JP6030533B2 - Low thermal conductive molded body and heat shielding resin laminate - Google Patents

Low thermal conductive molded body and heat shielding resin laminate Download PDF

Info

Publication number
JP6030533B2
JP6030533B2 JP2013221318A JP2013221318A JP6030533B2 JP 6030533 B2 JP6030533 B2 JP 6030533B2 JP 2013221318 A JP2013221318 A JP 2013221318A JP 2013221318 A JP2013221318 A JP 2013221318A JP 6030533 B2 JP6030533 B2 JP 6030533B2
Authority
JP
Japan
Prior art keywords
resin
skin layer
foamed
mass
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013221318A
Other languages
Japanese (ja)
Other versions
JP2014129511A (en
Inventor
祥孝 水野
祥孝 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukuvi Chemical Industry Co Ltd
Original Assignee
Fukuvi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuvi Chemical Industry Co Ltd filed Critical Fukuvi Chemical Industry Co Ltd
Priority to JP2013221318A priority Critical patent/JP6030533B2/en
Publication of JP2014129511A publication Critical patent/JP2014129511A/en
Application granted granted Critical
Publication of JP6030533B2 publication Critical patent/JP6030533B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、建築材料として好適な木質様で、低い熱伝導性の低熱伝導性成形体、および遮熱性樹脂積層体に係わる。   The present invention relates to a woody material suitable for a building material, a low thermal conductivity molded body having a low thermal conductivity, and a heat shielding resin laminate.

住宅のベランダやバルコニーの床材、フェンス材、手摺材、ベンチ材等として、木粉を含有した木質様の樹脂成形体が広く利用されている。
上記床材等は屋外に敷設されて使用されるので、夏場に強い日差しを受けて加熱された場合、合成樹脂の熱伝導性が低いため放熱が速やかに行われずに、その表面温度が50℃を超え60℃付近に達する場合がある。このような蓄熱した状態の床材上を素足で歩行したり素手で触ると、熱くて困難を極めるだけでなく火傷をする恐れがあった。又、ベンチ材等も屋外に設置され使用されるので、同様の問題があった。
Wood-like resin moldings containing wood powder are widely used as flooring materials for house verandas, balconies, fence materials, handrail materials, bench materials, and the like.
Since the flooring etc. are laid and used outdoors, when heated in the summer with strong sunlight, the surface temperature of the synthetic resin is 50 ° C without being radiated quickly due to the low thermal conductivity of the synthetic resin. May reach around 60 ° C. When walking with bare feet or touching with bare hands on the floor material in such a heat storage state, there was a risk of not only being extremely hot and difficult but also causing burns. In addition, since bench materials and the like are installed and used outdoors, there are similar problems.

上記問題を解決する方法として種々の提案がなされている。例えば、床材の表面に遮熱性顔料を含む合成樹脂層を形成する方法(特許文献1)、床材の表面にシリカバルーンやガラスバルーンなどの中空充填材を含有する合成樹脂層を形成する方法(特許文献2)などがある。
これらの方法について、本願発明者らが追試したところ、前者は、蓄熱の低減効果は、温度にして約5℃程度の低下であり未だ不十分であった。後者は、薄い成形体の場合は含有する中空充填材が割れて所定の熱低下効果が得られなかった。更に、液状炭化水素を熱可塑性樹脂の殻で包み込んでマイクロカプセル化した熱膨張性バルーンを用いた方法では所定の効果は認められたが、一方では、材料の硬度が減少して摩耗しやすくなる、即ち耐久性が低下する現象が生じた。
Various proposals have been made as methods for solving the above problems. For example, a method of forming a synthetic resin layer containing a heat-shielding pigment on the surface of a flooring (Patent Document 1), a method of forming a synthetic resin layer containing a hollow filler such as a silica balloon or a glass balloon on the surface of a flooring (Patent Document 2).
The inventors of the present application made additional trials with respect to these methods. As for the former, the effect of reducing the heat storage was still about insufficient at about 5 ° C. in terms of temperature. In the latter case, in the case of a thin molded body, the contained hollow filler was cracked, and a predetermined heat lowering effect was not obtained. Further, the method using a thermally expandable balloon in which liquid hydrocarbons are encapsulated in a thermoplastic resin shell and microencapsulated has a certain effect, but on the other hand, the hardness of the material is reduced and it becomes easy to wear. That is, a phenomenon in which durability is lowered occurred.

特開2011−252366号公報JP 2011-252366 A 特開2009−133074号公報JP 2009-133304 A

本願発明者らは、樹脂基材の表面に発泡層を形成した材料について鋭意研究を続けたところ、発泡樹脂体(発泡層)の表層部に、発泡樹脂体基部に連続した、より密度の高いスキン層を設けることにより、熱伝導率を下げて、仮に蓄熱した発泡樹脂体表面に手足が接触しても、手足に熱が伝わりにくい材料となること、しかも、硬度が高く摩耗性に強い材料となることを見出し、本願発明を完成するに到った。
更に、当該発泡樹脂体を樹脂基材上に積層した積層樹脂体は、床材などの剛性且つ低熱電伝導性が必要な建築材料に好適なことを見出した。
The inventors of the present application have conducted intensive research on a material in which a foam layer is formed on the surface of a resin base material. As a result, the surface layer portion of the foam resin body (foam layer) is continuous with the foam resin body base and has a higher density. By providing a skin layer, the thermal conductivity is lowered, and even if the limb comes in contact with the heat-stored foamed resin body surface, it becomes a material that does not easily transfer heat to the limb, and the material has high hardness and high wear resistance As a result, the present invention has been completed.
Furthermore, it has been found that a laminated resin body obtained by laminating the foamed resin body on a resin base material is suitable for a building material such as a flooring material that requires rigidity and low thermal conductivity.

本発明によれば、樹脂基材上に、低熱伝導性成形体がシート状に積層されてなる遮熱性樹脂積層体からなる屋外用床材であって、
前記低熱伝導性成形体が、
(A)熱可塑性樹脂50〜95質量%、(B)木粉5〜50質量%〔(A)および(B)の合計を100質量%とする〕、並びに(C)化学発泡剤を、(A)熱可塑性樹脂および(B)木粉の合計量100質量部に対して1〜5質量部含む発泡性組成物を発泡押出成形してなる発泡樹脂体からなり、当該(A)熱可塑性樹脂が、アクリロニトリルーブタジエンースチレン樹脂(ABS樹脂)、アクリロニトリルースチレンーアクリレート樹脂(ASA樹脂)、或いはこれらの混合樹脂であり
前記発泡樹脂体の表層部に、発泡樹脂体基部に連続したスキン層が存在し、該スキン層の厚み方向の割合が発泡樹脂体の厚みに対して10〜33%であり、発泡樹脂体基部の密度が0.50〜0.90g/cmであり、スキン層の密度が0.95〜1.20g/cmである
ことを特徴とする屋外用床材が提供される。
上記屋外用床材の発明において、
(1)スキン層の平均厚みが、0.3〜1.0mmあること
(2)成形体全体の発泡倍率が、1.1〜2.0倍であること
(3)熱伝導率が、0.3〜0.15W/Mkであること
(4)デュロメーター硬さが、75〜85であること
(5)スキン層の表面に凹凸が設けられていること
が好適である。
According to the present invention, an outdoor flooring comprising a heat-shielding resin laminate in which a low thermal conductive molded body is laminated in a sheet form on a resin substrate,
The low thermal conductive molded body is
(A) Thermoplastic resin 50 to 95% by mass, (B) Wood powder 5 to 50% by mass [the sum of (A) and (B) is 100% by mass], and (C) Chemical foaming agent ( A) a thermoplastic resin and (B) a foamed resin body obtained by foaming and extruding a foamable composition containing 1 to 5 parts by mass with respect to 100 parts by mass of the total amount of wood flour. The (A) thermoplastic resin Is acrylonitrile-butadiene-styrene resin (ABS resin), acrylonitrile-styrene-acrylate resin (ASA resin), or a mixed resin thereof ,
In the surface layer portion of the foamed resin body, there is a skin layer continuous with the foamed resin body base, and the ratio of the thickness direction of the skin layer is 10 to 33% with respect to the thickness of the foamed resin body. density of a 0.50~0.90g / cm 3, outdoor flooring density of the skin layer is characterized in that it is a 0.95~1.20g / cm 3 is provided.
In the invention of the outdoor flooring ,
(1) The average thickness of the skin layer is 0.3 to 1.0 mm. (2) The foaming ratio of the entire molded body is 1.1 to 2.0 times. (3) The thermal conductivity is 0. It is preferable that it is 3 to 0.15 W / Mk (4) The durometer hardness is 75 to 85 (5) It is preferable that the surface of the skin layer is uneven.

上記屋外用床材の発明において、In the invention of the outdoor flooring,
(6)樹脂基材が、中空樹脂基材であること(6) The resin base material is a hollow resin base material.
(7)樹脂基材が、発泡樹脂基材であること(7) The resin base material is a foamed resin base material.
(8)低熱伝導性成形体の厚みが、0.7〜5.0mmであること(8) The thickness of the low thermal conductive molded body is 0.7 to 5.0 mm.
が好適である。Is preferred.
本発明によれば、更に、発泡性組成物の発泡と樹脂基材上への積層成形を共押出成形による一体成形で行うことを特徴する前記屋外用床材の製造方法が提供される。According to the present invention, there is further provided a method for producing the outdoor flooring material, wherein foaming of the foamable composition and lamination molding on the resin substrate are performed by integral molding by coextrusion molding.

本発明によって提供される低熱伝導性成形体、並びに当該成形体を表面に積層した遮熱性樹脂積層体は、蓄熱された熱の表面への伝導性が低いため、接触した手足への熱の伝導を有効に抑制することができる。しかも、硬度が高く摩耗性に強く、樹脂基材上に積層した場合は木質様の床材、ベンチ材、フェンス材、手摺材等の建築材として大変有用である。   The low thermal conductivity molded body provided by the present invention and the heat-shielding resin laminate in which the molded body is laminated on the surface have low conductivity to the surface of the stored heat. Can be effectively suppressed. Moreover, it has high hardness and high wear resistance, and when laminated on a resin base material, it is very useful as a building material such as a wood-like floor material, bench material, fence material, handrail material.

本発明で使用したセルカプロセス成形機の模式図である。It is a schematic diagram of the SELKA process molding machine used by this invention. 実施例1で得られた遮熱性樹脂積層体のSEM断面写真である。2 is a SEM cross-sectional photograph of the heat-shielding resin laminate obtained in Example 1. 比較例3で得られた遮熱性樹脂積層体のSEM断面写真である。4 is a SEM cross-sectional photograph of a heat-shielding resin laminate obtained in Comparative Example 3. 比較例4で得られた遮熱性樹脂積層体のSEM断面写真である。6 is a SEM cross-sectional photograph of a heat-shielding resin laminate obtained in Comparative Example 4. 実施例1における接触温感温度測定前後のサーモグラフィー写真である。2 is a thermographic photograph before and after measurement of contact temperature sensation temperature in Example 1. FIG. 比較例3における接触温感温度測定前後のサーモグラフィー写真である。It is a thermography photograph before and after measurement of contact temperature sensation temperature in Comparative Example 3. 実施例1で得られた遮熱性樹脂積層体の断面図である。1 is a cross-sectional view of a heat shielding resin laminate obtained in Example 1. FIG. 実施例10で得られた遮熱性樹脂積層体の断面図である。It is sectional drawing of the heat insulation resin laminated body obtained in Example 10. FIG. 実施例10で得られた遮熱性樹脂積層体のSEM断面写真である。4 is a SEM cross-sectional photograph of a heat-shielding resin laminate obtained in Example 10.

本発明の低熱伝導性成形体は、木粉を含んで木質様の外観を持ち、しかも、低い熱伝導性を有して蓄熱した熱が表面へ伝わることを抑制する。
当該低熱伝導性成形体は、(A)熱可塑性樹脂、(B)木粉、並びに(C)化学発泡剤を特定量配合した発泡性組成物を発泡押出成形した発泡樹脂体からなるもので、しかも、当該発泡樹脂体の表層部に発泡樹脂体基部に連続して形成されたスキン層が存在するという特徴を有している。
The low thermal conductivity molded body of the present invention has a woody appearance including wood powder, and has low thermal conductivity, and suppresses the transfer of heat stored to the surface.
The low thermal conductive molded body is composed of a foamed resin body obtained by foam extrusion molding a foamable composition containing a specific amount of (A) a thermoplastic resin, (B) wood flour, and (C) a chemical foaming agent, And it has the characteristic that the skin layer continuously formed in the foamed resin body base part exists in the surface layer part of the said foamed resin body.

詳しくは、発泡樹脂体が、密度の異なる発泡樹脂体基部とそれに連続するスキン層の二つの部位からなる。発泡樹脂体基部の密度は0.50〜0.90g/cmである。スキン層の密度は0.95〜1.20g/cmであり、且つ、スキン層の厚み方向の割合が発泡樹脂体の厚みに対して10〜33%である。
発泡樹脂体基部の密度は、熱伝導性および機械的強度の観点から、0.50〜0.90g/cmとする必要がある。0.50g/cm未満では剛性や圧縮強度が劣る。0.90g/cmを超えると熱伝導性の低下が損なわれる。
スキン層の密度は、熱伝導性及び硬度、摩耗性の観点から、0.95〜1.20g/cmとする必要がある。同じくスキン層の厚み方向の割合が発泡樹脂体の全厚みに対して10〜33%である必要がある。スキン層の密度が0.95g/cm未満および/またはスキン層の厚みが10%未満の場合は、硬度、摩耗性が劣る。スキン層の密度が1.20g/cmを超えるおよび/またはスキン層の厚みが33%を超える場合は、表面への熱伝導性が低下しない。
Specifically, the foamed resin body is composed of two parts, a foamed resin body base having a different density and a skin layer continuous therewith. The density of the foamed resin body base is 0.50 to 0.90 g / cm 3 . The density of the skin layer is 0.95 to 1.20 g / cm 3 , and the ratio in the thickness direction of the skin layer is 10 to 33% with respect to the thickness of the foamed resin body.
The density of the foamed resin body base needs to be 0.50 to 0.90 g / cm 3 from the viewpoint of thermal conductivity and mechanical strength. If it is less than 0.50 g / cm 3 , the rigidity and compressive strength are poor. When it exceeds 0.90 g / cm 3 , the decrease in thermal conductivity is impaired.
The density of the skin layer needs to be 0.95 to 1.20 g / cm 3 from the viewpoints of thermal conductivity, hardness, and wear. Similarly, the ratio in the thickness direction of the skin layer needs to be 10 to 33% with respect to the total thickness of the foamed resin body. When the density of the skin layer is less than 0.95 g / cm 3 and / or the thickness of the skin layer is less than 10%, the hardness and wear resistance are poor. When the density of the skin layer exceeds 1.20 g / cm 3 and / or the thickness of the skin layer exceeds 33%, the thermal conductivity to the surface does not decrease.

〔(A)熱可塑性樹脂〕
本発明における熱可塑性樹脂は特に限定されず、公知の熱可塑性樹脂を使用することができる。具体的には、ポリエチレン、ポリプロピレン(PP)等のポリオレフィン樹脂;ポリアミド樹脂;ポリアセタール樹脂;ポリエチレンテレフタレート、ポリブチレンテレフタレート等のポリエステル樹脂;フッ素樹脂;ポリフェニレンサルファイド樹脂;ポリスチレン、アクリロニトリルーブタジエンースチレン樹脂(ABS樹脂)、アクリロニトリルーエチレンースチレン樹脂(AES樹脂)、アクリロニトリルースチレンーアクリレート(ASA樹脂)等のスチレン系樹脂;ポリメチルメタクリレート等のアクリル系樹脂;ポリカーボネート樹脂;ポリウレタン樹脂;ポリ塩化ビニル(PVC)樹脂;ポリフェニレンオキサイド樹脂;エチレン−酢酸ビニル共重合体樹脂等の市販の熱可塑性樹脂が挙げられる。これらの熱可塑性樹脂の中で、耐衝撃性や剛性、耐候性の観点から、ABS樹脂、ASA樹脂、或いはこれらの混合樹脂が好適である。
当該熱可塑性樹脂の配合量は、後述する(B)木粉との合計量を100質量%とした場合、50〜95質量%とする。50質量%未満である場合は押出成形性や機械的強度が低下し、95質量%を超えると木粉による木質感が減少する。また、この範囲内にあれば、化学発泡剤を使用した発泡が有効に実施できる。
[(A) Thermoplastic resin]
The thermoplastic resin in this invention is not specifically limited, A well-known thermoplastic resin can be used. Specifically, polyolefin resin such as polyethylene and polypropylene (PP); polyamide resin; polyacetal resin; polyester resin such as polyethylene terephthalate and polybutylene terephthalate; fluororesin; polyphenylene sulfide resin; polystyrene, acrylonitrile-butadiene-styrene resin (ABS) Resin), acrylonitrile-ethylene-styrene resin (AES resin), styrene resin such as acrylonitrile-styrene-acrylate (ASA resin); acrylic resin such as polymethyl methacrylate; polycarbonate resin; polyurethane resin; polyvinyl chloride (PVC) Resin; Polyphenylene oxide resin; Commercial thermoplastic resin such as ethylene-vinyl acetate copolymer resin. Among these thermoplastic resins, ABS resin, ASA resin, or a mixed resin thereof is preferable from the viewpoint of impact resistance, rigidity, and weather resistance.
The blending amount of the thermoplastic resin is 50 to 95% by mass when the total amount with (B) wood flour described later is 100% by mass. If it is less than 50% by mass, the extrudability and mechanical strength are lowered, and if it exceeds 95% by mass, the wood texture due to wood powder is reduced. Moreover, if it exists in this range, foaming using a chemical foaming agent can be implemented effectively.

ABS樹脂は、アクリロニトリル、ブタジエン、およびスチレンの共重合体であり、耐衝撃性、剛性、引っ張り強度及び光沢性に優れた樹脂である。その構造は、AS(アクリロニトリル・スチレン)樹脂などのマトリックスの中にポリブタジエンなどの弾性体が島状に分散した不均一の構造を持ち、正確には、アクリロニトリル、ブタジエン、スチレンの3つのモノマーの共重合体ではないと言われている。アクリロニトリルの含有量は一般に20〜35%であるが40%程度のものもある。ブタジエンは5〜30%程度である。上記三成分の一部を代え、光沢性、流動性、耐熱性などの特性を向上させた改良ABS樹脂も多数存在する。これらは、「テクノABS」(テクノポリマー社)、「UMGABS」(UMGABS社)、「デンカABS」(電気化学工業社)などとして市販されているので、目的に応じて選択し使用することができる。
ASA樹脂は、アクリロニトリル、スチレン、およびアクリル酸メチルの共重合体樹脂である。ABS樹脂のブタジエン成分に代替してアクリルゴム成分を有し耐衝撃性を維持しつつ耐候性に優れる樹脂であり、それ自体公知である。例えば、UMGABS社から「ダイヤラック」シリーズとして市販されている。
ABS resin is a copolymer of acrylonitrile, butadiene, and styrene, and is excellent in impact resistance, rigidity, tensile strength, and gloss. Its structure is a heterogeneous structure in which an elastic body such as polybutadiene is dispersed in an island shape in a matrix such as AS (acrylonitrile styrene) resin. To be precise, the three monomers of acrylonitrile, butadiene and styrene are co-polymerized. It is said that it is not a polymer. The content of acrylonitrile is generally 20 to 35%, but there are some that are about 40%. Butadiene is about 5 to 30%. There are also many improved ABS resins in which some of the above three components are replaced to improve properties such as gloss, fluidity, and heat resistance. These are commercially available as “Techno ABS” (Technopolymer), “UMGABS” (UMGABS), “Denka ABS” (Denki Kagaku Kogyo), etc., and can be selected and used according to the purpose. .
The ASA resin is a copolymer resin of acrylonitrile, styrene, and methyl acrylate. It is a resin that has an acrylic rubber component instead of the butadiene component of ABS resin and has excellent weather resistance while maintaining impact resistance, and is known per se. For example, it is commercially available as “Diarack” series from UMGABS.

〔(B)木粉〕
木粉としては、針葉樹、広葉樹、ラワン材なの任意の木材の粉砕物が使用される。粒径も特に限定されるものではないが、一般に、20〜250メッシュ程度のものが使用される。木材の粉砕物以外にも、樹皮、穀物殻、廃材などの粉砕物も使用できる。
[(B) Wood flour]
As the wood powder, a pulverized product of any wood such as conifer, hardwood or lauan wood is used. The particle size is not particularly limited, but generally a particle size of about 20 to 250 mesh is used. In addition to pulverized wood, crushed materials such as bark, grain husks, and waste wood can also be used.

〔(C)化学発泡剤〕
化学発泡剤としては、従来この種の発泡樹脂成形体の製造に用いられている発泡剤を用いることができる。代表的なものとして、重炭酸ナトリウム、炭酸アンモニウム、亜硝酸アンモニウムなどの無機発泡剤;N,N'−ジメチル−N,N'−ジニトロソ・テレフタルアミド、N,N'−ジニトロソ・ペンタメチレン・テトラミンなどのニトロソ化合物;アゾジカルボンアミド、アゾビスイソブチロニトリル、アゾジアミノベンゼンなどのアゾ化合物;ベンゼンスルホニルヒドラジド、トルエンスルホニルヒドラジドなどのスルホニルヒドラジド化合物;カルシウムアジド、4,4'−ジフェニルジスルホニルアジド、p−トルエンスルホニルアジドなどのアジド化合物などをあげることができる。なかでもニトロソ化合物、アゾ化合物およびアジド化合物が好ましく使用される。これら化学発泡剤の中から、用いる熱可塑性樹脂の成形温度と適合する分解温度の化学発泡剤が選択される。
当該化学発泡剤の配合量は、(A)熱可塑性樹脂および(B)木粉の合計量100質量部に対して1〜5質量部である。1質量部未満である場合は効果的な発泡を行うことできず、5質量部を超えると、発泡樹脂体の諸物性が低下し、木質感も損なわれる。
[(C) Chemical foaming agent]
As a chemical foaming agent, the foaming agent conventionally used for manufacture of this kind of foamed resin molding can be used. Typical examples include inorganic foaming agents such as sodium bicarbonate, ammonium carbonate, and ammonium nitrite; N, N'-dimethyl-N, N'-dinitroso-terephthalamide, N, N'-dinitroso-pentamethylene, tetramine, etc. Nitroso compounds; azo compounds such as azodicarbonamide, azobisisobutyronitrile, azodiaminobenzene; sulfonyl hydrazide compounds such as benzenesulfonyl hydrazide, toluenesulfonyl hydrazide; calcium azide, 4,4′-diphenyldisulfonyl azide, p -Azide compounds such as toluenesulfonyl azide. Of these, nitroso compounds, azo compounds and azide compounds are preferably used. A chemical foaming agent having a decomposition temperature compatible with the molding temperature of the thermoplastic resin to be used is selected from these chemical foaming agents.
The compounding quantity of the said chemical foaming agent is 1-5 mass parts with respect to 100 mass parts of total amounts of (A) thermoplastic resin and (B) wood flour. When the amount is less than 1 part by mass, effective foaming cannot be performed, and when it exceeds 5 parts by mass, various physical properties of the foamed resin body are deteriorated and the wood texture is also impaired.

当該化学発泡剤は、必要に応じて、分解促進や気泡の均一化等の機能を有する発泡助剤と併用することができる。この種の発泡助剤としては、酢酸亜鉛やタルク等の無機発泡助剤、サリチル酸、フタル酸、ステアリン酸、尿素及びその誘導体等の有機発泡助剤などを挙げることができる。   The chemical foaming agent can be used in combination with a foaming aid having functions such as promotion of decomposition and uniformization of bubbles as required. Examples of this type of foaming aid include inorganic foaming aids such as zinc acetate and talc, and organic foaming aids such as salicylic acid, phthalic acid, stearic acid, urea and derivatives thereof.

〔(D)他の添加剤〕
本発明で発泡に供される発泡性組成物には、前記発泡助剤の他に、成形体の色目を調節するための着色剤、加工性や成形性向上のための滑剤、加工助剤、その他光安定剤、紫外線防止剤、酸化防止剤、帯電防止剤などの公知の他の添加剤や、また炭酸カルシウムやタルクなどの充填剤を、それ自体公知の処方に従って配合できる。
特に、発泡セルの分散と成長に寄与し、しかも優れた表面成形性を付与する高分子アクリル系加工助剤は好的な添加剤である。このような高分子アクリル系加工助剤としては、平均分子量が50万〜500万のアクリル樹脂、例えばポリメチルメタアクリレート(PMMA)、或いはPMMAを構成する構成単位の一部を、アクリル酸メチルなどの他の重合性単量体由来の構成単位で置き換えたアクリル共重合体等が挙げられる。
[(D) Other additives]
In the foamable composition used for foaming in the present invention, in addition to the foaming aid, a colorant for adjusting the color of the molded body, a lubricant for improving processability and moldability, a processing aid, In addition, other known additives such as light stabilizers, ultraviolet light inhibitors, antioxidants, antistatic agents, and fillers such as calcium carbonate and talc can be blended according to a formulation known per se.
In particular, polymer acrylic processing aids that contribute to the dispersion and growth of the foamed cells and that provide excellent surface formability are preferred additives. As such a polymer acrylic processing aid, an acrylic resin having an average molecular weight of 500,000 to 5,000,000, for example, polymethyl methacrylate (PMMA), or a part of structural units constituting PMMA, methyl acrylate, etc. And an acrylic copolymer substituted with a structural unit derived from another polymerizable monomer.

〔発泡性組成物の調製〕
前記本発明の必須成分並びに必要に応じて配合される他の添加剤は、混合調製して発泡組成物とし、該発泡組成物を発泡押出成形することにより、発泡樹脂体を製造する。
発泡組成物の調製方法は特に限定されず、代表的には、ブレンダーやヘンシルミキサー等を用いてドライブレンドする方法が採用される。配合の順序も特に制限なく、全成分を同時に混合してもよく、多段階的に混合してもよい。例えば、化学発泡剤を除く全成分を先に予備混合し次いで化学発泡剤を混合する方法や、木粉と化学発泡剤、更には任意の添加剤を先に予備混合し次いで熱可塑性樹脂を混合する方法が挙げられる。
(Preparation of foamable composition)
The essential components of the present invention and other additives blended as necessary are mixed to prepare a foamed composition, and the foamed composition is subjected to foam extrusion molding to produce a foamed resin body.
The method for preparing the foamed composition is not particularly limited, and typically, a dry blending method using a blender, a hensil mixer or the like is employed. The order of blending is not particularly limited, and all components may be mixed at the same time, or may be mixed in multiple stages. For example, all components except chemical foaming agent are premixed first, then chemical foaming agent is mixed, or wood flour and chemical foaming agent, and any additives are premixed first and then thermoplastic resin is mixed. The method of doing is mentioned.

〔低熱伝導性成形体の製造〕
調製された発泡性組成物を用いて発泡と溶融押出成形を同時に行って発泡樹脂体を製造する。代表的には押出機を用いて行う方法が採用される。即ち、発泡性組成物は押出機のホッパーに供給され、押出機中で機械的に溶融混練され、ダイを経て空気中へ押し出されることにより、発泡樹脂成形体を形成する。押出機としては、単軸或いは二軸のスクリューを備えたそれ自体公知の押出機が使用され、各成分の混練、押出及び発泡が一台の押出機で行われ、操作が簡単であると共に生産性も高いという利点を有する。
本発明の低熱伝導性成形体は、発泡樹脂体の表層部に前記特定の性状のスキン層を有することに特徴がある。当該スキン層を有する発泡樹脂成形体は、上出の製法で得られた発泡樹脂体の表面を、成形直後に急冷することにより製造される。具体的には、押出機のダイ出口に設置された同形の冷却サイジング、或いは冷却ロールで冷却する方法が挙げられる。前者はセルカプロセスとして知られる公知の方法であり、図1に、本発明で使用されるセルカプロセス成形機を模式的に示す。冷却温度は、使用する熱可塑性樹脂の押出成形温度や設計されるスキン層の前記特性に合わせて、適宜選択されるが、通常、常温乃至冷却媒体である水温(5〜20℃)の温度に設定される。
[Manufacture of low thermal conductive moldings]
Using the prepared foamable composition, foaming and melt extrusion are simultaneously performed to produce a foamed resin body. Typically, a method using an extruder is employed. That is, the foamable composition is supplied to a hopper of an extruder, mechanically melted and kneaded in the extruder, and extruded into the air through a die to form a foamed resin molded body. As the extruder, a known extruder with a single or twin screw is used, and kneading, extruding and foaming of each component are performed in one extruder, and the operation is simple and production is possible. It has the advantage of high performance.
The low thermal conductive molded body of the present invention is characterized in that the surface layer portion of the foamed resin body has a skin layer having the specific property. The foamed resin molded body having the skin layer is produced by rapidly cooling the surface of the foamed resin body obtained by the above production method immediately after molding. Specifically, the cooling method of the same shape installed in the die exit of an extruder, or the method of cooling with a cooling roll is mentioned. The former is a known method known as the Selca process, and FIG. 1 schematically shows a Selca process molding machine used in the present invention. The cooling temperature is appropriately selected according to the extrusion temperature of the thermoplastic resin to be used and the characteristics of the skin layer to be designed. Usually, the cooling temperature is a room temperature or a water temperature (5 to 20 ° C.) which is a cooling medium. Is set.

本発明おいては、上記発泡樹脂体の基部の密度を、0.50〜0.90g/cmとする必要がある。密度は、使用する熱可塑性樹脂および化学発泡剤の種類と量によって基本的に制御可能であるが、押出機の特性、発泡押出成形温度、成形時間等によっても変化するので、これらを勘案して、別途検討しておくことが好ましい。基部の密度を上記範囲にした場合、基部内の発泡セルの平均直径は60〜200μmである。基部及び下記スキン層の密度の測定は、ミラージュ貿易株式会社製「電子比重計ED120‐T」を用いて測定した。 In the present invention, the density of the base of the foamed resin body needs to be 0.50 to 0.90 g / cm 3 . The density is basically controllable depending on the type and amount of the thermoplastic resin and chemical foaming agent to be used, but changes depending on the characteristics of the extruder, foaming extrusion molding temperature, molding time, etc. It is preferable to consider separately. When the density of the base is within the above range, the average diameter of the foamed cells in the base is 60 to 200 μm. The density of the base and the following skin layer was measured using “Electron Densitometer ED120-T” manufactured by Mirage Trading Co., Ltd.

本発明おいては、更に、スキン層の密度が0.95〜1.20g/cmであり、且つ、スキン層の厚み方向の割合が発泡樹脂体の全厚みに対して10〜33%であることが必要である。スキン層の密度並びに厚みの制御は、上記冷却サイジングや冷却ロールでの冷却温度および冷却時間(速度)で基本的に制御できる。スキン層の密度を上記範囲にした場合、スキン層内の発泡セルの平均直径は10〜50μmである。 In the present invention, the density of the skin layer is 0.95 to 1.20 g / cm 3 , and the ratio of the thickness direction of the skin layer is 10 to 33% with respect to the total thickness of the foamed resin body. It is necessary to be. The density and thickness of the skin layer can be basically controlled by the cooling temperature and cooling time (speed) of the cooling sizing and cooling roll. When the density of the skin layer is within the above range, the average diameter of the foam cells in the skin layer is 10 to 50 μm.

本発明で得られる低熱伝導性成形体は、好適には、成形体全体の発泡倍率が1.1〜2.0倍であり、その熱伝導率が、0.3〜0.15W/Mkであり、そのデュロメーター硬さが、75〜85であると云う特徴を有する。発泡倍率が2.0倍を超えると、強度が大きく低下する。
更に、低熱伝導性成形体は、スキン層の表面(接触側)に凹凸が設けられていることが、手足の接触温感温度がより一層低下するので好ましい態様である。表面の凹凸の形成方法は特に限定されず、具体的には、化学薬品で表面処理する化学的粗面化法、レーザー照射で表面処理する物理的粗面化法、金属ブラシ、サンドペーパーなどで表面処理する機械的粗面化法、およびあらかじめ金型の表皮層面に凹凸を設け押出と同時に形成する方法が挙げられる。
The low thermal conductivity molded body obtained in the present invention preferably has an expansion ratio of 1.1 to 2.0 times of the entire molded body, and a thermal conductivity of 0.3 to 0.15 W / Mk. The durometer hardness is 75 to 85. When the expansion ratio exceeds 2.0 times, the strength is greatly reduced.
Furthermore, in the low thermal conductive molded body, it is preferable that the surface (contact side) of the skin layer is provided with irregularities since the contact temperature feeling temperature of the limb is further lowered. The method for forming the surface irregularities is not particularly limited, and specifically, a chemical roughening method in which the surface treatment is performed with chemicals, a physical roughening method in which the surface treatment is performed with laser irradiation, a metal brush, sandpaper, etc. Examples thereof include a mechanical surface-roughening method for surface treatment and a method of forming irregularities on the surface of the skin layer of the mold in advance and forming it simultaneously with extrusion.

〔遮熱性樹脂積層体〕
前記本発明の低熱伝導性成形体は、低い熱伝導性を有し、且つ、硬度および耐摩耗性に優れる。当該低熱伝導性成形体を利用して床材などの建築材料とする場合には、強度や剛性が必要であるため、下地として樹脂基材を用い、当該基材上に前記低熱伝導性成形体(表皮層)を積層して遮熱性樹脂積層体とする。
図2に、本発明で得られた遮熱性樹脂積層体の断面SEM写真を示す。
樹脂基材とし使用される樹脂としては、前記(A)熱可塑性樹脂が制限なく使用されるが、これらの熱可塑性樹脂の中で、耐衝撃性や剛性、難燃性、耐候性の観点から、ABS樹脂、ASA樹脂、塩化ビニル樹脂或いはこれらの混合樹脂が好適である。
[Heat shielding resin laminate]
The low thermal conductivity molded article of the present invention has low thermal conductivity and is excellent in hardness and wear resistance. When building a building material such as a flooring using the low thermal conductive molded body, strength and rigidity are required. Therefore, a resin base material is used as a base, and the low thermal conductive molded body is formed on the base material. A (skin layer) is laminated to form a heat shielding resin laminate.
In FIG. 2, the cross-sectional SEM photograph of the heat-shielding resin laminated body obtained by this invention is shown.
As the resin used as the resin base material, the above-mentioned (A) thermoplastic resin is used without limitation. Among these thermoplastic resins, from the viewpoint of impact resistance, rigidity, flame retardancy, and weather resistance. ABS resin, ASA resin, vinyl chloride resin or a mixed resin thereof is preferable.

更に、当該樹脂基材は、木質感があり、且つ、自消性、更には不燃性であることが建築材料として用いる場合には特に好ましい。この目的の為、通常、上記熱可塑性樹脂、木粉に加えて難燃剤が5〜15質量%程度配合される。
難燃剤としては、特に限定されず公知の材料が使用できる。具体的には、三酸化アンチモン、五酸化アンチモン、水酸化アルミニウム、水酸化マグネシウム等の無機系難燃剤;トリフェニルホスフェート、芳香族縮合リン酸エステルなどのリン系難燃剤;テトラブロモビスフェノールA、デカブロモジフェニールエーテル、臭素化ポリエチレン、臭素化ポリカーボネートなどのハロゲン系有機難燃剤が例示される。ハロゲン系有機難燃剤または無機系難燃剤が好適に使用される。
Further, it is particularly preferable that the resin base material has a wood texture, is self-extinguishing, and is incombustible as a building material. For this purpose, a flame retardant is usually blended in an amount of about 5 to 15% by mass in addition to the thermoplastic resin and wood powder.
As a flame retardant, it does not specifically limit but a well-known material can be used. Specifically, inorganic flame retardants such as antimony trioxide, antimony pentoxide, aluminum hydroxide, and magnesium hydroxide; phosphorus flame retardants such as triphenyl phosphate and aromatic condensed phosphate ester; tetrabromobisphenol A, deca Illustrative are halogenated organic flame retardants such as bromodiphenyl ether, brominated polyethylene and brominated polycarbonate. A halogen-based organic flame retardant or an inorganic flame retardant is preferably used.

上記難燃剤の使用がコスト的或いは環境的に問題となる場合は、先に本出願人らが提案した、難燃剤を含有しない自消性、或いは不燃性の樹脂成形体を樹脂基材とすることが好適である(特願2012-37388)。
具体的には、自消性を発現させるためには、ABS樹脂15〜45質量%、塩化ビニル樹脂20〜40質量%、および木粉30〜50質量%〔三成分の合計を100質量%とする〕を配合した成形用組成物の溶融成形体が挙げられる。不燃性を発現させるためには、ABS樹脂15〜30質量%、塩化ビニル樹脂30〜40質量%、および木粉40〜50質量%〔三成分の合計を100質量%とする〕を配合した成形用組成物の溶融成形体が挙げられる。これらの成形体には、先に挙げた(D)他の添加剤を制限なく配合できる。
When the use of the above flame retardant is a problem in terms of cost or environment, the resin base material is a self-extinguishing or non-flammable resin molded body that does not contain a flame retardant previously proposed by the present applicants. It is preferable (Japanese Patent Application No. 2012-37388).
Specifically, in order to express self-extinguishing properties, ABS resin 15 to 45% by mass, vinyl chloride resin 20 to 40% by mass, and wood flour 30 to 50% by mass [the total of the three components is 100% by mass A melt-molded product of a molding composition blended. In order to develop non-flammability, molding containing 15 to 30% by mass of ABS resin, 30 to 40% by mass of vinyl chloride resin, and 40 to 50% by mass of wood flour (the total of the three components is 100% by mass) A melt-molded product of the composition for use. In these molded articles, other additives (D) mentioned above can be blended without limitation.

下地の樹脂基材の形状や内部構造は特に限定されず、使用目的に応じて任意に設計される。例えば、本願発明の遮熱性樹脂積層体を床材として使用する場合は、剛性を高め、軽量化するために、図7に示すような、内部に空間を設けた中空構造の樹脂基材を用いることが好適である。
ベンチ材として使用する場合には、端部の外観並びにビスや釘止めした時の係止力を確保するため、図8に示すように、中空とせずに発泡樹脂基材を用いることが好ましい。発泡樹脂基材の発泡の方法は特に限定されず、前出の方法が制限なく採用される。また、発泡樹脂基材の場合は、共押出機を使用して、表皮層の発泡樹脂体の製造、即ち表皮層の発泡押出と同時に樹脂基材も発泡押出して、発泡樹脂基材上に発泡樹脂体(表皮層)を積層成形する方法が好適に採用される。共押出後のスキン層の形成は、前出のとおりである。
The shape and internal structure of the underlying resin substrate are not particularly limited, and can be arbitrarily designed according to the purpose of use. For example, when the heat-insulating resin laminate of the present invention is used as a flooring, a hollow structure resin base material having a space inside is used as shown in FIG. 7 in order to increase rigidity and reduce weight. Is preferred.
When used as a bench material, it is preferable to use a foamed resin base material without making it hollow, as shown in FIG. 8, in order to ensure the appearance of the end portion and the locking force when screws or nails are used. The foaming method of the foamed resin base material is not particularly limited, and the above-described method is adopted without limitation. In the case of a foam resin base material, a co-extruder is used to produce a foam resin body for the skin layer, that is, the resin base material is foam-extruded at the same time as the foam layer foam extrusion, and foamed onto the foam resin base material. A method of laminating and molding a resin body (skin layer) is suitably employed. The formation of the skin layer after coextrusion is as described above.

〔遮熱性樹脂積層体の製法〕
遮熱性樹脂積層体の製法は特に制限されないが、発泡と樹脂基材上への積層成形を同時に行うことができる共押出成形法が、操作が簡便であるため好ましい。具体的には、樹脂基材に対応する第一の押出機と、発泡樹脂体に対応する第二の押出機とを使用し、基材成形用組成物を第一の押出機中で溶融混練し、発泡性組成物を第二の押出機中で溶融混練する。発泡押出積層成形に当たっては、各成分をドライブレンドし、各押出機のホッパーにこれを供給する。押出機としては、単軸或いは二軸のスクリューを備えたそれ自体公知の押出機が使用される。第一の押出機からの樹脂基材の樹脂流及び第二の押出機からの発泡樹脂体の樹脂流は、多層多重ダイ中で合流し、積層状態で空気中に押し出される。その後、発泡樹脂体側の表面を先に述べた方法で冷却してスキン層を形成して、低熱伝導性成形体の層を有する遮熱性樹脂積層体が得られる。
[Production method of heat shielding resin laminate]
Although the manufacturing method of a heat-shielding resin laminate is not particularly limited, a coextrusion molding method capable of simultaneously performing foaming and lamination molding on a resin substrate is preferable because the operation is simple. Specifically, the first extruder corresponding to the resin substrate and the second extruder corresponding to the foamed resin body are used, and the composition for molding the substrate is melt-kneaded in the first extruder. Then, the foamable composition is melt-kneaded in a second extruder. In the foam extrusion lamination molding, each component is dry blended and supplied to the hopper of each extruder. As the extruder, a known extruder having a single-screw or a twin-screw is used. The resin stream of the resin base material from the first extruder and the resin stream of the foamed resin body from the second extruder are merged in a multilayer multiple die and extruded into the air in a laminated state. Thereafter, the surface on the foamed resin body side is cooled by the method described above to form a skin layer, and a heat shielding resin laminate having a layer of a low thermal conductivity molded body is obtained.

本発明の低熱伝導性成形体および遮熱性樹脂積層体は、木質の外観を有しており、且つ熱伝導性が低くて接触温感温度が低く、硬度および耐摩耗性に優れているので、テラス用の床材やパイプ材、フェンス材、手摺材、サイディング材、バルコニー材、ルーバー材、ベンチ材に広く使用できる。   Since the low thermal conductive molded body and the thermal barrier resin laminate of the present invention have a woody appearance, low thermal conductivity, low contact temperature, and excellent hardness and wear resistance, It can be widely used for flooring materials, pipe materials, fence materials, handrail materials, siding materials, balcony materials, louver materials and bench materials for terraces.

本発明を次の実施例で更に説明する。次の実施例は、説明のためのものであり、いかなる意味においても本発明はこれに限定されるものではない。また、実施例の中で説明されている特徴の組み合わせすべてが本発明の解決手段に必須のものとは限らない。
以下の実施例及び比較例で用いた各種成分と略号は、以下の通りである。
(A)熱可塑性樹脂
A−1:ASA樹脂 ダイヤラック E610(UMG ABS社製)
A−2:ABS樹脂 クララスチックSR(日本A&L社製)
A−3:塩化ビニル樹脂 TH1000(大洋塩ビ社製)、平均重合度1000
A−4:ポリプロピレン樹脂 E701G(プライムポリマー社製)、MFR=0.5
(B)木粉
B−1:平均粒径50μmの木粉
(C)化学発泡剤
C−1:アゾジカルボンアミド50質量%と重炭酸水素ナトリウム50重量%の混合物
(D)他の添加剤
D−1:カネエースPA20(アクリル系加工助剤;カネカ社製)
D−2:熱膨張バルーンエクスパンセル930MB(日本フィライト社製)
D−3:中空ガラスビーズグラスバブルズS60HS(住友3M社製)
The invention is further illustrated in the following examples. The following examples are illustrative and the invention is not limited in any way. In addition, not all combinations of features described in the embodiments are essential to the solution means of the present invention.
Various components and abbreviations used in the following examples and comparative examples are as follows.
(A) Thermoplastic resin A-1: ASA resin Diamond rack E610 (manufactured by UMG ABS)
A-2: ABS resin Clarastic SR (manufactured by Japan A & L)
A-3: Vinyl chloride resin TH1000 (manufactured by Taiyo PVC Co.), average polymerization degree 1000
A-4: Polypropylene resin E701G (manufactured by Prime Polymer), MFR = 0.5
(B) Wood flour B-1: Wood flour having an average particle size of 50 μm (C) Chemical foaming agent C-1: Mixture of 50% by weight of azodicarbonamide and 50% by weight of sodium bicarbonate (D) Other additives D -1: Kane Ace PA20 (acrylic processing aid; manufactured by Kaneka)
D-2: Thermal expansion balloon expand cell 930MB (Nippon Philite)
D-3: Hollow glass beads Glass Bubbles S60HS (manufactured by Sumitomo 3M)

実施例及び比較例における密度、熱伝導率、接触温感温度、硬度、平均発泡セル径、発泡倍率、耐摩耗性試験、および表面温度低下の測定、並びに発泡樹脂体の各部位の発泡状態の観察は、次の通りに行った。
[密度]:試験方法;JIS K7112、水中置換法
各積層体から、長さ30mm×幅30mm片を切り取り、次いで該積層体片から樹脂基材部を切削して除去し、発泡樹脂体部を取り出して試験片とした。電子比重型ED120−T(ミラージュ貿易株式会社製)を用いて、発泡樹脂基部とスキン層の各密度を測定した。
スキン層の密度は以下の方法で算出した。発泡樹脂体の密度、スキン層を切削で除いた発泡樹脂体基部のみの密度をそれぞれ測定する。一方、発泡樹脂体重量、スキン層を除いた発泡樹脂体基部のみの重量をそれぞれ測定する。これらの値を用いて、スキン層の密度を計算で求めた。
[熱伝導率]:試験方法;JIS A1412−2 熱絶縁材の熱抵抗及び熱伝導率の測定方法 第2部:熱流計法(HFM法)に準拠
各実施例、比較例で得られた、長さ300mm×幅250mm×厚さ30mmの積層体を試験片とした。当該試験片の積層(厚さ)方向の熱伝導率を、迅速熱伝導率測定計QTM−D3(京都電子社製)を用いて測定した。
[接触温感温度]
各実施例、比較例で得られた、長さ300mm×幅250mm×厚さ30mmの積層体を試験片とした。
条件を同じにするために、比較例1の試験片と実施例の試験片の発泡樹脂体側を上面にして気温34℃の屋外に2時間放置し、両試験片の表面温度を70℃にした(下出 サーモグラフィー装置で測定)。その後、同時に、左右の手のひらを各試験片上に15秒間載せて接触させた。15秒経過後、直ぐさま各手のひらを返してサーモグラフィー装置サーモショットF30(日本アビオニクス社製)で同時に各手のひら中心部の表面温度を測定した。
[硬度]:試験方法;JIS A7215、1986
各積層体から、長さ50mm×幅50mm×厚さ5mmの試験片を切り出し試験片とした。測定台上に、試験片のスキン層側が上面となるように載せ、デュロメーター硬さ試験器GS719N(テクロック社製)を用いて、デュロメーター硬度を測定した。10箇所の硬度を測定しその平均値で示した。
[耐摩耗性試験]:試験方法;JIS A1453、1973
各積層体から、長さ100mm×幅100mm×厚さ5mmの試験片を切り出し試験片とした。テーバー摩耗性試験機ロータリーアブレージョンテスタ(東洋精機社製)を用いて、500gの荷重をかけて5000回転で表面を摩滅した後の摩耗深さ(μm)を耐摩耗性の目安とした。この数値が小さい程耐摩耗性に優れることを示す。
[平均発泡セル径]
試験片の断面SEM写真(1000倍拡大)から、目視で10個の発泡セルの直径を測定し、その平均値を平均発泡セル径とした。
[発泡状態]
試験片の断面SEM写真(1000倍拡大)から、目視で発泡樹脂体の発泡状態を観察した。
[発泡倍率]
未発泡の樹脂成形体の密度、発泡後の発泡樹脂体の密度を、電子比重型ED120−T(ミラージュ貿易株式会社)を用いて各々測定し、その比(未発泡樹脂成形体密度/発泡樹脂体密度)を発泡倍率とした。
[表面温度低下]
試験体を60℃オーブンで3時間温めた後、23℃の室内で、サーモグラフィー装置サーモショットF30(日本アビオニクス社製)を用いて試験体表面の温度を測定し、時間経過にともなう表面温度の低下を調べた。
Measurement of density, thermal conductivity, contact temperature temperature, hardness, average foamed cell diameter, foaming magnification, abrasion resistance test, and surface temperature drop in Examples and Comparative Examples, and foaming state of each part of the foamed resin body Observation was performed as follows.
[Density]: Test method; JIS K7112, Submerged replacement method From each laminate, a piece of 30 mm length × 30 mm width was cut out, and then the resin substrate part was cut off from the laminate piece to remove the foamed resin body part. The test piece was taken out. Each density of the foamed resin base and the skin layer was measured using an electronic specific gravity type ED120-T (manufactured by Mirage Trading Co., Ltd.).
The density of the skin layer was calculated by the following method. The density of the foamed resin body and the density of only the base of the foamed resin body obtained by removing the skin layer by cutting are measured. On the other hand, the weight of the foamed resin body and the weight of only the foamed resin body base excluding the skin layer are measured. Using these values, the density of the skin layer was calculated.
[Thermal conductivity]: Test method; JIS A1412-2 Measurement method of thermal resistance and thermal conductivity of thermal insulation material Part 2: Conforms to the heat flow meter method (HFM method) Obtained in each example and comparative example, A laminate of length 300 mm × width 250 mm × thickness 30 mm was used as a test piece. The thermal conductivity in the stacking (thickness) direction of the test piece was measured using a rapid thermal conductivity meter QTM-D3 (manufactured by Kyoto Electronics Co., Ltd.).
[Contact temperature sense temperature]
A laminate having a length of 300 mm, a width of 250 mm, and a thickness of 30 mm obtained in each example and comparative example was used as a test piece.
In order to make the conditions the same, the test piece of Comparative Example 1 and the test piece of Example were placed on the foamed resin body side as an upper surface and left outdoors at a temperature of 34 ° C. for 2 hours, and the surface temperature of both test pieces was set to 70 ° C. (Measured with a thermography device below). At the same time, the left and right palms were placed on each test piece for 15 seconds to contact. After 15 seconds, each palm was immediately returned and the surface temperature at the center of each palm was measured simultaneously with a thermography apparatus Thermoshot F30 (Nippon Avionics).
[Hardness]: Test method; JIS A7215, 1986
From each laminate, a test piece having a length of 50 mm, a width of 50 mm, and a thickness of 5 mm was cut out and used as a test piece. The test piece was placed so that the skin layer side of the test piece would be the upper surface, and the durometer hardness was measured using a durometer hardness tester GS719N (manufactured by Tecrock). The hardness at 10 locations was measured and indicated as an average value.
[Abrasion resistance test]: Test method; JIS A1453, 1973
From each laminate, a test piece having a length of 100 mm, a width of 100 mm, and a thickness of 5 mm was cut out and used as a test piece. Using a Taber abrasion tester rotary abrasion tester (manufactured by Toyo Seiki Co., Ltd.), the wear depth (μm) after the surface was worn at 5000 revolutions under a load of 500 g was used as a measure of wear resistance. It shows that it is excellent in abrasion resistance, so that this figure is small.
[Average foamed cell diameter]
From the cross-sectional SEM photograph (1000 times magnification) of the test piece, the diameters of 10 foamed cells were visually measured, and the average value was taken as the average foamed cell diameter.
[Foaming state]
From the cross-sectional SEM photograph (enlarged 1000 times) of the test piece, the foamed state of the foamed resin body was visually observed.
[Foaming ratio]
The density of the unfoamed resin molded body and the density of the foamed foamed resin body were measured using an electronic specific gravity type ED120-T (Mirage Trading Co., Ltd.), respectively, and the ratio (unfoamed resin molded body density / foamed resin) (Body density) was taken as the expansion ratio.
[Surface temperature drop]
After heating the specimen in a 60 ° C. oven for 3 hours, the surface temperature of the specimen is measured in a room at 23 ° C. using a thermography device, Thermo Shot F30 (manufactured by Nippon Avionics), and the surface temperature decreases with time. I investigated.

実施例1〜7
表1に示す処方に従って、発泡樹脂体として(A)熱可塑性樹脂、(B)木粉、および(C)化学発泡剤の混合物(発泡性組成物)を第2の押出機に投入し、一方樹脂基材として(A)熱可塑性樹脂および(B)木粉の混合物(基材成形用組成物)を第1の押出機に投入し、150〜230℃の成形温度(ダイ温度)で溶融混練して積層状態で共押出し、次いで押出ダイ後方に設置された水温20℃の冷却サイジングを通過させて長さ300mm×幅250mm×厚さ30mmの木質様の樹脂積層体を作製した。樹脂基材として、図7に示す中空樹脂基材を採用した。当該中空樹脂基材の上下面の厚みは3.2mmであり、リブの厚みは2.3mmであった。発泡樹脂体からなる表皮層の厚みは2.0mmであった。得られた樹脂積層体から前記試験用の試験片を作製し、各物性測定を実施した。その結果を合わせて表1に示す。更に、積層体の表面の温度低下を測定した。結果を表2に示す。
実施例1の発泡樹脂体の断面SEM写真から、全体に多数の気泡が観察され、スキン層の気泡は、10〜30μmで平均セル径は20μmであった。スキン層の平均厚みは0.60mmで発泡樹脂体基部の平均厚みは1.40mmであり、両部位は連続して繋がっていることが観察された。実施例2以下についても同様に断面SEM写真を観察し、その結果を表1に示した。実施例1におけるサーモグラフィー写真(白黒)を図5に示す。このサーモグラフィーにより、手のひら中心部の表面温度は、42℃を示した。実施例2以下についても同様に測定し結果を表1に示した。
尚、実施例6においては、スキン層が当接するダイ面(出口)に凹凸を形成し、溝深さ3mm、幅3.5mm、ピッチ3mmの凹凸をスキン層表面に設けた。実施例7においては、サンドペーパー#500(粗さ)にて表面をサンディング(研磨)し、スキン層表面に微細な凹凸を施した。
Examples 1-7
In accordance with the formulation shown in Table 1, a mixture of (A) thermoplastic resin, (B) wood flour, and (C) chemical foaming agent (foamable composition) as a foamed resin body is charged into the second extruder. As a resin base material, (A) a thermoplastic resin and (B) a mixture of wood flour (base material molding composition) is charged into a first extruder and melt kneaded at a molding temperature (die temperature) of 150 to 230 ° C. Then, it was coextruded in a laminated state, and then passed through a cooling sizing at a water temperature of 20 ° C. installed behind the extrusion die to produce a woody resin laminate of length 300 mm × width 250 mm × thickness 30 mm. As the resin substrate, the hollow resin substrate shown in FIG. 7 was adopted. The thickness of the upper and lower surfaces of the hollow resin base material was 3.2 mm, and the thickness of the rib was 2.3 mm. The thickness of the skin layer made of the foamed resin body was 2.0 mm. The test specimen for the test was prepared from the obtained resin laminate, and each physical property measurement was performed. The results are shown in Table 1. Furthermore, the temperature drop on the surface of the laminate was measured. The results are shown in Table 2.
From the cross-sectional SEM photograph of the foamed resin body of Example 1, a large number of bubbles were observed as a whole, the bubbles in the skin layer were 10 to 30 μm, and the average cell diameter was 20 μm. The average thickness of the skin layer was 0.60 mm, the average thickness of the foamed resin body base was 1.40 mm, and it was observed that both portions were continuously connected. The cross-sectional SEM photographs were similarly observed for Examples 2 and below, and the results are shown in Table 1. A thermographic photograph (black and white) in Example 1 is shown in FIG. By this thermography, the surface temperature of the palm center part was 42 ° C. Measurements were similarly made for Example 2 and the following, and the results are shown in Table 1.
In Example 6, irregularities were formed on the die surface (exit) with which the skin layer abuts, and irregularities having a groove depth of 3 mm, a width of 3.5 mm, and a pitch of 3 mm were provided on the skin layer surface. In Example 7, the surface was sanded (polished) with sandpaper # 500 (roughness) to give fine irregularities to the surface of the skin layer.

実施例8
実施例1において、ASA樹脂に代えてABS樹脂を使用した以外は、同様に実施して樹脂積層体を作製した。結果を表1に示す。
Example 8
A resin laminate was produced in the same manner as in Example 1 except that ABS resin was used instead of ASA resin. The results are shown in Table 1.

実施例9
実施例1において、ASA樹脂に代えてPP樹脂を使用した以外は、同様に実施して樹脂積層体を作製した。結果を表1に示す。
Example 9
A resin laminate was produced in the same manner as in Example 1 except that PP resin was used instead of ASA resin. The results are shown in Table 1.

比較例1〜5
比較例1では化学発泡剤を使用せず無発泡の樹脂体を、比較例2では実施例と比較して過剰の化学発泡剤を使用した発泡樹脂体を、比較例3,4では各々熱膨張バルーン、中空ガラスビーズを用いて発泡樹脂体を、比較例5では木粉を使用しない発泡樹脂体を樹脂基材上に形成し、実施例1に準じて樹脂積層体を作製した。結果を表1に示す。
比較例3の熱膨張バルーンを用いて作製した発泡樹脂体は、発泡樹脂体全体に均一に気泡が存在し明確なスキン層が形成されていない(図3参照)。比較例3におけるサーモグラフィー写真(白黒)を図6に示す。
比較例4の中空ガラスビーズを用いて作製した発泡樹脂体は、発泡樹脂体全体の気泡が少なく、その分布にも偏りがある。しかも、スキン層相当部には多数の割れたガラスビーズが存在していた(図4参照)。
サーモグラフィーにより、各比較例における手のひら中心部の表面温度を測定し、結果を表1に示した。
Comparative Examples 1-5
In Comparative Example 1, a non-foamed resin body without using a chemical foaming agent was used. In Comparative Example 2, a foamed resin body using an excessive chemical foaming agent as compared with the Examples was used. In Comparative Examples 3 and 4, thermal expansion was performed. A foamed resin body was formed on a resin base material using balloons and hollow glass beads, and a foamed resin body not using wood flour in Comparative Example 5, and a resin laminate was produced according to Example 1. The results are shown in Table 1.
The foamed resin body produced using the thermal expansion balloon of Comparative Example 3 has air bubbles uniformly throughout the foamed resin body, and no clear skin layer is formed (see FIG. 3). A thermographic photograph (black and white) in Comparative Example 3 is shown in FIG.
The foamed resin body produced using the hollow glass beads of Comparative Example 4 has few bubbles in the entire foamed resin body, and its distribution is also biased. In addition, a large number of broken glass beads were present in the portion corresponding to the skin layer (see FIG. 4).
The surface temperature of the palm center in each comparative example was measured by thermography, and the results are shown in Table 1.

実施例10
樹脂基材として、図8に示す木粉を含有する発泡樹脂基材を採用した以外は、実施例1に準じて樹脂積層体を製造した。当該発泡樹脂基材は、A−2(ABS樹脂)45重量部、A−3(塩化ビニル樹脂)35重量部、B−1(木粉)20重量部およびC−1(発泡剤)1.5重量部の混合物からなる基材成形用組成物を発泡押出して成形した。発泡倍率は1.3倍であった。得られた樹脂積層体は、表皮層の厚みが1.0mmであり、表皮層を含む断面の大きさは、30mm×70mmであった。積層体の熱伝導率は、0.065W/mKであった。実施例10と同様にして、表面の温度変化を測定した。結果を表2に示す。
樹脂基材として、中空樹脂基材を使用した場合は、発泡樹脂基材を使用した場合に比べて冷めやすいが、最終的にはほとんど変わることがなかった。初期の接触温感温度は、発泡樹脂基材の方が若干高かった。
Example 10
A resin laminate was produced according to Example 1 except that a foamed resin substrate containing wood flour shown in FIG. 8 was employed as the resin substrate. The foamed resin base material is composed of 45 parts by weight of A-2 (ABS resin), 35 parts by weight of A-3 (vinyl chloride resin), 20 parts by weight of B-1 (wood flour) and C-1 (foaming agent). A base molding composition composed of 5 parts by weight of the mixture was foamed and extruded. The expansion ratio was 1.3 times. In the obtained resin laminate, the thickness of the skin layer was 1.0 mm, and the size of the cross section including the skin layer was 30 mm × 70 mm. The thermal conductivity of the laminate was 0.065 W / mK. In the same manner as in Example 10, the temperature change of the surface was measured. The results are shown in Table 2.
When a hollow resin substrate was used as the resin substrate, it was easier to cool than when a foamed resin substrate was used, but in the end, there was almost no change. The initial contact temperature sensation temperature was slightly higher for the foamed resin substrate.

Claims (10)

樹脂基材上に、低熱伝導性成形体がシート状に積層されてなる遮熱性樹脂積層体からなる屋外用床材であって、
前記低熱伝導性成形体が、
(A)熱可塑性樹脂50〜95質量%、(B)木粉5〜50質量%〔(A)および(B)の合計を100質量%とする〕、並びに(C)化学発泡剤を、(A)熱可塑性樹脂および(B)木粉の合計量100質量部に対して1〜5質量部含む発泡性組成物を発泡押出成形してなる発泡樹脂体からなり、当該(A)熱可塑性樹脂が、アクリロニトリルーブタジエンースチレン樹脂(ABS樹脂)、アクリロニトリルースチレンーアクリレート樹脂(ASA樹脂)、或いはこれらの混合樹脂であり
前記発泡樹脂体の表層部に、発泡樹脂体基部に連続したスキン層が存在し、該スキン層の厚み方向の割合が発泡樹脂体の厚みに対して10〜33%であり、
発泡樹脂体基部の密度が0.50〜0.90g/cmであり、スキン層の密度が0.95〜1.20g/cmである
ことを特徴とする屋外用床材
A flooring material for outdoor use comprising a heat-shielding resin laminate in which a low thermal conductive molded product is laminated in a sheet form on a resin substrate,
The low thermal conductive molded body is
(A) Thermoplastic resin 50 to 95% by mass, (B) Wood powder 5 to 50% by mass [the sum of (A) and (B) is 100% by mass], and (C) Chemical foaming agent ( A) a thermoplastic resin and (B) a foamed resin body obtained by foaming and extruding a foamable composition containing 1 to 5 parts by mass with respect to 100 parts by mass of the total amount of wood flour. The (A) thermoplastic resin Is acrylonitrile-butadiene-styrene resin (ABS resin), acrylonitrile-styrene-acrylate resin (ASA resin), or a mixed resin thereof ,
In the surface layer portion of the foamed resin body, there is a skin layer continuous with the foamed resin body base, and the ratio of the thickness direction of the skin layer is 10 to 33% with respect to the thickness of the foamed resin body,
An outdoor flooring characterized in that the density of the foamed resin body base is 0.50 to 0.90 g / cm 3 and the density of the skin layer is 0.95 to 1.20 g / cm 3 .
スキン層の平均厚みが、0.3〜1.0mmあることを特徴とする請求項1に記載の屋外用床材The outdoor flooring according to claim 1, wherein the skin layer has an average thickness of 0.3 to 1.0 mm. 成形体全体の発泡倍率が、1.1〜2.0倍であることを特徴とする請求項1または2に記載の屋外用床材The outdoor flooring according to claim 1 or 2, wherein the foaming ratio of the entire molded body is 1.1 to 2.0 times. 熱伝導率が、0.3〜0.15W/Mkであることを特徴とする請求項1〜3の何れか一項に記載の屋外用床材Thermal conductivity is 0.3-0.15 W / Mk, The flooring material for outdoor as described in any one of Claims 1-3 characterized by the above-mentioned. デュロメーター硬さが、75〜85であることを特徴とする請求項1〜4の何れか一項に記載の屋外用床材Durometer hardness is 75-85, The flooring for outdoors as described in any one of Claims 1-4 characterized by the above-mentioned. スキン層の表面に凹凸が設けられていることを特徴とする請求項1〜5の何れか一項に記載の屋外用床材The outdoor flooring according to any one of claims 1 to 5, wherein unevenness is provided on the surface of the skin layer. 樹脂基材が、中空樹脂基材であることを特徴とする請求項1〜6の何れか一項に記載の屋外用床材 The outdoor flooring according to any one of claims 1 to 6 , wherein the resin base material is a hollow resin base material . 樹脂基材が、発泡樹脂基材であることを特徴とする請求項1〜6の何れか一項に記載の屋外用床材 The outdoor flooring according to any one of claims 1 to 6 , wherein the resin base material is a foamed resin base material . 低熱伝導性成形体の厚みが、0.7〜5.0mmであることを特徴とする請求項1〜8の何れか一項に記載の屋外用床材The thickness of the low thermal conductive body is, outdoor flooring according to any one of claims 1 to 8 you being a 0.7~5.0Mm. 発泡性組成物の発泡と樹脂基材上への積層成形を共押出成形による一体成形で行うことを特徴する請求項1に記載の屋外用床材の製造方法。The method for producing an outdoor flooring according to claim 1, wherein foaming of the foamable composition and lamination molding onto the resin base material are performed by integral molding by coextrusion molding.
JP2013221318A 2012-11-28 2013-10-24 Low thermal conductive molded body and heat shielding resin laminate Active JP6030533B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013221318A JP6030533B2 (en) 2012-11-28 2013-10-24 Low thermal conductive molded body and heat shielding resin laminate

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012259436 2012-11-28
JP2012259436 2012-11-28
JP2013221318A JP6030533B2 (en) 2012-11-28 2013-10-24 Low thermal conductive molded body and heat shielding resin laminate

Publications (2)

Publication Number Publication Date
JP2014129511A JP2014129511A (en) 2014-07-10
JP6030533B2 true JP6030533B2 (en) 2016-11-24

Family

ID=51408173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013221318A Active JP6030533B2 (en) 2012-11-28 2013-10-24 Low thermal conductive molded body and heat shielding resin laminate

Country Status (1)

Country Link
JP (1) JP6030533B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016211310A (en) * 2015-05-13 2016-12-15 フクビ化学工業株式会社 Resin molding
WO2019092876A1 (en) * 2017-11-13 2019-05-16 株式会社朝日Fr研究所 Thermoelectric conversion device
CN108384411B (en) * 2018-02-09 2020-04-24 杭州五源科技实业有限公司 Woodwork photocuring conductive powder coating and preparation method thereof
WO2020138571A1 (en) * 2018-12-28 2020-07-02 주식회사 휴비스 Foam sheet comprising skin layer, method for manufacturing same, and food container comprising same
JP7337528B2 (en) * 2019-03-28 2023-09-04 株式会社Lixil Building material and its manufacturing method
EP4306578A1 (en) 2022-07-13 2024-01-17 Sekisui Chemical Co., Ltd. Surface member of exterior flooring, and method for producing same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5255609U (en) * 1975-10-20 1977-04-21
JP2002309758A (en) * 2001-04-17 2002-10-23 Kanegafuchi Chem Ind Co Ltd Foamed resin composite floor structure
JP3835278B2 (en) * 2001-12-20 2006-10-18 凸版印刷株式会社 Flooring
JP3915555B2 (en) * 2002-03-08 2007-05-16 凸版印刷株式会社 Wood resin foam molding and decorative material
JP2004202956A (en) * 2002-12-26 2004-07-22 Asahi Kasei Chemicals Corp Woody synthetic resin molding and its molding method
JP4853825B2 (en) * 2006-03-22 2012-01-11 凸版印刷株式会社 Floor material manufacturing method and floor material manufactured by the manufacturing method
JPWO2008072708A1 (en) * 2006-12-13 2010-04-02 旭化成ケミカルズ株式会社 WOODEN RESIN MOLDED BODY, WOODY RESIN Abrasive Body, AND METHOD FOR PRODUCING THEM
JP3161780U (en) * 2010-03-31 2010-08-12 サムライズ株式会社 Extruded product

Also Published As

Publication number Publication date
JP2014129511A (en) 2014-07-10

Similar Documents

Publication Publication Date Title
JP6030533B2 (en) Low thermal conductive molded body and heat shielding resin laminate
ES2755390T3 (en) Overlay panel and overlay panel production process
TWI671340B (en) Polymeric foam
KR101941210B1 (en) Multi-layer expandable light diffusion sheet and manufacturing method thereof
US11091918B2 (en) Covering panel and process of producing covering panels
US10543626B2 (en) Poly(vinyl chloride) substrates and method for producing the same
ES2901004T3 (en) Composition and molded part that can be manufactured by molding the composition
JP4612266B2 (en) Thermoplastic resin molded article excellent in wood texture and method for producing the same
JP2011230481A (en) Resin molded article
JP2008031704A (en) Structure
JP2003261703A (en) Woody resin foam and dressed lumber
JP2014105284A (en) Resin molded body and resin laminate
JP2008115659A (en) Profile molding
JP2016211310A (en) Resin molding
JP7404704B2 (en) Method of manufacturing non-combustible sheet and non-combustible sheet
JP2010236271A (en) Profile molded article
JP7358830B2 (en) Method for manufacturing fire-resistant building materials and fire-resistant building materials
JP2014029065A (en) Floor material
JP2010248790A (en) Resin-based floor material
WO2023190634A1 (en) Co-extruded sheet
JP2000301586A (en) Extruded decorative product and its manufacture
JP2006144272A (en) Flooring
JP2000127280A (en) Building material made of thermoplastic resin and manufacture thereof
JP4286590B2 (en) Underfloor spacer, floor heating structure and building using the same
PL229683B1 (en) Three-layer polymer-wood composite and method for manufacturing it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161020

R150 Certificate of patent or registration of utility model

Ref document number: 6030533

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150