JP4801991B2 - Building materials - Google Patents

Building materials Download PDF

Info

Publication number
JP4801991B2
JP4801991B2 JP2005375321A JP2005375321A JP4801991B2 JP 4801991 B2 JP4801991 B2 JP 4801991B2 JP 2005375321 A JP2005375321 A JP 2005375321A JP 2005375321 A JP2005375321 A JP 2005375321A JP 4801991 B2 JP4801991 B2 JP 4801991B2
Authority
JP
Japan
Prior art keywords
resin
core material
layer
coating layer
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005375321A
Other languages
Japanese (ja)
Other versions
JP2007175949A (en
Inventor
克彦 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurashiki Spinning Co Ltd
Original Assignee
Kurashiki Spinning Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurashiki Spinning Co Ltd filed Critical Kurashiki Spinning Co Ltd
Priority to JP2005375321A priority Critical patent/JP4801991B2/en
Publication of JP2007175949A publication Critical patent/JP2007175949A/en
Application granted granted Critical
Publication of JP4801991B2 publication Critical patent/JP4801991B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Extrusion Moulding Of Plastics Or The Like (AREA)

Description

本発明は、アルミ製芯材入り一体押出成形体および建築用部材に関する。   The present invention relates to a monolithic extruded body with an aluminum core and a building member.

従来より、芯材入り合成樹脂製品の製造方法として、表面に樹脂系接着剤を塗布した金属製芯材を用いて合成樹脂により積層成形及び/又は押出成形によって芯材入りの合成樹脂製品を得ることを特徴とした方法が知られている(特許文献1)。具体的には、あらかじめフェノール変成アクリル系接着剤、変性ウレタン系接着剤、シランカップリング剤から成る接着剤などをアルミニウム芯材に塗布しておき、当該芯材を押出成形機にかけて、芯材入り合成樹脂成形体を得るものである。しかしながら、そのような方法では、接着剤を芯材に予め塗布する必要があるので、製造が煩雑であり生産性に問題があった。   Conventionally, as a method for producing a synthetic resin product with a core material, a synthetic resin product with a core material is obtained by lamination molding and / or extrusion molding with a synthetic resin using a metal core material having a resin adhesive applied to the surface. A method characterized by this is known (Patent Document 1). Specifically, a phenol-modified acrylic adhesive, a modified urethane adhesive, an adhesive composed of a silane coupling agent, etc. is applied to an aluminum core in advance, and the core is put into an extrusion molding machine to contain the core. A synthetic resin molding is obtained. However, in such a method, since it is necessary to apply an adhesive to the core in advance, the manufacturing is complicated and there is a problem in productivity.

そこで生産性に優れた方法、特に建築用板材の製造方法として、所定の厚み寸法、幅寸法および長手寸法を有し、長手方向に一様断面を有するとともに、波板状に形成された金属製の芯材と、この芯材を包含する樹脂とを含んだ建築用板材を製造する方法であって、金属帯板材を長手方向に搬送しつつ、長手方向に一様断面の波板状をした芯材を連続形成する第1工程と、樹脂押出成形法により、上記芯材を包含する樹脂成形物を連続形成する第2工程と、上記第2工程で形成された樹脂成形物を所定長さごとに切断して単位板材を得る第3工程と、を含むことを特徴とする方法が開示されている(特許文献2)。具体的には、0.3〜1.0mm程度の肉厚の波板状芯材の表面に樹脂原料と共に複合押出成形(共押出成形)を行うものである。しかしながら、そのような方法では、確かに生産性は向上するが、金属製芯材にそのまま直接的に合成樹脂を被覆しているので金属製芯材と合成樹脂とが接着不良を起こした。
特開昭62−13315号公報 特開2003−13543号公報
Therefore, as a method with excellent productivity, in particular, as a method for manufacturing a plate material for construction, a metal plate having a predetermined thickness dimension, a width dimension, a longitudinal dimension, a uniform cross section in the longitudinal direction, and a corrugated plate shape is formed. Is a method of manufacturing a building plate material including a core material and a resin containing the core material, and a corrugated plate having a uniform cross section in the longitudinal direction, while transporting the metal strip material in the longitudinal direction. The first step of continuously forming the core material, the second step of continuously forming the resin molded product including the core material by the resin extrusion molding method, and the resin molded product formed in the second step have a predetermined length. And a third step of obtaining a unit plate material by cutting each unit (Patent Document 2). Specifically, composite extrusion molding (coextrusion molding) is performed on the surface of a corrugated core material having a thickness of about 0.3 to 1.0 mm together with a resin raw material. However, in such a method, the productivity is certainly improved, but since the synthetic resin is directly coated on the metal core material, the metal core material and the synthetic resin cause poor adhesion.
JP-A-62-13315 JP 2003-13543 A

接着性の向上のために、特許文献2の技術において、金属製芯材の表面にエンボス加工を施すことが考えられる。しかしながら、当該加工処理は、非常に煩雑である上に、平板状以外の異形状の芯材や中空状の芯材に対しては、対応することが極めて困難となる。
また、特に芯材がアルミニウムからなる場合、当該アルミ製芯材をアルマイト処理して表面を多孔質とし、当該芯材を用いることによって接着性を向上させることも考えられるが、やはり生産性に問題があり、しかも接着性は十分ではなかった。
In order to improve the adhesiveness, it is conceivable to emboss the surface of the metal core material in the technique of Patent Document 2. However, the processing is very complicated and it is extremely difficult to cope with an irregularly shaped core material other than a flat plate shape or a hollow core material.
In particular, when the core is made of aluminum, it may be possible to anodize the aluminum core to make the surface porous and improve the adhesion by using the core. In addition, the adhesion was not sufficient.

本発明は、被覆層と芯材との十分な接着性を有し、しかも生産性に優れた一体押出成形体および建築用部材を提供することを目的とする。   An object of the present invention is to provide an integral extruded body and a building member having sufficient adhesion between a coating layer and a core material and excellent in productivity.

本発明は、アルミ製芯材の外表面における周方向の一部または全部に、該芯材の長手方向に沿って合成樹脂からなる被覆層が形成されてなり、芯材の外表面が少なくとも被覆層形成領域において長手方向に沿って、深さ0.03〜1.0mmの溝を有することを特徴とする一体押出成形体、および該一体押出成形体からなる建築用部材に関する。   In the present invention, a coating layer made of a synthetic resin is formed on a part or all of the outer surface of an aluminum core material along the longitudinal direction of the core material, and at least the outer surface of the core material is coated. The present invention relates to a monolithic extrusion-molded body characterized by having a groove having a depth of 0.03 to 1.0 mm along the longitudinal direction in a layer forming region, and a building member comprising the monolithic extrusion-molded body.

本発明の一体押出成形体が含有するアルミ製芯材の長手方向の溝は、長手方向に対して略垂直な方向の溝やエンボス加工によって付与される凹凸等と比較して、均一かつ効率のよい形成が可能である。そのため、生産性に優れると同時に被覆層と芯材との十分な接着性を有する。
芯材が有する長手方向の溝は、アルミ製芯材を押出成形するときに同時に形成できるため、そのように形成すると、一体押出成形体の生産性が顕著に優れる。
芯材が有する長手方向の溝がアルミ製芯材の押出成形と同時に形成されると、溝深さやピッチがより有効に均一になるため、接着性が顕著に優れる。
The longitudinal groove of the aluminum core material contained in the integrally extruded body of the present invention is more uniform and efficient than a groove in a direction substantially perpendicular to the longitudinal direction or unevenness provided by embossing. Good formation is possible. Therefore, it is excellent in productivity and has sufficient adhesion between the coating layer and the core material.
Since the longitudinal grooves of the core material can be formed at the same time when the aluminum core material is extruded, the productivity of the integrally extruded product is remarkably improved.
When the longitudinal grooves of the core material are formed at the same time as the extrusion of the aluminum core material, the groove depth and pitch become more effective and uniform, so that the adhesiveness is remarkably excellent.

本発明の一体押出成形体は、アルミ製芯材の外表面に合成樹脂からなる被覆層が形成されてなるものである。詳しくは、例えば図1および図2に示すように、被覆層1は芯材10の長手方向mにおいて連続的に形成される。芯材10断面の周方向Pにおいては被覆層1は、例えば図1および図2に示すように該周方向Pの全部において継ぎ目なく連続的に形成されてもよいし、または該周方向Pの一部において形成されてもよい。図1および図2はいずれも本発明の一体押出成形体の一例を示す概略見取り図である。   The integral extruded body of the present invention is formed by forming a coating layer made of a synthetic resin on the outer surface of an aluminum core material. Specifically, for example, as shown in FIGS. 1 and 2, the coating layer 1 is continuously formed in the longitudinal direction m of the core material 10. In the circumferential direction P of the cross-section of the core material 10, the coating layer 1 may be formed continuously in the entire circumferential direction P as shown in FIGS. 1 and 2, for example, or in the circumferential direction P It may be formed in part. FIG. 1 and FIG. 2 are schematic sketches showing an example of the integrally extruded product of the present invention.

本明細書中、一体押出成形とは、被覆層用樹脂を押出成形すると同時に当該層を、送り込まれた芯材に順次被覆して一体化することを意味し、そのよう方法で形成されたものを一体押出成形体という。   In this specification, the integral extrusion means that the resin for the coating layer is extruded and at the same time, the layer is sequentially coated and integrated with the fed core material, and formed by such a method. Is referred to as an integral extrusion.

本発明において使用される芯材は外表面が少なくとも被覆層形成領域において長手方向に沿って溝を有すればよく、例えば、被覆層形成領域においてのみ当該溝を有してもよいし、または被覆層形成領域以外の領域においても当該溝を有してもよい。被覆層との接着性の観点から好ましくは、芯材は、例えば、図3および図4に示すように、溝2が芯材10の外表面全面において、芯材10の断面周方向および長手方向mの両方向において連続的に形成されたものである。本発明においては芯材が外表面に有する溝は芯材の長手方向mに沿ったものであるので、芯材の長手方向に対して略垂直な方向の溝やエンボス加工によって付与される凹凸等と比較して、芯材の成形と同時に溝付与が可能となり、より均一な溝形成を効率よく達成できる。その結果として一体押出成形体の生産性が向上すると同時に、被覆層と芯材との十分な接着性を確保できる。例えば、芯材が外表面に有する溝が、芯材の長手方向に対して略垂直な方向に沿ったもののみであると、特に芯材が棒形状を有する場合、そのような溝は後加工で付与することとなり、加工自体が困難となる。また溝が不均一に形成され易いので、接着性が低下する傾向がある。たとえ均一に形成できたとしても、そのような溝の形成には比較的長時間がかかるので、非効率である。また例えば、芯材の外表面が、後加工であるエンボス加工による凹凸のみを有する場合、そのような凹凸は均一な形成が著しく困難であるとともに、ピッチの短いものは作成が極めて困難である。   The core material used in the present invention only needs to have a groove on the outer surface at least in the coating layer forming region along the longitudinal direction. For example, the core material may have the groove only in the coating layer forming region, or The groove may also be provided in a region other than the layer formation region. From the viewpoint of adhesiveness with the coating layer, the core is preferably made of, for example, a circumferential direction and a longitudinal direction of the cross section of the core 10 on the entire outer surface of the core 10 as shown in FIGS. It is formed continuously in both directions of m. In the present invention, since the groove on the outer surface of the core material is along the longitudinal direction m of the core material, the groove in the direction substantially perpendicular to the longitudinal direction of the core material, unevenness provided by embossing, etc. Compared to the above, grooves can be formed simultaneously with the molding of the core material, and more uniform groove formation can be achieved efficiently. As a result, the productivity of the integrally extruded product is improved, and at the same time, sufficient adhesion between the coating layer and the core material can be ensured. For example, when the core has a groove on the outer surface that is only along a direction substantially perpendicular to the longitudinal direction of the core, particularly when the core has a rod shape, such a groove is post-processed. Therefore, the processing itself becomes difficult. Further, since the grooves are easily formed unevenly, the adhesiveness tends to be lowered. Even if it can be formed uniformly, it takes a relatively long time to form such a groove, which is inefficient. Further, for example, when the outer surface of the core material has only unevenness by embossing that is post-processing, such unevenness is extremely difficult to form uniformly, and one having a short pitch is extremely difficult to create.

本発明は、芯材が、芯材長手方向の溝以外に、例えば、当該長手方向に対して略垂直な方向の溝やエンボス加工による凹凸を有することを妨げるものではないが、生産性の観点から長手方向の溝のみを有することが好ましい。長手方向の溝を有するだけで、芯材と被覆層との間で良好な接着性を確保できるためである。   The present invention does not prevent the core material from having, for example, a groove in a direction substantially perpendicular to the longitudinal direction or unevenness due to embossing in addition to the groove in the longitudinal direction of the core material. It is preferable to have only longitudinal grooves. This is because it is possible to ensure good adhesion between the core material and the coating layer only by having the grooves in the longitudinal direction.

溝2の深さ(Dp)は0.03〜1.0mmであり、好ましくは0.05〜0.35mmである。深さが浅すぎると、加工自体が極めて困難な上に、被覆層に対する接着性が低下する。深さが深すぎると、被覆層が厚くなり被覆自体が困難になるとともに、成形体表面に芯材の凹凸が現れ、外観不良を引き起こすおそれが出てくる。   The depth (Dp) of the groove 2 is 0.03 to 1.0 mm, preferably 0.05 to 0.35 mm. If the depth is too shallow, processing itself is extremely difficult, and adhesion to the coating layer is reduced. If the depth is too deep, the coating layer becomes thick and the coating itself becomes difficult, and the irregularities of the core material appear on the surface of the molded body, which may cause poor appearance.

溝2のピッチ(P)(すなわち、隣接する溝間における最深部間隔)は0.03〜1.5mmが好ましく、より好ましくは0.05〜1.0mmである。ピッチが大きすぎると、被覆層に対する接着性が低下する傾向にある。ピッチが小さすぎると、加工自体ができない。   The pitch (P) of the grooves 2 (that is, the deepest part interval between adjacent grooves) is preferably 0.03 to 1.5 mm, and more preferably 0.05 to 1.0 mm. When the pitch is too large, the adhesiveness to the coating layer tends to decrease. If the pitch is too small, processing itself cannot be performed.

溝の深さおよびピッチは、芯材の長手方向の長さ1mあたり任意の3箇所において、測定された値の平均値で示すものとする。測定方法は特に限定されるものではないが、マイクロゲージを用いた方法が簡易である。また、レーザー光を照射して深さを測定しても良い。なお、深さ及びピッチについて、切断断面をマイクロスコープにて確認する方法でも測定可能である。   The depth and pitch of the grooves are shown as average values of values measured at arbitrary three locations per 1 m in the longitudinal direction of the core material. The measurement method is not particularly limited, but a method using a micro gauge is simple. Further, the depth may be measured by irradiating a laser beam. The depth and pitch can also be measured by a method of confirming the cut section with a microscope.

溝の形状は本発明の目的が達成される限り特に制限されるものではなく、例えば、溝によって形成される凹凸の断面形状が、図3および図4に示すように、略三角形状の凸部および凹部が連続するような形態を有していても良いし、または略円弧形状の凸部および凹部が連続するような形態を有していても良い。   The shape of the groove is not particularly limited as long as the object of the present invention is achieved. For example, as shown in FIG. 3 and FIG. In addition, the shape may be such that the concave portions are continuous, or the shape may be such that the substantially arc-shaped convex portions and concave portions are continuous.

溝は、被覆層に対する接着性の観点から、均一に形成されることが好ましい。例えば、溝の深さおよびピッチは、芯材の押出成形時に溝を付与することにより、非常に均一なものとすることが可能である。例えばアルミの押出金型に、所望の溝形状を付与しておき、当該金型よりアルミを押出成形することにより、非常に均一な溝を有する芯材が得られる。これにより、被覆層と芯材との間の接着性を顕著に向上させることができる。   The grooves are preferably formed uniformly from the viewpoint of adhesion to the coating layer. For example, the depth and pitch of the groove can be made very uniform by providing the groove during extrusion of the core material. For example, a core material having a very uniform groove can be obtained by giving a desired groove shape to an aluminum extrusion mold and extruding aluminum from the mold. Thereby, the adhesiveness between a coating layer and a core material can be improved notably.

芯材はアルミニウムまたはアルミニウム合金からなる中空または中実の形態を有するものであり、その全体形状は特に制限されず、例えば、平板形状、棒形状等であってよい。通常、芯材はアルミニウムまたはアルミニウム合金の押出成形により形成される。特に中空形状やコ字形状・L字形状等種々の異形状芯材において、通常の後加工では溝付与が困難な場合、当該押出成形が可能であることは非常に有用である。なお、本発明において「アルミ製」とは、「アルミニウム合金製」もその範疇に含むものである。   The core material has a hollow or solid shape made of aluminum or an aluminum alloy, and the overall shape thereof is not particularly limited, and may be, for example, a flat plate shape, a rod shape, or the like. Usually, the core material is formed by extrusion molding of aluminum or aluminum alloy. In particular, in various shapes of core materials such as hollow shapes, U-shapes, and L-shapes, it is very useful that the extrusion can be performed when it is difficult to provide grooves by normal post-processing. In the present invention, “made of aluminum” includes “made of aluminum alloy” in its category.

芯材が中空の形態を有する場合のアルミ部分の厚みは1.0mm以上、特に1.1〜5.0mmであることが好ましい。
また芯材が中空または中実の形態を有する場合の全体寸法は特に制限されるものではなく、得られる一体押出成形体の用途に応じて適宜設定されればよい。
When the core material has a hollow form, the thickness of the aluminum portion is preferably 1.0 mm or more, particularly 1.1 to 5.0 mm.
Moreover, the whole dimension in case a core material has a hollow or solid form is not restrict | limited in particular, What is necessary is just to set suitably according to the use of the integral extrusion molding obtained.

特に一体押出成形体を建築用部材として使用する場合において芯材は、図3および図4に示すような棒形状を有することが好ましい。この場合、芯材はやはり中空または中実のいずれの形態を有していても良いが、建築用部材の軽量化の観点からは、図3および図4に示すように中空であることが好ましい。   In particular, when the integral extruded body is used as a building member, the core material preferably has a bar shape as shown in FIGS. 3 and 4. In this case, the core material may have either a hollow shape or a solid shape, but is preferably hollow as shown in FIGS. 3 and 4 from the viewpoint of reducing the weight of the building member. .

芯材が棒形状を有する場合において、その断面形状は特に制限されるものではなく、例えば、略円形、略楕円形、または略方形(例えば、略長方形、略正方形)等であってよい。建築用部材の取扱い性の観点からは、略円形、略楕円形または略長方形の断面形状、特に略楕円形または略長方形の断面形状を有する芯材が好ましい。特に、中空長方形の断面形状の芯材は、一体押出成形時において芯材自体が樹脂圧で撓みやすく、接着性が低下する傾向があるため、本発明の溝付与が非常に有効である。なお、芯材の断面形状とは芯材の長手方向に対して垂直な断面形状を意味するものとする。   When the core has a bar shape, the cross-sectional shape is not particularly limited, and may be, for example, a substantially circular shape, a substantially elliptical shape, a substantially rectangular shape (for example, a substantially rectangular shape, a substantially square shape), or the like. From the viewpoint of handleability of the building member, a core material having a substantially circular, substantially elliptical or substantially rectangular cross-sectional shape, particularly a substantially elliptical or substantially rectangular cross-sectional shape is preferable. In particular, the hollow rectangular cross-sectional core material is prone to bend by the resin pressure during integral extrusion molding, and the adhesiveness tends to be lowered. Therefore, the provision of grooves according to the present invention is very effective. The cross-sectional shape of the core material means a cross-sectional shape perpendicular to the longitudinal direction of the core material.

芯材が中空形態を有する場合において、芯材は中空内部に、一体押出成形体の取り付けのためのビスホールを有してもよい。ビスホールは、芯材が押出成形により形成されるとき、同時に一体化形成可能である。   In the case where the core material has a hollow form, the core material may have a screw hole for attaching the integrally extruded body inside the hollow. The screw hole can be integrally formed at the same time when the core material is formed by extrusion molding.

芯材を押出成形によって形成するに際して、同時に長手方向の溝を形成可能である。すなわち、アルミ製芯材の押出成形時において、所定の長手方向の溝に対応した凸部を内面に有する金型を押出口に使用することによって、所定の長手方向の溝を芯材外表面に形成可能である。また、別法として、溝を有しない既製のアルミ製芯材と、当該芯材断面と同形状の孔を有し、かつ当該孔の内面に所定の長手方向の溝に対応した凸部を有するリング状の溝形成部材とを用意し、芯材の一端において溝形成部材を嵌合し、その状態で相対的に溝形成部材を芯材の他端まで通過させることによって、所定の長手方向の溝を芯材外表面に形成可能である。芯材断面とは芯材の長手方向に対して垂直な方向の芯材断面を意味する。これらの方法はいずれも、長手方向の溝の均一な形成を比較的短時間で達成可能である。   When the core material is formed by extrusion, a longitudinal groove can be formed at the same time. That is, at the time of extrusion molding of an aluminum core material, a predetermined longitudinal groove is formed on the outer surface of the core material by using, as an extrusion port, a mold having a convex portion corresponding to the predetermined longitudinal groove on the inner surface. It can be formed. Alternatively, a ready-made aluminum core material having no groove, a hole having the same shape as the cross section of the core material, and a convex portion corresponding to a predetermined longitudinal groove on the inner surface of the hole A ring-shaped groove forming member is prepared, and the groove forming member is fitted at one end of the core material, and in this state, the groove forming member is relatively passed to the other end of the core material to thereby obtain a predetermined longitudinal direction. Grooves can be formed on the outer surface of the core material. The core material cross section means a core material cross section in a direction perpendicular to the longitudinal direction of the core material. In any of these methods, uniform formation of the longitudinal grooves can be achieved in a relatively short time.

長手方向の溝が、アルミ製芯材を押出成形するときに同時形成されると、溝がより短時間で形成され得るため、一体押出成形体の生産性が顕著に優れる。しかも、溝がより均一に形成され、接着性が顕著に優れる。   If the longitudinal grooves are simultaneously formed when the aluminum core material is extruded, the grooves can be formed in a shorter time, and thus the productivity of the integrally extruded product is significantly improved. Moreover, the grooves are formed more uniformly and the adhesiveness is remarkably excellent.

長手方向の溝が形成された芯材は、後述の被覆層の形成前において、被覆層との接着性向上を目的としてアルマイト処理を施されてアルマイト層が形成されてもよいが、アルマイト処理は施されないことが好ましい。本発明においてはそのようなアルマイト処理を行わなくても接着性を有効に向上させ得るためである。   The core material in which the grooves in the longitudinal direction are formed may be anodized to form an alumite layer for the purpose of improving adhesion with the coating layer before the formation of the coating layer described later. Preferably it is not applied. This is because, in the present invention, the adhesiveness can be effectively improved without performing such alumite treatment.

芯材の外表面に形成される被覆層1は合成樹脂からなり、いわゆる非発泡体または発泡倍率5倍以下、特に2倍以下の低発泡体の形態を有するものである。   The coating layer 1 formed on the outer surface of the core material is made of a synthetic resin and has a so-called non-foamed body or a low foamed form with a foaming ratio of 5 times or less, particularly 2 times or less.

そのような被覆層に使用される合成樹脂として、例えばポリ塩化ビニル樹脂(以後、PVC樹脂という)、アクリロニトリル−ブタジエン−スチレン共重合樹脂(以後、ABS樹脂という)、アクリロニトリル−スチレン−アクリルゴム共重合樹脂(以後、ASA樹脂という)、ポリスチレン樹脂、ハイインパクトポリスチレン樹脂、アクリロニトリル−スチレン共重合樹脂(以後、AS樹脂という)、シリコン系複合ゴム変性アクリロニトリル−スチレン共重合樹脂(以後、SAS樹脂という)、変性ポリフェニレンエーテル樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリメチルメタクリレート樹脂(以後、PMMA樹脂という)、メチルメタクリレート−ブチルアクリレート共重合樹脂、メチルメタクリレート−スチレン共重合樹脂(以後、MS樹脂という)などのアクリル系樹脂またはポリエステル系樹脂もしくはこれらの混合樹脂等が挙げられる。成形性、強靭性、経済性の面から特に好ましいのは、PVC樹脂、ABS樹脂、SAS樹脂、AS樹脂、ASA樹脂、PMMA樹脂であり、これらの樹脂はそれ自体、より硬質のものである。なお、これらの合成樹脂には、炭酸カルシウム、タルク、マイカ、シラスバルーン等の充填材や軽量化材、ガラス繊維やセルロース繊維等の補強材、難燃剤、その他熱安定剤、滑剤等の合成樹脂成形体に添加される各種添加剤を含むことができる。   Synthetic resins used for such coating layers include, for example, polyvinyl chloride resin (hereinafter referred to as PVC resin), acrylonitrile-butadiene-styrene copolymer resin (hereinafter referred to as ABS resin), and acrylonitrile-styrene-acrylic rubber copolymer. Resin (hereinafter referred to as ASA resin), polystyrene resin, high impact polystyrene resin, acrylonitrile-styrene copolymer resin (hereinafter referred to as AS resin), silicon-based composite rubber-modified acrylonitrile-styrene copolymer resin (hereinafter referred to as SAS resin), Modified polyphenylene ether resin, polyethylene resin, polypropylene resin, polymethyl methacrylate resin (hereinafter referred to as PMMA resin), methyl methacrylate-butyl acrylate copolymer resin, methyl methacrylate-styrene copolymer tree (Hereinafter referred to as MS resin) acrylic resin or polyester resin or a mixed resin or the like of these and the like. Particularly preferred from the viewpoints of moldability, toughness, and economy are PVC resin, ABS resin, SAS resin, AS resin, ASA resin, and PMMA resin, and these resins themselves are harder. These synthetic resins include fillers such as calcium carbonate, talc, mica, and shirasu balloons, lightweight materials, reinforcing materials such as glass fibers and cellulose fibers, flame retardants, other heat stabilizers, and synthetic resins such as lubricants. Various additives added to the molded body can be included.

被覆層は単層からなっていても、2層以上の合成樹脂層からなっていてもよいが、2層以上、特に2〜4層の合成樹脂層からなることが好ましい。被覆層が2層以上の合成樹脂層からなる場合、各層を構成する合成樹脂はそれぞれ独立して上記合成樹脂から選択されればよい。   The coating layer may be composed of a single layer or may be composed of two or more synthetic resin layers, but is preferably composed of two or more layers, particularly 2 to 4 synthetic resin layers. When the coating layer is composed of two or more synthetic resin layers, the synthetic resin constituting each layer may be independently selected from the above synthetic resins.

好ましい被覆層は2層以上の合成樹脂層からなり、芯材と接触する合成樹脂層がポリエステル系樹脂層である。これによって、被覆層と芯材との接着性がより有効に向上するためである。被覆層が2層以上の合成樹脂層からなる場合、芯材と接する層(いわゆる内層)の厚みは、前記接着性の観点からは、少なくとも芯材の溝深さよりも厚くすることが必要であり、通常0.05〜2mmである。例えば、溝深さが0.1mmである場合、少なくとも内層の厚みは0.1mm以上必要であり、好ましくは平均値として0.15mm(溝深さより0.05mm以上厚い)以上である。特に一体成形時には、樹脂圧により芯材と密着されるため接着力が発揮される。このとき、芯材と接触するポリエステル系樹脂層以外の合成樹脂層は、PVC樹脂、ABS樹脂、SAS樹脂、AS樹脂、ASA樹脂、PMMA樹脂等からなっていることがより好ましい。ポリエステル系樹脂層による接着性向上効果がより有効に発揮されるためである。   A preferred coating layer is composed of two or more synthetic resin layers, and the synthetic resin layer in contact with the core material is a polyester resin layer. This is because the adhesion between the coating layer and the core material is more effectively improved. When the coating layer is composed of two or more synthetic resin layers, the thickness of the layer in contact with the core material (so-called inner layer) needs to be at least thicker than the groove depth of the core material from the viewpoint of adhesiveness. Usually, it is 0.05-2 mm. For example, when the groove depth is 0.1 mm, at least the inner layer needs to have a thickness of 0.1 mm or more, and preferably 0.15 mm (0.05 mm or more thicker than the groove depth) or more as an average value. Particularly in the case of integral molding, the adhesive force is exhibited because it is in close contact with the core material by the resin pressure. At this time, the synthetic resin layer other than the polyester-based resin layer in contact with the core material is more preferably made of PVC resin, ABS resin, SAS resin, AS resin, ASA resin, PMMA resin, or the like. This is because the effect of improving the adhesion by the polyester resin layer is more effectively exhibited.

被覆層が2層以上の合成樹脂層からなる場合、最表面層は表面を保護するための保護機能を有することが好ましい。そのような保護機能を有する最表面層は、上記合成樹脂のうち、通常PMMA樹脂、SAS樹脂、AS樹脂、ASA樹脂、ABS樹脂、MS樹脂、PVC樹脂からなっていることが好ましい。そのような合成樹脂の中でも、最表面層をPMMA樹脂、ABS樹脂、MS樹脂、AS樹脂から構成させると透明保護層とすることができる。   When the coating layer is composed of two or more synthetic resin layers, the outermost surface layer preferably has a protective function for protecting the surface. It is preferable that the outermost surface layer having such a protective function is usually made of PMMA resin, SAS resin, AS resin, ASA resin, ABS resin, MS resin, or PVC resin among the synthetic resins. Among such synthetic resins, when the outermost surface layer is made of PMMA resin, ABS resin, MS resin, or AS resin, a transparent protective layer can be obtained.

被覆層の好ましい構成を以下に示す。ただし、以下の構成に限定されるものではない。なお、最初に記載の層は芯材と接触する層であり、順に最表面層に近づく層を示し、最後に記載の層は最表面層である;
(1)ポリエステル系樹脂からなる接着層−PMMA樹脂からなる透明保護層;
(2)ポリエステル系樹脂からなる接着層−種剤を有する着色SAS樹脂からなる表面加飾層;
(3)ポリエステル系樹脂からなる接着層−種剤を有する着色PMMA樹脂からなる加飾層−PMMA樹脂からなる表面層;
(4)ポリエステル系樹脂からなる接着層−着色ABS樹脂からなる半透明保護層;
(5)ポリエステル系樹脂からなる接着層−種剤を有する着色半透明MS樹脂からなる表面加飾層;
(6)ポリエステル系樹脂からなる接着層−可飾性粉体を有する着色半透明PMMA樹脂からなる表面加飾層;
(7)ポリエステル系樹脂からなる接着層−可飾性粉体を有する着色PMMA樹脂からなる加飾層−PMMA樹脂からなる透明表面層;
A preferred configuration of the coating layer is shown below. However, it is not limited to the following configurations. In addition, the layer described at the beginning is a layer in contact with the core material, and shows a layer approaching the outermost surface layer in order, and the layer described at the end is the outermost surface layer;
(1) Adhesive layer made of polyester resin-transparent protective layer made of PMMA resin;
(2) Adhesive layer made of a polyester-based resin-surface decoration layer made of a colored SAS resin having a seed;
(3) Adhesive layer made of polyester-based resin-decorative layer made of colored PMMA resin having seed agent-surface layer made of PMMA resin;
(4) Adhesive layer made of polyester resin-translucent protective layer made of colored ABS resin;
(5) Adhesive layer made of a polyester-based resin-surface decoration layer made of a colored translucent MS resin having a seed;
(6) Adhesive layer made of a polyester-based resin-surface decorative layer made of a colored translucent PMMA resin having a decorative powder;
(7) Adhesive layer made of polyester-based resin-decorative layer made of colored PMMA resin having decorative powder-Transparent surface layer made of PMMA resin;

被覆層の厚みは、硬度、摩耗性、生産安定性の観点から0.3mm以上が好ましく、より好ましくは0.6mm以上である。被覆層が2層以上の合成樹脂層からなる場合、芯材と接する層(いわゆる内層)の厚みは、前記接着性の観点より、少なくとも芯材の溝深さよりも厚くすることが極めて好ましい。なお、2層以上の合計厚みは上記範囲内であればよい。特に、被覆層厚みが0.6mm以上であれば、表面加飾層を形成する場合、安定した加飾表現が可能となる。なお、厚みの上限は特に制限されるものではないが、一体成形時の樹脂圧力が過剰になること、生産性及びコストの面より3mm以下であり、好ましくは2mm以下である。   The thickness of the coating layer is preferably 0.3 mm or more, more preferably 0.6 mm or more from the viewpoints of hardness, wearability, and production stability. When the coating layer is composed of two or more synthetic resin layers, the thickness of the layer in contact with the core material (so-called inner layer) is extremely preferably at least greater than the groove depth of the core material from the viewpoint of the adhesiveness. In addition, the total thickness of two or more layers should just be in the said range. In particular, when the coating layer thickness is 0.6 mm or more, stable decoration expression is possible when the surface decoration layer is formed. The upper limit of the thickness is not particularly limited, but is 3 mm or less, preferably 2 mm or less, in view of excessive resin pressure during integral molding, productivity and cost.

本発明の一体押出成形体は、生産性、長尺物成形、製品特性の一定性という面から、被覆層の押出成形と同時に被覆層を芯材と一体化させる、いわゆる一体押出法によって製造される。特に、2層以上の合成樹脂層からなる被覆層を有する一体押出成形体を製造する場合には、図5に示すような共押出式の一体化押出成形機によって製造される。詳しくは、各合成樹脂層を形成する樹脂を溶融・混練するための各押出機(図5中、11,12)より押し出された樹脂を1個のダイス13内で積層すると同時に、当該層を、送り込まれた長手方向の溝を有する芯材14に順次被覆して一体化する。一体化された後は、通常、冷却され、所望寸法に切断される。図5では2台の押出機が使用されているが、これに制限されず、被覆層を構成する合成樹脂層の数に応じて適宜設置されればよい。   The monolithic extruded product of the present invention is manufactured by a so-called monolithic extrusion method in which the coating layer is integrated with the core material simultaneously with the extrusion molding of the coating layer from the viewpoint of productivity, long product molding, and constant product characteristics. The In particular, in the case of producing an integrally extruded body having a coating layer composed of two or more synthetic resin layers, it is produced by a coextrusion type integral extruder as shown in FIG. Specifically, the resin extruded from each extruder (11, 12 in FIG. 5) for melting and kneading the resin forming each synthetic resin layer is laminated in one die 13, and at the same time, the layer is Then, the core material 14 having the fed longitudinal grooves is sequentially covered and integrated. Once integrated, it is usually cooled and cut to the desired dimensions. Although two extruders are used in FIG. 5, the present invention is not limited to this, and it may be appropriately installed according to the number of synthetic resin layers constituting the coating layer.

本発明の一体押出成形体は、アルミ製芯材の表面全面を合成樹脂にて被覆されている必要はない。例えば図4のような断面略長方形状のものであれば、上面及び下面を被覆し、側面は芯材むき出し状態であるような被覆状態であっても良い。また、建築用部材であれば外観として現れる部分のみが被覆されているような場合も本発明に含まれる。   The integral extruded body of the present invention does not need to cover the entire surface of the aluminum core with a synthetic resin. For example, as long as it has a substantially rectangular cross section as shown in FIG. 4, the upper and lower surfaces may be covered, and the side surfaces may be in a covered state where the core material is exposed. In addition, the present invention includes a case where only a portion that appears as an external appearance is covered if it is a building member.

[芯材]
押出成形によって製造した以下に示すアルミ合金製芯材A〜Gを用いた。なお、芯材A〜Fの押出成形時において押出口には表1に示す各芯材の溝に対応する凸部を有した金型を用いた。芯材Gの押出成形時において押出口には凸部を有さない金型を用いた。芯材B〜Gにはさらにアルマイト処理を施して用いた。いずれのアルミ製芯材も全長3mであった。
[Core]
The following aluminum alloy core materials A to G manufactured by extrusion molding were used. In addition, at the time of extrusion molding of the core materials A to F, a die having a convex portion corresponding to the groove of each core material shown in Table 1 was used as the extrusion port. At the time of extrusion molding of the core material G, a die having no convex portion was used at the extrusion port. The core materials B to G were further subjected to alumite treatment. All the aluminum cores had a total length of 3 m.

Figure 0004801991
Figure 0004801991

[評価サンプルの作成方法]
(実施例1)
図5に示す共押出式の一体化押出成形機によって一体押出成形体を製造した。詳しくは、外層(最表面層)、内層(芯材と接触する層)の合成樹脂を、それぞれ外層用押出機12、内層用押出機11から同時に押出し、ダイス13内でアルミ製芯材10(芯材A)に積層・被覆して、アルミ製芯材Aの外表面における周方向の全部に2層型被覆層を有する一体押出成形体を製造した。なお、押出条件、押出樹脂、芯材条件は次の通りである。
外層用押出機:40φ、一軸押出機(押出温度約180℃)
内層用押出機:40φ、一軸押出機(押出温度約150℃)
内層樹脂:ポリエステル系樹脂であって、比重が1.26、融点が115℃のものを用いる。冷却後の内層厚みは0.2mmである。
外層樹脂:SAS樹脂(ユーエムジーウッド;ユーエムジーエービーエス社製)。冷却後の外層厚みは0.5mmである。
アルミ製芯材は、ダイス内に挿入直前に予備加熱(約100℃)を行う。
[How to create an evaluation sample]
Example 1
An integrally extruded product was produced by a coextrusion type integral extruder shown in FIG. Specifically, the synthetic resin of the outer layer (outermost surface layer) and the inner layer (layer contacting the core material) are simultaneously extruded from the outer layer extruder 12 and the inner layer extruder 11, respectively, and the aluminum core material 10 ( The core material A) was laminated and coated to produce an integrally extruded body having a two-layer coating layer on the entire outer surface of the aluminum core material A in the circumferential direction. Extrusion conditions, extrusion resin, and core material conditions are as follows.
Outer layer extruder: 40φ, single screw extruder (extrusion temperature about 180 ° C)
Inner layer extruder: 40φ, single screw extruder (extrusion temperature about 150 ° C)
Inner layer resin: A polyester resin having a specific gravity of 1.26 and a melting point of 115 ° C. The inner layer thickness after cooling is 0.2 mm.
Outer layer resin: SAS resin (UMG Wood; manufactured by MG ABS Co., Ltd.). The outer layer thickness after cooling is 0.5 mm.
The aluminum core is preheated (about 100 ° C.) immediately before being inserted into the die.

(実施例2〜4および比較例1)
アルミ製芯材として表2に示す芯材を用いたこと以外、実施例1と同様の方法により、一体押出成形体を製造した。
(実施例5および比較例2)
アルミ製芯材として表2に示す芯材を用いたこと、および内層樹脂の厚みを0.4mmとし、外層樹脂の厚みを1.0mmとしたこと以外、実施例1と同様の方法により、一体押出成形体を製造した。
(Examples 2 to 4 and Comparative Example 1)
An integrally extruded product was produced in the same manner as in Example 1 except that the core material shown in Table 2 was used as the aluminum core material.
(Example 5 and Comparative Example 2)
In the same manner as in Example 1, except that the core material shown in Table 2 was used as the aluminum core material, and the thickness of the inner layer resin was 0.4 mm and the thickness of the outer layer resin was 1.0 mm. Extruded bodies were produced.

Figure 0004801991
Figure 0004801991

[評価方法]
・接着性
まず、サンプルに対してサーマルサイクル試験を実施した。
サーマルサイクル試験とは、サンプルを低温及び高温状況下に繰返し保持するものであり、具体的には、−10℃で2時間保持及び80℃で2時間保持を1サイクルとし、計20サイクル行った。なお、当該サーマルサイクル試験終了後、表面を水で洗浄し、24時間陰干しにて乾燥させた。
[Evaluation methods]
-Adhesiveness First, the thermal cycle test was implemented with respect to the sample.
The thermal cycle test is to hold a sample repeatedly under low temperature and high temperature conditions. Specifically, the sample was held at −10 ° C. for 2 hours and held at 80 ° C. for 2 hours as one cycle for a total of 20 cycles. . After completion of the thermal cycle test, the surface was washed with water and dried in the shade for 24 hours.

続いて、当該試験終了後のサンプルに対し、JISK5400:1990の8.5.2碁盤目テープ試験に準じて、接着性試験を行った。詳しくは、サンプル表面にマス目を作成した。マス目はカッターナイフにて作成し、カッターナイフによる切り目間隔は2mm、マス目の総数は100個とした。テープの貼り方及びテープの剥がし方についてはJIS法に準じて行った。表中の評価結果において、分子は剥離しなかった碁盤目の数であり、分母は全碁盤目数である。
上記接着性試験は一体押出成形体の長手方向における中央部において行った。なお、剥離碁盤目が1つでもあると、当該一体押出成形体は全体として出荷できるものではない。
Subsequently, an adhesion test was performed on the sample after completion of the test in accordance with the JISK5400: 1990 8.5.2 cross cut tape test. Specifically, a grid was created on the sample surface. The grids were created with a cutter knife, the interval between the cuts by the cutter knife was 2 mm, and the total number of grids was 100. The method of applying the tape and the method of removing the tape were performed according to the JIS method. In the evaluation results in the table, the numerator is the number of grids that did not peel, and the denominator is the total grid number.
The adhesion test was performed at the central portion in the longitudinal direction of the integrally extruded body. In addition, when there is even one peeling grid, the integral extruded product cannot be shipped as a whole.

本発明のアルミ製芯材入り一体押出成形体は、建築用化粧材、建築用手摺り、防犯用面格子、デッキ材、バルコニールーバー等の建築用部材として有用である。   The integrally extruded body with an aluminum core material of the present invention is useful as a building material such as a decorative material for construction, a handrail for construction, a face grid for security, a deck material, and a balcony louver.

本発明の一体押出成形体の一例を表す概略見取り図である。It is a general | schematic sketch showing an example of the integral extrusion molding of this invention. 本発明の一体押出成形体の一例を表す概略見取り図である。It is a general | schematic sketch showing an example of the integral extrusion molding of this invention. 本発明の一体押出成形体を構成する芯材の一例を表す概略見取り図である。It is a general | schematic sketch showing an example of the core material which comprises the integral extrusion molding of this invention. 本発明の一体押出成形体を構成する芯材の一例を表す概略見取り図である。It is a general | schematic sketch showing an example of the core material which comprises the integral extrusion molding of this invention. 本発明の一体押出成形体を製造するための共押出式の一体押出成形機の概略断面図である。It is a schematic sectional drawing of the coextrusion type integral extrusion molding machine for manufacturing the integral extrusion molding of this invention.

符号の説明Explanation of symbols

1:被覆層、2:溝、10:14:芯材、11:12:押出機、13:ダイス。
1: coating layer, 2: groove, 10:14: core material, 11:12: extruder, 13: die.

Claims (1)

アルミ製芯材の外表面における周方向の一部または全部に、該芯材の長手方向に沿って合成樹脂からなる厚み0.3mm以上3mm以下の被覆層が形成されてなり、芯材の外表面が少なくとも被覆層形成領域において長手方向に沿って、深さ0.05〜0.35mmおよびピッチ0.05〜1.0mmの溝を有する一体押出成形体からなる建築用部材であって、
溝が芯材の押出成形時に形成されたものであり、
被覆層が一体押出成形により芯材の外表面に形成されてなる2層以上の合成樹脂層からなり、該被覆層のうち芯材と接触する合成樹脂層がポリエステル系樹脂層であり、最表面の合成樹脂層が、ポリメチルメタクリレート樹脂、シリコン系複合ゴム変性アクリロニトリル−スチレン共重合樹脂、アクリロニトリル−スチレン共重合樹脂、アクリロニトリル−スチレン−アクリルゴム共重合樹脂、アクリロニトリル−ブタジエン−スチレン共重合樹脂、メチルメタクリレート−スチレン共重合樹脂およびポリ塩化ビニル樹脂からなる群から選択される樹脂からなる建築用部材。
A coating layer having a thickness of not less than 0.3 mm and not more than 3 mm made of synthetic resin is formed on a part or all of the outer surface of the aluminum core material along the longitudinal direction of the core material. A building member comprising a monolithic extruded body having a groove having a depth of 0.05 to 0.35 mm and a pitch of 0.05 to 1.0 mm along the longitudinal direction at least in the covering layer forming region,
The groove is formed when the core material is extruded,
The coating layer is composed of two or more synthetic resin layers formed on the outer surface of the core material by integral extrusion molding, and the synthetic resin layer in contact with the core material of the coating layer is a polyester resin layer, and is the outermost surface The synthetic resin layer is composed of polymethyl methacrylate resin, silicon composite rubber-modified acrylonitrile-styrene copolymer resin, acrylonitrile-styrene copolymer resin, acrylonitrile-styrene-acrylic rubber copolymer resin, acrylonitrile-butadiene-styrene copolymer resin, methyl A building member comprising a resin selected from the group consisting of a methacrylate-styrene copolymer resin and a polyvinyl chloride resin.
JP2005375321A 2005-12-27 2005-12-27 Building materials Active JP4801991B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005375321A JP4801991B2 (en) 2005-12-27 2005-12-27 Building materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005375321A JP4801991B2 (en) 2005-12-27 2005-12-27 Building materials

Publications (2)

Publication Number Publication Date
JP2007175949A JP2007175949A (en) 2007-07-12
JP4801991B2 true JP4801991B2 (en) 2011-10-26

Family

ID=38301623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005375321A Active JP4801991B2 (en) 2005-12-27 2005-12-27 Building materials

Country Status (1)

Country Link
JP (1) JP4801991B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5248882B2 (en) * 2008-02-29 2013-07-31 倉敷紡績株式会社 Building materials
JP5063415B2 (en) * 2008-02-29 2012-10-31 倉敷紡績株式会社 Sash component made of integrally extruded composite material
JP5798312B2 (en) * 2010-09-21 2015-10-21 倉敷紡績株式会社 Monolithic extruded body and building material

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6213315A (en) * 1985-07-11 1987-01-22 Shizuoka Pref Gov Preparation of synthetic resin product containing core material
JPS6345022A (en) * 1987-08-18 1988-02-26 Seikei Giken:Kk Long-sized synthetic resin coated pipe and its manufacture
JPH0313744A (en) * 1989-06-12 1991-01-22 Matsushita Refrig Co Ltd Personal air conditioner
JPH04230751A (en) * 1990-04-26 1992-08-19 Fuji Kiki Kogyo Kk Sheet material conveying roller and manufacture of the same
JPH068301A (en) * 1992-06-24 1994-01-18 Fuji Kiki Kogyo Kk Manufacture of resin coated pipe
JPH07315618A (en) * 1994-05-31 1995-12-05 Mitsubishi Cable Ind Ltd Carrier roller and its manufacture
JPH09290480A (en) * 1996-04-25 1997-11-11 Kobe Steel Ltd Laminated material for vessel cover and its manufacture
JP2002079563A (en) * 2000-09-04 2002-03-19 Nippon Purai Kk Stretch-resistant wire for extrusion molding and manufacturing method therefor
JP3827516B2 (en) * 2000-10-18 2006-09-27 積水樹脂株式会社 Composite extrusion coating
JP2003013543A (en) * 2001-07-04 2003-01-15 Shigeharu Kuroda Building plate material and manufacturing method thereof
JP4015067B2 (en) * 2003-06-17 2007-11-28 伸生 田中 Indoor spotlight railing
JP4368228B2 (en) * 2004-03-22 2009-11-18 三菱アルミニウム株式会社 Polyester resin-coated aluminum alloy plate and method for producing the same

Also Published As

Publication number Publication date
JP2007175949A (en) 2007-07-12

Similar Documents

Publication Publication Date Title
JP2001234016A (en) Thermoplastic plank and method for producing the same
ITTO20000483A1 (en) THERMOFORMED PANEL AND PROCEDURE FOR ITS PRODUCTION.
JP4801991B2 (en) Building materials
JP6030533B2 (en) Low thermal conductive molded body and heat shielding resin laminate
JP4773917B2 (en) Monolithic extruded body and building material
JP5159058B2 (en) Decorative multi-layer coextrusion molding
JP4723956B2 (en) Monolithic extruded body and building material
JP2007224523A (en) Connecting-assembling decorative material
JP3730008B2 (en) Decorative multi-layer molded product
JP4897383B2 (en) Decorative multi-layer coextrusion molding
JP3825000B2 (en) Decorative multi-layer molded product
JP4987544B2 (en) Synthetic resin extrusion molding for decorative material and its mounting structure
JP4387809B2 (en) Decorative multi-layer molded body with a texture pattern
JPH09216269A (en) Co-extrusion building exterior decorative material
JP3992851B2 (en) Synthetic resin window frame, method of manufacturing frame material used therefor, and window for building opening
JP2006035761A (en) Extrusion molded product of resin
JP4278258B2 (en) Decorative multi-layer extrusion
JP3916602B2 (en) Decorative multi-layer molded body with a texture pattern
JP5248882B2 (en) Building materials
JP4987543B2 (en) Synthetic resin extrusion molding for decorative material and its mounting structure
JP5256927B2 (en) Molded product for surface material
JP3020476B2 (en) Decorative multilayer molded body
EP4431274A1 (en) Decorative panel and method for manufacturing decorative panels
HU186629B (en) Process for producing polivinilchlorid shape-bodies strengthened with fibreglass
KR200270567Y1 (en) Plastic double panel

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080131

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110808

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4801991

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250