JPH029550A - Driving device for six-degree-freedom fine moving stage - Google Patents

Driving device for six-degree-freedom fine moving stage

Info

Publication number
JPH029550A
JPH029550A JP63320646A JP32064688A JPH029550A JP H029550 A JPH029550 A JP H029550A JP 63320646 A JP63320646 A JP 63320646A JP 32064688 A JP32064688 A JP 32064688A JP H029550 A JPH029550 A JP H029550A
Authority
JP
Japan
Prior art keywords
stage
axis
wafer
freedom
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63320646A
Other languages
Japanese (ja)
Inventor
Naoto Nakajima
直人 中島
Minoru Ikeda
稔 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63320646A priority Critical patent/JPH029550A/en
Publication of JPH029550A publication Critical patent/JPH029550A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70716Stages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q1/00Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
    • B23Q1/25Movable or adjustable work or tool supports
    • B23Q1/44Movable or adjustable work or tool supports using particular mechanisms
    • B23Q1/50Movable or adjustable work or tool supports using particular mechanisms with rotating pairs only, the rotating pairs being the first two elements of the mechanism
    • B23Q1/54Movable or adjustable work or tool supports using particular mechanisms with rotating pairs only, the rotating pairs being the first two elements of the mechanism two rotating pairs only
    • B23Q1/545Movable or adjustable work or tool supports using particular mechanisms with rotating pairs only, the rotating pairs being the first two elements of the mechanism two rotating pairs only comprising spherical surfaces
    • B23Q1/5462Movable or adjustable work or tool supports using particular mechanisms with rotating pairs only, the rotating pairs being the first two elements of the mechanism two rotating pairs only comprising spherical surfaces with one supplementary sliding pair

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Details Of Measuring And Other Instruments (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Machine Tool Units (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PURPOSE:To improve positioning rigidity and to improve controllability by a method wherein six sets of feed mechanisms are independently formed so that fine movement in the directions of an X-axis, a Y-axis, and a Z-axis of a fine moving state, and fine rotation around the Z-axis, the Z-axis, and the U-axis are controllable. CONSTITUTION:A stage 42 is pressed through the force of a spring 47 and a nut member 44 is pressed through a floating pad 43 with the aid of a single pulse motor 46 to perform positioning in a direction X. Similarly, a nut member 58 is pressed through a floating pad 57 through the force of a spring 61 with the aid of two pulse motors 60 to perform positioning in a direction Y. A feed mechanism in the direction of the X-axis is formed with three pulse motors 52. A wafer 4 is vacuum-adsorbed on the upper surface of a stage 42, and a displacement amount of the surface of the wafer 4 from the focus point surface of a reflection projection optical system 7 is detected in relation to nine detecting points 56 by means of an electrostatic volume type proximity sensor 54. From the displacement amount, displacement and inclination between the similar plane of the surface of the wafer 4 and the focus point surface of the optical system 7 are determined, the three motors 52 are run, and a stage 42 is moved vertically and inclined for correction.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ステージに対して6自由度でもって精密な微
動制御を可能にした6自由度微動ステージの駆動装置に
関するものである。特に本発明は投光式露光装置の基板
位置ぎめ機構として好適である。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a driving device for a six-degree-of-freedom fine movement stage that enables precise fine-movement control of the stage with six degrees of freedom. In particular, the present invention is suitable as a substrate positioning mechanism for a projection type exposure apparatus.

〔従来技術〕[Prior art]

上に述べた6自由度を有する微動ステージ駆動装置は、
ウェハ表面にマスクパターンを焼付ける投影式露光装置
にも用いられる。同装置の操作手順においては、1ず、
マスクパターンを投影光学系によってウェハ表面に投影
結像させる必要がある。投影光学系に要求される高解像
度のマスクパターンを結像する範囲は投影光学系の焦点
面近傍の範囲で、焦点面から離れるに従い急速に結像状
態は劣化する。実用上、ウニ二表面の投影光学系の焦点
面からのずれ量の許容値は±6μmであり、安定した解
像度を得るには、ウェハ表面全投影光学系の焦点面に高
精度に位置決めすることが要求される。上記の位置ぎめ
(焦点合わせ〕の後、マスクパターンとウェハ表面に形
成されているパターンとを、ウェハを移動して高精度(
±025μm)に重ね合せることが要求される。したが
って、ウェハ搭載装置には総計して6自由度となる位置
制例機能が必要である。
The fine movement stage drive device having six degrees of freedom mentioned above is
It is also used in projection exposure equipment that prints mask patterns onto the wafer surface. In the operating procedure of the device, 1.
It is necessary to project and image the mask pattern onto the wafer surface using a projection optical system. The range in which the high-resolution mask pattern required for the projection optical system is imaged is the range near the focal plane of the projection optical system, and the imaging condition deteriorates rapidly as the distance from the focal plane increases. In practice, the allowable amount of deviation from the focal plane of the projection optical system on the entire wafer surface is ±6 μm, and in order to obtain stable resolution, it is necessary to position the entire wafer surface at the focal plane of the projection optical system with high precision. is required. After the above positioning (focusing), the mask pattern and the pattern formed on the wafer surface are moved with high precision (
±025 μm) is required. Therefore, the wafer mounting apparatus requires a position constraint function with a total of six degrees of freedom.

上記の6自由度の制御は、通常の場合、水平な直交2軸
X、Yと、垂直軸Zと全設定し、これら5$11方向の
平行動と3軸回りの回動とについて行なわれ、これによ
って5次元空間内における剛体の位置と姿勢とが確定さ
れる。しかし、上記の5軸は水平、垂直な直交s軸に限
定されるものではなく、斜交するう軸を設定して6自由
度制御を行なうことも可能である。
In normal cases, the above six degrees of freedom control is performed on the two horizontal orthogonal axes X, Y and the vertical axis Z, and is performed on parallel movements in these 5 directions and rotation around the three axes. , whereby the position and orientation of the rigid body in the five-dimensional space are determined. However, the above-mentioned five axes are not limited to the horizontal and vertical orthogonal s-axes, and it is also possible to set oblique diagonal axes to perform six degrees of freedom control.

第1図に、従来の1:1反射投影式露光装置の概要的な
正面図を示す。
FIG. 1 shows a schematic front view of a conventional 1:1 reflection projection exposure apparatus.

石定盤Iij高精度に仕上げられていて、スレッド°2
は石定盤1上を左右に高精度(±0.08μm)の直線
運動を行う。スレッド2上にはウェハ搭載装[5および
マスク搭載装置5が設けられ、それぞれウェハ4および
マスク6を搭載できるようになっている。石定盤1上に
は、さらに、反射投影光学系7およびアライメントスコ
ープ8が固定され、反射投影光学系7下部には高さ基準
板9が固定されている。石定盤1下方に位置している照
明光学系(図省略)により円弧スリット状に照明される
マスク6のマスクパターンは、反射投影光学系7によっ
てウェハ4表面に投影結像され、スレッド2全左右に走
行させることで5ウ工ハ4表面全面にマスクパターンを
走置露光できるように々っている。アライメントスコー
プ8はウェハ4上の合せマークとマスクパターン内の合
せマークの重ね合せ状態を検出できる機能がある。
Stone surface plate Iij is finished with high precision and has a thread angle of 2 degrees.
performs a linear movement left and right on the stone surface plate 1 with high precision (±0.08 μm). A wafer mounting device [5] and a mask mounting device 5 are provided on the sled 2, and are capable of mounting a wafer 4 and a mask 6, respectively. Further, a reflection projection optical system 7 and an alignment scope 8 are fixed on the stone surface plate 1, and a height reference plate 9 is fixed below the reflection projection optical system 7. The mask pattern of the mask 6 illuminated in the shape of an arcuate slit by an illumination optical system (not shown) located below the stone surface plate 1 is projected and imaged onto the surface of the wafer 4 by the reflection projection optical system 7, and the entire thread 2 is projected onto the surface of the wafer 4. By moving it left and right, a mask pattern can be laid and exposed over the entire surface of the wafer 4. The alignment scope 8 has a function of detecting the overlapping state of the alignment mark on the wafer 4 and the alignment mark in the mask pattern.

上に述べたウェハ搭載装置5の拡大断面図を第2図に示
す。ウェハ搭載装置のベース11は前述のスレッド2に
固定されていて、このウェハ搭載装置ベース11の上に
鋼球16を介してXYステージ12が置かねている。上
記のXYステージ12Viベース11の上面に沿った水
平面内で自由に動くことができ、2自由度を有している
。そしてこのXYステージ12は送り機構(図示省略)
により±5+w+の範囲でその位置をスレッド走行方向
(X方向)と、水平面内でこれと直交する方向(X方向
)に制御されるようになっている。このXYステージ1
2には玉軸受17ヲ介してθステージ13が回転可能に
設けられ、さらにこのθステージBに上下軸14が設け
られている。この上下軸14ハ、ナツト19、送りイ・
ジ18、及びパルスモータ20により上下に駆動される
構造で、Zステージとして作用する部材である。このZ
ステージである上下軸14けθステージ15、一対して
回動しないように係止され、上下摺動自在に支承されて
いる。
FIG. 2 shows an enlarged cross-sectional view of the wafer mounting device 5 described above. A base 11 of the wafer mounting device is fixed to the aforementioned sled 2, and an XY stage 12 is placed on the wafer mounting device base 11 via a steel ball 16. The XY stage 12Vi can move freely within a horizontal plane along the upper surface of the base 11, and has two degrees of freedom. This XY stage 12 is a feeding mechanism (not shown)
The position is controlled within the range of ±5+w+ in the sled running direction (X direction) and in the direction perpendicular thereto (X direction) within the horizontal plane. This XY stage 1
2 is rotatably provided with a θ stage 13 via a ball bearing 17, and this θ stage B is further provided with a vertical shaft 14. This vertical shaft 14, nut 19, feed
It has a structure that is driven up and down by a Z stage 18 and a pulse motor 20, and acts as a Z stage. This Z
A θ stage 15 with 14 vertical shafts, which is a stage, is locked in a pair so as not to rotate, and is supported so as to be vertically slidable.

この上下軸14の上部には、ウェハ搭載台15が置う・
れ、上下軸14上端の円錐状のくぼみと、ウェハf”t
bl、台15の下部球面座とをかん合させ、ウェハ搭載
台15の傾斜が自由に行なえるようKなっている。
A wafer mounting table 15 is placed above the vertical shaft 14.
The conical recess at the upper end of the vertical shaft 14 and the wafer f”t
bl and the lower spherical seat of the table 15 are engaged, so that the wafer mounting table 15 can be tilted freely.

このように従来のウェハ搭載装置は、スレッド立に固定
されたウェハ搭載装置ベース11上に、XY、x、f−
シ12全設け、このXYステージ12ニょってθステー
ジ15が支持され、θステージ15によって上下軸14
およびウェハ搭載台15ならびにウェハ4が支持された
三重構造となっていた。
In this way, the conventional wafer mounting device has XY, x, f-
The XY stage 12 supports the θ stage 15, and the θ stage 15 supports the vertical axis 14.
It had a triple structure in which the wafer mounting table 15 and the wafer 4 were supported.

つづいて、この従来のウェハ搭載装置の動作について説
明する。まず、第2図の状態において、ウェハ4をウェ
ハ搭載台15に吸着孔22ft用いて真空吸着する。つ
づいて上下軸14ヲ上昇させ、高さ基準板9のバッド1
0にウェハ4表面を押し当てる。
Next, the operation of this conventional wafer mounting apparatus will be explained. First, in the state shown in FIG. 2, the wafer 4 is vacuum suctioned onto the wafer mounting table 15 using the suction hole 22ft. Next, raise the vertical axis 14 and
0.Press the surface of the wafer 4 to 0.

すると、ウェハ搭載台15ハパツド10からの反力で傾
斜を修正されて水平姿勢になる。上記のパッド10はウ
ェハ4の中心を重心とする正三角形の頂点に配置され、
反射投影式光学系7の焦点面に対して規定高さ(0,5
m)だけ正確に高い位置に設けられているので、ウェハ
4表面は反射投影光学系7の焦点面よりも上記の規定高
さだけ高い位置に高さと傾きが位置決ぬされる。この状
態で真空室21を真空としてウェハ搭載台15全上下軸
14に吸着固定し、さらに上下軸14ヲウエハ4および
ウェハ搭載台15とともに上記の規定高さだけ下降させ
、ウェハ表面を反射投影光学系7の焦点深度内に平行移
動させていた。
Then, the inclination is corrected by the reaction force from the wafer mounting table 15 and the wafer pad 10, and the wafer mounting table 15 assumes a horizontal position. The pad 10 described above is arranged at the apex of an equilateral triangle whose center of gravity is the center of the wafer 4,
The specified height (0,5
m), the surface of the wafer 4 is positioned at a position higher than the focal plane of the catoptric projection optical system 7 by the specified height. In this state, the vacuum chamber 21 is evacuated and the entire wafer mounting table 15 is suctioned and fixed to the vertical shaft 14, and the vertical shaft 14 is further lowered together with the wafer 4 and the wafer mounting table 15 by the above-mentioned specified height, and the wafer surface is exposed to the reflection projection optical system. It was moved in parallel to within the depth of focus of 7.

上述の操作の後、XYステージ12を移動させたりθス
テージ15を回動させたりして、ウニ/14上ニ設ケた
合わせマークとマスクパターンの合わせマークとを一致
させる。この状態で、スレッド2を一旦往き側に移動さ
せ、その後復路を一定速度で戻る間にウェハ4の表面全
体にマスクパターン41光させ、マスクパターンをウニ
/X4表面上に焼付けていた。
After the above-described operation, the XY stage 12 is moved and the θ stage 15 is rotated to match the alignment mark placed on the sea urchin/14 with the alignment mark on the mask pattern. In this state, the sled 2 was once moved to the forward side, and then while returning at a constant speed on the return path, the mask pattern 41 was emitted onto the entire surface of the wafer 4, and the mask pattern was printed on the surface of the sea urchin/X4.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術においては以下に示す欠点が有った0 1、 ウェハ4の表面をパッド10に押し当てて反射投
影光学系7の焦点面に対して平行度を出した後、上下軸
14(Zステージ)、θステージ15およびXYステー
ジ12の5ケ所において移動もしくは回転が行なわれる
ため、この3ケ所のステージの機械的な狂いによる上下
動ならびに傾きが重畳してウェハ4表面の、反射投影光
学系7の焦点面に対する平行度および高さの位置決めf
#度を損ねやすい。
The above-mentioned conventional technology had the following drawbacks: 1. After pressing the surface of the wafer 4 against the pad 10 to make it parallel to the focal plane of the reflection projection optical system 7, the vertical axis 14 (Z Since movement or rotation is performed at five locations: the stage), theta stage 15, and the Parallelism and height positioning f with respect to the focal plane of 7
#Easy to lose strength.

2 ウェハ搭載装置ベース11上に、XYステージ12
、θステージ15および2ステージ14を設け、その上
にウェハ搭載台15ヲ置いているため、ウェハ搭載装置
ベース11からウニI\搭載台15に対する総合的な位
置決め剛性が低く、ウニ/1搭載台15の位置安定性が
悪い。
2 The XY stage 12 is placed on the wafer mounting device base 11.
, a θ stage 15 and a second stage 14 are provided, and the wafer mounting table 15 is placed on top of them, so the overall positioning rigidity from the wafer mounting device base 11 to the Urchin I/mounting stand 15 is low, and the Urchin/1 mounting stand is 15 has poor positional stability.

3、  XYステージ12ij#ステージ15、上下4
1114、及びこれらの駆動手段を搭載しているので、
このXYステージ12の全体重tFi大きい。従ってX
Yステージの送シ機構はこれらの全体重量を担持し九X
Yステージ12を駆動制御しなければならず、微動送り
の制御性を低下させている。
3. XY stage 12ij #stage 15, upper and lower 4
1114 and these driving means,
The total weight tFi of this XY stage 12 is large. Therefore, X
The feed mechanism of the Y stage carries the entire weight of the 9X
The Y stage 12 must be driven and controlled, reducing the controllability of fine movement feed.

本発明の目的は、上記従来技術の問題点を解汲すべくス
テージの6自由度をそれぞれ高精度で微動制御すること
ができ、位置ぎめ剛性が高くし、しかも制御性のよくし
た6自由度微動ステージ駆動装置を提供することKある
The purpose of the present invention is to solve the above-mentioned problems of the prior art by making it possible to finely control each of the six degrees of freedom of the stage with high precision, to increase positioning rigidity, and to provide six degrees of freedom with improved controllability. It is an object of the present invention to provide a fine movement stage driving device.

〔問題点を解決する丸めの手段〕[Rounding method to solve problems]

即ち本発明は、上記目的を達成するために、基板を載置
し、6自由度を有するステージと、該ステージに直接力
を作用させてX方向に微動させる1組のX送り機構と、
上記微動ステージに2箇所において直接力を作用させて
Y方向に微動させる2組のY送シ機構と、上記ステージ
に6箇所において直接力を作用させてZ方向に微動させ
る5組の2送り機構とを備え、上記6組の送り機構が独
立して、上記微動ステージのX軸、Y軸及び2軸方向の
微動、並びにZ軸、X軸及びY軸回りの微回転を制御可
能に形成したことを特徴とする6自由度微動ステージの
駆動装置である。
That is, in order to achieve the above object, the present invention includes a stage on which a substrate is placed and has six degrees of freedom, and a set of X-feeding mechanisms that apply force directly to the stage to slightly move it in the X direction.
Two sets of Y feed mechanisms that apply direct force to the fine movement stage at two locations to slightly move it in the Y direction, and five sets of two feed mechanisms that apply direct force to the stage at six locations to make it slightly move in the Z direction. The six sets of feed mechanisms are configured to be able to independently control fine movement of the fine movement stage in the X-axis, Y-axis, and two-axis directions, and fine rotation around the Z-axis, X-axis, and Y-axis. This is a driving device for a six-degree-of-freedom fine movement stage.

また、本発明は、上記6自由度微動ステージの駆動装置
において、上記5組のZ送り機構の各々を、一端全上記
ステージに球対偶で係合させ、他端を固定部材に球対偶
で係合させたピエゾ素子で形成したことを特徴とする6
自由度微動ステージの駆動装置である。
Further, in the drive device for the 6-degree-of-freedom fine movement stage, the present invention provides that each of the five sets of Z feed mechanisms is engaged with the stage at one end in a ball-to-coupled manner, and the other end is engaged with the fixed member in a ball-to-coupled manner. 6 characterized in that it is formed of piezo elements that are combined
This is a drive device for a fine movement stage with degrees of freedom.

〔作用〕[Effect]

上記構成によれば、非常にコンパクトで高剛性の高い6
自由度を有する微動ステージを得ることができる。特に
、基板に対して合焦点制御を高速で行うことができる。
According to the above configuration, a very compact and highly rigid 6
A fine movement stage with a degree of freedom can be obtained. In particular, it is possible to control the focusing point on the substrate at high speed.

〔実施例〕〔Example〕

次に、本発明の一実施例の概要を第5図及び第4図につ
いて説明する。
Next, an outline of an embodiment of the present invention will be explained with reference to FIGS. 5 and 4.

第5囚は本発明のステージ制御装置の垂直断面図、第4
図は同平面図である。
The fifth prisoner is a vertical sectional view of the stage control device of the present invention;
The figure is a plan view of the same.

本実施例は、ウェハ4を吸着保持したステージ42につ
いて水平な直交2軸X、Yおよび垂直411Z方向の位
置制御、並びに上記5軸回りの回動姿勢制御を行なうよ
うに構成したものであるが、本発明を実施する場合、直
交5軸に限らず任意方向の5軸に関する制御を行なうよ
うに構成することもできる。
This embodiment is configured to control the position of the stage 42 holding the wafer 4 by suction in two horizontal orthogonal axes X and Y and the vertical 411Z direction, as well as to control the rotational posture around the five axes. When implementing the present invention, it is also possible to perform control not only on five orthogonal axes but also on five axes in arbitrary directions.

41はウェハ搭載装置のベースである。このベース41
に1組のX方向送り機構を構成するための1個のパルス
モータ46.2組のY方向送り機構全構成するための2
個のパルスモータ60(第4図)、及び5組のZ方向送
シ機!lIIを構成するための3個のハレスモータ52
(第3図)全固定する。これらのパルスモータ46.6
0.52の軸に、それぞれ送りネジ45.59.511
f!:固着する。上記の送りネジ45゜59、51にそ
れアれ螺合するナツト部材44.58.50全、ウェハ
搭載装置ベース41に対する回動を係止して軸方向摺動
自在に嵌合する。
41 is the base of the wafer mounting device. This base 41
1 pulse motor 46 for configuring one set of X-direction feeding mechanisms; 2 pulse motors 46 for configuring two sets of Y-direction feeding mechanisms.
5 pulse motors 60 (Fig. 4) and 5 sets of Z-direction feeders! Three Hares motors 52 to configure III
(Fig. 3) Fully secure. These pulse motors 46.6
0.52 shaft, lead screw 45.59.511 respectively
f! : Sticks. The nut members 44, 58, and 50 that are threadedly engaged with the feed screws 45, 59, and 51 are locked against rotation relative to the wafer mounting device base 41, and are fitted so as to be slidable in the axial direction.

本実施例は以上のようにしてX方向に設けた1組の送り
機構と、X方向に設けた2組の送り機構と、Z方向に設
けた5組の送り機構とを構成しである。
As described above, this embodiment includes one set of feeding mechanisms provided in the X direction, two sets of feeding mechanisms provided in the X direction, and five sets of feeding mechanisms provided in the Z direction.

ステージ42の上面に真空吸着用の空洞部55に設けて
ウェハ搭載機能を持たせる。このステージ42の自重は
、第5図について後述する浮遊パッド49及び鋼球48
を介して5個のナツト部材50で支承する。55け上記
の自重を付勢しているバネである。
A cavity 55 for vacuum suction is provided on the upper surface of the stage 42 to provide a wafer mounting function. The weight of this stage 42 is due to the weight of the floating pad 49 and steel balls 48, which will be described later with reference to FIG.
It is supported by five nut members 50 via. This is a spring that is biased by its own weight.

上記のステージ42を、X方向に設けたバネ47によジ
、第5図について後に詳述する浮遊パッド45全介して
ナツト部材44に押しつけて、X方向の位寛ぎぬがなさ
れる。同様に%YX方向設けたバネ61により後述の浮
遊パッド57を介してナツト部材5已に押しつけてX方
向の位置ぎめがなさhる。
The stage 42 is pushed against the nut member 44 by a spring 47 provided in the X direction and through a floating pad 45, which will be described in detail later with reference to FIG. 5, to loosen the stage 42 in the X direction. Similarly, a spring 61 provided in the %YX direction presses against the nut member 5 via a floating pad 57, which will be described later, to achieve positioning in the X direction.

反射投影式光学系7の底面に9個の静電容量型近接セン
サ54を固定してウェハ4の表面位置を検出し、該ウェ
ハ4の上面と上記光学系7の焦点面との偏差を高精度(
±0.2μm)で非接触的に検出できるように構成する
。第4因においてウェハ4の面上に示した9個のX印5
6は上記センサ54の検出点を表わしている。
Nine capacitive proximity sensors 54 are fixed to the bottom surface of the reflective projection optical system 7 to detect the surface position of the wafer 4 and increase the deviation between the top surface of the wafer 4 and the focal plane of the optical system 7. accuracy(
±0.2 μm) so that it can be detected in a non-contact manner. Nine X marks 5 shown on the surface of the wafer 4 in the fourth factor
6 represents a detection point of the sensor 54.

前述の浮遊パッド49.45の詳細をwcs図について
説明する。この断面にはX方向の送り装置に設けた浮遊
パッド57が現われていないが、本図に示したX方向の
送り装置の浮遊パッド45と同様の構成部材である。こ
の浮遊パッド45は、その左端の球面をナツト440球
面座に保持され、右端の平面をステージ42の側面に当
接せしめて送り機構の送り量をステージ42に伝達して
いる。さらに、浮動パッド45の両端の球面と平面は空
気軸受となっているので、ステージ42の上下動、前後
進、X、y。
Details of the above-mentioned floating pads 49 and 45 will be explained with reference to the wcs diagram. Although the floating pad 57 provided in the X-direction feeding device does not appear in this cross section, it is a component similar to the floating pad 45 of the X-direction feeding device shown in this figure. The floating pad 45 has its left end spherical surface held by the spherical seat of the nut 440, and its right end flat surface abuts against the side surface of the stage 42 to transmit the feed amount of the feed mechanism to the stage 42. Furthermore, since the spherical and flat surfaces at both ends of the floating pad 45 serve as air bearings, the stage 42 can be moved up and down, forward and backward, and in X and Y directions.

Z軸回りの傾きの抵抗とならない。したがりて、浮動パ
ッド45は、他の送り機構によるステージの移動の抵抗
とはならない自由足を有すると同時に、対応するX軸方
向の送り量を伝達することができる。
There is no resistance to tilting around the Z axis. Therefore, the floating pad 45 has a free leg that does not resist movement of the stage by other feed mechanisms, while at the same time being able to transmit a corresponding feed amount in the X-axis direction.

Z方向送り機構のナツト部材50の上面は反射投影光学
系7の焦点面に対し精密に平行となるように作られてい
る。このナツト部材50の上面に当接する浮遊パッド4
9の下面は空気軸受となっていてこ該浮遊パッド49は
ナット50上面上をほとんど抵抗なく水平運動できる上
に、鋼球48の径は十分に小さく、鋼球48とステージ
42あるいは浮遊パッド49の円すい面との摩擦力はほ
とんど無視できる。したがって、′A鋼球8と浮遊パッ
ド49け、Z方向の送り着全ステージ42に伝達すると
同時に、他の送シ機構によるステージ42の水平面内の
動きおよび傾斜の抵抗とならない。62は浮遊パッド4
5.49に空気を供給するチェーブである。
The upper surface of the nut member 50 of the Z direction feeding mechanism is made to be precisely parallel to the focal plane of the reflection projection optical system 7. Floating pad 4 that comes into contact with the upper surface of this nut member 50
The lower surface of the floating pad 9 has an air bearing, so that the floating pad 49 can move horizontally on the upper surface of the nut 50 with almost no resistance. The frictional force with the conical surface can be almost ignored. Therefore, the 'A steel ball 8 and the floating pad 49 transmit the feeding and landing in the Z direction to all the stages 42, and at the same time do not act as resistance to the movement and inclination of the stage 42 in the horizontal plane by other feeding mechanisms. 62 is floating pad 4
5.49 is a tube that supplies air.

本実施例は以上のようにして、6組の送り機構のナツト
部材のそれぞれと、ステージ42との間に、各送り機構
の送り方向の力のみを伝達し、送り方向以外の動きを許
容する伝動部材を介装して、前記6組の送り機構がそれ
ぞれ独立してステージ42を駆動し得るように構成して
ちる。
In this embodiment, as described above, only the force in the feeding direction of each feeding mechanism is transmitted between each of the nut members of the six sets of feeding mechanisms and the stage 42, and movement in directions other than the feeding direction is permitted. A transmission member is interposed so that the six sets of feeding mechanisms can drive the stage 42 independently.

次に、上述のように構成したステージ制御装置の使用方
法について説明する。本実施例は自動制御装置(図示せ
ず)を設けてセンサや作動機器を電気的に自動操作して
次のように作動せしめる。
Next, a method of using the stage control device configured as described above will be explained. In this embodiment, an automatic control device (not shown) is provided to electrically and automatically operate the sensors and actuating devices as follows.

If、ウェハ4はステージ42上面に真空吸着される。If, the wafer 4 is vacuum-adsorbed onto the upper surface of the stage 42.

つづいて、静電容量型近接センサー54によりウェハ4
表面に非接触で該表面の、反射投影光学系7の焦点面か
らのずれ量が、格子状に配された9点の検出点56につ
いて検出される。その後、この9点のずれ1から、ウェ
ハ4の表面の近似平面と、反射投影光学系7の焦点面と
の間のずれと傾きを求める。つづいて、5個のパルスモ
ータ52を回転させてナツト部材50を適宜上下させ、
ステージ42を上下動および傾斜させて前記のずれと傾
きを補正する。このとき、浮動パッド45.57id前
述のように、その両端の球面および平面を空気軸受面と
しているので2ステージ42の上下動および傾きの抵抗
とならず、ま念、遺詠4日も径が十分小さいため、ステ
ージ42の傾きの抵抗とはな「)ない。
Next, the capacitance type proximity sensor 54 detects the wafer 4.
The amount of deviation of the surface from the focal plane of the reflection projection optical system 7 is detected at nine detection points 56 arranged in a grid without contacting the surface. Then, from these nine deviations 1, the deviation and inclination between the approximate plane of the surface of the wafer 4 and the focal plane of the catoptric projection optical system 7 are determined. Next, the five pulse motors 52 are rotated to move the nut member 50 up and down as appropriate.
The stage 42 is moved up and down and tilted to correct the shift and inclination. At this time, as mentioned above, the floating pad 45.57id has a spherical surface and a flat surface at both ends as air bearing surfaces, so it does not create resistance to the vertical movement and tilting of the 2nd stage 42. Since it is small, there is no resistance to the tilting of the stage 42.

その後、再度センサー54によりウェハ4表面の、焦点
面からのずれ量が検出され、ウェハ4表面の近似平面が
十分高精度に該焦点面に一致していることを確認する動
作が行なわれる。ここで、もしウェハ4表面の近似平面
が該焦点面に一致していない場合、再度ステージ42の
高さおよび傾きの補正ならびにずれ量検出が繰返される
。以上のように、ウェハ4ば、その近似平面が反射投影
式光学系7の焦点面に一致するように、高さ及び傾きを
位置ぎめされる。即ち、Z軸方向の平行移動の位置と、
X、Y軸回りの回動姿勢との5自由度が位置ぎめされる
。このとき、3個の鋼球48の中心点によって決められ
る平面はウェハ4表面の傾きを補正する補正平面となる
Thereafter, the sensor 54 again detects the amount of deviation of the surface of the wafer 4 from the focal plane, and an operation is performed to confirm that the approximate plane of the surface of the wafer 4 coincides with the focal plane with sufficiently high precision. Here, if the approximate plane of the surface of the wafer 4 does not match the focal plane, the correction of the height and inclination of the stage 42 and the detection of the amount of deviation are repeated again. As described above, the height and inclination of the wafer 4 are positioned so that its approximate plane coincides with the focal plane of the catoptric projection optical system 7. That is, the position of parallel movement in the Z-axis direction,
Five degrees of freedom with rotational posture around the X and Y axes are positioned. At this time, the plane determined by the center points of the three steel balls 48 becomes a correction plane for correcting the inclination of the surface of the wafer 4.

つづいて、ウェハ4上に設けた合せマークとマスクパタ
ーン内の合せマークを、パルスモータ46&60により
ナツト部材44.58を適宜送って一致させる動作が行
なわれる。このとき、浮動バッド49Fiその下面を空
気軸受面としているのでステージ42移妨の抵抗とはな
らず、浮遊バッド45.57も両端の球面および平面を
空気軸受面としているためステージ42の移動1回転の
抵抗とはなら女い。また、ステージ42ヲ支えている鋼
球48ij、浮遊バット°49あるいはステージ42の
円錐面と揺動、或いは回転することな(、固定の状態で
ステージ42と共に浮遊パ・ノド49に支持されて、反
射投影光学系7の焦点面と精密に平行なナット部材50
上面を移動する−この場合、厳密に言えばナツト部材5
0の上面と焦点面との平行度の狂いによって上下方向の
狂いを生じるが、本実施例のようにナツト部材50の上
面を高精度で焦点面と平行に仕上げておくと、サブミク
ロンオーダーの位置ぎめについても上記の上下方向の狂
いは無視することができる程度に微小である。
Subsequently, the nut members 44 and 58 are appropriately fed by the pulse motors 46 and 60 to match the alignment marks provided on the wafer 4 and the alignment marks in the mask pattern. At this time, since the lower surface of the floating pad 49Fi is an air bearing surface, it does not act as a resistance to the movement of the stage 42, and the floating pads 45 and 57 also have spherical and flat surfaces at both ends as air bearing surfaces, so the stage 42 moves one rotation. The resistance is a woman. In addition, the steel ball 48ij supporting the stage 42, the floating bat 49, or the conical surface of the stage 42, do not swing or rotate (but are supported by the floating pad 49 together with the stage 42 in a fixed state, Nut member 50 precisely parallel to the focal plane of the reflection projection optical system 7
moving on the upper surface - in this case, strictly speaking, the nut member 5
A vertical deviation occurs due to a deviation in the parallelism between the top surface of the nut member 50 and the focal plane, but if the top surface of the nut member 50 is finished parallel to the focal plane with high precision as in this embodiment, it can be realized on the submicron order. Regarding positioning, the above-mentioned vertical deviation is so small that it can be ignored.

このようにして、1組の送り機構全構成しているパルス
モータ46によるステージ42のX方向の位置ぎめと、
2組の送り機構を構成している2個のパルスモータ60
の同期回転によるステージ42のY方向位置ぎめとが行
なわれる。そして、この操作と併行して上記2個のパル
スモータ60の差動によりステージ42の2軸回りの回
動が行なわれる。
In this way, the stage 42 is positioned in the X direction by the pulse motor 46 that makes up the entire set of feeding mechanisms, and
Two pulse motors 60 forming two sets of feeding mechanisms
The stage 42 is positioned in the Y direction by synchronous rotation. In parallel with this operation, the stage 42 is rotated about two axes by the differential operation of the two pulse motors 60.

以上説明したように、6組の送り機構がそれぞれ独立に
、かつ直接的にステージ42を押動して6自由度の制御
を行なうので位置ぎめ剛性が高い。
As explained above, the six sets of feed mechanisms independently and directly push the stage 42 to control the six degrees of freedom, so positioning rigidity is high.

また、ステージ42は送り機構を担持していないので軽
量でちゃ、従って制御性を妨げない。
Furthermore, since the stage 42 does not carry a feeding mechanism, it is lightweight and therefore does not interfere with controllability.

その上、本実施例はウェハ表面に対して非接触的に位置
検出を行なうので、ウェハ表面を傷つけたり汚損したり
する虞れが無い。
Moreover, since this embodiment performs position detection on the wafer surface in a non-contact manner, there is no risk of damaging or staining the wafer surface.

第5図の実施例において、水平方向の位置決めに鋼球4
8と浮遊バッド49から成る伝達機構を用い〜垂直方向
に浮遊パッド45から成る伝達機構を用いても前述の効
果と全く同じ効果が得られる。
In the embodiment shown in FIG. 5, the steel ball 4 is used for horizontal positioning.
Exactly the same effect as described above can be obtained by using a transmission mechanism consisting of a floating pad 49 and a vertically floating pad 45.

第6図は上記と異なる実施例を示す垂直断面口で、ステ
ージ42に固定された軸65をガイドとして。
FIG. 6 shows a vertical cross-sectional view of an embodiment different from the above, using a shaft 65 fixed to the stage 42 as a guide.

ボールブツシュ64Vi該軸方向に転勤可能となってい
る。さらに、ボールブツシュ64には外周を球面とした
フォロアー65が組合され、ナツト部材66からの送り
量を伝達すると共に、上下動0前後進。
The ball bush 64Vi can be moved in the axial direction. Furthermore, a follower 65 whose outer periphery is spherical is combined with the ball bush 64 to transmit the amount of feed from the nut member 66 and to move forward and backward with no vertical movement.

回動、傾@(2方向〕の5つのステージ42の動きの抵
抗とならない自由度を有する伝達機構を構成している。
It constitutes a transmission mechanism that has a degree of freedom that does not cause resistance to the movement of the five stages 42 in rotation and tilt (in two directions).

ti、ボールブツシュ64とフォロアー65の組合せを
用いる代りに、軸方向の直接運動と軸の回りの回転運動
が可能な軸受構成のフォロアーを用いても同一の効果が
得られる。
Instead of using the combination of ball bush 64 and follower 65, the same effect can be obtained by using a follower with a bearing configuration that allows direct axial movement and rotational movement about the axis.

捷たバッド67および環状のボール列68ならびに傾斜
バッド69は、前記実施例における空気軸受付きの浮遊
バッド49を環状のボール列手段68で置き換えたもの
で、上記の空気軸受付浮遊バッドと同様の自由度を有す
る伝達機構を構成するのは明白であり、前例と同様の作
用、効果がある。
The twisted pad 67, the annular ball row 68, and the inclined pad 69 are similar to the air bearing floating pad 68, which replaces the air bearing floating pad 49 in the previous embodiment with an annular ball row means 68. It is obvious that a transmission mechanism with a degree of freedom is constructed, and has the same operation and effect as the previous example.

第7図は更に異なる実施例を示す。本実施例はステージ
42に固定した軸72の中央部に球面座72a全形成し
てフォロアー73を傾動1回動自在に支承して、上側に
おけるボールブツシュ64と同様に上下方向の相対運動
をフリーにしである。本例においてもフォロアー75の
外周を球面に形成する。
FIG. 7 shows a further different embodiment. In this embodiment, a spherical seat 72a is completely formed in the center of a shaft 72 fixed to a stage 42, and a follower 73 is supported so as to be tiltable and rotatable once, thereby freeing relative movement in the vertical direction like the ball bush 64 on the upper side. It is. Also in this example, the outer periphery of the follower 75 is formed into a spherical surface.

また、本実施例はX方向の送り機構として柱状ピエゾ素
子75を用い、両端の金具74を介してステージ42と
fA整ネジ76との間に介装しである。このように構成
しても、柱状ピエゾ素子75は、Z方向以外の動きを許
容し、かつ、その印芋電圧に比例1、た伸縮をしてZ方
向の送り機能を果たすので、前記の実施例と同様に作用
する。
Further, in this embodiment, a columnar piezo element 75 is used as a feeding mechanism in the X direction, and is interposed between the stage 42 and the fA adjustment screw 76 via metal fittings 74 at both ends. Even with this configuration, the columnar piezo element 75 allows movement in directions other than the Z direction, expands and contracts in proportion to the applied voltage, and fulfills the feeding function in the Z direction. Works the same as the example.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く、本発明によれば、基板を載置したス
テージに対して、非常にコンパクトにして、6自由度に
ついてそれぞれ高精度で制御することができ、位置ぎめ
の剛性が高く、しかも制御性が良いという優れた実用的
効果を奏する。特に基板の合機点制御を容易にすること
ができる効果も奏する。
As detailed above, according to the present invention, the stage on which the substrate is placed can be made very compact, each of the six degrees of freedom can be controlled with high precision, and the rigidity of positioning is high. It has excellent practical effects of good controllability. In particular, there is also the effect of making it easier to control the joining point of the substrates.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は反射投影式ウェハ露光装置の概要的な正面図、
第2図は従来のウエノ)搭載装置の垂直断面図、第5因
乃至第5図は本発明のステージ制御装置の一実施例を示
し、第5図は垂直断面図、第4図は平面図、第5図は部
分拡大断面図である。 第6図及び第7図はそれぞれ上記と異なる実施例の部分
拡大断面図である。 4・・・ウェハ、7・・・反射投影式光学系、41・・
・ウェハ搭載装置ベース、42・・・ステージ、45・
・・浮遊パッド、44・・・ナツト部材、45・・・送
りネジ、46・・・パルスモータ−147・・・バネ、
48・・・鋼球、49・・・浮遊パッド、50・・ナツ
ト部材、51・・・送りネジ、52・・・パルスモータ
、55・・・バネ、54・・・静電容量型近接センサー
、55・・・空洞部、56・・・検出点、57・・・浮
遊パッド、58・・・ナツト部材、59・・・送りネジ
、60・・・パルスモータ、61・・・バネ、62・・
・チューブ、65・・・軸、64・・・ポールブツシェ
、65・・・フォロアー、66・・・ナツト、67・・
・パッド・、68・・・ボール列手段、69・・・傾斜
パッド、70・・・鋼球、71・・・ナツト、72・・
・軸、75・・・フォロアー  74・・・金具・−7
5・・・柱状ピエゾ素子、76・・・調整ネジ。 第′50 第2目 晃4圀 易、50 あ乙に にり
Figure 1 is a schematic front view of a reflection projection type wafer exposure apparatus.
Fig. 2 is a vertical sectional view of a conventional Ueno mounting device, Figs. , FIG. 5 is a partially enlarged sectional view. FIGS. 6 and 7 are partially enlarged cross-sectional views of embodiments different from those described above. 4... Wafer, 7... Reflective projection optical system, 41...
・Wafer mounting equipment base, 42...stage, 45・
...Floating pad, 44...Nut member, 45...Feed screw, 46...Pulse motor-147...Spring,
48... Steel ball, 49... Floating pad, 50... Nut member, 51... Feed screw, 52... Pulse motor, 55... Spring, 54... Capacitive proximity sensor , 55... Cavity part, 56... Detection point, 57... Floating pad, 58... Nut member, 59... Feed screw, 60... Pulse motor, 61... Spring, 62・・・
・Tube, 65...Shaft, 64...Pole butcher, 65...Follower, 66...Nut, 67...
- Pad, 68... Ball row means, 69... Inclined pad, 70... Steel ball, 71... Nut, 72...
・Shaft, 75...Follower 74...Metal fittings・-7
5... Column piezo element, 76... Adjustment screw. No. 50 2nd Akira 4 Kuniyoshi, 50 Aotsu Niniri

Claims (1)

【特許請求の範囲】 1、基板を載置し、6自由度を有するステージと、該ス
テージに直接力を作用させてX方向に微動させる、組の
X送り機構と、上記微動ステージに2箇所において直接
力を作用させてY方向に微動させる2組のY送り機構と
、上記ステージに3箇所において直接力を作用させてZ
方向に微動させる3組のZ送り機構とを備え、上記6組
の送り機構が独立して、上記微動ステージのX軸、Y軸
及びZ軸方向の微動、並びにZ軸、X軸及びY軸回りの
微回転を制御可能に形成したことを特徴とする6自由度
微動ステージの駆動装置。 2、上記3組のZ送り機構の各々を、一端を上記ステー
ジに球対偶で係合させ、他端を固定部材に球対偶で係合
させたピエゾ素子で形成したことを特徴とする特許請求
の範囲第1項記載の6自由度微動ステージの駆動装置。
[Claims] 1. A stage on which a substrate is placed and has 6 degrees of freedom, a set of X feed mechanisms that apply direct force to the stage to cause fine movement in the X direction, and two locations on the fine movement stage. two sets of Y feed mechanisms that apply direct force to the stage to slightly move it in the Y direction; and two sets of Y feed mechanisms that apply direct force to the stage at three locations to move the
and three sets of Z feed mechanisms that finely move the fine movement stage in the X-axis, Y-axis, and Z-axis directions, and the Z-axis, X-axis, and Y-axis. A driving device for a six-degree-of-freedom fine movement stage, characterized in that it is configured to be able to control fine rotation around the stage. 2. A patent claim characterized in that each of the three sets of Z feeding mechanisms is formed by a piezo element having one end engaged with the stage in a ball-to-coupled manner and the other end engaged with the fixed member in a ball-to-coupled manner. A drive device for a six-degree-of-freedom fine movement stage according to item 1.
JP63320646A 1988-12-21 1988-12-21 Driving device for six-degree-freedom fine moving stage Pending JPH029550A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63320646A JPH029550A (en) 1988-12-21 1988-12-21 Driving device for six-degree-freedom fine moving stage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63320646A JPH029550A (en) 1988-12-21 1988-12-21 Driving device for six-degree-freedom fine moving stage

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP113383A Division JPS59129636A (en) 1983-01-10 1983-01-10 Controller of stage with freedom of six

Publications (1)

Publication Number Publication Date
JPH029550A true JPH029550A (en) 1990-01-12

Family

ID=18123737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63320646A Pending JPH029550A (en) 1988-12-21 1988-12-21 Driving device for six-degree-freedom fine moving stage

Country Status (1)

Country Link
JP (1) JPH029550A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0466895A (en) * 1990-07-06 1992-03-03 Sumitomo Heavy Ind Ltd Fine adjustment stage with six degrees of freedom
JPH04210347A (en) * 1990-11-30 1992-07-31 Kazuya Hirose Positioning mechanism for table
JPH05249390A (en) * 1992-03-04 1993-09-28 Nikon Corp Light beam scanning device
US5249343A (en) * 1991-08-23 1993-10-05 International Business Machines Corporation Apparatus for alignment of workpieces
JPH05506959A (en) * 1990-10-22 1993-10-07 インターナシヨナル・ビジネス・マシーンズ・コーポレーシヨン Dual mode Z stage
JPH09155666A (en) * 1995-12-01 1997-06-17 Kazuya Hirose Lateral and longitudinal movement and rotation supporting mechanism of stage
JP2000056483A (en) * 1998-07-17 2000-02-25 Asm Lithography Bv Positioning device and planographic printing projection device constituted by including the same
WO2001081040A1 (en) * 2000-04-20 2001-11-01 Index-Werke Gmbh & Co. Kg Hahn & Tessky Machine tool
JP2005004921A (en) * 2003-06-13 2005-01-06 Alps Electric Co Ltd Highly precise positioning device
JP2005249531A (en) * 2004-03-03 2005-09-15 Ueno Tekkusu Kk Alignment system
JP2006210659A (en) * 2005-01-28 2006-08-10 Psc Kk Gas control rotary moving device and a gas control actuator
JP2006309654A (en) * 2005-05-02 2006-11-09 Psc Kk Gas-controlled rotating and moving apparatus and gas-controlled actuator
CN100394156C (en) * 2005-05-23 2008-06-11 苏州试验仪器总厂 Triaxiality and six degrees of freedom test bench for airdriven vibration, transportation bump, and slant swing
JP2009076521A (en) * 2007-09-19 2009-04-09 Yaskawa Electric Corp Precise fine positioning device and fine positioning stage having the same, aligner, and inspection apparatus
JP2009218325A (en) * 2008-03-10 2009-09-24 Nikon Corp Stage device, and exposure device
CN105606383A (en) * 2016-03-28 2016-05-25 中车青岛四方车辆研究所有限公司 Comprehensive simulation test system for railroad hopper car
JP2017532527A (en) * 2014-06-27 2017-11-02 華南理工大学 Precise tightening device on the precision position rating drive side
JP2018115904A (en) * 2017-01-17 2018-07-26 株式会社エヌエステイー Resolver characteristic measurement method, and measurement device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4935465A (en) * 1972-06-19 1974-04-02 Diamond Int Corp

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4935465A (en) * 1972-06-19 1974-04-02 Diamond Int Corp

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0466895A (en) * 1990-07-06 1992-03-03 Sumitomo Heavy Ind Ltd Fine adjustment stage with six degrees of freedom
JPH05506959A (en) * 1990-10-22 1993-10-07 インターナシヨナル・ビジネス・マシーンズ・コーポレーシヨン Dual mode Z stage
JPH04210347A (en) * 1990-11-30 1992-07-31 Kazuya Hirose Positioning mechanism for table
US5249343A (en) * 1991-08-23 1993-10-05 International Business Machines Corporation Apparatus for alignment of workpieces
JPH05249390A (en) * 1992-03-04 1993-09-28 Nikon Corp Light beam scanning device
JPH09155666A (en) * 1995-12-01 1997-06-17 Kazuya Hirose Lateral and longitudinal movement and rotation supporting mechanism of stage
JP2000056483A (en) * 1998-07-17 2000-02-25 Asm Lithography Bv Positioning device and planographic printing projection device constituted by including the same
WO2001081040A1 (en) * 2000-04-20 2001-11-01 Index-Werke Gmbh & Co. Kg Hahn & Tessky Machine tool
JP2005004921A (en) * 2003-06-13 2005-01-06 Alps Electric Co Ltd Highly precise positioning device
JP2005249531A (en) * 2004-03-03 2005-09-15 Ueno Tekkusu Kk Alignment system
JP2006210659A (en) * 2005-01-28 2006-08-10 Psc Kk Gas control rotary moving device and a gas control actuator
JP2006309654A (en) * 2005-05-02 2006-11-09 Psc Kk Gas-controlled rotating and moving apparatus and gas-controlled actuator
CN100394156C (en) * 2005-05-23 2008-06-11 苏州试验仪器总厂 Triaxiality and six degrees of freedom test bench for airdriven vibration, transportation bump, and slant swing
JP2009076521A (en) * 2007-09-19 2009-04-09 Yaskawa Electric Corp Precise fine positioning device and fine positioning stage having the same, aligner, and inspection apparatus
JP2009218325A (en) * 2008-03-10 2009-09-24 Nikon Corp Stage device, and exposure device
JP2017532527A (en) * 2014-06-27 2017-11-02 華南理工大学 Precise tightening device on the precision position rating drive side
CN105606383A (en) * 2016-03-28 2016-05-25 中车青岛四方车辆研究所有限公司 Comprehensive simulation test system for railroad hopper car
CN105606383B (en) * 2016-03-28 2017-11-07 中车青岛四方车辆研究所有限公司 Railway hopper car comprehensive simulation test system
JP2018115904A (en) * 2017-01-17 2018-07-26 株式会社エヌエステイー Resolver characteristic measurement method, and measurement device

Similar Documents

Publication Publication Date Title
JPH029550A (en) Driving device for six-degree-freedom fine moving stage
JPH0134746B2 (en)
US5323712A (en) Table moving apparatus
EP0327949B1 (en) Alignment stage device
US8104752B2 (en) Integrated large XY rotary positioning table with virtual center of rotation
JP3325077B2 (en) Electromagnetic alignment device
JPH01161243A (en) Apparatus and method for manufacturing large-area electronic device such as flat panel type display using aligned dual optical system with correlationship
JP2649519B2 (en) Flat object transfer positioning device
TWI442190B (en) Loading platform and exposure device
CN107665847B (en) Bonding alignment equipment and method
JP2023523987A (en) Multifunctional photolithography equipment
CN104062854A (en) Levelling focusing apparatus used for lithography equipment
US20010030747A1 (en) Method for aligning two objects
US4431304A (en) Apparatus for the projection copying of mask patterns on a workpiece
CN102648518B (en) Substrate supporting, conveyance, exposure device, supporting member and manufacturing method
TW201203440A (en) Supporting device and light exposure device
JPS62152632A (en) Table device
JP2006100590A (en) Proximity aligner
JPS62150106A (en) Apparatus for detecting position
JP2004127981A (en) Bonding device
JPH04270151A (en) Laminator
JPH0454369B2 (en)
JPH0449675B2 (en)
CN108983558A (en) A kind of interference exposure Simple Vertical chip bench
CN219417830U (en) Leveling device for light source layer and optical system layer