JP4723956B2 - Monolithic extruded body and building material - Google Patents

Monolithic extruded body and building material Download PDF

Info

Publication number
JP4723956B2
JP4723956B2 JP2005253714A JP2005253714A JP4723956B2 JP 4723956 B2 JP4723956 B2 JP 4723956B2 JP 2005253714 A JP2005253714 A JP 2005253714A JP 2005253714 A JP2005253714 A JP 2005253714A JP 4723956 B2 JP4723956 B2 JP 4723956B2
Authority
JP
Japan
Prior art keywords
core material
resin
layer
thickness
span
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005253714A
Other languages
Japanese (ja)
Other versions
JP2007062276A (en
Inventor
克彦 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurashiki Spinning Co Ltd
Original Assignee
Kurashiki Spinning Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurashiki Spinning Co Ltd filed Critical Kurashiki Spinning Co Ltd
Priority to JP2005253714A priority Critical patent/JP4723956B2/en
Publication of JP2007062276A publication Critical patent/JP2007062276A/en
Application granted granted Critical
Publication of JP4723956B2 publication Critical patent/JP4723956B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、アルミ製芯材入り一体押出成形体および建築用部材に関する。   The present invention relates to a monolithic extruded body with an aluminum core and a building member.

建築用手摺りの製造方法として、芯材の外表面に一体押出成形によって軟質合成樹脂層および硬質合成樹脂層を形成する方法が報告されている(特許文献1)。詳しくは、走行する金属又は硬質合成樹脂よりなる芯材が、金型ダイスの内部を通過中に第1押出成形機に注入したJISA硬度85以下の柔軟性を有する合成樹脂またはその合成樹脂よりなる発泡体の軟質合成樹脂層を以て被着し、その後、第2押出成形機に注入したJISA硬度90以上の強靭な合成樹脂によって、前記軟質合成樹脂層の外周に厚み0.2mm以下の表皮合成樹脂層を被膜積層した後、冷却水槽で固化させ、所要寸法に切断することを特徴とした建築用手摺りの製造方法が報告されている。
特開2002−11773号公報
As a method for manufacturing a handrail for building, a method of forming a soft synthetic resin layer and a hard synthetic resin layer on an outer surface of a core material by integral extrusion is reported (Patent Document 1). Specifically, a core material made of a traveling metal or a hard synthetic resin is made of a synthetic resin having a JIS hardness of 85 or less injected into the first extruder while passing through the inside of the die, or a synthetic resin thereof. An outer skin synthetic resin having a thickness of 0.2 mm or less on the outer periphery of the soft synthetic resin layer by a strong synthetic resin having a JISA hardness of 90 or more, which is applied with a soft synthetic resin layer of foam and then injected into a second extruder. A method for manufacturing a handrail for building has been reported, in which the layers are solidified in a cooling water tank after being laminated and cut to the required dimensions.
JP 2002-11773 A

しかしながら、建築用部材として用いられる成形体において、芯材として比較的安価かつ軽量な中空押出状のアルミ製のものを用いる場合、被覆合成樹脂層とアルミ製芯材との接着力が悪いという問題があった。そのような接着力が悪いと、被覆合成樹脂層とアルミ製芯材との繊膨張率の相違により、例えば建物躯体へのビス打ち部分について、被覆層樹脂が割れる等の問題が生じるのである。そのため、一体成形時に樹脂圧力によりアルミ製芯材と被覆合成樹脂とを強固に密着させなければならず、上記のような中間に柔軟層を用いることはできないうえ、一体押出成形時の圧力によりアルミ製芯材が撓んで圧縮変形することが問題となっていた。   However, in a molded article used as a building member, when a relatively inexpensive and lightweight hollow extruded aluminum product is used as the core material, the problem is that the adhesive strength between the coated synthetic resin layer and the aluminum core material is poor. was there. When such adhesive strength is poor, there is a problem that, for example, the coating layer resin breaks at a screwed portion to the building frame due to the difference in the fiber expansion rate between the coating synthetic resin layer and the aluminum core material. For this reason, the aluminum core material and the covering synthetic resin must be firmly adhered by resin pressure during integral molding, and a flexible layer cannot be used in the middle as described above. It has been a problem that the core material is bent and compressed and deformed.

本発明は、圧縮変形のないアルミ製芯材の外表面に被覆層を有してなる一体押出成形体および建築用部材を提供することを目的とする。   An object of the present invention is to provide an integrally extruded body and a building member having a coating layer on the outer surface of an aluminum core material without compression deformation.

本発明は、中空状アルミ製芯材の外表面に合成樹脂からなる被覆層を有してなり、芯材の厚みが1.0mm以上であり、芯材の厚み(X:mm)とスパン(Y:mm)とが、式;
/X≦5000
の関係を満たすことを特徴とする一体押出成形体、および該一体押出成形体からなる建築用部材に関する。
The present invention has a coating layer made of a synthetic resin on the outer surface of a hollow aluminum core material, the thickness of the core material is 1.0 mm or more, the thickness of the core material (X: mm) and the span ( Y: mm) is the formula;
Y 3 / X 3 ≦ 5000
The present invention relates to a monolithic extrusion molded product that satisfies the above relationship, and a building member made of the monolithic extrusion molding.

本発明のアルミ製芯材入り一体押出成形体は、所定の芯材厚みと芯材スパンを確保するので、芯材の圧縮変形を抑制できる。特に、芯材内部に補強用仕切部材を有すると、芯材スパンを容易に確保でき、芯材の圧縮変形をより有効に抑制できる。   Since the integral extrusion molding containing an aluminum core material of the present invention secures a predetermined core material thickness and a core material span, it can suppress compression deformation of the core material. In particular, when the reinforcing partition member is provided inside the core material, the core material span can be easily secured, and the compression deformation of the core material can be more effectively suppressed.

本発明の一体押出成形体は、中空状アルミ製芯材の外表面に合成樹脂からなる被覆層を有してなるものであり、詳しくは被覆層1は、例えば、図1および図2に示すように、芯材10の長手方向mだけでなく、芯材10断面の周方向pにおいても継ぎ目なく連続的に形成される。図1および図2はいずれも本発明の一体押出成形体の一例を示す概略見取り図である。   The integral extruded body of the present invention has a coating layer made of a synthetic resin on the outer surface of a hollow aluminum core material. Specifically, the coating layer 1 is shown in FIGS. 1 and 2, for example. Thus, it is continuously formed not only in the longitudinal direction m of the core material 10 but also in the circumferential direction p of the cross section of the core material 10. FIG. 1 and FIG. 2 are schematic sketches showing an example of the integrally extruded product of the present invention.

本明細書中、一体押出成形とは、被覆層用樹脂を押出成形すると同時に当該層を、送り込まれた芯材に順次被覆して一体化することを意味し、そのよう方法で形成されたものを一体押出成形体という。   In this specification, the integral extrusion means that the resin for the coating layer is extruded and at the same time, the layer is sequentially coated and integrated with the fed core material, and formed by such a method. Is referred to as an integral extrusion.

本発明において使用される芯材10はアルミニウムまたはアルミニウム合金からなる中空形状を有する棒材であり、通常はアルミニウムまたはアルミニウム合金の押出成形により調製される。なお、本発明において「アルミ製」とは、「アルミニウム合金製」もその範疇に含むものである。   The core material 10 used in the present invention is a rod having a hollow shape made of aluminum or an aluminum alloy, and is usually prepared by extrusion molding of aluminum or an aluminum alloy. In the present invention, “made of aluminum” includes “made of aluminum alloy” in its category.

そのような芯材の厚み(肉厚)は1.0mm以上であることを要し、軽量化の観点から好ましくは1.1〜5.0mm、より好ましくは1.2〜3.0mmである。芯材の厚みが1.0mm未満であると、アルミ合金の押出成形による芯材製造時、生産安定性に劣る。さらに、一体押出成形時に生じる樹脂による圧縮圧に耐えることができず、アルミ製芯材が撓んで圧縮変形される。圧縮変形された場合、被覆層の厚みが均一にならないため、例えば建築用内装材または外装材としての使用に適さない。特に、被覆層中にポリエステル系の接着層を含む場合、一体押出成形時において当該接着層の粘度が低いため、圧縮変形により接着層の厚みの均一性が失われてしまい、被覆層とアルミ製芯材との接着性が低下する。   The thickness (wall thickness) of such a core material is required to be 1.0 mm or more, and is preferably 1.1 to 5.0 mm, more preferably 1.2 to 3.0 mm from the viewpoint of weight reduction. . When the thickness of the core material is less than 1.0 mm, the production stability is inferior when the core material is manufactured by extrusion molding of an aluminum alloy. Furthermore, it cannot withstand the compression pressure caused by the resin generated during integral extrusion, and the aluminum core material is bent and compressed and deformed. When compressively deformed, the thickness of the coating layer does not become uniform, so that it is not suitable for use as, for example, an architectural interior material or exterior material. In particular, when a polyester-based adhesive layer is included in the coating layer, since the viscosity of the adhesive layer is low during integral extrusion, the uniformity of the thickness of the adhesive layer is lost due to compression deformation. Adhesiveness with the core material decreases.

芯材の断面形状は特に制限されるものではなく、例えば、略円形、略楕円形、または略方形(例えば、略長方形、略正方形)等であってよい。建築用部材の取扱い性の観点からは、略円形、略楕円形または略長方形の断面形状、特に略楕円形または略長方形の断面形状を有する芯材が好ましい。なお、芯材の断面形状とは芯材の長手方向に対して垂直な断面形状を意味するものとする。   The cross-sectional shape of the core material is not particularly limited, and may be, for example, a substantially circular shape, a substantially elliptical shape, or a substantially rectangular shape (for example, a substantially rectangular shape or a substantially square shape). From the viewpoint of handleability of the building member, a core material having a substantially circular, substantially elliptical or substantially rectangular cross-sectional shape, particularly a substantially elliptical or substantially rectangular cross-sectional shape is preferable. The cross-sectional shape of the core material means a cross-sectional shape perpendicular to the longitudinal direction of the core material.

本明細書中、略楕円形とは、例えば図1に示すように、当該断面形状における最大内径をa(mm)、当該最大内径方向に対して垂直方向における最大内径をb(mm)としたとき、b/a<0.95、特に0.3≦b/a≦0.8を満たす形状をいう。断面形状における最大内径aの実寸は本発明の目的が達成される限り特に制限されるものではなく、通常は10〜200mm、特に20〜80mmが好適である。   In the present specification, for example, as shown in FIG. 1, the substantially elliptical shape is defined as a (mm) as the maximum inner diameter in the cross-sectional shape, and b (mm) as the maximum inner diameter in a direction perpendicular to the maximum inner diameter direction. In this case, the shape satisfies b / a <0.95, particularly 0.3 ≦ b / a ≦ 0.8. The actual size of the maximum inner diameter a in the cross-sectional shape is not particularly limited as long as the object of the present invention is achieved, and usually 10 to 200 mm, particularly 20 to 80 mm is preferable.

略円形とは、上記略楕円形の説明で用いた同様のaおよびbについて、0.95≦b/a≦1を満たす形状をいう。   The term “substantially circular” refers to a shape satisfying 0.95 ≦ b / a ≦ 1 with respect to the same a and b used in the description of the substantially elliptical shape.

略長方形とは、例えば図2に示すように、当該断面形状における最大内径をc(mm)、当該最大内径方向に対して垂直方向における最大内径をd(mm)としたとき、d/c<0.95、特に0.1≦d/c≦0.85を満たす形状をいう。断面形状における最大内径cの実寸は本発明の目的が達成される限り特に制限されるものではなく、通常は10〜300mm、特に20〜150mmが好適である。   For example, as shown in FIG. 2, when the maximum inner diameter in the cross-sectional shape is c (mm) and the maximum inner diameter in the direction perpendicular to the maximum inner diameter direction is d (mm), as shown in FIG. A shape satisfying 0.95, particularly 0.1 ≦ d / c ≦ 0.85. The actual size of the maximum inner diameter c in the cross-sectional shape is not particularly limited as long as the object of the present invention is achieved, and usually 10 to 300 mm, particularly 20 to 150 mm is preferable.

略正方形とは、上記略長方形の説明で用いた同様のcおよびdについて、0.95≦d/c≦1を満たす形状をいう。   The term “substantially square” refers to a shape satisfying 0.95 ≦ d / c ≦ 1 for the same c and d used in the description of the above-described rectangle.

本発明において芯材は、中空内部に補強用仕切部材を有することが好ましい。特に芯材が略長方形または略楕円形等の断面形状を有する場合において補強用仕切部材を有することは、芯材の圧縮変形を防止する上で有効である。通常建築用部材に使用される場合は、ビス等の固定部材を使用して、建物躯体、固定用補助部材に固着されるのであるが、当該ビス打ちを考慮すると、芯材厚みを厚くすることはビス打ちを困難にするため好ましくない。また厚みを厚くすることにより、重量的にも重くなる。したがって、芯材厚みは厚くすることなく、圧縮変形を防止するために、補強用仕切部材を用いるのが好ましいのである。特に、最大内径が20mm以上ある芯材の場合、更に言えば成形体最大外径が30mm以上ある製品の場合、補強用仕切部材の効果が大きい。補強用仕切部材5は、例えば略長方形の断面形状を有する芯材の概略見取り図を表す図3に示すように、芯材10の中空内部において、断面形状における最大内径の方向nに対して略垂直で、かつ芯材長手方向mに連続して形成され、芯材の内部空間を分割するものである。これによって一体押出成形時に生じる被覆樹脂による圧縮圧により芯材が撓み変形するのを有効に抑制できる。補強用仕切部材の厚みは芯材の撓み変形をより有効に抑制できる限り特に制限されず、通常は0.8〜5.0mm、好ましくは1.0〜2.0mmである。補強用仕切部材は、芯材が押出成形により調製されるとき、同時に一体化形成可能である。   In the present invention, the core member preferably has a reinforcing partition member inside the hollow. In particular, in the case where the core material has a cross-sectional shape such as a substantially rectangular shape or a substantially elliptical shape, having the reinforcing partition member is effective in preventing the core material from being compressed and deformed. Usually, when used for building members, fixing members such as screws are used to fix them to the building frame and fixing auxiliary members. Is not preferable because it makes screwing difficult. Further, increasing the thickness also increases the weight. Therefore, it is preferable to use a reinforcing partition member in order to prevent compressive deformation without increasing the core material thickness. In particular, in the case of a core material having a maximum inner diameter of 20 mm or more, and more specifically, in the case of a product having a molded body maximum outer diameter of 30 mm or more, the effect of the reinforcing partition member is great. The reinforcing partition member 5 is substantially perpendicular to the direction n of the maximum inner diameter in the cross-sectional shape in the hollow interior of the core material 10 as shown in FIG. 3, which represents a schematic sketch of the core material having a substantially rectangular cross-sectional shape. And is formed continuously in the longitudinal direction m of the core material and divides the internal space of the core material. Thereby, it is possible to effectively suppress the core material from being bent and deformed by the compression pressure generated by the coating resin generated during the integral extrusion molding. The thickness of the reinforcing partition member is not particularly limited as long as the bending deformation of the core material can be more effectively suppressed, and is usually 0.8 to 5.0 mm, preferably 1.0 to 2.0 mm. The reinforcing partition member can be integrally formed at the same time when the core material is prepared by extrusion molding.

芯材が有する補強用仕切部材(以下、単に仕切部材という)の数は、本発明の目的が達成される限り特に制限されるものではなく、芯材の厚み(X:mm)とスパン(Y:mm)とが、式;
/X≦5000 (1);
好ましくは
/X≦2500 (2);
より好ましくは
/X≦1500 (3);
の関係を満たすようなスパンを確保すればよい。Y/Xの値が大きすぎると、芯材が一体押出成形時に生じる樹脂による圧縮圧に耐えることができず、撓んで圧縮変形される。
The number of reinforcing partition members (hereinafter simply referred to as partition members) included in the core material is not particularly limited as long as the object of the present invention is achieved, and the thickness (X: mm) and span (Y : Mm) is the formula;
Y 3 / X 3 ≦ 5000 (1);
Preferably Y 3 / X 3 ≦ 2500 (2);
More preferably Y 3 / X 3 ≦ 1500 (3);
A span that satisfies this relationship may be secured. If the value of Y 3 / X 3 is too large, the core material cannot withstand the compression pressure caused by the resin generated during integral extrusion molding, and is bent and compressed and deformed.

芯材のスパンとは仕切部材によって分割された2以上の内部空間のうち、芯材断面形状における最大内径方向の寸法が最大である空間の当該寸法の値である。例えば、図3において内部空間は2つの仕切部材5によって3等分されているので、いずれの空間の最大内径方向nの寸法もスパン(Y)に対応することを示している。図3中、Xは芯材の厚みを示す。   The span of the core material is a value of the dimension of the space in which the dimension in the maximum inner diameter direction in the core material cross-sectional shape is the maximum among the two or more internal spaces divided by the partition member. For example, in FIG. 3, since the internal space is divided into three equal parts by two partition members 5, it shows that the dimension of the maximum inner diameter direction n of any space corresponds to the span (Y). In FIG. 3, X indicates the thickness of the core material.

芯材が仕切部材を有するときの芯材スパン(Y)の別の具体例を図4(A)〜(C)に示す。図4(A)は、略長方形の断面形状を有する芯材において内部空間が1つの仕切部材5によって2等分されているので、いずれの空間の最大内径方向の寸法もスパン(Y)に対応することを示している。図4(B)は、略楕円形の断面形状を有する芯材において内部空間が1つの仕切部材5によって2等分されているので、いずれの空間の最大内径方向の寸法もスパン(Y)に対応することを示している。図4(C)は、略長方形の断面形状を有する芯材において内部空間は1つの仕切部材5によって2分割されているが2等分されていないので、明らかに最大内径方向の寸法が大きい左側の空間の当該寸法がスパン(Y)に対応することを示している。特に、図4(C)に示すような仕切部材を有する芯材は、断面形状の最大内径方向における中央に仕切部材を有さないので、一体押出成形体、特に建築用部材の取り付けが容易になる。   Another specific example of the core material span (Y) when the core material has a partition member is shown in FIGS. In FIG. 4A, since the inner space is divided into two equal parts by one partition member 5 in the core material having a substantially rectangular cross-sectional shape, the dimension in the maximum inner diameter direction of any space corresponds to the span (Y). It shows that In FIG. 4B, the inner space is divided into two equal parts by one partition member 5 in the core material having a substantially elliptical cross-sectional shape, so that the dimension of any space in the maximum inner diameter direction is span (Y). It shows that it corresponds. FIG. 4 (C) shows a left side having a large dimension in the maximum inner diameter direction because the inner space of the core member having a substantially rectangular cross section is divided into two parts by one partition member 5 but is not divided into two equal parts. It shows that the dimension of the space corresponds to the span (Y). In particular, the core member having the partition member as shown in FIG. 4C does not have the partition member at the center in the maximum inner diameter direction of the cross-sectional shape, so that it is easy to attach the integrally extruded body, particularly the building member. Become.

本発明において芯材は仕切部材を必ずしも有さなくてよい。芯材が仕切部材を有さない場合において芯材スパンは芯材の断面形状における最大内径であり、当該芯材スパンと芯材厚みとが上記「Y/X」の関係を満たせばよい。 In the present invention, the core material does not necessarily have a partition member. When the core material does not have a partition member, the core material span is the maximum inner diameter in the cross-sectional shape of the core material, and the core material span and the core material thickness only need to satisfy the relationship of “Y 3 / X 3 ”. .

芯材が仕切部材を有さないときの芯材スパン(Y)の具体例を図5(A)〜(B)に示す。図5(A)は、略長方形の断面形状を有する芯材が仕切部材を有さないので、断面形状における最大内径(c)がスパン(Y)に対応することを示している。cは図2においてと同様である。図5(B)は、略楕円形の断面形状を有する芯材が仕切部材を有さないので、断面形状における最大内径(a)がスパン(Y)に対応することを示している。aは図1においてと同様である。   Specific examples of the core material span (Y) when the core material has no partition member are shown in FIGS. FIG. 5A shows that the maximum inner diameter (c) in the cross-sectional shape corresponds to the span (Y) because the core member having a substantially rectangular cross-sectional shape does not have a partition member. c is the same as in FIG. FIG. 5B shows that the maximum inner diameter (a) in the cross-sectional shape corresponds to the span (Y) because the core member having a substantially elliptical cross-sectional shape does not have a partition member. a is the same as in FIG.

芯材のスパン(Y)の具体的な数値範囲について説明する。
例えば、XとYが上式(1)の関係を満たすとき、スパンYは具体的には以下に示す通りである;
芯材の厚みが1.0mmの場合、スパンは約17mm以下である;
芯材の厚みが2.0mmの場合、スパンは約34mm以下である;
芯材の厚みが3.0mmの場合、スパンは約51mm以下である。
A specific numerical range of the span (Y) of the core material will be described.
For example, when X and Y satisfy the relationship of the above formula (1), the span Y is specifically as shown below:
If the thickness of the core is 1.0 mm, the span is about 17 mm or less;
If the thickness of the core is 2.0 mm, the span is about 34 mm or less;
When the thickness of the core material is 3.0 mm, the span is about 51 mm or less.

また例えば、XとYが上式(2)の関係を満たすとき、スパンYは具体的には以下に示す通りである;
芯材の厚みが1.0mmの場合、スパンは約13mm以下である;
芯材の厚みが2.0mmの場合、スパンは約27mm以下である;
芯材の厚みが3.0mmの場合、スパンは約40mm以下である。
For example, when X and Y satisfy the relationship of the above formula (2), the span Y is specifically as shown below;
If the core thickness is 1.0 mm, the span is about 13 mm or less;
If the core thickness is 2.0 mm, the span is about 27 mm or less;
When the thickness of the core material is 3.0 mm, the span is about 40 mm or less.

また例えば、XとYが上式(3)の関係を満たすとき、スパンYは具体的には以下に示す通りである;
芯材の厚みが1.0mmの場合、スパンは約11mm以下である;
芯材の厚みが2.0mmの場合、スパンは約22mm以下である;
芯材の厚みが3.0mmの場合、スパンは約34mm以下である。
For example, when X and Y satisfy the relationship of the above formula (3), the span Y is specifically as shown below:
If the core thickness is 1.0 mm, the span is about 11 mm or less;
When the thickness of the core material is 2.0 mm, the span is about 22 mm or less;
When the thickness of the core material is 3.0 mm, the span is about 34 mm or less.

なお、Y/Xの値について、下限は特に限定されるものではないが、芯材の補強効果と仕切部材の必要性およびコストを考慮した場合、Y/X≧200であることが好ましく、特に好ましくはY/X≧400である。 The lower limit of the value of Y 3 / X 3 is not particularly limited, but Y 3 / X 3 ≧ 200 in consideration of the reinforcing effect of the core material and the necessity and cost of the partition member. And particularly preferably Y 3 / X 3 ≧ 400.

芯材は中空内部に、一体押出成形体の取り付けのためのビスホール有してもよい。ビスホールは、芯材が押出成形により調製されるとき、同時に一体化形成可能である。   The core material may have a bis-hole for mounting the integrally extruded product in the hollow interior. The screw hole can be integrally formed at the same time when the core material is prepared by extrusion molding.

芯材の外表面に形成される被覆層1は合成樹脂からなり、いわゆる非発泡体または発泡倍率5倍以下、特に2倍以下の低発泡体の形態を有するものである。   The coating layer 1 formed on the outer surface of the core material is made of a synthetic resin and has a so-called non-foamed body or a low foamed form with a foaming ratio of 5 times or less, particularly 2 times or less.

そのような被覆層に使用される合成樹脂として、例えばポリ塩化ビニル樹脂(以後、PVC樹脂という)、アクリロニトリル−ブタジエン−スチレン共重合樹脂(以後、ABS樹脂という)、アクリロニトリル−スチレン−アクリルゴム共重合樹脂(以後、ASA樹脂という)、ポリスチレン樹脂、ハイインパクトポリスチレン樹脂、アクリロニトリル−スチレン共重合樹脂(以後、AS樹脂という)、シリコン系複合ゴム変性アクリロニトリル−スチレン共重合樹脂(以後、SAS樹脂という)、変性ポリフェニレンエーテル樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリメチルメタクリレート樹脂(以後、PMMA樹脂という)、メチルメタクリレート−ブチルアクリレート共重合樹脂、メチルメタクリレート−スチレン共重合樹脂(以後、MS樹脂という)などのアクリル系樹脂またはポリエステル系樹脂もしくはこれらの混合樹脂等が挙げられる。成形性、強靭性、経済性の面から特に好ましいのは、PVC樹脂、ABS樹脂、SAS樹脂、AS樹脂、ASA樹脂、PMMA樹脂であり、これらの樹脂はそれ自体、より硬質のものである。なお、これらの合成樹脂には、炭酸カルシウム、タルク、マイカ、シラスバルーン等の充填材や軽量化材、ガラス繊維やセルロース繊維等の補強材、難燃剤、その他熱安定剤、滑剤等の合成樹脂成形体に添加される各種添加剤を含むことができる。   Synthetic resins used for such coating layers include, for example, polyvinyl chloride resin (hereinafter referred to as PVC resin), acrylonitrile-butadiene-styrene copolymer resin (hereinafter referred to as ABS resin), and acrylonitrile-styrene-acrylic rubber copolymer. Resin (hereinafter referred to as ASA resin), polystyrene resin, high impact polystyrene resin, acrylonitrile-styrene copolymer resin (hereinafter referred to as AS resin), silicon-based composite rubber-modified acrylonitrile-styrene copolymer resin (hereinafter referred to as SAS resin), Modified polyphenylene ether resin, polyethylene resin, polypropylene resin, polymethyl methacrylate resin (hereinafter referred to as PMMA resin), methyl methacrylate-butyl acrylate copolymer resin, methyl methacrylate-styrene copolymer tree (Hereinafter referred to as MS resin) acrylic resin or polyester resin or a mixed resin or the like of these and the like. Particularly preferred from the viewpoints of moldability, toughness, and economy are PVC resin, ABS resin, SAS resin, AS resin, ASA resin, and PMMA resin, and these resins themselves are harder. These synthetic resins include fillers such as calcium carbonate, talc, mica, and shirasu balloons, lightweight materials, reinforcing materials such as glass fibers and cellulose fibers, flame retardants, other heat stabilizers, and synthetic resins such as lubricants. Various additives added to the molded body can be included.

被覆層は単層からなっていても、2層以上の合成樹脂層からなっていてもよいが、2層以上、特に2〜4層の合成樹脂層からなることが好ましい。被覆層が2層以上の合成樹脂層からなる場合、各層を構成する合成樹脂はそれぞれ独立して上記合成樹脂から選択されればよい。   The coating layer may be composed of a single layer or may be composed of two or more synthetic resin layers, but is preferably composed of two or more layers, particularly 2 to 4 synthetic resin layers. When the coating layer is composed of two or more synthetic resin layers, the synthetic resin constituting each layer may be independently selected from the above synthetic resins.

好ましい被覆層は2層以上の合成樹脂層からなり、芯材と接触する合成樹脂層がポリエステル系樹脂層である。ポリエステル系樹脂層の厚みは特に制限されないが、通常0.05〜2mmである。これによって、被覆層と芯材との接着性が向上するためである。特に一体成形時には、樹脂圧により芯材と密着されるため接着力が発揮される。このとき、芯材と接触するポリエステル系樹脂層以外の合成樹脂層は、PVC樹脂、ABS樹脂、SAS樹脂、AS樹脂、ASA樹脂、PMMA樹脂等からなっていることがより好ましい。ポリエステル系樹脂層による接着性向上効果がより有効に発揮されるためである。   A preferred coating layer is composed of two or more synthetic resin layers, and the synthetic resin layer in contact with the core material is a polyester resin layer. The thickness of the polyester resin layer is not particularly limited, but is usually 0.05 to 2 mm. This is because the adhesion between the coating layer and the core material is improved. Particularly in the case of integral molding, the adhesive force is exhibited because it is in close contact with the core material by the resin pressure. At this time, the synthetic resin layer other than the polyester-based resin layer in contact with the core material is more preferably made of PVC resin, ABS resin, SAS resin, AS resin, ASA resin, PMMA resin, or the like. This is because the effect of improving the adhesion by the polyester resin layer is more effectively exhibited.

被覆層が2層以上の合成樹脂層からなる場合、最表面層は表面を保護するための保護機能を有することが好ましい。そのような保護機能を有する最表面層は、上記合成樹脂のうち、通常PMMA樹脂、SAS樹脂、AS樹脂、ASA樹脂、ABS樹脂、MS樹脂、PVC樹脂からなっていることが好ましい。そのような合成樹脂の中でも、最表面層をPMMA樹脂、ABS樹脂、MS樹脂、AS樹脂から構成させると透明保護層とすることができる。   When the coating layer is composed of two or more synthetic resin layers, the outermost surface layer preferably has a protective function for protecting the surface. It is preferable that the outermost surface layer having such a protective function is usually made of PMMA resin, SAS resin, AS resin, ASA resin, ABS resin, MS resin, or PVC resin among the synthetic resins. Among such synthetic resins, when the outermost surface layer is made of PMMA resin, ABS resin, MS resin, or AS resin, a transparent protective layer can be obtained.

被覆層の好ましい構成を以下に示す。ただし、以下の構成に限定されるものではない。なお、最初に記載の層は芯材と接触する層であり、順に最表面層に近づく層を示し、最後に記載の層は最表面層である;
(1)ポリエステル系樹脂からなる接着層−PMMA樹脂からなる透明保護層;
(2)ポリエステル系樹脂からなる接着層−種剤を有する着色SAS樹脂からなる表面加飾層;
(3)ポリエステル系樹脂からなる接着層−種剤を有する着色PMMA樹脂からなる加飾層−PMMA樹脂からなる表面層;
(4)ポリエステル系樹脂からなる接着層−着色ABS樹脂からなる半透明保護層;
(5)ポリエステル系樹脂からなる接着層−種剤を有する着色半透明MS樹脂からなる表面加飾層;
(6)ポリエステル系樹脂からなる接着層−可飾性粉体を有する着色半透明PMMA樹脂からなる表面加飾層;
(7)ポリエステル系樹脂からなる接着層−可飾性粉体を有する着色PMMA樹脂からなる加飾層−PMMA樹脂からなる透明表面層;
A preferred configuration of the coating layer is shown below. However, it is not limited to the following configurations. In addition, the layer described at the beginning is a layer in contact with the core material, and shows a layer approaching the outermost surface layer in order, and the layer described at the end is the outermost surface layer;
(1) Adhesive layer made of polyester resin-transparent protective layer made of PMMA resin;
(2) Adhesive layer made of a polyester-based resin-surface decoration layer made of a colored SAS resin having a seed;
(3) Adhesive layer made of polyester-based resin-decorative layer made of colored PMMA resin having seed agent-surface layer made of PMMA resin;
(4) Adhesive layer made of polyester resin-translucent protective layer made of colored ABS resin;
(5) Adhesive layer made of a polyester-based resin-surface decoration layer made of a colored translucent MS resin having a seed;
(6) Adhesive layer made of a polyester-based resin-surface decorative layer made of a colored translucent PMMA resin having a decorative powder;
(7) Adhesive layer made of polyester-based resin-decorative layer made of colored PMMA resin having decorative powder-Transparent surface layer made of PMMA resin;

被覆層の厚みは、硬度、摩耗性、生産安定性の観点から0.3mm以上が好ましく、より好ましくは0.6mm以上である。被覆層が2層以上の合成樹脂層からなる場合、それらの合計厚みが上記範囲内であればよい。特に、被覆層厚みが0.6mm以上であれば、表面加飾層を形成する場合、安定した加飾表現が可能となる。なお、厚みの上限は特に制限されるものではないが、一体成形時の樹脂圧力が過剰になること、生産性及びコストの面より3mm以下であり、好ましくは2mm以下である。   The thickness of the coating layer is preferably 0.3 mm or more, more preferably 0.6 mm or more from the viewpoints of hardness, wearability, and production stability. When a coating layer consists of two or more synthetic resin layers, those total thickness should just be in the said range. In particular, when the coating layer thickness is 0.6 mm or more, stable decoration expression is possible when the surface decoration layer is formed. The upper limit of the thickness is not particularly limited, but is 3 mm or less, preferably 2 mm or less, in view of excessive resin pressure during integral molding, productivity and cost.

本発明の一体押出成形体は、生産性、長尺物成形、製品特性の一定性という面から、被覆層の押出成形と同時に被覆層を芯材と一体化させる、いわゆる一体押出法によって製造される。特に、2層以上の合成樹脂層からなる被覆層を有する一体押出成形体を製造する場合には、図6に示すような共押出式の一体化押出成形機によって製造される。詳しくは、各合成樹脂層を形成する樹脂を溶融・混練するための各押出機(図6中、11,12)より押し出された樹脂を1個のダイス13内で積層すると同時に、当該層を、送り込まれる芯材10に順次被覆して一体化する。一体化された後は、通常、冷却され、所望寸法に切断される。図6では2台の押出機が使用されているが、これに制限されず、被覆層を構成する合成樹脂層の数に応じて適宜設置されればよい。   The monolithic extruded product of the present invention is manufactured by a so-called monolithic extrusion method in which the coating layer is integrated with the core material simultaneously with the extrusion molding of the coating layer from the viewpoint of productivity, long product molding, and constant product characteristics. The In particular, in the case of producing an integrally extruded body having a coating layer composed of two or more synthetic resin layers, it is produced by a coextrusion type integral extruder as shown in FIG. Specifically, the resin extruded from each extruder (11, 12 in FIG. 6) for melting and kneading the resin forming each synthetic resin layer is laminated in one die 13 and at the same time, The core material 10 to be fed is sequentially covered and integrated. Once integrated, it is usually cooled and cut to the desired dimensions. Although two extruders are used in FIG. 6, the present invention is not limited to this, and it may be appropriately installed according to the number of synthetic resin layers constituting the coating layer.

本発明の一体押出成形体は、中空状アルミ製芯材の表面全面を合成樹脂にて被覆されている必要はない。例えば図3のような断面略長方形状のものであれば、上面及び下面を被覆し、側面は芯材むき出し状態であるような被覆状態であっても良い。   The integral extruded body of the present invention does not need to cover the entire surface of the hollow aluminum core material with a synthetic resin. For example, as long as the cross section has a substantially rectangular shape as shown in FIG. 3, the upper surface and the lower surface may be covered, and the side surface may be in a covered state where the core material is exposed.

[評価サンプルの作成方法]
(実施例/比較例)
図6に示す共押出式の一体化押出成形機によって一体押出成形体を製造した。詳しくは、外層(最表面層)、内層(芯材と接触する層)の合成樹脂を、それぞれ外層用押出機12、内層用押出機11から同時に押出し、ダイス13内でアルミ製芯材10に積層・被覆して、アルミ製芯材10の外表面に2層型被覆層を有する一体押出成形体を製造した。なお、押出条件、押出樹脂、芯材条件は次の通りである。
外層用押出機:40φ、一軸押出機(押出温度約180℃)
内層用押出機:40φ、一軸押出機(押出温度約150℃)
内層樹脂:ポリエステル系樹脂であって、比重が1.26、融点が115℃のものを用いる。冷却後の内層厚みは0.2mmである。
外層樹脂:SAS樹脂(ユーエムジーウッド;ユーエムジーエービーエス社製)。冷却後の外層厚みは0.7mmである。
アルミ製芯材は、ダイス内に挿入直前に予備加熱(約100℃)を行う。
[How to create an evaluation sample]
(Example / Comparative Example)
An integrally extruded product was produced by a coextrusion type integral extruder shown in FIG. Specifically, the outer layer (outermost surface layer) and inner layer (layer in contact with the core material) are simultaneously extruded from the outer layer extruder 12 and the inner layer extruder 11, respectively, and the aluminum core material 10 is formed in the die 13. Lamination and coating were performed to produce an integrally extruded body having a two-layer coating layer on the outer surface of the aluminum core material 10. Extrusion conditions, extrusion resin, and core material conditions are as follows.
Outer layer extruder: 40φ, single screw extruder (extrusion temperature about 180 ° C)
Inner layer extruder: 40φ, single screw extruder (extrusion temperature about 150 ° C)
Inner layer resin: A polyester resin having a specific gravity of 1.26 and a melting point of 115 ° C. The inner layer thickness after cooling is 0.2 mm.
Outer layer resin: SAS resin (UMG Wood; manufactured by MG ABS Co., Ltd.). The outer layer thickness after cooling is 0.7 mm.
The aluminum core is preheated (about 100 ° C.) immediately before being inserted into the die.

アルミ製芯材はアルマイト処理された中空形状を有するアルミニウム合金製のものであり、一般的に「A6063S−T5」と呼称されるものを用いる。なお、詳細は以下の通りである。   The aluminum core material is made of an alumite-treated aluminum alloy having a hollow shape, and what is generally called “A6063S-T5” is used. Details are as follows.

Figure 0004723956
Figure 0004723956

Figure 0004723956
Figure 0004723956

[評価方法]
・圧縮変形
製造された一体押出成形体の断面を目視観察し、圧縮変形について評価した。
◎;圧縮変形はほとんど観察されなかった;
○;圧縮変形がわずかに観察されたが、実用上問題なかった;
×;圧縮変形が明らかに観察され、実用上問題があった。
[Evaluation methods]
-Compression deformation The cross section of the manufactured integrally extruded body was visually observed and evaluated for compression deformation.
◎; almost no compression deformation was observed;
○: Slight compression deformation was observed, but there was no practical problem;
X: Compression deformation was clearly observed, and there was a problem in practical use.

本発明のアルミ製芯材入り一体押出成形体は、建築用手摺り、防犯用面格子、デッキ材、バルコニールーバー等の建築用部材として有用である。   The integrally extruded body with an aluminum core material of the present invention is useful as a construction member such as a handrail for construction, a security grid, deck material, balcony louver and the like.

本発明の一体押出成形体の一例を表す概略見取り図である。It is a general | schematic sketch showing an example of the integral extrusion molding of this invention. 本発明の一体押出成形体の一例を表す概略見取り図である。It is a general | schematic sketch showing an example of the integral extrusion molding of this invention. 本発明に使用される芯材の一例を表す概略見取り図である。It is a general | schematic sketch showing an example of the core material used for this invention. (A)〜(C)は本発明に使用される芯材の断面形状の一例を表す概略断面図である。(A)-(C) are schematic sectional drawings showing an example of the cross-sectional shape of the core material used for this invention. (A)〜(B)は本発明に使用される芯材の断面形状の一例を表す概略断面図である。(A)-(B) are schematic sectional drawings showing an example of the cross-sectional shape of the core material used for this invention. 本発明の一体押出成形体を製造するための共押出式の一体押出成形機の概略断面図である。It is a schematic sectional drawing of the coextrusion type integral extrusion molding machine for manufacturing the integral extrusion molding of this invention.

符号の説明Explanation of symbols

1:被覆層、5;補強用仕切部材、10:芯材、11:12:押出機、13:ダイス。   1: coating layer, 5; partition member for reinforcement, 10: core material, 11:12: extruder, 13: die.

Claims (2)

中空状アルミ製芯材の外表面に合成樹脂からなる被覆層を有してなり、前記芯材が、内部に芯材長手方向に連続して形成され、かつ、芯材の内部空間を分割する補強用仕切部材を有し、芯材の厚みが1.1〜5.0mmであり、芯材の厚み(X:mm)と、補強用仕切部材によって分割された2以上の内部空間のうち、芯材の長手方向に対して垂直な芯材断面形状における最大内径方向の寸法が最大である空間の当該最大内径方向の寸法であるスパン(Y:mm)とが、式;
/X≦5000
の関係を満たし、補強用仕切部材の厚みが0.8〜5.0mmであり、被覆層の厚みが0.3〜3mmであり、被覆層が2層以上の合成樹脂層からなり、芯材と接触する合成樹脂層がポリエステル系樹脂層であることを特徴とする一体押出成形体。
It has a coating layer made of a synthetic resin on the outer surface of the hollow aluminum core material, the core material is formed continuously in the longitudinal direction of the core material, and divides the internal space of the core material It has a partition member for reinforcement, the thickness of the core material is 1.1 to 5.0 mm, the thickness of the core material (X: mm), and two or more internal spaces divided by the partition member for reinforcement, The span (Y: mm) which is the dimension in the maximum inner diameter direction of the space in which the dimension in the maximum inner diameter direction in the core cross-sectional shape perpendicular to the longitudinal direction of the core material is the maximum;
Y 3 / X 3 ≦ 5000
Meet the relationship, the thickness of the reinforcing partition member is 0.8~5.0Mm, the thickness of the coating layer is 0.3 to 3 mm, the coating layer comprises two or more layers of synthetic resin layers, the core A synthetic extruded layer in contact with the material is a polyester-based resin layer .
請求項1に記載の一体押出成形体からなる建築用部材。 A building member comprising the integrally extruded product according to claim 1 .
JP2005253714A 2005-09-01 2005-09-01 Monolithic extruded body and building material Active JP4723956B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005253714A JP4723956B2 (en) 2005-09-01 2005-09-01 Monolithic extruded body and building material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005253714A JP4723956B2 (en) 2005-09-01 2005-09-01 Monolithic extruded body and building material

Publications (2)

Publication Number Publication Date
JP2007062276A JP2007062276A (en) 2007-03-15
JP4723956B2 true JP4723956B2 (en) 2011-07-13

Family

ID=37925034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005253714A Active JP4723956B2 (en) 2005-09-01 2005-09-01 Monolithic extruded body and building material

Country Status (1)

Country Link
JP (1) JP4723956B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5248882B2 (en) * 2008-02-29 2013-07-31 倉敷紡績株式会社 Building materials
JP5063415B2 (en) * 2008-02-29 2012-10-31 倉敷紡績株式会社 Sash component made of integrally extruded composite material
CN106660096B (en) * 2014-07-11 2019-08-02 仓敷纺绩株式会社 Bending machining product

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5820054U (en) * 1981-07-31 1983-02-07 黒田 重治 Concrete formwork spacing retainer
JPS6345022A (en) * 1987-08-18 1988-02-26 Seikei Giken:Kk Long-sized synthetic resin coated pipe and its manufacture
JPH0313744U (en) * 1989-06-26 1991-02-12
JPH068301A (en) * 1992-06-24 1994-01-18 Fuji Kiki Kogyo Kk Manufacture of resin coated pipe
JPH07315618A (en) * 1994-05-31 1995-12-05 Mitsubishi Cable Ind Ltd Carrier roller and its manufacture
JP2002061195A (en) * 2000-08-23 2002-02-28 Sekisui Jushi Co Ltd Earth retaining structure
JP2002120333A (en) * 2000-10-18 2002-04-23 Sekisui Jushi Co Ltd Extruded composite coating material
JP2003053815A (en) * 2001-08-22 2003-02-26 Kazuhiro Amamiya Extrusion molding tube
JP2003167461A (en) * 2001-11-29 2003-06-13 Nissei Electric Co Ltd Heating roll for fixing
JP2005009093A (en) * 2003-06-17 2005-01-13 Nobuo Tanaka Spot lighting handrail for indoor use
JP2005112943A (en) * 2003-10-06 2005-04-28 Sekisui Jushi Co Ltd Synthetic resin coating material

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5820054A (en) * 1981-07-30 1983-02-05 Fujitsu Ltd Restart processing system

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5820054U (en) * 1981-07-31 1983-02-07 黒田 重治 Concrete formwork spacing retainer
JPS6345022A (en) * 1987-08-18 1988-02-26 Seikei Giken:Kk Long-sized synthetic resin coated pipe and its manufacture
JPH0313744U (en) * 1989-06-26 1991-02-12
JPH068301A (en) * 1992-06-24 1994-01-18 Fuji Kiki Kogyo Kk Manufacture of resin coated pipe
JPH07315618A (en) * 1994-05-31 1995-12-05 Mitsubishi Cable Ind Ltd Carrier roller and its manufacture
JP2002061195A (en) * 2000-08-23 2002-02-28 Sekisui Jushi Co Ltd Earth retaining structure
JP2002120333A (en) * 2000-10-18 2002-04-23 Sekisui Jushi Co Ltd Extruded composite coating material
JP2003053815A (en) * 2001-08-22 2003-02-26 Kazuhiro Amamiya Extrusion molding tube
JP2003167461A (en) * 2001-11-29 2003-06-13 Nissei Electric Co Ltd Heating roll for fixing
JP2005009093A (en) * 2003-06-17 2005-01-13 Nobuo Tanaka Spot lighting handrail for indoor use
JP2005112943A (en) * 2003-10-06 2005-04-28 Sekisui Jushi Co Ltd Synthetic resin coating material

Also Published As

Publication number Publication date
JP2007062276A (en) 2007-03-15

Similar Documents

Publication Publication Date Title
JP2013527347A (en) Block deck using concrete
JP2007230130A (en) Sound absorption laminate structure using foam honeycomb core
US7445840B2 (en) Weather-resistant synthetic wood material
JP4723956B2 (en) Monolithic extruded body and building material
JP4801991B2 (en) Building materials
JP6106392B2 (en) Furniture made of recycled polystyrene foam
JP4914152B2 (en) Monolithic extruded body and building material
JP3905642B2 (en) Multilayer molded body
JP2008290396A (en) Foamed surface two-layer extrusion molded article, its production method, and gutter using the molded article
JP4387809B2 (en) Decorative multi-layer molded body with a texture pattern
JP2007224523A (en) Connecting-assembling decorative material
JP3695491B2 (en) Siding materials and composite siding materials
JP2002089755A (en) Three-layer foam pipe
JP3916602B2 (en) Decorative multi-layer molded body with a texture pattern
HU186629B (en) Process for producing polivinilchlorid shape-bodies strengthened with fibreglass
JP4987543B2 (en) Synthetic resin extrusion molding for decorative material and its mounting structure
JP2007210339A (en) Manufacturing method of foamed resin extrusion molded article with covering sheet
JP3020476B2 (en) Decorative multilayer molded body
JP2008254381A (en) Synthetic resin-made extrusion molding for dressed lumber and its installing structure
JPH11254569A (en) Decorating multilayer molded body
JPH0216920Y2 (en)
JP5248882B2 (en) Building materials
CN202249621U (en) Aluminum-plastic composite profile
JP4758088B2 (en) Decorative multi-layer coextrusion molding
GB2492804A (en) Insulating cladding boards with weatherproofing layer

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080131

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080814

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110408

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4723956

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250