, and is a table that is movable with respect to the main body portion in a plane perpendicular to the axial direction of the polygonal axis. When, a plurality of driving portions provided corresponding to the respective sides of the polygon axis of the table, each of the drive unit, as a movable body that moves in conjunction toward the polygonal shaft, the bottom surface the has a first movable member having a spherical seat on the tip confronts to the body portion, confronts the side distal end surface corresponding to the polygonal shaft, the curved bottom surface corresponding to the spherical seat of the first movable body and a second movable member, wherein the corresponding said side of the polygon shaft as a gas receiving surface, wherein the polygonal through gas supplied between the distal end surface and the gas receiving surface of the second movable member a plurality of gas control driver you drive the shaft without contact, the respective gas systems Controls the driving of the driving unit cooperatively, or the plane movement of the table and a control unit including at least one first control rotation of any angle around the axis of the polygonal shaft, each gas control driving unit, the gap between the bottom surface of the first movable member and the body portion, the gap between the spherical seat and the bottom surface of the second movable member of the first movable body, and the and the front end surface of the second movable member comprises a gas supply passage for supplying the respective gas into the gap between the gas receiving surface, wherein the control unit, the gas pressure and gap amount adjustment gas supplied to the gas supply channel controls as pressure, while balanced with the pressing force received from the other of the gas control driver, amount of clearance between the bottom surface of the first movable member and the body portion, the said spherical seat of said first movable member amount of clearance between the bottom surface of the second movable member, and the distal end surface of the second movable member and Adjust the amount of clearance between the serial gas receiving surface, characterized in that to the table is a small rotation around the minute movement or the axis of the plane.

また、本発明に係る気体制御回転移動装置基台である本体部と、多角形軸を有し、前記本体部に対し前記多角形軸の軸方向に垂直な平面内で移動可能なテーブルと、前記テーブルの前記多角形軸の各辺に対応してそれぞれ設けられる複数の駆動部であって、各駆動部は、前記本体部に設けられる案内部と、前記案内部の軸方向に沿って案内され前記多角形軸に向かって連動して移動する複数の可動体として、前記案内部の底部側から粗動駆動用の制御気体圧を受ける底面と先端に球面座を有する第1可動体と、前記多角形軸の各辺を気体受面として、前記気体受面と前記第1可動体の間に配置され、先端が前記先端面で、底面が前記第1可動体の前記球面座に対応する曲面を有する第2可動体とを含み、前記先端面と前記気体受面との間に供給される気体を介して前記多角形軸を非接触で駆動する複数の気体制御駆動部と、前記各気体制御駆動部の駆動を協働的に制御し、前記テーブルの前記平面内移動または前記多角形軸の前記軸周りの任意角度の回転の少なくともいずれか1の制御を含む制御部と、を備え、前記各気体制御駆動部は、前記第1可動体を粗動駆動する気体として、前記第1可動体の底面に向けて前記制御気体圧を有する気体を供給する制御気体圧供給口と、前記第1可動体に対し前記第2可動体を微小移動駆動する気体として、前記制御気体圧とは独立の気体圧の隙間量調整用気体圧を有する気体を、前記第1可動体の前記球面座前記第2可動体の底面との間の隙間、及び前記第2可動体の前記先端面と前記気体受面との間の隙間にそれぞれ供給する連通気体供給路と、を含み、前記制御部は、前記第1可動体の前記粗動駆動とは独立に、前記連通気体供給路に供給する前記隙間量調整用気体圧を制御し、他の前記気体制御駆動部より受ける押付力と釣り合わせつつ、前記第1可動体の前記球面座と前記第2可動体の底面との間の隙間量、及び前記第2可動体の前記先端面と前記気体受面との間の隙間量とを調整して前記テーブルを前記平面内の微小移動または前記軸周りの微小回転させることを特徴とする。 In addition, the gas-controlled rotational movement device according to the present invention has a main body portion that is a base and a polygonal shaft, and is a table that is movable with respect to the main body portion in a plane perpendicular to the axial direction of the polygonal axis. And a plurality of driving units respectively provided corresponding to each side of the polygonal axis of the table, each driving unit including a guide unit provided in the main body unit and an axial direction of the guide unit As a plurality of movable bodies that are guided and moved in association with the polygonal axis, a first movable body having a bottom surface that receives a control gas pressure for coarse driving from the bottom side of the guide portion and a spherical seat at the tip end. When the sides of the polygonal shaft as a gas receiving surface is disposed between the said gas receiving surface first movable member, the tip is at the front end surface, the spherical seat of the bottom is the first movable member and a second movable member having a corresponding curved surface, between the gas-receiving surface and the tip surface A plurality of gas control driving units that drive the polygon shaft in a non-contact manner through the supplied gas, and driving of the gas control driving units are cooperatively controlled, and the in-plane movement of the table or the A control unit including control of at least any one of rotations of an arbitrary angle around the axis of a polygonal axis, and each gas control driving unit is configured as a gas for coarsely driving the first movable body, a control gas pressure supply port for supplying a gas having a controlled gas pressure toward the bottom surface of the first movable member, the second movable member against the first movable member as the gas for driving minute movement, said control gas pressure the tip clearance, and the second movable member between the gas having a gap amount adjustment pneumatic independent gas pressure, and the spherical seat and the bottom surface of the second movable member of the first movable body and linking gap Niso respectively supplied between the surface and said gas receiving surface Includes a body supply path, wherein the control unit is independent of the coarse drive of the first movable member, wherein by controlling the gap amount adjustment gas pressure supplied to the interconnected porosity material feeding passage, the other of said while balance the pressing force received from the gas control driver, the said spherical seat of said first movable member and the amount of clearance between the bottom surface of the second movable member, and said distal end surface of the second movable member gases characterized in that for the adjusting the gap amount small rotation around the minute movement or the axis of the plane of the table between the receiving surface.

また、本発明に係る気体制御回転移動装置において、テーブルの回転移動を検出し制御部に出力するセンサを備えることが好ましい。   Moreover, the gas-controlled rotational movement apparatus according to the present invention preferably includes a sensor that detects the rotational movement of the table and outputs it to the control unit.

また、本発明に係る気体制御アクチュエータは、移動対象物に対する基台である本体部と、前記移動対象物に向かい合って設けられる可動部であって、前記移動対象物に向かって連動して移動する複数の可動体として、底面が前記本体部に向かい合い先端に球面座を有する第1可動体と、先端面が前記移動対象物に向かい合い、底面が前記第1可動体の前記球面座に対応する曲面を有する第2可動体を含み、前記移動対象物の面を気体受面として、前記第2可動体の前記先端面と前記気体受面との間に供給される気体を介して前記移動対象物を非接触で駆動する可動部と、前記本体部と前記第1可動体の底面との間の隙間、前記第1可動体の前記球面座と前記第2可動体の底面との間の隙間、及び前記第2可動体の前記先端面と前記気体受面との間の隙間にそれぞれ気体を供給する気体供給路と、前記気体受面に向かって前記各隙間の気体を圧縮しつつ前記移動対象物と前記可動部とを押し付ける押付力発生部と、前記気体供給路に供給する気体圧を隙間量調整用気体圧として制御し、前記押付力と釣り合わせつつ、前記本体部と前記第1可動体の底面との間の隙間量、前記第1可動体の前記球面座と前記第2可動体の底面との間の隙間量、及び前記第2可動体の前記先端面と前記気体受面との間の隙間量を調整して前記移動対象物を微小移動させる制御部と、を備えることを特徴とする。 The gas control actuator according to the present invention is a main body that is a base for a moving object, and a movable part that is provided to face the moving object, and moves in conjunction with the moving object. a plurality of movable bodies, a first movable body bottom has a spherical seat on the tip confronts to the body portion, confronts the distal end face on the moving object, a bottom surface corresponding to the spherical seat of the first movable body curved And a second movable body having a gas receiving surface as a surface of the moving object, and the moving object via a gas supplied between the tip surface of the second movable body and the gas receiving surface. A movable part that drives an object in a non-contact manner, a gap between the main body part and the bottom surface of the first movable body, and a gap between the spherical seat of the first movable body and the bottom surface of the second movable body , and the gas receiving the said front end surface of the second movable member And a gas supply channel for supplying gas, respectively, the gas said moving object and said movable portion while compressing the gas in the respective gap towards the receiving surface and pressing force generating unit for pressing into the gap between the the gas pressure supplied to the gas supply passage to control a gap amount adjustment pneumatic, while balanced with the pressing force, amount of clearance between the bottom surface of the first movable body and the main body portion, said first movable member amount of clearance between the spherical seat and the bottom surface of the second movable body, and the moving object by adjusting the amount of clearance between the tip surface and the gas receiving surface of the second movable member And a control unit that performs micro movement.

また、本発明に係る気体制御アクチュエータは、移動対象物に対する基台である本体部と、前記本体部に設けられる案内部と、前記案内部の軸方向に沿って案内され前記移動対象物に向かって連動して移動する可動部であって、粗動駆動用の制御気体圧を受ける底面と先端に球面座を有する第1可動体と、前記移動対象物の面を気体受面として、前記気体受面と前記第1可動体との間に配置され、先端面が前記気体受面に向かい合い、底面が前記第1可動体の前記球面座に対応する曲面を有する第2可動体とを含み、前記先端面と前記気体受面との間に供給される気体を介して前記移動対象物を非接触で駆動する可動部と、前記案内部の底面に設けられ、前記第1可動体を粗動駆動する気体として前記制御気体圧を有する気体を前記第1可動体の底面に向けて供給する制御気体圧供給口と、前記第1可動体に対し前記第2可動体を微小移動駆動する気体として、前記制御気体圧とは独立の気体圧の隙間量調整用気体圧を有する気体を、前記第1可動体の前記球面座前記第2可動体の底面との間の隙間、及び前記第2可動体の前記先端面と前記気体受面との間の隙間に、それぞれ供給する連通気体供給路と、前記気体受面に向かって前記各隙間の気体を圧縮しつつ前記移動対象物と前記可動部とを押し付ける押付力発生部と、前記第1可動体の前記粗動駆動とは独立に、前記連通気体供給路に供給する前記隙間量調整用気体圧を制御し、前記押付力と釣り合わせつつ、前記第1可動体の前記球面座と前記第2可動体の底面との間の隙間量、及び前記第2可動体の前記先端面と前記気体受面との間の隙間量とを調整して前記移動対象物を微小移動させる制御部と、を備えることを特徴とする。 The gas control actuator according to the present invention includes a main body that is a base for a moving object, a guide provided in the main body, and an axial direction of the guide that is guided toward the moving object. a movable unit that moves in conjunction Te, a first movable member having a spherical seat on the bottom and the tip receiving control gas pressure for coarse drive, the surface of the moving object as a gas receiving surface, the gas disposed between the and the receiving surface first movable member, the tip end surface confronts the gas receiving surface, and a second movable member which bottom has a curved surface corresponding to the spherical seat of the first movable body, A movable portion that drives the moving object in a non-contact manner via a gas supplied between the tip surface and the gas receiving surface, and a bottom surface of the guide portion, the coarse movement of the first movable body A gas having the control gas pressure as the gas to be driven is the first movable And supplying control gas pressure supply port toward the bottom of the first against the movable member and the second movable member as a gas to drive fine movement, the gap amount adjustment gas in the control gas pressure independently of the gas pressure a gas having a pressure, the gap between the spherical seat and the bottom surface of the second movable member of the first movable body, and the gap between the front end surface of the second movable member and said gas receiving surface the interconnected porosity-supplying path for supplying each said toward said gas receiving surface with the gas the moving object while compressing the respective gap and the movable portion and the pressing force generating unit for pressing the said of said first movable member independently of the coarse drive, the controls interconnected porosity body the gap amount adjusting gas pressure supplied to the supply passage, wherein while balanced with the pressing force, the second movable member and the spherical seat of the first movable body air gap amount between the bottom of, and with the front end surface of the second movable member wherein Characterized in that it comprises a control unit for fine movement of the moving object by adjusting the amount of clearance between the receiving surface.

上記構成により、テーブルは多角形軸を有し、その各辺に気体圧による駆動力が与えられ、多角形軸の各辺に与えられる駆動力の協働によってテーブルは平面内の移動及び軸周りに任意の角度で回転する。したがって、気体制御アクチュエータによるテーブルの平面内移動又はθ回転が可能となる。   With the above configuration, the table has a polygonal axis, and a driving force by gas pressure is given to each side of the table, and the table moves and rotates around the axis by cooperation of the driving force given to each side of the polygonal axis Rotate at any angle. Therefore, the table can be moved in the plane or rotated by the gas control actuator.

また、案内の球面座に対応する曲面を有する球面可動体を用い、球面座と球面可動体との間の隙間及び球面可動体の先端面と気体受面との間の隙間にそれぞれ供給する気体圧を制御し、他の気体制御駆動部より受ける押付力と釣り合わせつつ球面可動体の先端面と気体受面との間の隙間量を調整してテーブルを微小回転させるので、気体制御アクチュエータによるテーブルの精密な回転が可能となる。また球面座の効果により、微小移動又は微小回転がスムーズに行われる。   Further, a spherical movable body having a curved surface corresponding to the spherical seat of the guide is used, and the gas supplied to the gap between the spherical seat and the spherical movable body and the gap between the tip surface of the spherical movable body and the gas receiving surface, respectively. The pressure is controlled and the table is rotated slightly by adjusting the gap amount between the tip surface of the spherical movable body and the gas receiving surface while balancing with the pressing force received from the other gas control driving unit. Precise rotation of the table is possible. Further, the fine movement or fine rotation is smoothly performed by the effect of the spherical seat.

また、第1可動体の先端に球面座を設け、第2可動体の底面部はこれに対応する曲面を有するものとし、第1可動体に供給される気体圧とは独立に、第1可動体と第2可動体との間の隙間、及び多角形軸の気体受面と第2可動体の先端面との間の隙間に別の気体圧を供給し、第1可動体の駆動とは独立に、この別の気体圧を制御し、他の気体制御駆動部より受ける押付力と釣り合わせつつ、気体受面と第2可動体の先端面との間の隙間を調整してテーブルを微小回転させることとする。したがって、移動量の大きい第1可動体と、微小移動量の第2可動体とを組み合わせ、移動量を粗動から微動まで幅広くでき、球面座により直進駆動力をスムーズにテーブルの移動又は回転に変換できる。   In addition, a spherical seat is provided at the tip of the first movable body, and the bottom surface portion of the second movable body has a curved surface corresponding thereto, and the first movable body is independent of the gas pressure supplied to the first movable body. What is the driving of the first movable body by supplying another gas pressure to the gap between the body and the second movable body and the gap between the gas receiving surface of the polygonal axis and the tip surface of the second movable body? Independently, the other gas pressure is controlled, and the table is made minute by adjusting the gap between the gas receiving surface and the distal end surface of the second movable body while balancing with the pressing force received from the other gas control drive unit. Rotate. Therefore, the first movable body with a large amount of movement and the second movable body with a small amount of movement can be combined to widen the amount of movement from coarse movement to fine movement, and the rectilinear driving force can be smoothly moved or rotated by the spherical seat. Can be converted.

また、テーブルの回転移動を検出し制御部に出力するセンサを備えるので、テーブルを精度よく回転させることができる。   Moreover, since the sensor which detects the rotational movement of a table and outputs it to a control part is provided, a table can be rotated with sufficient precision.

また、制御部は、さらに、テーブルを平面内の任意の位置に移動させる制御を行うので、気体制御アクチュエータによるXYθ位置決めが可能となる。   Further, since the control unit performs control to move the table to an arbitrary position in the plane, XYθ positioning by the gas control actuator is possible.

以上のように、本発明に係る気体制御回転移動装置及び気体制御アクチュエータによれば、テーブルのθ回転が可能となる。また、本発明に係る気体制御回転移動装置及び気体制御アクチュエータによれば、テーブルのXYθ位置決めが可能となる。   As described above, according to the gas-controlled rotary moving device and the gas-controlled actuator according to the present invention, the table can be rotated by θ. Further, according to the gas control rotary movement device and the gas control actuator according to the present invention, the XYθ positioning of the table is possible.

以下に図面を用いて本発明に係る実施の形態につき詳細に説明する。図1は、気体制御回転移動装置10の構成図で、図1(a)は平面図で、そのB−B線に沿った断面図を図1(b)に示す。気体制御回転移動装置10は、本体部12と、本体部12に対し、図1に示すXY平面内で移動し、Z軸周りに回転可能なテーブル30と、本体部12に設けられる複数の気体制御駆動部100と、テーブル30に取り付けられ、テーブル30の回転角度および移動位置を検出するためのセンサ40及び測定部42と、これらの要素の全体動作を制御する制御部50を含んで構成される。なお、図1では気体制御駆動部100は、テーブル30の矩形軸32の各辺に対応して4つ設けられ、向かい合う気体制御駆動部100の駆動軸方向は、互いにオフセットを有するように配置される。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a configuration diagram of the gas-controlled rotary moving device 10, FIG. 1 (a) is a plan view, and a cross-sectional view along the line BB is shown in FIG. 1 (b). The gas-controlled rotational movement device 10 moves relative to the main body 12 and the main body 12 in the XY plane shown in FIG. 1 and can rotate around the Z axis, and a plurality of gases provided in the main body 12. The control drive unit 100 is attached to the table 30 and includes a sensor 40 and a measurement unit 42 for detecting the rotation angle and movement position of the table 30, and a control unit 50 for controlling the overall operation of these elements. The In FIG. 1, four gas control drive units 100 are provided corresponding to each side of the rectangular shaft 32 of the table 30, and the drive axis directions of the gas control drive units 100 facing each other are arranged so as to have an offset. The

本体部12は、テーブル30をXY平面内に移動可能及びZ軸周りに回転可能に、制御気体によって支持する機能を有する基台である。本体部12は、略立方体の形状で、中央にテーブル30の矩形軸32を支持する略矩形の支持穴14を有する。本体部12には、支持穴14に向けて4つの気体制御駆動部100が設けられる。支持穴14の内面と、本体部12の上下面は、テーブル30を気体圧で支持する機能を有するので、それらの表面は平坦に加工される。かかる本体部12は、耐振動を考慮し、金属製又はセラミックのブロック等を加工して得ることができる。複数の部材を組み立てて得ることもできる。 The main body 12 is a base having a function of supporting the table 30 with a control gas so as to be movable in the XY plane and rotatable about the Z axis. The main body 12 has a substantially cubic shape, and has a substantially rectangular support hole 14 that supports the rectangular shaft 32 of the table 30 at the center. In the main body 12, four gas control driving units 100 are provided toward the support hole 14. Since the inner surface of the support hole 14 and the upper and lower surfaces of the main body 12 have a function of supporting the table 30 with gas pressure, the surfaces thereof are processed to be flat. The main body 12 can be obtained by processing a metal or ceramic block in consideration of vibration resistance. It can also be obtained by assembling a plurality of members.

テーブル30は、矩形32の上下に矩形軸32より大きい矩形のステージ34を備える形状を有し、矩形軸32と本体部12の支持穴14との間、上下ステージ34の各裏面と本体部12の上下面との間においてそれぞれ気体圧で支持される部材である。テーブル30は、矩形軸32の各辺を気体受面として、対応する気体制御駆動部100から気体圧による駆動力をそれぞれ受ける機能を有し、そして、それら複数の駆動力の協働により生ずる、矩形軸32に対する回転トルクにより、本体部12の支持穴14の範囲で回転する機能を有する。また、ステージ34の裏面は、本体部12の上下面に向かい合い、図1には図示されていないが、後述するように、気体軸受機構により支持される。このように、テーブル30は、本体部12と非接触によって回転可能に支持される。かかるテーブル30は、平坦化した表面を有する金属製又はセラミック製の矩形板と矩形軸とを組み合わせて得ることができる。 Table 30 has a shape with a rectangular shaft 32 is larger than the rectangular stage 34 above and below the rectangular shaft 32, between the supporting hole 14 of the rectangular shaft 32 and the main body portion 12, the back surface and the body portion of the upper and lower stage 34 12 is a member supported by the gas pressure between the upper and lower surfaces of 12. The table 30 has a function of receiving the driving force by the gas pressure from the corresponding gas control driving unit 100 with each side of the rectangular shaft 32 as a gas receiving surface, and is generated by the cooperation of the plurality of driving forces. It has a function of rotating within the range of the support hole 14 of the main body 12 by the rotational torque with respect to the rectangular shaft 32. Further, the back surface of the stage 34 faces the upper and lower surfaces of the main body portion 12 and is supported by a gas bearing mechanism, as will be described later, though not shown in FIG. Thus, the table 30 is rotatably supported by the main body portion 12 without contact. Such a table 30 can be obtained by combining a rectangular plate made of metal or ceramic having a flattened surface and a rectangular shaft.

なお、本体部12と、テーブル30との間には、必要に応じ、図示されていない適当な反力機構が設けられる。反力機構は、本体部12の各気体制御駆動部100がテーブル30を駆動したときに、テーブル30の回転を制御できるようにするものである。例えば、図1に示すように、4つの気体制御駆動部100がすべて同じ量の駆動力をテーブル30に与えると、適当な復元力がなければ、テーブル30は、支持穴14の壁面に当たるまで反時計方向に回転を続ける。反力機構を設けることで、駆動力とつりあわせて所定の回転制御を行うことができる。なお、後述するように、複数の気体制御駆動部100の配置によっては、向かい合う気体制御駆動部100の相互作用で反力を生じさせることができ、その場合には、特別な反力機構を省略することもできる。   An appropriate reaction force mechanism (not shown) is provided between the main body 12 and the table 30 as necessary. The reaction force mechanism enables the rotation of the table 30 to be controlled when each gas control driving unit 100 of the main body 12 drives the table 30. For example, as shown in FIG. 1, if all the four gas control driving units 100 give the same amount of driving force to the table 30, the table 30 will be bent until it hits the wall surface of the support hole 14 unless there is an appropriate restoring force. Continue to rotate clockwise. By providing the reaction force mechanism, predetermined rotation control can be performed in balance with the driving force. As will be described later, depending on the arrangement of the plurality of gas control driving units 100, a reaction force can be generated by the interaction of the gas control driving units 100 facing each other. In that case, a special reaction force mechanism is omitted. You can also

センサ40及び測定部42は、テーブル30の回転角度、移動位置等を検出し、制御部50に出力する機能を有する。制御部50自身も精度よくテーブル30の位置決めを行う機能を有しているので、センサ40及び測定部42は、制御部50がオープンループの制御を行うときの精度以上のものが要求されるときに用いることとするのが効率的である。かかるセンサ40及び測定部42としては、非接触測定系が好ましく、例えば、ミラーをステージ34に取り付け、レーザ測長機により位置変位、角度変化を測定するシステムを用いることができる。   The sensor 40 and the measurement unit 42 have a function of detecting a rotation angle, a movement position, and the like of the table 30 and outputting the detected value to the control unit 50. Since the control unit 50 itself has the function of positioning the table 30 with high accuracy, the sensor 40 and the measurement unit 42 are required to have more accuracy than when the control unit 50 performs open loop control. It is efficient to use for this. As the sensor 40 and the measurement unit 42, a non-contact measurement system is preferable. For example, a system in which a mirror is attached to the stage 34 and position displacement and angle change are measured by a laser length measuring device can be used.

制御部50は、4つの気体制御駆動部100の動作をそれぞれ制御し、その協働によって、テーブル30の矩形軸32に回転トルクを与え、テーブル30を所望の角度だけ回転させる機能を有する。回転トルクとともに、XY平面内を移動するための推進力を矩形軸32に重畳して与え、テーブル30をXY平面内の所望位置に移動させて回転させることもできる。具体的には、次のような手順を実行する機能を有する。すなわち、外部から指示される変位量、回転量を取得し、つぎに取得した変位量、回転量に応じて、4つの気体制御駆動部100に要求されるそれぞれの移動量、駆動力を求める。そして、その駆動力を得るために気体制御駆動部100に供給すべき制御気体圧を、予め定められた方法によってそれぞれ求める。次に、図示されていない気体源から供給される気体を、精密気体圧弁等を用いて調整して、各制御気体圧を生成する。生成された各制御気体圧は、それぞれ対応する気体制御駆動部100に供給される。   The control unit 50 has a function of controlling the operations of the four gas control driving units 100 and applying the rotation torque to the rectangular shaft 32 of the table 30 to rotate the table 30 by a desired angle. Along with the rotational torque, a propulsive force for moving in the XY plane can be superimposed on the rectangular shaft 32 and the table 30 can be moved to a desired position in the XY plane and rotated. Specifically, it has a function of executing the following procedure. That is, the amount of displacement and the amount of rotation instructed from the outside are acquired, and the amount of movement and the driving force required for each of the four gas control drive units 100 are obtained according to the amount of displacement and the amount of rotation acquired next. And the control gas pressure which should be supplied to the gas control drive part 100 in order to obtain the drive force is each calculated | required by the predetermined method. Next, a gas supplied from a gas source (not shown) is adjusted using a precision gas pressure valve or the like to generate each control gas pressure. Each generated control gas pressure is supplied to a corresponding gas control drive unit 100.

制御部50の機能について、一例を上げて説明する。図1で、テーブル30の矩形軸32が正方形軸とし、4つの気体制御駆動部100の駆動軸方向は、その正方形軸の各辺の面にそれぞれ垂直で、向かい合う気体制御駆動部100の駆動軸方向は互いに10cmのオフセットを有するものとする。いま、テーブル30をΔθ=tan-1(1/100)回転させたいとすると、各気体制御駆動部100によって矩形軸32の各辺の面を1mm押せばよいことになる。したがって、制御部50は、テーブル30の慣性モーメントから各気体制御駆動部100がテーブル30の矩形軸32を1mm押すために必要な推進力を求め、その推進力に相当する気体圧を供給するように制御する。 The function of the control unit 50 will be described with an example. In FIG. 1, the rectangular axis 32 of the table 30 is a square axis, and the drive axis directions of the four gas control drive units 100 are perpendicular to the surfaces of the sides of the square axis, and the drive axes of the gas control drive unit 100 facing each other. The directions shall have an offset of 10 cm from each other. Now, if it is desired to rotate the table 30 by Δθ = tan −1 (1/100), each gas control driving unit 100 may push the surface of each side of the rectangular shaft 32 by 1 mm. Therefore, the control unit 50 obtains a propulsive force required for each gas control driving unit 100 to push the rectangular shaft 32 of the table 30 by 1 mm from the moment of inertia of the table 30 and supplies a gas pressure corresponding to the propulsive force. To control.

さらに、これに加え、テーブル30を+X方向に10μm移動させたいときは、駆動軸方向がY軸の2つの各気体制御駆動部100はそのままにして、駆動軸方向がX軸の2つの各気体制御駆動部100について一方の推進力を大きくする。すなわち、テーブル30の慣性モーメントからテーブル30の矩形軸32を+10μm押すことになるために必要な推進力を求め、その推進力に相当する気体圧を上記回転のために必要な気体圧に加えて、+X方向に駆動軸方向を有する気体制御駆動部100に供給する。このようにして、テーブル30を、+X方向に10μm移動させ、Δθ=tan-1(1/100)回転させることができる。 In addition to this, when it is desired to move the table 30 by 10 μm in the + X direction, the two gas control drive units 100 whose drive shaft directions are the Y axes are left as they are, and each of the two gases whose drive shaft directions are the X axes are left as they are. One propulsive force is increased for the control drive unit 100. That is, the thrust necessary for pushing the rectangular shaft 32 of the table 30 by +10 μm is obtained from the moment of inertia of the table 30, and the gas pressure corresponding to the thrust is added to the gas pressure necessary for the rotation. , To the gas control drive unit 100 having the drive axis direction in the + X direction. In this way, the table 30 can be moved by 10 μm in the + X direction and rotated by Δθ = tan −1 (1/100).

このように、制御部50は、あらかじめ定められた方法に従い、所望変位量、回転量対応する各制御気体圧を算出し、これを生成するので、いわゆるオープンループ制御によって各気体制御駆動部100の動作を制御する。そして、よりよい精度で回転を含めた位置決めを行いたいときは、上記のように、センサ40と測定部42を用い、テーブル30の実際の変位、回転情報を制御部50に供給し、クローズドループ制御とすることができる。 Thus, the control unit 50 in accordance with the method to a predetermined, desired amount of displacement is calculated each control gas pressure corresponding to the rotation amount, because it produces this, each gas control driver by so-called open loop control 100 To control the operation. When it is desired to perform positioning including rotation with better accuracy, the actual displacement and rotation information of the table 30 is supplied to the control unit 50 using the sensor 40 and the measurement unit 42 as described above, and the closed loop is used. It can be a control.

気体制御駆動部100は、案内部に案内される可動部を気体圧によって駆動し、可動部の先端面をテーブル30の矩形軸32の対応する辺に向かい合わせて、矩形軸32に駆動力を与える機能を有する気体制御アクチュエータである。ここで、可動部の先端面は、矩形軸32に直接接触するのではなく、その間は気体によって駆動力が伝達される。すなわち、気体制御駆動部100の先端面は、気体が噴出し、矩形軸32の対応する辺は、その気体を受け止める気体受面となる。可動部を駆動する気体圧、可動部の先端から噴出す気体、可動部の構造等によって、様々な構成の気体制御駆動部が可能であるが、以下に、テーブルを回転駆動するのに適する構成の気体制御駆動部の詳細をいくつか説明する。これら各種構成の気体制御駆動部は、気体制御回転移動装置に要求される性能、例えば、回転移動や位置決めの精度、回転移動の可能範囲等に応じて、いずれかを用いることができる。以下では、気体制御回転移動装置における気体制御駆動部の周辺部分の構成のみに絞って説明する。その他の要素は図1で説明したものを用いることができる。なお、以下では図1と同様の要素については同一の符号を付し詳細な説明を省略する。   The gas control drive unit 100 drives the movable unit guided by the guide unit by gas pressure, and the front end surface of the movable unit faces the corresponding side of the rectangular shaft 32 of the table 30 so that the driving force is applied to the rectangular shaft 32. This is a gas control actuator having a function of giving. Here, the distal end surface of the movable portion does not directly contact the rectangular shaft 32, and the driving force is transmitted by gas during that time. That is, gas is ejected from the front end surface of the gas control drive unit 100, and the corresponding side of the rectangular shaft 32 is a gas receiving surface that receives the gas. Various configurations of the gas control drive unit are possible depending on the gas pressure for driving the movable unit, the gas ejected from the tip of the movable unit, the structure of the movable unit, etc., but the configuration suitable for rotationally driving the table below Some details of the gas control drive unit will be described. Any of these various gas control drive units can be used depending on the performance required for the gas controlled rotary movement device, for example, the accuracy of rotational movement and positioning, the possible range of rotational movement, and the like. Hereinafter, only the configuration of the peripheral portion of the gas control drive unit in the gas control rotary movement device will be described. The other elements described in FIG. 1 can be used. In the following, the same elements as those in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted.

実施例1は、本発明の実施形態ではないが、本発明の参考となる参考例の1つである。図2は、シリンダ・ピストン機構においてピストンロッド等がなく、単に案内の中に可動部のみがあるいわゆるラム型アクチュエータと呼ばれているものを用いたラム型気体制御駆動部110の構成を示す図である。ラム型気体制御駆動部110は、本体部12に設けられた案内112と、案内112に案内されてその軸方向に移動可能な可動体114とを含む。案内112は、シリンダ状の内壁を有するものであり、可動体114は円柱状のものである。案内112は本体部12に設けられるが、具体的には、案内112の底板部を本体部12の筐体の一部とし、そこに円筒部材を取り付け、その部分を案内112とすることができる。 Example 1 is not an embodiment of the present invention, but is one of reference examples for reference of the present invention. FIG. 2 is a diagram showing a configuration of a ram type gas control drive unit 110 using what is called a ram type actuator in which there is no piston rod or the like in a cylinder / piston mechanism and there is only a movable part in a guide. It is. The ram type gas control drive unit 110 includes a guide 112 provided in the main body 12 and a movable body 114 that is guided by the guide 112 and is movable in the axial direction thereof. The guide 112 has a cylindrical inner wall, and the movable body 114 has a cylindrical shape. The guide 112 is provided in the main body 12. Specifically, the bottom plate portion of the guide 112 can be a part of the casing of the main body 12, a cylindrical member can be attached thereto, and the portion can be used as the guide 112. .

なお、案内112の形状と、可動体114の形状との関係は、滑らかに移動可能な相互に対応する形状であればよく、円筒状のものの他、矩形、多角形等の断面形状を有する組合せであってもよい。以下における他の形態の気体制御駆動部の構成においても同様である。 In addition, the relationship between the shape of the guide 112 and the shape of the movable body 114 may be any shape corresponding to each other that can be smoothly moved, and in addition to a cylindrical shape, a combination having a cross-sectional shape such as a rectangle or a polygon It may be. The same applies to the configuration of the gas control drive unit in other forms described below.

案内112の底部には、制御部50からの制御気体圧がCP1で示される制御気体圧供給口から導入される気体室116が設けられる。また、案内112の内壁にSBで示されるものは、可動体114の外周壁に向かって気体を噴出させ、気体軸受作用で可動体114を案内内壁から浮上させるための気体軸受用気体供給口で、EXで示されるものはその排気口である。なお、以下でも、同様の符号を用いるものとする。   At the bottom of the guide 112, a gas chamber 116 is provided through which a control gas pressure from the control unit 50 is introduced from a control gas pressure supply port indicated by CP1. Also, what is indicated by SB on the inner wall of the guide 112 is a gas supply port for the gas bearing for jetting gas toward the outer peripheral wall of the movable body 114 and causing the movable body 114 to float from the inner wall of the guide by the gas bearing action. , EX is the exhaust port. In the following, similar symbols are used.

可動体114の中心を通って設けられる気体供給路118は、一端は気体室116に開口し、他端は絞り部120を介し、可動体114の先端部122に開口する。絞り部120は、テーブル30の矩形軸32の対応する辺を気体受面124として、気体受面124に向かって噴出す気体の流れを滑らかにするためのものである。このような構成のラム型気体制御駆動部110においては、制御部50の制御の下に供給された制御気体圧は、気体室116に導入され、その気体圧に応じて可動体114を軸方向に移動させる駆動力を与える。そして、それとともに、気体室116に導入された気体は、気体供給路118を通り、絞り部120を介して可動体114の先端部122から矩形軸32の気体受面124に向かって噴出する。したがって、可動体114は、矩形軸32に接触することなく、駆動力を矩形軸32に伝達することができる。   One end of the gas supply path 118 provided through the center of the movable body 114 opens to the gas chamber 116, and the other end opens to the distal end portion 122 of the movable body 114 via the throttle portion 120. The restrictor 120 is for smoothing the flow of gas ejected toward the gas receiving surface 124 with the corresponding side of the rectangular shaft 32 of the table 30 as the gas receiving surface 124. In the ram type gas control drive unit 110 having such a configuration, the control gas pressure supplied under the control of the control unit 50 is introduced into the gas chamber 116, and the movable body 114 is axially moved in accordance with the gas pressure. The driving force to move is given. At the same time, the gas introduced into the gas chamber 116 passes through the gas supply path 118 and is ejected from the distal end portion 122 of the movable body 114 toward the gas receiving surface 124 of the rectangular shaft 32 via the throttle portion 120. Therefore, the movable body 114 can transmit the driving force to the rectangular shaft 32 without contacting the rectangular shaft 32.

図3は、絞り部として好ましい2つの例を示す図である。なお、絞り部の例を説明する図3、図4では、図1、図2と同じ要素でも異なる符号を用いて説明することとする。図3(a)は、可動体60のポケット開口64の中に設けられる平行隙間絞り70である。平行隙間絞り70は、ドーナツ状に中央穴を有する円環板72と、円環板72と外形が同じ円板74とが狭い平行隙間で配置され、その平行隙間の間を気体が流れる間に整流され、その流れが乱れなく形成されるものである。平行隙間は、例えば、気体供給路62に供給される気体圧を0.5Mpaとし、その流速を30m/secとして、これを絞りにより流速300m/secの層流とするときの場合で、50μmが好ましい。そのときの円環板72と円板74との間の平行隙間の長さは、50μmに対し、十分長いことが望ましい。例えば5−10mm程度とすることができる。 FIGS. 3A and 3B are diagrams showing two examples that are preferable as the aperture portion. In FIGS. 3 and 4 for explaining an example of the aperture section, the same elements as those in FIGS. 1 and 2 will be described using different reference numerals. FIG. 3A shows a parallel gap stop 70 provided in the pocket opening 64 of the movable body 60. During the parallel gap aperture 70 includes an annular plate 72 having a central hole in a donut shape, an annular plate 72 and the outer shape same disk 74 is arranged in a narrow parallel gaps, flowing between the parallel gap gas The flow is rectified and the flow is formed without disturbance. The parallel gap is, for example, a case where the gas pressure supplied to the gas supply path 62 is 0.5 Mpa, the flow rate is 30 m / sec, and this is a laminar flow having a flow rate of 300 m / sec by restriction, and 50 μm is preferable. The length of the parallel gap between the annular plate 72 and the circular plate 74 at that time is desirably sufficiently long with respect to 50 μm. For example, it can be about 5-10 mm.

このように平行隙間絞りの整流作用により絞り部に流れる気体を乱れなく形成することで、例えば絞りとして一般的に用いられるオリフィス絞り等により気体を絞る場合に生ずる、乱流や渦流等を抑制できる。特に、高圧かつ高速の気体を扱うときにオリフィスのエッジ等から生ずる衝撃波を抑制することもできる。したがって、気体圧制御において、このようなノイズの影響を少なくでき、気体制御回転移動装置10の制御性の向上を図ることができる。   In this way, by forming the gas flowing through the throttle portion without turbulence by the rectifying action of the parallel gap throttle, it is possible to suppress turbulent flow, vortex flow, etc. that occur when the gas is throttled by, for example, an orifice throttle generally used as a throttle. . In particular, it is possible to suppress a shock wave generated from the edge of the orifice or the like when handling a high-pressure and high-speed gas. Therefore, in the gas pressure control, the influence of such noise can be reduced, and the controllability of the gas control rotary movement device 10 can be improved.

図3(b)は、絞り部のもう1つの好ましい例として、多孔質材料76をポケット開口64の中に配置するものを示す図である。この場合も、多孔質の微小孔の整流作用により絞り部に流れる気体を乱れなく形成することができる。   FIG. 3B is a diagram showing another example of the throttle portion in which the porous material 76 is disposed in the pocket opening 64. Also in this case, the gas flowing in the throttle portion can be formed without disturbance by the rectifying action of the porous micropores.

図4は、用いることができるその他の絞り部の例を示す図で、(a)は、気体を噴出す対象物66に向かって単純に細い開口を設ける自成絞り78である。(b)は、表面にごく浅い溝を開口から外周側に向かって放射状に設ける表面絞り80である。(c)は、気体供給路62を細く絞るとともに、対象物66の気体受面68に向かい合う気体受壁69にごく浅い溝を開口から外周側に向かって放射状に設けるポケット絞り82である。ごく浅い溝の深さは、気体受壁69と気体受面68との隙間より少なめが好ましく、例えば7−20μmとすることができる。 Figure 4 is a diagram showing an example of other throttle portion which can be used, (a) represents a self-formed aperture 78 to provide a simple narrow opening towards the object 66 you eject gas. (B) is the surface stop 80 which provides a very shallow groove | channel on the surface radially from an opening toward an outer peripheral side. (C) is a pocket restrictor 82 that narrows the gas supply path 62 and provides shallow grooves radially on the gas receiving wall 69 facing the gas receiving surface 68 of the object 66 from the opening toward the outer peripheral side. The depth of the very shallow groove is preferably smaller than the gap between the gas receiving wall 69 and the gas receiving surface 68, and can be, for example, 7 to 20 μm.

これらの絞り部は、製作の容易性、整流性、絞り特性等にそれぞれ特徴がある。したがって、気体制御回転移動装置10に要求される応答性、耐ノイズ性、気体条件等を考慮し、コストと性能の兼ね合いで最も適する構成を選択することが好ましい。   Each of these throttle parts is characterized by ease of manufacture, rectification, diaphragm characteristics, and the like. Therefore, it is preferable to select the most suitable configuration in consideration of cost and performance in consideration of responsiveness, noise resistance, gas conditions, and the like required for the gas-controlled rotary moving device 10.

実施例2は、本発明の実施形態ではないが、本発明の参考となる参考例の1つである。図5は、可動体と矩形軸との間の隙間に供給する気体圧を制御し、他の気体制御駆動部より受ける押付力と釣り合わせつつ可動体と矩形軸との間の隙間量を調整することで可動体に対し矩形軸を微小移動させることができる、隙間量調整型気体制御駆動部130の構成を示すものである。隙間量調整型気体制御駆動部130は、隙間量が重要なので、矩形軸が回転したときに、可動体との隙間量がその対向領域で不均一になることは好ましくない。そこで、図5に示すように、本体部12には先端に球面座132が設けられ、この球面座に対応する球面可動体134が用いられる。図5において球面座132は凹状球面であるが、これを凸状球面としてもよい。また、本体部12と可動体との間の形状は、矩形軸32の回転に滑らかに追随できるものであれば、一部に球面形状を設けるのであってもよく、テーブル30の移動の平面度によっては、円弧状の曲面であってもよく、またそれ以外の曲面形状を用いてもよい。かかる球面座132及び球面可動体134は、適当な金属材料又はセラミックの素材を成形及び精密な球面表面加工して得ることができる。 Example 2 is not an embodiment of the present invention, but is one of reference examples for reference of the present invention. FIG. 5 controls the gas pressure supplied to the gap between the movable body and the rectangular shaft, and adjusts the gap amount between the movable body and the rectangular shaft while balancing with the pressing force received from the other gas control drive unit. By doing so, a configuration of the gap amount adjusting type gas control driving unit 130 that can finely move the rectangular axis with respect to the movable body is shown. Since the gap amount is important in the gap amount adjustment type gas control drive unit 130, it is not preferable that the gap amount with the movable body becomes non-uniform in the facing region when the rectangular shaft rotates. Therefore, as shown in FIG. 5, the main body 12 is provided with a spherical seat 132 at the tip, and a spherical movable body 134 corresponding to this spherical seat is used. In FIG. 5, the spherical seat 132 is a concave spherical surface, but it may be a convex spherical surface. Further, the shape between the main body 12 and the movable body may be provided with a spherical shape in part as long as it can smoothly follow the rotation of the rectangular shaft 32, and the flatness of the movement of the table 30 Depending on the case, an arc-shaped curved surface may be used, and other curved surface shapes may be used. The spherical seat 132 and the spherical movable body 134 can be obtained by molding and precision spherical surface processing of an appropriate metal material or ceramic material.

なお、球面可動体134の先端部の気体供給路136には、図2で説明したと同様な絞り部120が設けられる。また、気体供給路136が球面座132と球面可動体134との間の隙間に開口する部分には、適当な絞り機構を設けるのが好ましい。この場合、CP2からの気体を利用し、さらに、球面可動体134の先端部122からも流したいので、図4で説明した自成絞り78又は表面絞り80のいずれかを用いるのがよい。   Note that the gas supply path 136 at the tip of the spherical movable body 134 is provided with the throttle unit 120 similar to that described in FIG. In addition, it is preferable to provide an appropriate throttle mechanism in a portion where the gas supply path 136 opens in the gap between the spherical seat 132 and the spherical movable body 134. In this case, since the gas from CP2 is used and it is desired to flow from the front end portion 122 of the spherical movable body 134, either the self-formed aperture 78 or the surface aperture 80 described with reference to FIG. 4 is preferably used.

制御部50の制御の下に供給された制御気体圧は、符号CP2で示される隙間量調整用気体供給口から気体供給路136を通り、好ましくは図示されていない絞り機構を介して球面座132と球面可動体134との間の隙間に一部供給され、球面可動体134の中を通って、球面可動体134の先端部122から矩形軸32の気体受面124に向かって流れ出す。このとき、他の気体制御駆動部より受ける押付力Fと釣り合ったところで球面可動体134と矩形軸32との間の隙間量が定まる。したがって、制御部50は、他の気体制御駆動部より受ける押付力Fを計算に入れ、矩形軸32の必要変位量に対応した隙間量になるように、隙間量調整用気体圧を設定することになる。このようにして、隙間量調整型気体制御駆動部130の構成を用いることで、矩形軸32と球面可動体134、及び球面可動体134と本体部12とを接触させずに、テーブル30をきわめて微小な角度で回転させることができる。   The control gas pressure supplied under the control of the control unit 50 passes through the gas supply path 136 from the gap amount adjusting gas supply port denoted by reference numeral CP2, and preferably through a throttle mechanism (not shown) to the spherical seat 132. Is partially supplied to the gap between the spherical movable body 134, passes through the spherical movable body 134, and flows out from the distal end portion 122 of the spherical movable body 134 toward the gas receiving surface 124 of the rectangular shaft 32. At this time, the amount of clearance between the spherical movable body 134 and the rectangular shaft 32 is determined at a balance with the pressing force F received from the other gas control drive unit. Therefore, the control unit 50 sets the gas pressure for adjusting the gap amount so that the pressing force F received from the other gas control driving unit is calculated and the gap amount corresponding to the required displacement amount of the rectangular shaft 32 is obtained. become. In this way, by using the configuration of the gap amount adjustment type gas control driving unit 130, the table 30 can be made extremely without contacting the rectangular shaft 32 and the spherical movable body 134, and the spherical movable body 134 and the main body portion 12. It can be rotated at a minute angle.

実施例3は、本発明の実施形態ではないが、本発明の参考となる参考例の1つである。 図6は、ラム型気体制御駆動部に、2つの連動する可動体を用いて、移動量を大きくする連動ラム型気体制御駆動部140の構成を示す図である。基本的な構成は図2のラム型気体制御駆動部110と同じで、可動体が第1可動体144と、第2可動体146と分かれる。したがって、気体供給路も第1可動体144と第2可動体146とを連通する連通気体供給路148となる。図2と同様の要素には同一の符号を付し、詳細な説明を省略する。 Example 3 is not an embodiment of the present invention, but is one of reference examples for reference of the present invention. FIG. 6 is a diagram illustrating a configuration of an interlocking ram type gas control driving unit 140 that uses two interlocking movable bodies in the ram type gas control driving unit to increase the movement amount. The basic configuration is the same as that of the ram type gas control driving unit 110 of FIG. 2, and the movable body is divided into the first movable body 144 and the second movable body 146. Therefore, the gas supply path is also a communication vent supply path 148 that communicates the first movable body 144 and the second movable body 146. Elements similar to those in FIG. 2 are denoted by the same reference numerals, and detailed description thereof is omitted.

なお、第2可動体146の先端部の気体供給路148には、図2で説明したと同様な絞り部120が設けられる。また、図示されていないが、気体供給路148が第1可動体144と第2可動体146との間の隙間に開口する部分に絞り機構を設ける場合は、CP1からの気体を利用し、さらに、第2可動体146の先端部122からも流したいので、図4で説明した自成絞り78又は表面絞り80のいずれかを用いるのがよい。 The gas supply path 148 at the tip of the second movable body 146 is provided with the throttle unit 120 similar to that described in FIG. Although not shown, when the throttle mechanism is provided in a portion where the gas supply path 148 opens in the gap between the first movable body 144 and the second movable body 146, the gas from the CP1 is used. Since it is desired to flow from the front end portion 122 of the second movable body 146, either the self-formed aperture 78 or the surface aperture 80 described with reference to FIG.

このような構成の連動ラム型気体制御駆動部140においては、制御部50の制御の下に制御気体圧供給口CP1から気体室116に制御気体圧が供給され、その気体圧に応じて第1可動体144を軸方向に移動させる駆動力が与えられる。そして、それとともに、気体室116に導入された気体は、連通気体供給路148を通り、好ましくは図示されていない絞り機構を介して第1可動体144と第2可動体146との間の平面状隙間に流れ、そこで第2可動体146にその気体圧に応じた駆動力を与える。そしてさらに第2可動体146の中を通る連通気体供給路148から絞り部120を介して第2可動体146の先端部122から矩形軸32の気体受面124に向かって噴出する。したがって、第2可動体146の先端部122は、第1可動体144の移動量と第2可動体146の移動量の和に相当する移動を行って、矩形軸32に接触することなく、駆動力を矩形軸32に伝達することができる。 In the interlocking ram type gas control driving unit 140 having such a configuration, the control gas pressure is supplied from the control gas pressure supply port CP1 to the gas chamber 116 under the control of the control unit 50, and the first gas is supplied according to the gas pressure. A driving force for moving the movable body 144 in the axial direction is applied. At the same time, the gas introduced into the gas chamber 116 passes through the continuous vent supply passage 148 and is preferably a plane between the first movable body 144 and the second movable body 146 via a throttle mechanism (not shown). The second movable body 146 is given a driving force corresponding to the gas pressure. And further ejected from the tip portion 122 of the second movable member 146 through the communicating vent member supply passage 148 or et diaphragm Ri unit 120 through the inside of the second movable member 146 toward the gas receiving surface 124 of the rectangular shaft 32. Therefore, the distal end portion 122 of the second movable body 146 moves corresponding to the sum of the movement amount of the first movable body 144 and the movement amount of the second movable body 146 and is driven without contacting the rectangular shaft 32. Force can be transmitted to the rectangular shaft 32.

実施例4は、本発明の実施形態ではないが、本発明の参考となる参考例の1つである。 図7は、連動ラム型気体制御駆動部において、第2可動体を球面可動体とする球面可動体連動ラム型気体制御駆動部150の構成を示す図である。基本的な構成は図6の連動ラム型気体制御駆動部140と同じで、第1可動体152の先端には球面座154が設けられ、第2可動体156は、その球面座に対応する曲面を有する。球面座154およびこれに対応する曲面については、図5で説明した内容と同様である。気体供給路も第1可動体152と第2可動体156とを連通する連通気体供給路158となる。図2と同様の要素には同一の符号を付し、詳細な説明を省略する。 Example 4 is not an embodiment of the present invention, but is one of reference examples for reference of the present invention. FIG. 7 is a diagram illustrating a configuration of a spherical movable body-linked ram type gas control driving unit 150 in which the second movable body is a spherical movable body in the linked ram type gas control driving unit. The basic configuration is the same as that of the interlocking ram type gas control driving unit 140 shown in FIG. 6, and a spherical seat 154 is provided at the tip of the first movable body 152, and the second movable body 156 has a curved surface corresponding to the spherical seat. Have The spherical seat 154 and the curved surface corresponding thereto are the same as those described in FIG. The gas supply path also becomes a communication vent supply path 158 that communicates the first movable body 152 and the second movable body 156. Elements similar to those in FIG. 2 are denoted by the same reference numerals, and detailed description thereof is omitted.

なお、第2可動体156の先端部の気体供給路158には、図2で説明したと同様な絞り部120が設けられる。また、図示されていないが、気体供給路158が第1可動体152の球面座154と第2可動体156との間の隙間に開口する部分に絞り機構を設ける場合は、CP1からの気体を利用し、さらに、第2可動体156の先端部122からも流したいので、図4で説明した自成絞り78又は表面絞り80のいずれかを用いるのがよい。   Note that the gas supply path 158 at the tip of the second movable body 156 is provided with the throttle unit 120 similar to that described in FIG. Although not shown, when the throttle mechanism is provided in a portion where the gas supply path 158 opens in the gap between the spherical seat 154 and the second movable body 156 of the first movable body 152, the gas from CP1 is supplied. In addition, since it is desired to flow from the front end portion 122 of the second movable body 156, either the self-formed aperture 78 or the surface aperture 80 described in FIG.

このような構成の球面可動体連動ラム型気体制御駆動部150においても、制御部50の制御の下に制御気体圧供給口CP1から気体室116に制御気体圧が供給され、その気体圧に応じて第1可動体152を軸方向に移動させる駆動力が与えられる。そして、それとともに、気体室116に導入された気体は、連通気体供給路158を通り、好ましくは図示されていない絞り機構を介して第1可動体152と第2可動体156との間の球面状隙間に流れ、そこで第2可動体156にその気体圧に応じた駆動力を与える。そしてさらに第2可動体156の中を通る連通気体供給路158から絞り部120を介して第2可動体156の先端部122から矩形軸32の気体受面124に向かって噴出する。したがって、第2可動体156の先端部122は、球面座154の作用によって矩形軸32の傾きに滑らかに追従しつつ、第1可動体152の移動量と第2可動体156の移動量の和に相当する移動を行って、矩形軸32に接触することなく、駆動力を矩形軸32に伝達することができる。 Also in the spherical movable body interlocking ram type gas control driving unit 150 having such a configuration, the control gas pressure is supplied from the control gas pressure supply port CP1 to the gas chamber 116 under the control of the control unit 50, and the gas pressure is determined according to the gas pressure. Thus, a driving force for moving the first movable body 152 in the axial direction is applied. Along with that, the gas introduced into the gas chamber 116 passes through the continuous vent supply passage 158, and preferably a spherical surface between the first movable body 152 and the second movable body 156 via a throttle mechanism (not shown). The second movable body 156 is given a driving force according to the gas pressure. And further ejected from the tip portion 122 of the second movable member 156 through the communicating vent member supply passage 158 or et diaphragm Ri unit 120 through the inside of the second movable member 156 toward the gas receiving surface 124 of the rectangular shaft 32. Therefore, the tip 122 of the second movable body 156 smoothly follows the inclination of the rectangular shaft 32 by the action of the spherical seat 154, and the sum of the movement amount of the first movable body 152 and the movement amount of the second movable body 156. The driving force can be transmitted to the rectangular shaft 32 without making contact with the rectangular shaft 32.

実施例5は、本発明の実施形態の1つである。図8は、隙間量調整型気体制御駆動部の微小移動と、それよりは移動量の大きく取れるラム型気体制御駆動部の粗動移動とを組み合わせた粗微動連動型気体制御駆動部160の構成を示す図である。基本的な構成は、図7の球面可動体連動ラム型気体制御駆動部150において、第1可動体を駆動する気体と独立に、第2可動体を駆動する気体を隙間量調整用気体供給口CP2から供給するようにしたものである。したがって、第1可動体162には制御気体供給口CP1から気体室116を経てその駆動用気体圧が供給され、球面可動体である第2可動体166の先端部122と気体受面124との間の隙間には、これと独立に連通気体供給路168を用いて隙間量調整用気体供給口CP2から隙間量調整用気体圧が供給される。球面座164およびこれに対応する曲面については、図5、図7で説明した内容と同様である。図7と同様の要素には同一の符号を付し、詳細な説明を省略する。 Example 5 is one embodiment of the present invention. FIG. 8 shows the configuration of the coarse / fine movement interlocking gas control drive unit 160 that combines the fine movement of the gap amount adjustment type gas control drive unit and the coarse movement of the ram type gas control drive unit that can take a larger amount of movement. FIG. The basic configuration is that, in the spherical movable body-linked ram-type gas control driving unit 150 of FIG. 7, the gas that drives the second movable body is supplied to the gap amount adjusting gas supply port independently of the gas that drives the first movable body. It is supplied from CP2. Therefore, the driving gas pressure is supplied to the first movable body 162 from the control gas supply port CP1 through the gas chamber 116, and the first movable body 166, which is a spherical movable body, has a tip 122 and a gas receiving surface 124. The gap amount adjusting gas pressure is supplied to the gap between the gap amount adjusting gas supply ports CP2 using the continuous ventilator supply path 168 independently of the gap. The spherical seat 164 and the curved surface corresponding thereto are the same as those described with reference to FIGS. Elements similar to those in FIG. 7 are denoted by the same reference numerals, and detailed description thereof is omitted.

なお、第2可動体166の先端部の気体供給路168には、図2で説明したと同様な絞り部120が設けられる。また、図示されていないが、気体供給路168が第1可動体162の球面座164と第2可動体166との間の隙間に開口する部分に絞り機構を設ける場合は、CP2からの気体を利用し、さらに、第2可動体166の先端部122からも流したいので、図4で説明した自成絞り78又は表面絞り80のいずれかを用いるのがよい。   Note that the gas supply path 168 at the tip of the second movable body 166 is provided with the throttle unit 120 similar to that described in FIG. Although not shown, when the throttle mechanism is provided in a portion where the gas supply path 168 opens in the gap between the spherical seat 164 and the second movable body 166 of the first movable body 162, the gas from the CP2 is supplied. In addition, since it is desired to flow from the front end portion 122 of the second movable body 166, either the self-formed aperture 78 or the surface aperture 80 described with reference to FIG.

このような構成の粗微動連動型気体制御駆動部160においては、制御部50の制御の下に制御気体圧供給口CP1から気体室116に制御気体圧が供給され、その気体圧に応じて第1可動体162を軸方向に移動させる駆動力が与えられる。そして、それと独立に、隙間量調整用気体供給口CP2から連通気体供給路168に導入された気体は、好ましくは図示されていない絞り機構を介して第1可動体162と第2可動体166との間の球面状隙間に流れ、また、第2可動体166の中の連通気体供給路168を通り絞り部120を介して第2可動体166の先端部122から矩形軸32の気体受面124に向かって流れ出す。 In the coarse / fine motion interlocking gas control driving unit 160 having such a configuration, the control gas pressure is supplied from the control gas pressure supply port CP1 to the gas chamber 116 under the control of the control unit 50, and the first control is performed according to the gas pressure. A driving force for moving the movable body 162 in the axial direction is applied. Independently of this, the gas introduced from the gap amount adjusting gas supply port CP2 into the continuous ventilation body supply path 168 is preferably supplied to the first movable body 162 and the second movable body 166 via a throttle mechanism (not shown). spherical gap flow in, also, the gas receiving the rectangular shaft 32 a continuous vent body supply path 168 from the tip 122 of the second movable member 166 through the passage Rishibo Ri unit 120 in the second movable member 166 between the It flows out toward the surface 124.

このとき、図で説明したように、他の気体制御駆動部より受ける押付力Fと釣り合ったところで、第1可動体162と第2可動体166との間の球面隙間、及び球面可動体である第2可動体166と矩形軸32との間の隙間量がそれぞれ定まる。したがって、制御部50は、他の気体制御駆動部より受ける押付力Fを計算に入れ、矩形軸32の必要変位量に対応した隙間量になるように、隙間量調整用気体圧を設定することになる。 At this time, as described with reference to FIG. 5 , the spherical clearance between the first movable body 162 and the second movable body 166 and the spherical movable body are balanced with the pressing force F received from the other gas control drive unit. The amount of a gap between a certain second movable body 166 and the rectangular shaft 32 is determined. Therefore, the control unit 50 sets the gas pressure for adjusting the gap amount so that the pressing force F received from the other gas control driving unit is calculated and the gap amount corresponding to the required displacement amount of the rectangular shaft 32 is obtained. become.

したがって、第2可動体166の先端部122は、第1可動体162の制御気体圧による移動量の比較的大きい粗動と、第2可動体166の隙間量調整用気体圧による精密に制御された微小移動量との和に相当する移動を行うことができる。そして、球面座164の作用によって矩形軸32の傾きに滑らかに追従しつつ、矩形軸32に接触することなく、駆動力を矩形軸32に伝達することができる。 Therefore, the distal end portion 122 of the second movable member 166 has a relatively large coarse movement amount by the control gas pressure of the first movable member 162 is precisely controlled by the gap amount adjustment gas pressure of the second movable member 166 The movement corresponding to the sum of the minute movement amounts can be performed. The driving force can be transmitted to the rectangular shaft 32 without touching the rectangular shaft 32 while smoothly following the inclination of the rectangular shaft 32 by the action of the spherical seat 164.

実施例6は、本発明の実施形態の1つである。図9は、隙間量調整型気体制御駆動部に、2つの連動する可動体を用いて、微小移動量の範囲を大きくする連動隙間量調整型気体制御駆動部170の構成を示す図である。基本的な構成は図5の隙間量調整型気体制御駆動部130と同じで、可動体が第1可動体172と、第2可動体176と分かれる。球面座174は第1可動体172の先端に設けられ、第2可動体176にはそれに対応する曲面が設けられる。これらについては、図5等で説明した内容と同様である。そして、隙間量調整用気体供給口CP2からの気体供給路も第1可動体172と第2可動体176とを連通する連通気体供給路178となる。図5と同様の要素には同一の符号を付し、詳細な説明を省略する。 Example 6 is one embodiment of the present invention. FIG. 9 is a diagram illustrating a configuration of an interlocking gap amount adjusting type gas control driving unit 170 that uses two interlocking movable bodies in the gap amount adjusting type gas control driving unit to increase the range of the minute movement amount. The basic configuration is the same as that of the gap amount adjustment type gas control driving unit 130 in FIG. 5, and the movable body is divided into a first movable body 172 and a second movable body 176. The spherical seat 174 is provided at the tip of the first movable body 172, and the second movable body 176 is provided with a curved surface corresponding thereto. These are the same as those described in FIG. The gas supply path from the gap amount adjusting gas supply port CP <b> 2 also serves as a communicating-air supply body 178 that connects the first movable body 172 and the second movable body 176. Elements similar to those in FIG. 5 are denoted by the same reference numerals, and detailed description thereof is omitted.

なお、第2可動体176の先端部の気体供給路178には、図2で説明したと同様な絞り部120が設けられる。また、図示されていないが、気体供給路178が本体部12と第1可動体172との間の隙間に開口する部分、及び第1可動体172の球面座174と第2可動体176との間の隙間に開口する部分にそれぞれ絞り機構を設ける場合は、CP2からの気体をそれぞれ利用し、さらに、第2可動体176の先端部122からも流したいので、図4で説明した自成絞り78又は表面絞り80のいずれかを用いるのがよい。   Note that the gas supply path 178 at the tip of the second movable body 176 is provided with the throttle unit 120 similar to that described in FIG. Although not shown, a portion where the gas supply path 178 opens in the gap between the main body portion 12 and the first movable body 172, and the spherical seat 174 and the second movable body 176 of the first movable body 172. When providing a diaphragm mechanism in each of the openings opened in the gaps between them, the gas from CP2 is used, and further, it is desired to flow from the tip 122 of the second movable body 176. Either 78 or surface stop 80 may be used.

このような構成の連動隙間量調整型気体制御駆動部170においては、制御部50の制御の下に隙間量調整用気体圧供給口CP2から隙間量調整用気体圧が供給され、その気体は、連通気体供給路178を通り、好ましくは図示されていない絞り機構を介し本体部12と第1可動体172との間の隙間に流れ、第1可動体172の中を通る連通気体供給路178から、好ましくは図示されていない絞り機構を介し第1可動体172と第2可動体176との間の球面状隙間に流れ、さらに第2可動体176の中を通る連通気体供給路178から絞り部120を介して第2可動体176の先端部122から矩形軸32の気体受面124に向かって流れ出す。 In the interlocking gap amount adjusting type gas control driving unit 170 having such a configuration, the gap amount adjusting gas pressure is supplied from the gap amount adjusting gas pressure supply port CP2 under the control of the control unit 50, and the gas is From the continuous ventilator supply path 178 that passes through the continuous ventilator supply path 178 and preferably flows through a narrowing mechanism (not shown) between the main body 12 and the first movable body 172 and passes through the first movable body 172. preferably flows in a spherical shape gap between the first movable member 172 through a diaphragm mechanism (not shown) and the second movable member 176, the diaphragm further interconnected porosity material feeding path 178 or et passing through the second movable member 176 It flows out from the front end portion 122 of the second movable body 176 toward the gas receiving surface 124 of the rectangular shaft 32 via the groove portion 120 .

このとき、図で説明したように、他の気体制御駆動部より受ける押付力Fと釣り合ったところで、本体部12と第1可動体172との間の隙間、第1可動体172と第2可動体176との間の球面隙間、及び球面可動体である第2可動体176と矩形軸32との間の隙間量がそれぞれ定まる。したがって、制御部50は、他の気体制御駆動部より受ける押付力Fを計算に入れ、矩形軸32の必要変位量に対応した隙間量になるように、隙間量調整用気体圧を設定することになる。 At this time, as described with reference to FIG. 5 , when the pressing force F received from another gas control drive unit is balanced, the gap between the main body 12 and the first movable body 172, the first movable body 172 and the second movable body 172. The spherical gap between the movable body 176 and the gap amount between the second movable body 176, which is a spherical movable body, and the rectangular shaft 32 are determined. Therefore, the control unit 50 sets the gas pressure for adjusting the gap amount so that the pressing force F received from the other gas control driving unit is calculated and the gap amount corresponding to the required displacement amount of the rectangular shaft 32 is obtained. become.

したがって、第2可動体176の先端部122は、第1可動体172の微小移動量と第2可動体176の微小移動量との和に相当する拡大された範囲の微小移動を行うことができる。そして、球面座174の作用によって矩形軸32の傾きに滑らかに追従しつつ、矩形軸32に接触することなく、駆動力を矩形軸32に伝達することができる。 Therefore, the distal end portion 122 of the second movable body 176 can perform a minute movement in an enlarged range corresponding to the sum of the minute movement amount of the first movable body 172 and the minute movement amount of the second movable body 176. . The driving force can be transmitted to the rectangular shaft 32 without touching the rectangular shaft 32 while smoothly following the inclination of the rectangular shaft 32 by the action of the spherical seat 174.

つぎに、複数の気体制御駆動部100の配置について説明する。実施例7は、本発明の実施形態の1つである。気体制御駆動部100としては、実施例1から実施例6で説明した気体制御部の中のいずれも用いることができる。複数の気体制御駆動部100と矩形軸32との相対的な配置は、気体制御回転移動装置10の回転方向、回転角度の範囲、移動量の範囲等に合わせ、様々な態様をとることが可能である。図10に、そのいくつかの例を示す。これらの図において、本体部12とテーブル30の矩形軸32とに対する配置関係を示すため、複数の気体制御駆動部はそれぞれ斜線で示してある。図10(a)に示す配置関係は、図1で説明したものと同じである。これら4つの気体制御駆動部は、矩形軸32の各辺に対応して1つずつ設けられ、向かい合う気体制御駆動部の駆動軸方向は、互いにオフセットを有している。このオフセットは、矩形軸32の各辺に対する各気体制御駆動部の駆動軸の位置が、図10(a)の紙面上で、矩形軸32の各辺の中心から反時計方向にずらした位置となっている。したがって、図10(a)の配置を用いることで、各気体制御駆動部を駆動させ、矩形軸32の各辺を押したとき、矩形軸32を反時計方向(CCW:Counter ClockWise)に回転させることができる。その意味で、気体制御駆動部にCCWの符号を付した。この場合図1に関連して説明したように、図示されていない適当な反力機構を用いることで、最小の数の気体制御駆動部を用い図10(a)の配置構成で、X−Y−θ移動を行うことができる。また、図1の説明で述べたように、この構成で、回転に加えて、XY平面内で矩形軸32の移動を行うことも可能である。 Next, the arrangement of the plurality of gas control driving units 100 will be described. Example 7 is one embodiment of the present invention. As the gas control drive unit 100, any of the gas control units described in the first to sixth embodiments can be used. The relative arrangement of the plurality of gas control driving units 100 and the rectangular shaft 32 can take various forms according to the rotation direction, the range of the rotation angle, the range of the movement amount, etc. of the gas control rotary movement device 10. It is. FIG. 10 shows some examples. In these drawings, a plurality of gas control drive units are indicated by diagonal lines in order to show the positional relationship between the main body 12 and the rectangular shaft 32 of the table 30. The arrangement relationship shown in FIG. 10A is the same as that described in FIG. One of these four gas control drive units is provided corresponding to each side of the rectangular shaft 32, and the drive axis directions of the gas control drive units facing each other are offset from each other. This offset is a position where the position of the drive shaft of each gas control drive unit with respect to each side of the rectangular shaft 32 is shifted counterclockwise from the center of each side of the rectangular shaft 32 on the paper surface of FIG. It has become. Therefore, by using the arrangement of FIG. 10A, when each gas control drive unit is driven and each side of the rectangular shaft 32 is pressed, the rectangular shaft 32 is rotated counterclockwise (CCW: Counter ClockWise). be able to. In that sense, the CCW code is attached to the gas control drive unit. In this case, as described with reference to FIG. 1, by using an appropriate reaction force mechanism (not shown), the arrangement of FIG. −θ movement can be performed. Further, as described in the explanation of FIG. 1, in addition to the rotation, it is possible to move the rectangular axis 32 in the XY plane with this configuration.

図10(b)は、矩形軸32を、紙面上で時計方向(CW:ClockWise)にも回転できるように、複数の気体制御駆動部を配置する例を示す図である。CCWの符号を付した気体制御駆動部を駆動することで、矩形軸32を反時計方向に回転でき、CWの符号を付した気体制御駆動部を駆動することで、矩形軸32を時計方向に回転できる。またこれらの組み合わせで、回転に加えて、XY平面内で矩形軸32の移動を行うことも可能である。 FIG. 10B is a diagram illustrating an example in which a plurality of gas control driving units are arranged so that the rectangular shaft 32 can be rotated clockwise (CW: ClockWise) on the paper surface. The rectangular shaft 32 can be rotated in the counterclockwise direction by driving the gas control drive unit labeled CCW, and the rectangular shaft 32 can be rotated in the clockwise direction by driving the gas control drive unit labeled CW. Can rotate. In addition to the rotation, it is also possible to move the rectangular axis 32 in the XY plane with these combinations.

この場合、上記のように、CWまたはCCWのみを駆動するようにしてもよく、各気体制御駆動部に標準気体圧を常に供給することで矩形軸32の位置を中立に維持し、移動又は回転のときに、各気体制御駆動部に標準気体圧からのプラス差圧又はマイナス差圧をさらに与えることとしてもよい。例えば、図10(b)において、CCWに対応する各気体制御駆動部に(標準気体圧+ΔP)を供給し、CWに対応する各気体制御駆動部に(標準気体圧−ΔP)を供給することで、矩形軸32を、反時計方向に回転できる。このときは、標準気体圧を中心に、向かい合う各気体制御駆動部がお互いに反力を及ぼし合っているので、図10(a)で必要である反力機構を特に必要としない。なお、反力機構を特に必要としないことは、以下の図10(c),(d),(e)の場合も同じである。   In this case, as described above, only the CW or CCW may be driven, and the standard gas pressure is always supplied to each gas control drive unit to maintain the position of the rectangular shaft 32 in a neutral position, so that it moves or rotates. At this time, a positive differential pressure or a negative differential pressure from the standard gas pressure may be further applied to each gas control drive unit. For example, in FIG. 10B, (standard gas pressure + ΔP) is supplied to each gas control drive unit corresponding to CCW, and (standard gas pressure−ΔP) is supplied to each gas control drive unit corresponding to CW. Thus, the rectangular shaft 32 can be rotated counterclockwise. At this time, since each gas control drive unit facing each other exerts a reaction force on the basis of the standard gas pressure, the reaction force mechanism required in FIG. 10A is not particularly required. The fact that the reaction force mechanism is not particularly required is the same in the following FIGS. 10C, 10D, and 10E.

図10(c)は、矩形軸32の辺の中央に駆動軸方向を有する気体制御駆動部を配置する例を示すもので、この種類の気体制御駆動部には中立(Nutral)の意味でNの符号を付してある。Nの符号を付した気体制御駆動部は、それに向かい合うCW,CCWの符号を付した気体制御駆動部に対し、紙面上での時計方向、反時計方向の駆動の効果的な支点として用いることができる。また、XY平面内で矩形軸32の移動を行うときも便利である。 FIG. 10 (c), shows an example of placing a gas control driver having a drive shaft direction in the center of the sides of the rectangular shaft 32, N in terms of the neutral to the gas control driver of this type (Nutral) The code | symbol is attached | subjected. The gas control drive unit labeled N is used as an effective fulcrum for driving clockwise and counterclockwise on the paper surface with respect to the gas control drive units labeled CW and CCW facing each other. it can. It is also convenient when moving the rectangular axis 32 in the XY plane.

図10(d),(e)は、CW,CCW,Nの各種類の気体制御駆動部を組み合わせ配置する他の例を示す図である。このように、気体制御回転移動装置10の仕様に応じ、複数の気体制御駆動部について様々な態様をとることが可能である。   FIGS. 10D and 10E are diagrams showing another example in which gas control drive units of CW, CCW, and N are combined and arranged. As described above, various modes can be adopted for the plurality of gas control drive units in accordance with the specifications of the gas control rotary movement device 10.

実施例8は、本発明の実施形態の1つである。図11は、粗微動連動型気体制御駆動部160を用いた気体制御回転移動装置180の断面図である。粗微動連動型気体制御駆動部160の内部構成は図8に関連して説明した内容であるので、各要素の符号を省略した。また、図1と同様の要素については同一の符号を付し詳細な説明を省略する。 Example 8 is one embodiment of the present invention. FIG. 11 is a cross-sectional view of a gas control rotary movement device 180 using the coarse / fine movement interlocking gas control drive unit 160. Since the internal configuration of the coarse / fine movement interlocking type gas control driving unit 160 has the contents described in relation to FIG. 8, the reference numerals of the respective elements are omitted. Moreover, the same code | symbol is attached | subjected about the element similar to FIG. 1, and detailed description is abbreviate | omitted.

図11において、本体部12の上下面には、テーブル30のステージ34の裏面に向かって気体を噴出させ、気体軸受作用でステージ34を本体部12の上下面から浮上させるための気体軸受用気体供給口SBと、その排気口EXとが設けられる。粗微動連動型気体制御駆動部160と矩形軸32との間も気体により駆動力が伝達されるので、これとあいまって、テーブル30は、全体として本体部12と接触しない。   In FIG. 11, gas for gas bearings is formed on the upper and lower surfaces of the main body portion 12 to eject gas toward the back surface of the stage 34 of the table 30 and to float the stage 34 from the upper and lower surfaces of the main body portion 12 by the gas bearing action. A supply port SB and its exhaust port EX are provided. Since the driving force is transmitted by the gas also between the coarse / fine movement interlocking gas control driving unit 160 and the rectangular shaft 32, the table 30 does not contact the main body 12 as a whole.

この気体制御回転移動装置180においては、制御部50から、各粗微動連動型気体制御駆動部160の、制御気体供給口CP1と、隙間制御用気体供給口CP2とに、それぞれ所定の気体圧の気体が供給される。制御気体供給口CP1に供給される気体圧は、粗動駆動用の気体圧で、要求される駆動力を第1可動体の気体受面積で徐した値を基準に設定される。隙間制御用気体供給口CP2に供給される気体圧は、微小駆動用の気体圧で、他の気体制御駆動部より受ける押付力F1又はF2を計算に入れ、矩形軸32の必要微小変位量に対応した隙間量になるように設定される。 In the gas control rotary movement device 180, a predetermined gas pressure is supplied from the control unit 50 to each of the control gas supply port CP1 and the gap control gas supply port CP2 of each coarse / fine movement interlocking type gas control drive unit 160. Gas is supplied. The gas pressure supplied to the control gas supply port CP1 is a gas pressure for coarse movement driving, and is set based on a value obtained by grading the required driving force by the gas receiving area of the first movable body. The gas pressure supplied to the gap control gas supply port CP2 is a gas pressure for minute driving, and the pressing force F1 or F2 received from the other gas control driving unit is taken into account to obtain the necessary minute displacement amount of the rectangular shaft 32. It is set to have a corresponding gap amount.

例えば、粗微動連動型気体制御駆動部160の先端部において、矩形軸を元の位置から1mm+2μm移動させることが要求されるとすると、1mmの移動駆動を制御気体供給口CP1からの気体圧によって行わせ、2μmの移動駆動を隙間制御用気体供給口CP2からの気体圧によって行わせることができる。上記の例で、粗動の1mmの移動については、μmレベルの制御が困難なことがあり、1mm+2μmの移動に対応する角度変化を精密に制御するためには、センサ40+測定部42のデータを制御部50にフィードバックすることが好ましい。また、回転に加えて、XY平面内でテーブルを粗微小移動することもできる。   For example, if it is required to move the rectangular axis by 1 mm + 2 μm from the original position at the tip of the coarse / fine movement interlocking gas control driving unit 160, 1 mm movement driving is performed by the gas pressure from the control gas supply port CP1. Therefore, the 2 μm movement drive can be performed by the gas pressure from the gap control gas supply port CP2. In the above example, the movement of 1 mm of coarse movement may be difficult to control at the μm level, and in order to precisely control the angle change corresponding to the movement of 1 mm + 2 μm, the data of the sensor 40 + measurement unit 42 is used. It is preferable to feed back to the control unit 50. Further, in addition to rotation, the table can be moved roughly in the XY plane.

実施例9は、本発明の実施形態ではないが、本発明の参考となる参考例の1つである。 図12は、隙間量調整型気体制御駆動部130を用いた気体制御回転移動装置190の断面図である。隙間量調整型気体制御駆動部130は図5に関連して説明した内容であるので、各要素の符号を省略した。また、図11と同様の要素については同一の符号を付し詳細な説明を省略する。 Example 9 is not an embodiment of the present invention, but is one of reference examples for reference of the present invention. FIG. 12 is a cross-sectional view of the gas control rotary movement device 190 using the gap amount adjustment type gas control drive unit 130. Since the gap amount adjusting type gas control driving unit 130 has the contents described in relation to FIG. 5, the reference numerals of the respective elements are omitted. The same elements as those in FIG. 11 are denoted by the same reference numerals, and detailed description thereof is omitted.

この気体制御回転移動装置190においては、制御部50から、各隙間量調整型気体制御駆動部130の隙間制御用気体供給口CP2に、微小駆動用の隙間量調整用気体圧が供給される。この隙間量調整用気体圧は、他の気体制御駆動部より受ける押付力F1又はF2を計算に入れ、矩形軸32の必要微小変位量に対応した隙間量になるように設定される。 In the gas control rotary movement device 190 , the gap amount adjusting gas pressure for minute driving is supplied from the control unit 50 to the gap control gas supply port CP2 of each gap amount adjusting type gas control driving unit 130. This gap amount adjusting gas pressure is set so that the pressing force F1 or F2 received from the other gas control driving unit is taken into account and the gap amount corresponds to the required minute displacement amount of the rectangular shaft 32.

例えば、隙間量調整型気体制御駆動部130の先端部において、矩形軸を元の位置から2μm移動させることが要求されるとすると、隙間量調整型気体制御駆動部130の先端部と、これに対応する矩形軸32の辺との間の隙間を、押付力F1又はF2に抗して、2μm増加させるのに必要な気体圧の気体が制御部50によって生成制御され、隙間制御用気体供給口CP2に供給される。このようにして、2μ移動に対応する微小角度の回転をテーブル30に行わせることができる。また、回転に加えて、XY平面内でテーブルを微小移動することもできる。隙間量制御は、特に必要がなければ、オープンループの制御で十分なので、センサ40+測定部42のデータを制御部50にフィードバックしなくてもよい。 For example, if it is required to move the rectangular axis by 2 μm from the original position at the tip of the gap amount adjustment type gas control drive unit 130, the tip of the gap amount adjustment type gas control drive unit 130, and A gas having a gas pressure necessary to increase the gap between the corresponding sides of the rectangular shafts 32 by 2 μm against the pressing force F1 or F2 is generated and controlled by the control unit 50, and the gap control gas supply port Supplied to CP2. In this way, the table 30 can be rotated by a minute angle corresponding to 2 μm movement. Also it is in addition to rotating, also a table to infinitesimal movement in the XY plane. If the gap amount control is not particularly necessary, the open loop control is sufficient, and therefore the data of the sensor 40 + measurement unit 42 need not be fed back to the control unit 50.

図11、図12は、代表的な構成の気体制御回転移動装置について説明したが、気体制御駆動部の種類をこれらに用いたものと異なる種類のものに代えて構成することもできる。また、上記では、テーブルは矩形軸を有するものとしたが、辺の数は4に限られず、多角形軸であってもよく、また円筒軸の円周に沿って適当な間隔で複数の気体受面を設けることとしてもよい。   11 and 12 have described the gas control rotary movement device having a typical configuration, but the type of the gas control drive unit may be replaced with a different type from those used for these. In the above description, the table has a rectangular axis. However, the number of sides is not limited to four, and may be a polygonal axis. A plurality of gases may be arranged at appropriate intervals along the circumference of the cylindrical axis. A receiving surface may be provided.

本発明に係る実施の形態における気体制御回転移動装置の平面図および側面断面図である。It is the top view and side sectional view of a gas control rotation movement device in an embodiment concerning the present invention. 参考例としてのラム型気体制御駆動部の構成を示す図である。It is a figure which shows the structure of the ram type gas control drive part as a reference example . 本発明に係る実施の形態において、絞り部として好ましい2つの例を示す図である。In embodiment which concerns on this invention, it is a figure which shows two examples preferable as an aperture_diaphragm | restriction part. 本発明に係る実施の形態において、用いることができるその他の絞り部の例を示す図である。It is a figure which shows the example of the other aperture_diaphragm | restriction part which can be used in embodiment which concerns on this invention. 参考例としての隙間量調整型気体制御駆動部の構成を示す図である。It is a figure which shows the structure of the gap | interval amount adjustment type gas control drive part as a reference example . 参考例としての連動ラム型気体制御駆動部の構成を示す図である。It is a figure which shows the structure of the interlocking ram type gas control drive part as a reference example . 参考例としての球面可動体連動ラム型気体制御駆動部を示す図である。It is a figure which shows the spherical surface movable body interlock | cooperated ram type gas control drive part as a reference example . 本発明に係る実施の形態において、粗微動連動型気体制御駆動部の構成を示す図である。In embodiment which concerns on this invention, it is a figure which shows the structure of a coarse / fine movement interlocking type | mold gas control drive part. 本発明に係る実施の形態において、連動隙間量調整型気体制御駆動部の構成を示す図である。In embodiment which concerns on this invention, it is a figure which shows the structure of the interlocking gap amount adjustment type | mold gas control drive part. 本発明に係る実施の形態における複数の気体制御駆動部の配置について説明する図である。It is a figure explaining arrangement | positioning of the several gas control drive part in embodiment which concerns on this invention. 本発明に係る実施の形態において、粗微動連動型気体制御駆動部を用いた気体制御回転移動装置の断面図である。In embodiment which concerns on this invention, it is sectional drawing of the gas control rotation moving apparatus using the coarse / fine movement interlocking type | mold gas control drive part. 参考例としての隙間量調整型気体制御駆動部を用いた気体制御回転移動装置の断面図である。It is sectional drawing of the gas control rotation moving apparatus using the gap | interval amount adjustment type gas control drive part as a reference example .

符号の説明Explanation of symbols

10,180,190 気体制御回転移動装置、12 本体部、14 支持穴、30 テーブル、32 矩形軸、34 ステージ、40 センサ、42 測定部、50 制御部、60,114 可動体、62 気体供給路、64 ポケット開口、66 対象物、68,124 気体受面、69 気体受壁、72 円環板、74 円板、76 多孔質材料、78 自成絞り、80 表面絞り、82 ポケット絞り、100 気体制御駆動部、110 ラム型気体制御駆動部、112 案内、116 気体室、118,136 気体供給路、120 絞り部、122 先端部、130 隙間量調整型気体制御駆動部、132,154,164,174 球面座、134 球面可動体、140 連動ラム型気体制御駆動部、144,152,162,172 第1可動体、146,156,166,176 第2可動体、148,158,168,178 連通気体供給路、150 球面可動体連動ラム型気体制御駆動部、160 粗微動連動型気体制御駆動部、170 連動隙間量調整型気体制御駆動部。   10, 180, 190 Gas control rotary movement device, 12 body part, 14 support hole, 30 table, 32 rectangular shaft, 34 stage, 40 sensor, 42 measurement part, 50 control part, 60, 114 movable body, 62 gas supply path , 64 pocket opening, 66 object, 68,124 gas receiving surface, 69 gas receiving wall, 72 circular plate, 74 disc, 76 porous material, 78 self-contained diaphragm, 80 surface diaphragm, 82 pocket diaphragm, 100 gas Control drive unit, 110 Ram type gas control drive unit, 112 Guide, 116 Gas chamber, 118, 136 Gas supply path, 120 Throttle unit, 122 Tip, 130 Gap amount adjustment type gas control drive unit, 132, 154, 164 174 spherical seat, 134 spherical movable body, 140 interlocking ram type gas control drive unit, 144, 152, 162, 172 first movable body, 46, 156, 166, 176 Second movable body, 148, 158, 168, 178 Continuous ventilation body supply path, 150 Spherical movable body interlocking ram type gas control driving part, 160 Coarse / fine motion interlocking type gas control driving part, 170 Interlocking gap amount Adjustable gas control drive.

Claims (5)

基台である本体部と、
多角形軸を有し、前記本体部に対し前記多角形軸の軸方向に垂直な平面内で移動可能なテーブルと、
前記テーブルの前記多角形軸の各辺に対応してそれぞれ設けられる複数の駆動部であって、各駆動部は、
前記多角形軸に向かって連動して移動する可動体として、底面が前記本体部に向かい合い先端に球面座を有する第1可動体と、先端面が前記多角形軸の対応する前記辺に向かい合い底面が前記第1可動体の前記球面座に対応する曲面を有する第2可動体とを含み前記多角形軸の対応する前記辺を気体受面として、前記第2可動体の前記先端面と前記気体受面との間に供給される気体を介して前記多角形軸を非接触で駆動する複数の気体制御駆動部と、
前記各気体制御駆動部の駆動を協働的に制御し、前記テーブルの前記平面内移動また前記多角形軸の前記軸周りの任意角度の回転の少なくともいずれか1の制御を含む制御部と、
を備え、
前記各気体制御駆動部は、
前記本体部と前記第1可動体の底面との間の隙間、前記第1可動体の前記球面座と前記第2可動体の底面との間の隙間、及び前記第2可動体の前記先端前記気体受面との間の隙間にそれぞれ気体を供給する気体供給路を含み、
前記制御部は、前記気体供給路に供給する気体圧を隙間量調整用気体圧として制御し、他の前記気体制御駆動部より受ける押付力と釣り合わせつつ、前記本体部と前記第1可動体の底面との間の隙間量、前記第1可動体の前記球面座と前記第2可動体の底面との間の隙間量、及び前記第2可動体の前記先端面と前記気体受面との間の隙間量を調整して前記テーブルを前記平面内の微小移動また前記軸周りの微小回転させることを特徴とする気体制御回転移動装置。
A main body that is a base;
A table having a polygonal axis and movable in a plane perpendicular to the axial direction of the polygonal axis with respect to the main body ;
A plurality of driving portions provided corresponding to the respective sides of the polygon axis of the table, each of the drive unit,
Examples movable body that moves in conjunction toward the polygonal shaft, confronts the side and first movable body, the distal end surface corresponding the polygonal shaft with a spherical seat on the tip face each bottom to the main body portion, bottom and a second movable member having a curved surface corresponding to the spherical seat of the first movable body, as said corresponding side of the gas receiving surface of the polygonal shaft, and the distal end surface of the second movable member a plurality of gas control driver you drive the polygonal shaft in a non-contact manner via a gas supplied between said gas receiving surface,
The controls to drive the cooperative of each gas control driver, the or plane movement of the table and a control unit including at least one first control rotation of any angle around the axis of the polygonal shaft ,
With
Each gas control driving unit,
Clearance between the bottom surface of the first movable member and the body portion, the distal end surface of the gap, and the second movable member between said spherical seat and the bottom surface of the second movable member of the first movable body and includes a gas supply passage for supplying the respective gas into the gap between the gas-receiving surface,
Wherein the control unit, the gas pressure supplied to the gas supply passage to control a gap amount adjustment pneumatic, while balanced with the pressing force received from the other of the gas control driver, the first movable member and the body portion the amount of clearance between the bottom surface, the amount of clearance between the spherical seat and the bottom surface of the second movable member of the first movable member, and the distal end surface of the second movable member and with said gas receiving surface gas control rotational movement apparatus to said table by adjusting the gap amount or small movement of the plane, characterized in that for the fine rotation about said axis between.
基台である本体部と、
多角形軸を有し、前記本体部に対し前記多角形軸の軸方向に垂直な平面内で移動可能なテーブルと、
前記テーブルの前記多角形軸の各辺に対応してそれぞれ設けられる複数の駆動部であって、各駆動部は、
前記本体部に設けられる案内部と、
前記案内部の軸方向に沿って案内され前記多角形軸に向かって連動して移動する複数の可動体として、前記案内部の底部側から粗動駆動用の制御気体圧を受ける底面と先端に球面座を有する第1可動体と、前記多角形軸の各辺を気体受面として、前記気体受面と前記第1可動体の間に配置され、先端が前記先端面で、底面が前記第1可動体の前記球面座に対応する曲面を有する第2可動体とを含み、前記先端面と前記気体受面との間に供給される気体を介して前記多角形軸を非接触で駆動する複数の気体制御駆動部と、
前記各気体制御駆動部の駆動を協働的に制御し、前記テーブルの前記平面内移動または前記多角形軸の前記軸周りの任意角度の回転の少なくともいずれか1の制御を含む制御部と、
を備え、
前記各気体制御駆動部は、
前記第1可動体を粗動駆動する気体として、前記第1可動体の底面に向けて前記制御気体圧を有する気体を供給する制御気体圧供給口と、
前記第1可動体に対し前記第2可動体を微小移動駆動する気体として、前記制御気体圧とは独立の気体圧の隙間量調整用気体圧を有する気体を、前記第1可動体の前記球面座前記第2可動体の底面との間の隙間、及び前記第2可動体の前記先端面と前記気体受面との間の隙間にそれぞれ供給する連通気体供給路と、を含み、
前記制御部は、前記第1可動体の前記粗動駆動とは独立に、前記連通気体供給路に供給する前記隙間量調整用気体圧を制御し、他の前記気体制御駆動部より受ける押付力と釣り合わせつつ、前記第1可動体の前記球面座と前記第2可動体の底面との間の隙間量、及び前記第2可動体の前記先端面と前記気体受面との間の隙間量とを調整して前記テーブルを前記平面内の微小移動または前記軸周りの微小回転させることを特徴とする気体制御回転移動装置。
A main body that is a base;
A table having a polygonal axis and movable in a plane perpendicular to the axial direction of the polygonal axis with respect to the main body;
A plurality of driving units respectively provided corresponding to each side of the polygon axis of the table, each driving unit,
A guide part provided in the main body part;
As a plurality of movable bodies that are guided along the axial direction of the guide portion and move in conjunction with the polygonal axis, a bottom surface and a front end that receive a control gas pressure for coarse driving from the bottom side of the guide portion. a first movable member having a spherical seat, as a gas receiving surface of each side of the polygonal shaft, the disposed between the gas receiving face and the first movable member, the tip is at the front end surface, the bottom surface first and a second movable member having a curved surface corresponding to the spherical seat of the first movable body, for driving said polygonal shaft via a gas supplied between the gas receiving surface and said tip surface in a non-contact A plurality of gas control drive units;
A control unit that cooperatively controls driving of each of the gas control driving units, and includes at least one control of the in-plane movement of the table or rotation of the polygonal axis around the axis;
With
Each gas control drive unit is
A control gas pressure supply port for supplying a gas having the control gas pressure toward the bottom surface of the first movable body as a gas for coarsely driving the first movable body;
Said second movable member against the first movable member as a gas to drive fine movement, the gas having a gap amount adjustment pneumatic independent gas pressure from said control gas pressure, the spherical surface of the first movable body clearance between the bottom of the the seat second movable member, and includes a communicating vent member supply passage gap Niso respectively supplied between the distal end surface and the gas receiving surface of the second movable member ,
Wherein, independently of the coarse drive of the first movable member, the communicating vent body the controls gap amount adjustment gas pressure supplied to the supply passage, the pressing force received from the other of the gas control driver while mated with the gap amount between the gap amount, and the said front end surface of the second movable member and said gas receiving surface between said spherical seat and the bottom surface of the second movable member of the first movable body preparative gas control rotational movement and wherein the said table and adjust it to a small rotation around the minute movement or the axis of the plane of.
請求項1または請求項2に記載の気体制御回転移動装置において、
前記テーブルの回転移動を検出し前記制御部に出力するセンサを備えることを特徴とする気体制御回転移動装置。
In the gas control rotation movement device according to claim 1 or 2 ,
Gas control rotational movement device, characterized in that it comprises a sensor for outputting to the control unit detects the rotation movement of the table.
移動対象物に対する基台である本体部と、
前記移動対象物に向かい合って設けられる可動部であって、前記移動対象物に向かって連動して移動する複数の可動体として、底面が前記本体部に向かい合い先端に球面座を有する第1可動体と、先端面が前記移動対象物に向かい合い、底面が前記第1可動体の前記球面座に対応する曲面を有する第2可動体を含み、前記移動対象物の面を気体受面として、前記第2可動体の前記先端面と前記気体受面との間に供給される気体を介して前記移動対象物を非接触で駆動する可動部と、
前記本体部と前記第1可動体の底面との間の隙間、前記第1可動体の前記球面座と前記第2可動体の底面との間の隙間、及び前記第2可動体の前記先端前記気体受面との間の隙間にそれぞれ気体を供給する気体供給路と、
前記気体受面に向かって前記各隙間の気体を圧縮しつつ前記移動対象物と前記可動部とを押し付ける押付力発生部と、
前記気体供給路に供給する気体圧を隙間量調整用気体圧として制御し、前記押付力と釣り合わせつつ、前記本体部と前記第1可動体の底面との間の隙間量、前記第1可動体の前記球面座と前記第2可動体の底面との間の隙間量、及び前記第2可動体の前記先端前記気体受面との間の隙間量を調整して前記移動対象物を微小移動させる制御部と、
を備えることを特徴とする気体制御アクチュエータ。
A main body that is a base for a moving object;
A movable part provided to face the moving object, wherein the first movable body has a bottom surface facing the body part and a spherical seat at the tip as a plurality of movable bodies that move in conjunction with the moving object. And a second movable body having a tip surface facing the moving object and a bottom surface having a curved surface corresponding to the spherical seat of the first movable body, the surface of the moving object as a gas receiving surface, A movable part that drives the moving object in a non-contact manner through a gas supplied between the tip surface of the second movable body and the gas receiving surface ;
Clearance between the bottom surface of the first movable member and the body portion, the distal end surface of the gap, and the second movable member between said spherical seat and the bottom surface of the second movable member of the first movable body a gas supply channel for supplying gas respectively in the gap between said gas receiving surface,
A pressing force generating unit for pressing said toward said gas receiving surface with the gas the moving object while compressing the each gap between the movable portion,
The gas pressure supplied to the gas supply passage to control the gap size adjusting gas pressure, while balanced with the pressing force, amount of clearance between the bottom surface of the first movable body and the main body portion, said first movable amount of clearance between the spherical seat and the bottom surface of the second movable member body, and the gap amount and the moving object to adjust the between the front end surface and the gas receiving surface of the second movable member A control unit for minute movement,
A gas control actuator comprising:
移動対象物に対する基台である本体部と、
前記本体部に設けられる案内部と、
前記案内部の軸方向に沿って案内され前記移動対象物に向かって連動して移動する可動部であって、粗動駆動用の制御気体圧を受ける底面と先端に球面座を有する第1可動体と、前記移動対象物の面を気体受面として、前記気体受面と前記第1可動体との間に配置され、先端面が前記気体受面に向かい合い底面が前記第1可動体の前記球面座に対応する曲面を有する第2可動体とを含み、前記先端面と前記気体受面との間に供給される気体を介して前記移動対象物を非接触で駆動する可動部と、
前記案内部の底面に設けられ、前記第1可動体を粗動駆動する気体として前記制御気体圧を有する気体を前記第1可動体の底面に向けて供給する制御気体圧供給口と、
前記第1可動体に対し前記第2可動体を微小移動駆動する気体として、前記制御気体圧とは独立の気体圧の隙間量調整用気体圧を有する気体を、前記第1可動体の前記球面座前記第2可動体の底面との間の隙間、及び前記第2可動体の前記先端面と前記気体受面との間の隙間に、それぞれ供給する連通気体供給路と、
前記気体受面に向かって前記各隙間の気体を圧縮しつつ前記移動対象物と前記可動部とを押し付ける押付力発生部と、
前記第1可動体の前記粗動駆動とは独立に、前記連通気体供給路に供給する前記隙間量調整用気体圧を制御し、前記押付力と釣り合わせつつ、前記第1可動体の前記球面座と前記第2可動体の底面との間の隙間量、及び前記第2可動体の前記先端面と前記気体受面との間の隙間量とを調整して前記移動対象物を微小移動させる制御部と、
を備えることを特徴とする気体制御アクチュエータ。
A main body that is a base for a moving object;
A guide part provided in the main body part;
A movable portion that is guided along the axial direction of the guide portion and moves in conjunction with the moving object, the first movable portion having a bottom surface that receives a control gas pressure for coarse driving and a spherical seat at the tip. and body, as a gas receiving surface to a surface of the moving object, wherein disposed between the gas receiving surface and said first movable member, the tip end surface confronts the gas receiving surface, bottom surface of the first movable body A second movable body having a curved surface corresponding to the spherical seat, and a movable portion that drives the moving object in a non-contact manner through a gas supplied between the tip surface and the gas receiving surface;
A control gas pressure supply port that is provided on the bottom surface of the guide portion and supplies gas having the control gas pressure toward the bottom surface of the first movable body as a gas for coarsely driving the first movable body;
Said second movable member against the first movable member as a gas to drive fine movement, the gas having a gap amount adjustment pneumatic independent gas pressure from said control gas pressure, the spherical surface of the first movable body clearance between the bottom of the the seat second movable member, and the gap between the front end surface and the gas receiving surface of the second movable member, the communicating vent body supply path for supplying respectively,
A pressing force generating unit for pressing said toward said gas receiving surface with the gas the moving object while compressing the each gap between the movable portion,
Independently of the coarse drive of the first movable member, said controlling the communication vent body the gap amount adjusting gas pressure supplied to the supply path, while balanced with the pressing force, the spherical surface of the first movable body amount of clearance between the bottom of the the seat second movable body, and is slightly moved to the moving object by adjusting the amount of clearance between the tip surface and the gas receiving surface of the second movable member A control unit;
A gas control actuator comprising:
JP2005020947A 2005-01-28 2005-01-28 Gas control rotary movement device and gas control actuator Active JP4740605B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005020947A JP4740605B2 (en) 2005-01-28 2005-01-28 Gas control rotary movement device and gas control actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005020947A JP4740605B2 (en) 2005-01-28 2005-01-28 Gas control rotary movement device and gas control actuator

Publications (3)

Publication Number Publication Date
JP2006210659A JP2006210659A (en) 2006-08-10
JP2006210659A5 JP2006210659A5 (en) 2008-03-13
JP4740605B2 true JP4740605B2 (en) 2011-08-03

Family

ID=36967156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005020947A Active JP4740605B2 (en) 2005-01-28 2005-01-28 Gas control rotary movement device and gas control actuator

Country Status (1)

Country Link
JP (1) JP4740605B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2003846A (en) * 2008-12-19 2010-06-22 Asml Netherlands Bv Lithographic apparatus with gas pressure means for controlling a planar position of a patterning device contactless.
EP2221668B1 (en) 2009-02-24 2021-04-14 ASML Netherlands B.V. Lithographic apparatus and positioning assembly

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5388440A (en) * 1977-01-14 1978-08-03 Hitachi Ltd Static pressure bearing guide
JPS53121569A (en) * 1977-03-31 1978-10-24 Toshiba Corp Vapor growth method
JPS5687318A (en) * 1979-12-18 1981-07-15 Toshiba Corp Finely movable table
JPS59129636A (en) * 1983-01-10 1984-07-26 Hitachi Ltd Controller of stage with freedom of six
JPS6022239A (en) * 1983-07-18 1985-02-04 Fujitsu Ltd Voice data editing system
JPH061956B2 (en) * 1984-08-10 1994-01-05 九州日立マクセル株式会社 Charging circuit
JPS62147433A (en) * 1985-12-20 1987-07-01 Matsushita Electric Ind Co Ltd Relieving method for line defect of liquid crystal display panel
JPS62156425A (en) * 1985-12-28 1987-07-11 Fudo Constr Co Ltd Driving work of shield plate
JPS63245347A (en) * 1987-03-31 1988-10-12 Sumitomo Heavy Ind Ltd Minute drive structure
JPH029550A (en) * 1988-12-21 1990-01-12 Hitachi Ltd Driving device for six-degree-freedom fine moving stage
JPH09317767A (en) * 1996-05-28 1997-12-09 Nippon Seiko Kk Positioning device
JPH10148204A (en) * 1996-11-18 1998-06-02 Ckd Corp Actuator

Also Published As

Publication number Publication date
JP2006210659A (en) 2006-08-10

Similar Documents

Publication Publication Date Title
JP2010096311A (en) Hydrostatic bearing pad, linear guide apparatus, and rotation guide apparatus
JPH07111238A (en) Self-weight support device
JPS63285303A (en) Multiple port valve
JP4740605B2 (en) Gas control rotary movement device and gas control actuator
JP4106392B2 (en) Gas pressure control actuator, gas bearing mechanism for gas pressure control actuator, and minute displacement output device using gas pressure control actuator
US6881918B2 (en) Electric discharge machining apparatus
JP5084580B2 (en) Mobile device
JP2017133593A (en) Fluid pressure actuator
JP2017009068A (en) Fluid pressure actuator
JP2009068555A (en) Fluid bearing structure and assembling method of fluid bearing
JP2006153140A (en) Minute flow rate controller
JP4171666B2 (en) Actuator capable of linear and rotary motion
JP4607658B2 (en) Gas control actuator
US9151369B2 (en) Aerostatic air bearing, assembling method thereof, and aerostatic lead screw actuator using the same
JP4845114B2 (en) Spindle device
JP2004011686A (en) Air bearing
JP5994298B2 (en) Moving table equipment
JP4807680B2 (en) Hydrostatic joint
JP4529127B2 (en) Support device and processing machine
JP5239397B2 (en) Balance cylinder device
JP2005351312A (en) Moving mechanism
JP2009063046A (en) Gas pressure control actuator
JP7158815B2 (en) rotary table device
JP2019202358A (en) Grinding device
JP2006057719A (en) Nozzle flapper valve

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080125

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110419

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110502

R150 Certificate of patent or registration of utility model

Ref document number: 4740605

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250