JP4795874B2 - ガスセンサ素子およびそれを用いたガスセンサ、ガスセンサ素子の製造方法 - Google Patents

ガスセンサ素子およびそれを用いたガスセンサ、ガスセンサ素子の製造方法 Download PDF

Info

Publication number
JP4795874B2
JP4795874B2 JP2006185544A JP2006185544A JP4795874B2 JP 4795874 B2 JP4795874 B2 JP 4795874B2 JP 2006185544 A JP2006185544 A JP 2006185544A JP 2006185544 A JP2006185544 A JP 2006185544A JP 4795874 B2 JP4795874 B2 JP 4795874B2
Authority
JP
Japan
Prior art keywords
gas sensor
insulating layer
axial direction
solid electrolyte
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006185544A
Other languages
English (en)
Other versions
JP2008014764A (ja
Inventor
哲哉 伊藤
良平 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Spark Plug Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2006185544A priority Critical patent/JP4795874B2/ja
Publication of JP2008014764A publication Critical patent/JP2008014764A/ja
Application granted granted Critical
Publication of JP4795874B2 publication Critical patent/JP4795874B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Description

本発明は、排気ガス中の特定ガスの濃度を検出するガスセンサ素子およびそれを用いたガスセンサ、ガスセンサ素子の製造方法に関するものである。
従来、自動車などの排気ガス中の特定ガス、例えばNOx(窒素酸化物)や酸素などの濃度に応じ、大きさの異なる起電力が生じたり、抵抗値が変化したりするガスセンサ素子を備えたガスセンサが知られている。一例としてジルコニアを用いたガスセンサ素子は、ジルコニアからなる固体電解質体を挟む一対の電極(未燃焼ガスの酸化に対する触媒作用をもつ白金(Pt)等が用いられる。)からなる酸素ポンピングセルを有する検出素子を備えている。酸素ポンピングセルは、固体電解質体に隔てられた雰囲気間の酸素分圧に差が生じた場合に、両雰囲気間の酸素分圧が平衡となるように、酸素分圧の高い側の雰囲気から低い側の雰囲気へ酸素を移動させる特性を有する。このとき、固体電解質体内を移動する酸素は、一方の電極から電子を受け取り酸素イオンとなって移動して、他方の電極で電子を放出するため、両電極間には起電力が生ずる。そこで、一方の雰囲気を大気(あるいは酸素濃度が基準値となるように調整された雰囲気)とし、両雰囲気間の酸素分圧の差に応じた大きさの起電力を生じさせれば、これを測定することで酸素濃度の検出を行うことができる。
このような検出素子は温度が低いと固体電解質体が活性化しないため、例えば自動車の始動時などでは酸素濃度の検出を行える状態となるまで、排気ガスによる昇温を待つ必要があった。そこで、検出素子を加熱して速やかに昇温できるようにしたヒータ素子を備えたガスセンサ素子が開発されている。一般的なガスセンサ素子は、短冊状に形成された検出素子とヒータ素子とが、接着剤(例えば、セメント材)を用いて貼り合わされることにより一体化されている(例えば、特許文献1参照)。接着剤には耐熱性が求められるため、通常、バインダとしてリン(リン酸)を含有する耐熱性セメント材が用いられることが多い。
特開2005−114527号公報
ところで、ヒータ素子が貼り合わされる検出素子は、固体電解質体上に形成された電極を保護するように絶縁基体に覆われているが、この絶縁基体には、ピンホール等の貫通孔が形成されてしまう場合がある。そして、ガスセンサ素子は、耐熱性セメント材を用いて検出素子とヒータ素子とを貼り合わせた後、熱処理を行うことでセメント材を固化させる。しかしながら、大気中の湿度が高い状態になると、熱処理前にセメント材に含有されるリン酸が大気中に含まれる水分を吸収することでセメント材の表面に滲み出してしまうことがある。そしてこのガスセンサ素子を排気ガス中に晒すと、排気ガスが高温であり(例えば600℃以上)、さらに空燃比がリッチ状態にあるのでリン酸が還元されやすく、単離したリンが絶縁基体のピンホールを介して酸素ポンピングセルの白金からなる電極と接触した場合、体積膨張を伴う化学反応を起こし、電極が断線してしまう虞があった。特にこの現象は、セメント材が固着して形成されるセメント部の形成範囲一円において生ずるわけではなく、リンと白金とが反応して体積膨張を生じた際に、その体積膨張が抑制される部位では生じにくい。つまりセメント部の形成範囲のうちの縁部分では、内部分と比べ、ヒータ素子と検出素子との張り合わせの強度が低いため、この部分に電極が存在すると、上記のようにリンと白金とが反応して体積膨張を生じた際に、その体積膨張を十分に抑制することができず、電極が断線を生ずる虞があった。
本発明は、上記問題点を解決するためになされたものであり、検出素子の電極に断線が生じにくいガスセンサ素子およびそれを用いたガスセンサ、ガスセンサ素子の製造方法を提供することを目的とする。
上記目的を達成するために、請求項1に係る発明のガスセンサ素子は、軸線方向に延びる短冊状の固体電解質体と、当該固体電解質体上に設けられた一対の電極であって、前記固体電解質体の前記軸線方向先端側に形成された電極部、および、当該電極部から前記軸線方向の後端側に向けて延びるリード部からそれぞれが構成され、互いの前記電極部が対向する一対の電極と、当該一対の電極のうち一方の電極の少なくとも前記リード部を覆う絶縁層と、を有する検出素子と、当該検出素子の軸線方向と平行な方向に延設されると共に前記絶縁層側に設けられ、前記検出素子を加熱する短冊状のヒータ素子と、前記絶縁層と前記ヒータ素子とに挟まれ、自身の先端が、前記絶縁層の先端よりも前記軸線方向後端側に位置するように設けられたセメント部と、を有するガスセンサ素子において、前記セメント部には、リンが含有されており、前記絶縁層は、前記リード部上で、且つ前記セメント部の先端よりも先端側に位置する先端側部位から、前記セメント部の先端よりも後端側に位置する後端側部位に跨って設けられ、複数の層が積層されてなる、貫通孔が形成されていない跨設部を有している。
また、請求項2に係る発明のガスセンサ素子は、軸線方向に延びる短冊状の固体電解質体と、当該固体電解質体上に設けられた一対の電極であって、前記固体電解質体の前記軸線方向先端側に形成された電極部、および、当該電極部から前記軸線方向の後端側に向けて延びるリード部からそれぞれが構成され、互いの前記電極部が対向する一対の電極と、当該一対の電極のうち一方の電極の少なくとも前記リード部を覆う絶縁層と、を有する検出素子と、当該検出素子の軸線方向と平行な方向に延設されると共に前記絶縁層側に設けられ、前記検出素子を加熱する短冊状のヒータ素子と、前記絶縁層と前記ヒータ素子とに挟まれ、自身の先端が、前記絶縁層の先端よりも前記軸線方向後端側に位置するように設けられたセメント部と、を有するガスセンサ素子において、前記セメント部には、リンが含有されており、前記絶縁層は、前記リード部上で、且つ前記セメント部の先端よりも先端側に位置する先端側部位から、前記セメント部の先端よりも後端側に位置する後端側部位に跨って設けられる領域をなす跨設部であって、当該領域内の材料の密度が前記絶縁層の他の領域よりも高められて貫通孔が形成されていない跨設部を有することを特徴とする。
また、請求項3に係る発明のガスセンサ素子は、請求項1または2に記載の発明の構成に加え、前記跨設部は、前記絶縁層と同一の材料から形成されていることを特徴とする。
また、請求項4に係る発明のガスセンサは、軸線方向に延びるガスセンサ素子と、当該ガスセンサ素子を固定する筒状の主体金具と、を備えるガスセンサであって、前記ガスセンサ素子は、請求項1乃至3のいずれかに記載のガスセンサ素子を用いることを特徴とする。
また、請求項5に係る発明のガスセンサ素子の製造方法は、軸線方向に延びる短冊状の固体電解質体と、当該固体電解質体上に設けられた一対の電極であって、前記固体電解質体の前記軸線方向先端側に形成された電極部、および、当該電極部から前記軸線方向の後端側に向けて延びるリード部からそれぞれが構成され、互いの前記電極部が対向する一対の電極と、当該一対の電極のうち一方の電極の少なくとも前記リード部を覆う絶縁層と、を有する検出素子と、当該検出素子の軸線方向と平行な方向に延設されると共に前記絶縁層側に設けられ、前記検出素子を加熱する短冊状のヒータ素子と、前記絶縁層と前記ヒータ素子とに挟まれ、自身の先端が、前記絶縁層の先端よりも前記軸線方向後端側に位置するように設けられたセメント部と、を有するガスセンサ素子の製造方法において、前記固体電解質体上に前記一対の電極を形成する電極形成工程と、前記一対の電極のうち一方の電極の少なくとも前記リード部を覆うように前記絶縁層を形成する絶縁層形成工程と、前記絶縁層に貫通孔が形成されないように、前記絶縁層を積層方向に加圧する加圧工程と、リンを含有し、前記セメント部となるセメント材を前記絶縁層上に塗布するセメント材塗布工程と、前記セメント材を介し、前記絶縁層側に前記ヒータ素子を積層するヒータ素子積層工程と、を有している。
また、請求項6に係る発明のガスセンサ素子の製造方法は、軸線方向に延びる短冊状の固体電解質体と、当該固体電解質体上に設けられた一対の電極であって、前記固体電解質体の前記軸線方向先端側に形成された電極部、および、当該電極部から前記軸線方向の後端側に向けて延びるリード部からそれぞれが構成され、互いの前記電極部が対向する一対の電極と、当該一対の電極のうち一方の電極の少なくとも前記リード部を覆う絶縁層と、を有する検出素子と、当該検出素子の軸線方向と平行な方向に延設されると共に前記絶縁層側に設けられ、前記検出素子を加熱する短冊状のヒータ素子と、前記絶縁層と前記ヒータ素子とに挟まれ、自身の先端が、前記絶縁層の先端よりも前記軸線方向後端側に位置するように設けられたセメント部と、を有するガスセンサ素子の製造方法において、前記固体電解質体上に前記一対の電極を形成する電極形成工程と、前記一対の電極のうち一方の電極の少なくとも前記リード部を覆うように前記絶縁層を形成する絶縁層形成工程と、前記絶縁層上の前記セメント部の先端が予定される先端予定位置を、前記軸線方向に跨ぐようにして、コート層を形成するコート層形成工程と、リンを含有するセメント材の先端を前記コート層上に位置させつつ、前記軸線方向後端側へ向けて、前記絶縁層上に前記セメント材を塗布するセメント材塗布工程と、前記セメント材を介し、前記絶縁層側に前記ヒータ素子を積層するヒータ素子積層工程と、を有している。
また、請求項7に係る発明のガスセンサ素子の製造方法は、請求項6に記載の発明の構成に加え、前記検出素子は、前記軸線方向と直交する方向に複数の前記検出素子が連結されて一体となった板状体として形成され、前記コート層形成工程では、前記コート層を前記板状体を構成する個々の前記検出素子の前記絶縁層上の前記先端予定位置を前記軸線方向に跨ぐようにして前記検出素子の直交方向に帯状に形成するものであり、前記コート層形成工程後に、前記板状体を、個々の前記検出素子にあわせて切断する切断工程を有している。
請求項1に係る発明のガスセンサ素子は、セメント部に接する検出素子の絶縁層のうち跨設部には貫通孔が形成されていない。このため、ガスセンサ素子の使用時などに高温且つリッチ雰囲気の排気ガスに晒されることによりリンがセメント部(固化前のセメント材)から滲み出した場合でも、その跨設部においては、リンが絶縁層を通過することがない。この跨設部は、絶縁層の覆うそのリード部上で、セメント部の先端の位置を跨いで設けられている。従って、セメント部の先端と電極のリード部とが絶縁層を介して重なる位置では、セメント部(固化前のセメント材)からリンが滲み出しても、リンが絶縁層を介してリード部に達することはなので、リンと電極との化学反応により体積膨張を生じ電極が断線することを、確実に防止することができる。特に、検出素子とヒータ素子との張り合わせの強度が高くリンと反応した電極の体積膨張を十分に抑制することができるセメント部の内部分や、セメント部の縁部分であっても電極の配置されていない部分に対して、跨設部を設けることなく、電極上(リード部上)で、リンと電極との体積膨張を抑制し難いセメント部の先端の位置を跨いで跨設部を設けているので、上記のような電極の体積膨張に伴う電極の断線を確実に防止でき、さらには跨設部を形成するのに必要な材料の使用量や作業量を効果的に低減することができる。
このような跨設部を設けるにあたり、複数の層を積層すれば、容易に、絶縁層に存在し得る貫通孔を埋めたり塞いだりすることができ、貫通孔の形成されていない跨設部を設けることができる。もっとも、跨設部は2層以上に積層されていてもよく、存在しうる貫通孔が確実に埋められたり塞がれたりすればよい。
また、請求項2に係る発明のガスセンサ素子のように、絶縁層の跨設部が存在する領域内の材料の密度を他の領域よりも高めることにより、絶縁層に存在し得る貫通孔が潰され、貫通孔が形成されていない跨設部を実現することができる。よって請求項1と同様の効果を得ることができる。
また、請求項3に係る発明のように、絶縁層に存在しうる貫通孔を埋めたり塞いだりするのにあたって絶縁層と同一の材料を用いれば、絶縁層との馴染みがよく、跨設部形成後の層の剥離等を防止でき、より確実に、貫通孔の形成されていない跨設部を設けることができる。
請求項4に係る発明のガスセンサは、内燃機関の排気通路に固定され、ガスセンサ素子が高温の排気ガス中に晒されて使用されるが、そのガスセンサ素子として請求項1乃至3のいずれかに記載のガスセンサ素子を用いているので、高温で空燃比がリッチ状態となった排気ガス中でセメント部(固化前のセメント材)に含まれるリンが滲み出していても、リンと電極との反応で生ずる体積膨張により電極の断線が懸念される跨設部においては貫通孔が形成されていないので、絶縁層を介してリンが電極に達することがない。従って、電極とリンとが反応して体積膨張し電極に浮きが生ずることに起因した電極の断線を確実に防止することができ、信頼性の高いガスセンサを提供することができる。
また、請求項5に係る発明のガスセンサ素子の製造方法のように、固体電解質体上の電極を覆って形成した絶縁層を積層方向に加圧すれば、絶縁層に存在し得る貫通孔を、圧力を加えて潰すことができるので、貫通孔が形成されていない絶縁層を実現することができる。こうした加圧処理は、絶縁層上において、セメント部となるセメント材を塗布した場合にセメント材の先端が位置する予定となる先端予定位置を、軸線方向に跨ぐようにして、絶縁層を積層方向に加圧してもよい。このようにすれば、電極上(リード部上)で、リンと電極との体積膨張を抑制し難い部分に対しピンポイントで貫通孔の形成されていない部位を形成でき、加圧にかかる作業量を効果的に低減することができる。
一方、請求項6に係る発明のガスセンサ素子の製造方法のように、固体電解質体上の電極を覆って形成した絶縁層上にコート層を形成しても、絶縁層に存在し得る貫通孔を塞いだり埋めたりすることができるので、貫通孔が形成されていない絶縁層を実現することができる。上記同様、コート層は、絶縁層全体に形成してもよいし、あるいは絶縁層上において、セメント部となるセメント材を塗布した場合にセメント材の先端が位置する予定となる先端予定位置を、軸線方向に跨ぐようにして形成してもよい。このようにすれば、電極上(リード部上)で、リンと電極との体積膨張を抑制し難い部分に対しピンポイントで貫通孔の形成されていない部位を形成でき、コート層を形成するのに必要な材料の使用量や作業量を効果的に低減することができる。
また、請求項7に係る発明のように、複数の固体電解質体を連結した板状体上に形成した個々の固体電解質体に対応する絶縁層上の各先端予定位置を軸線方向に跨ぎ、各固体電解質体の連結方向につながる帯状のコート層を形成し、その後の切断工程で、この板状体を個々の固体電解質体にあわせて切断し、複数のガスセンサ素子を一度に作製してもよい。このようにすれば、それぞれ個別に作製した固体電解質体上の絶縁層にコート層を形成する場合と比べ、複数の固体電解質体上の絶縁層へのコート層の形成を一度の工程で行うことができ、工程の簡易化を図り、多数のガスセンサ素子をより少ない工程数で製造することができる。
以下、本発明を具体化したガスセンサ素子およびそれを用いたガスセンサ、ガスセンサ素子の製造方法の一実施の形態について、図面を参照して説明する。まず、一例として、ガスセンサ素子10を備えたガスセンサ1の構造について、図1〜図4を参照して説明する。図1は、第1の実施の形態のガスセンサ1の縦断面図である。図2は、第1の実施の形態のガスセンサ素子10の斜視図である。図3は、第1の実施の形態のガスセンサ素子10の構造を説明するための分解斜視図である。図4は、図3の2点鎖線A−Aにおいて矢視方向から見た、完成後の第1の実施の形態のガスセンサ素子10の断面図である。
なお、以下の図面において、図1では上下方向を、図2,図3では左右方向をガスセンサ1(ガスセンサ素子10)の軸線O方向(1点鎖線で示す。)とする。そして、図1では下側を、図2,図3では左側をガスセンサ1(ガスセンサ素子10)の先端側とし、また、図1では上側を、図2,図3では右側をガスセンサ1(ガスセンサ素子10)の後端側として説明するものとする。
図1に示すガスセンサ1は、自動車の排気管(図示外)に取り付けられ、内部に保持するガスセンサ素子10の検出部101が排気管内を流通する排気ガス中に晒されて、その排気ガス中の酸素濃度から排気ガスの空燃比を検出する、いわゆる全領域空燃比センサである。ガスセンサ素子10からは、排気ガスの空燃比がリーンの場合には、理論空燃比に対し余剰となる酸素の量に応じた検出値(電流値)が得られ、リッチの場合には未燃焼ガスを完全燃焼させるのに必要な酸素の量に応じた検出値(電流値)が得られる。これら検出値をもとに、図示しないセンサ制御回路にて排気ガスの空燃比が求められてECU(電子制御ユニット)に対し出力され、空燃比フィードバック制御などに利用される。
ガスセンサ素子10は、図2に示すように、軸線O方向に延び短冊状をなす検出素子100と、同様に軸線O方向に延び短冊状をなすヒータ素子150とが、先端(図中左側の端部)を揃えた状態で互いに貼り合わされ、略角柱状をなす積層体として一体化されている。図1に示すガスセンサ1は、このガスセンサ素子10をセラミックホルダ30内に保持し、そのセラミックホルダ30を自動車の排気管(図示外)に取り付けるための主体金具4内にて支持した構造を有する。なお、ガスセンサ素子10の詳細な構造については後述する。
ガスセンサ素子10の軸線O方向後端側には、軸線Oと直交する断面が略コの字形状をなし軸線O方向に沿って延びる支持碍管18が、その凹部内に検出素子100を挟むようにして接着されている。この支持碍管18はアルミナ等の絶縁性セラミックスから形成され、後述するセラミックホルダ30内に充填されるガラス製のシール部材32と、固体電解質(第1の実施の形態ではジルコニア)を主体とする検出素子100との熱膨張率差により、検出素子100にクラックが発生することを抑制するために設けられている。
また、ガスセンサ素子10の軸線O方向略中央には、ガスセンサ素子10の周囲を取り巻くようにアルミナ製の絶縁碍管27が配置されており、接着部材28によって接着されている。この状態でガスセンサ素子10は、軸線O方向に延びる円筒形状をなすアルミナ製のセラミックホルダ30の後端側から、その内部に挿入されている。セラミックホルダ30の先端内周には段状の係止部33が設けられており、この係止部33に、ガスセンサ素子10の絶縁碍管27が係止されている。さらにセラミックホルダ30内には、後端側から滑石31の粉末と、ガラス製のシール部材32とが充填されている。これにより、ガスセンサ素子10は、先端側をセラミックホルダ30の先端から突出させた状態でセラミックホルダ30内に保持され、固定されている。また、セラミックホルダ30は、その先端側に、外周を一回り大きく形成した段部34を有する。
ガスセンサ素子10を保持したセラミックホルダ30の略中央より先端側の部分は、その周囲を筒状の主体金具4に取り囲まれて保持されている。主体金具4は、ガスセンサ1を自動車の排気管(図示外)に取り付け固定するためのものであり、SUS430等の低炭素鋼からなり、外周先端側に排気管への取り付け用の雄ねじ部41が形成されている。また、主体金具4の外周中央には取り付け用の工具が係合する工具係合部42が形成されており、その工具係合部42の先端面と雄ねじ部41の後端との間には、排気管に取り付けた際のガス抜けを防止するためのガスケット49が嵌挿されている。そして工具係合部42の後端側には、加締め部43が形成されている。
また、主体金具4内周で雄ねじ部41付近には段部44が形成されており、後端側より主体金具4内に挿入されるセラミックホルダ30の段部34が、この段部44に係止されている。この状態で、主体金具4の内周とセラミックホルダ30の外周との隙間には滑石リング24が装填され、さらに滑石リング24を後端側から押さえるように、リング状の留め具23が嵌め込まれている。そして、後述する筒状の外筒5の先端部分を留め具23との間で挟むようにして、主体金具4の加締め部43が加締められている。これにより、留め具23および滑石リング24を介し、セラミックホルダ30の段部34が主体金具4の段部44に向けて押圧され、主体金具4とセラミックホルダ30とが一体となる。主体金具4とセラミックホルダ30との間の気密は段部34,44間に介在されるリング状の板パッキンによって保持され、燃焼ガスの流出が防止される。
一方、セラミックホルダ30の保持するガスセンサ素子10は、その先端部分が主体金具4の先端側の開口から突出された状態となる。この主体金具4の先端には、側面に複数の孔を有した有底円筒状で内外2重構造をなすプロテクタ19が嵌められており、突出されたガスセンサ素子10の先端部分を、排気ガス中のデポジット(燃料灰分やオイル成分など被毒性の付着物質)による汚損や被水などによる折損等から保護している。
次に、上記した外筒5はステンレス(例えばSUS304)製であり、主体金具4の後端側に取り付けられ、主体金具4の後端から露出されるセラミックホルダ30の後端側の部分を囲って保護するものである。外筒5の後端側の周縁部51は内側に折れ曲げられている。この周縁部51は、外筒5の後端側の開口を閉塞するように配置される導線セパレータ16が外筒5内に落下しないよう、Oリング52を介して導線セパレータ16を支えている。導線セパレータ16は、後述するガスセンサ素子10の5本の電極端子105,106,107(図1では電極端子105,107のみを図示している。)および電極端子155,156(図1では電極端子155のみを図示している。)にそれぞれ接続される5本のリード端子25が互いに接触しないよう配置させると共に、自身の内部でガスセンサ1の外部へ引き出すための5本のリード線50と、各リード端子25とのそれぞれの接続部分を収容して保護している。
この導線セパレータ16の外周を囲って保護するように、ステンレス(例えばSUS304)製で筒状をなす保護外筒7が設けられている。保護外筒7は、外筒5に、その後端側から嵌着されて取り付けられており、嵌着部分は加締められている。保護外筒7内には、導線セパレータ16の後端側で保護外筒7の開口を閉塞して筒内の気密を保持するためのゴムキャップ20が配設されている。ゴムキャップ20には複数の挿通孔が設けられており、その挿通孔には導線セパレータ16から引き出されるリード線50が気密に内挿されている。このゴムキャップ20は、保護外筒7の後端側の外側面から加締められて、導線セパレータ16を先端側に押圧した状態のまま固定されている。
次に、ガスセンサ素子10の構造について説明する。前述したように、図2に示すガスセンサ素子10は、短冊状に形成されたヒータ素子150と検出素子100とをセメント部104(図4参照)によって互いに貼り合わせて積層体として一体に構成したものである。なお、以下の説明において、検出素子100を構成する各部材(後述する絶縁基体110,116,124および固体電解質体114,120,122)はそれぞれ短冊状をなし積層されるものであり、その積層方向において、ガスセンサ素子10として一体化された際に検出素子100側から見てヒータ素子150が配置された側となる各部材の面を、便宜上、「主面」と呼び、主面と反対側の面を「裏面」と呼ぶものとする。従って、図3,図4では、各部材の紙面上側となる面が主面であり、紙面下側となる面が裏面となる。また、ヒータ素子150を構成する各部材(後述する絶縁基体160,170)についても検出素子100を構成する各部材にならい、図3,図4において紙面上側となる面を「主面」と呼び、紙面下側となる面を「裏面」と呼ぶものとする。
図4に示すように、ヒータ素子150は、絶縁性を有するアルミナを主体とする絶縁基体160,170間に、タングステンやモリブデン等の高融点金属からなる発熱抵抗体180を挟んだ構造となっている。図3に示すように、発熱抵抗体180は、ヒータ素子150内でつながった1本の導電パターンからなる。発熱抵抗体180は、主に発熱がなされるように断面積が小さく形成されたパターンからなる発熱部181を有する。その発熱部181はヒータ素子150の先端側(図3における左手側)に配設され、発熱部181の両端にそれぞれ接続される2本のリード部182は、発熱部181より大きな断面積を有するように形成されると共に、絶縁基体160,170の短手方向に並列し長手方向に沿って後端側(図3における右手側)まで延設されている。また、ヒータ素子150の後端側にて、電極取出用の2本の電極端子155,156が、リード部182の後端(発熱抵抗体180の末端)にそれぞれ接続された状態で絶縁基体160,170間に挟み込まれ、ヒータ素子150の後端から外部に突出されている。
次に図4に示すように、検出素子100は、絶縁性を有するアルミナを主体とする絶縁基体110,116,124と、ジルコニアを主体とする固体電解質体114,120,122とが、ヒータ素子150に対向配置される側から絶縁基体110、固体電解質体114、絶縁基体116、固体電解質体120,122、絶縁基体124の順に重ねて積層された構造を有する。そして、固体電解質体114および固体電解質体120の各両面には、それぞれ、白金を主体とする導電パターンからなる一対の電極130,135および一対の電極140,145が形成されている。図3に示すように、各絶縁基体110,116,124と各固体電解質体114,120,122は、いずれも細長い短冊状の板体として形成されている。
固体電解質体114の主面(上記したようにヒータ素子150側となる面)上に形成される電極130は、固体電解質体114の先端側(図中左手側)から後端側(図中右手側)に延びるリード部132を有し、その先端部分には幅広の電極部131が形成されている。またリード部132後端側の後端部133は、固体電解質体114に形成されたビアホール115内に介在されるビア導体134を介し、固体電解質体114の主面と反対側の裏面上に形成される中継電極139に接続されている。固体電解質体114の裏面上には、電極130と対となる電極135が形成されており、電極130と同様に、固体電解質体114の先端側から後端側に延びるリード部137と、リード部の先端部分にて幅広に形成された電極部136とを有する。電極部136は、固体電解質体114を挟んで電極部131と対向する位置に配置されている。そして、リード部137後端側の後端部138は、固体電解質体114の後端にて、電極130に接続された中継電極139と並列に配置されている。中継電極139と電極135の後端部138とは、それぞれ、電極取出用の2本の電極端子105と電極端子106とに接続されており、その電極端子105,106は、固体電解質体114と固体電解質体120との間に、絶縁基体116と共に挟み込まれ、検出素子100の後端から外部に突出されている。
次に、絶縁基体110は固体電解質体114の主面側に配設され、上記電極130を固体電解質体114との間に挟み込んでいる。その絶縁基体110の先端側で、上記電極部131が配置される位置には、自身の厚み方向に貫通する開口部111が設けられている。そして、この開口部111内には、絶縁基体110と同様にアルミナを主体とし多孔質となるように形成されたポーラス層112が設けられている。固体電解質体114上に形成される電極130の電極部131は、このポーラス層112を介し、外気と連通されるように構成されている。なお、絶縁基体110が、本発明における「絶縁層」に相当する。
一方、固体電解質体114の裏面側には、上記電極135を固体電解質体114との間に挟み込んだ状態で、絶縁基体116が配設される。この絶縁基体116の先端側で、上記電極部136が配置される位置にも、自身の厚み方向に貫通する開口部117が設けられている。絶縁基体116の厚み方向両側に積層配置される固体電解質体114と固体電解質体120とによって開口部117は閉じられ、内部がガス検出室126として構成される。電極135の電極部136は、このガス検出室126内に配置されている。また、開口部117の側壁のうち、絶縁基体116の短手方向両側の側壁には拡散律速部118が設けられている。拡散律速部118はアルミナからなる多孔質体として形成され、この拡散律速部118を介し、検出素子100の周囲の排気ガスをガス検出室126内に導入できるように構成されている。拡散律速部118は、排気ガス導入の際に、ガス検出室126内への排気ガスの流入量が規制されるように設けられている。なお、固体電解質体114が、本発明において、自身上に設けられた電極のリード部が絶縁層で覆われる「固体電解質体」に相当し、その固体電解質体114上に設けられた電極130が、本発明において、少なくとも自身のリード部が絶縁層に覆われる「一対の電極のうちの一方の電極」に相当する。
次に、固体電解質体120は、絶縁基体110の裏面側に配設される。固体電解質体120の主面上には、電極130,135と同様に、固体電解質体120の先端側から後端側に延びるリード部142と、リード部の先端部分にて幅広に形成された電極部141とを有する電極140が形成されている。電極部141は、ガス検出室126内に露出されている。一方、固体電解質体120上のリード部142後端側の後端部143は、固体電解質体114上の電極135の後端部138と対向する位置に配置されると共に、電極端子106と接続されている。つまり、電極135と電極140とは同電位となっている。また、固体電解質体120の主面とは反対側の裏面上にも電極140と対となる電極145が形成されており、同様に、固体電解質体120の先端側から後端側に延びるリード部147と、リード部の先端部分にて幅広に形成された電極部146とを有する。電極部146は、固体電解質体120を挟んで電極部141と対向する位置に配置されている。そして、リード部147後端側の後端部148は、固体電解質体120の後端に配置され、電極取出用の電極端子107と接続されている。電極端子107は、固体電解質体120と固体電解質体122との間に挟み込まれ、検出素子100の後端から外部に突出されている。
固体電解質体120の裏面側には、上記電極145を固体電解質体120との間に挟み込んだ状態で、固体電解質体122が配設されている。さらに、固体電解質体122の裏面側に、絶縁基体124が配設されている。このように検出素子100は、間に電極を挟んだ状態で固体電解質体と絶縁基体とを積層した積層体であり、各部材の原形となる部材を上記のように積層した後に焼成することで一体となった検出素子100として形成されている。なお、積層体の側面は、図示しない絶縁性の保護膜によって覆われ保護されると共に、固体電解質体114,120,122が外気に晒されないように構成されている。
そして、検出素子100とヒータ素子150との間には、コート層85およびセメント部104が配設されている。このセメント部104の先端75は、ポーラス層112よりも後端側に位置されている。また、コート層85はリード部132上で、且つセメント部104の先端75に跨るように形成されている。後述するガスセンサ素子10の製造過程では、検出素子100上にセメント材204が塗布され、その検出素子100とヒータ素子150とが先端部分を揃えた状態でセメント材204により貼り合わされる。さらに熱処理が行われることによってセメント材204が固化されセメント部104として形成され、このセメント部104を介し、検出素子100とヒータ素子150とが積層体として一体となったガスセンサ素子10が作製される。
ここで、ガスセンサ素子10によって、排気ガス中の特定ガス(第1の実施の形態では酸素)の濃度を検出するしくみについて、簡単に説明する。ジルコニアからなる固体電解質体は、室温では絶縁性を示すが高温環境下(例えば600℃以上)では活性化され、酸素イオン導電性を示す。この性質を用い、固体電解質体を隔てた2室それぞれに白金電極を設けると、酸素分圧の高い側から低い側へ分圧平衡となるように酸素が移動し、このとき両電極間に電流が流れる。これは、白金電極を触媒として酸素分子が還元され、電極から電子を受け取って酸素イオン化し、固体電解質体内を移動して対となる電極に電子を運搬することによるものである。電子が運搬されるとき、両電極間の電位は約0.9Vを示す。
そこで、図4に示すように、電極145から電極140に向けて電流を流し、両電極140,145間の電位が、例えば0.45Vを示すように、つまり、酸素が運搬されるときとされないときとの境目の電圧を基準とし、その電圧が維持されるように、電極130と電極135との間に印加する電圧を制御する。ガス検出室126内に流入した排気ガスの空燃比がリッチであった場合、排気ガス中には酸素がほとんどなく、電極130,135間では検出素子100の外部からガス検出室126内に酸素を汲み入れる向きに電子が移動されるように制御される。一方、ガス検出室126内に流入した排気ガスの空燃比がリーンであった場合、排気ガス中には多くの酸素が存在するため、電極130,135間ではガス検出室126から外部へ酸素を汲み出す向きに電子が移動されるように制御される。このとき得られる電流の向きと大きさから、上記境目の電圧を示すときの空燃比(理論空燃比)に対する排気ガスの空燃比を検出することができるのである。
次に、第1の実施の形態のガスセンサ素子10の製造方法について、図5〜図7を参照して説明する。図5は、第1の実施の形態のガスセンサ素子10の製造工程を模式的に示す図である。図6は、セメント材塗布工程において塗布されるセメント材の塗布予定領域90と、シート層形成工程においてシート層が形成される保護領域80とを重ねて示した、未焼成検出素子200を未焼成絶縁基体210側から見た図である。
[電極形成工程]
図5に示すように、焼成後に固体電解質体114となる未焼成固体電解質体214は、ジルコニア粉末を主成分とする原料粉末と焼結調整材と可塑剤とを湿式混合により分散したスラリーから短冊状をなすように成形される。このとき、ビアホール115(図3参照)が形成され、さらにそのビアホール115内に、焼成後にビア導体134となる導電性ペーストが充填される。そして、スクリーン印刷により、未焼成固体電解質体214の一方の面上に、焼成後に電極130となる未焼成電極230が形成され、他方の面上に、焼成後に電極135,中継電極139となる未焼成電極,未焼成中継電極(図示外)がそれぞれ形成される。
また、焼成後に固体電解質体120,122となる未焼成固体電解質体220,222も同様に成形され、未焼成固体電解質体220の両面には、焼成後に電極140,145となる未焼成電極(図示外)がスクリーン印刷により形成される。さらに、焼成後に絶縁基体110,116,124となる未焼成絶縁基体210,216,224が、アルミナ粉末を主成分とする原料粉末と焼結調整材とを湿式混合により分散したスラリーから短冊状をなすように成形される。このとき、未焼成絶縁基体210には開口部111が形成され、同様に、未焼成絶縁基体216にも開口部117(図3参照)が形成される。一方、焼成後に拡散律速部118となる未焼成拡散律速部218は、アルミナ粉末から調製されるスラリーを用いて成形される。そしてポーラス層112となる未焼成ポーラス層212は、アルミナ粉末を主成分とする原料粉末と焼結調製材と白金粉末とを湿式混合により分散したスラリーから成形される。
[積層工程]
上記のように形成された各材料と、別途作製された電極端子105,106,107とが、前述した構成をなすように積層され、例えば150MPaで加圧されることにより互いに圧着される。未焼成固体電解質体214の未焼成電極230が形成された主面上には未焼成絶縁基体210が配置されて、両者間に未焼成電極230を挟んだ状態で互いに圧着される。このとき、未焼成電極230の部位のうち、少なくともリード部132は、未焼成絶縁基体210により覆われることとなるが、電極部131は、未焼成絶縁基体210の開口部111内に配置されて、未焼成ポーラス層212を介して外気に晒されることとなる。
[コート層形成工程]
次に、未焼成絶縁基体210の主面(焼成後に貼り合わされるヒータ素子150側の面)上に、未焼成絶縁基体210と同一の材料から調製したペースト状の未焼成コート材285による層が形成される。この未焼成コート材285は、図6に示すように、未焼成絶縁基体210の主面上にて、未焼成絶縁基体210の裏面側に積層配置される未焼成固体電解質体214の主面上に形成されている未焼成電極230のリード部132が、積層方向に沿って見たときに未焼成絶縁基体210と重なる位置の一部を含む、保護領域80(図中1点鎖線で示す。)内に形成される。後述するが、検出素子100とヒータ素子150とを貼り合わせるため、セメント材塗布工程(図5参照)において検出素子100の絶縁基体110の主面上にセメント材204が塗布される。電極130の電極部131はポーラス層112を介して外気に晒される必要があるため、セメント材204は、ポーラス層112にかからないように塗布される。このため、未焼成検出素子200の未焼成絶縁基体210の主面上において、焼成後に上記セメント材204が塗布される予定位置である塗布予定領域90(図中2点鎖線で示す。)は、未焼成絶縁基体210の開口部111よりも未焼成検出素子200の後端側(図中右側)に設けられる。
上記した保護領域80は、塗布予定領域90のうち、未焼成検出素子200の先端側(図中左側)における先端予定位置91を前後方向(軸線O方向)に跨ぐ位置に設けられる。換言すると、保護領域80は、未焼成検出素子200を積層方向に沿って見たときに、未焼成絶縁基体210の主面上で未焼成電極230のリード部132が配置される位置を含み、且つ、そのリード部132上において、塗布予定領域90の先端予定位置91よりも未焼成検出素子200の先端側に位置する先端側部位71から、先端予定位置91よりも未焼成検出素子200の後端側に位置する後端側部位72に跨った位置に設けられる。コート層形成工程では、この未焼成絶縁基体210の主面上の保護領域80に、図5に示すように、未焼成コート材285による層を形成することで、この保護領域80内における未焼成絶縁基体210の主面を覆っている。未焼成絶縁基体210の成形の際にピンホール等の貫通孔が形成される虞があるが、この未焼成コート材285が配設されることにより、少なくとも保護領域80内においては貫通孔が埋められて、保護領域80は、貫通孔の形成されていない領域として構成される。なお、焼成後にコート層85となる未焼成コート材285が形成された、焼成後に絶縁基体110となる未焼成絶縁基体210上の保護領域80が、本発明における「跨設部」に相当する。
[焼成工程]
次に、図5に示すように、未焼成検出素子200は焼成され、各部材が一体となった検出素子100が形成される。なお、図示しないが、未焼成検出素子200の焼成が行われる前には、未焼成検出素子200の側面にはアルミナを主体とする絶縁性のペーストがスクリーン印刷され、焼成後に検出素子100の固体電解質体114,120,122が、検出素子100の側面から露出されることがないように保護される。
[セメント材塗布工程]
そして、検出素子100を構成する絶縁基体110の主面上で、図6において未焼成検出素子200上の塗布予定領域90として示した領域に相当する部分に、セメント材204が塗布される。セメント材204としては、接着成分に加え、バインダ成分としてリンが含有されたリン酸系セメントが用いられている。塗布されるセメント材204の先端75は前述した絶縁基体110主面上の保護領域80内、すなわち、未焼成コート材285が焼成されてなるコート層85上に位置され、その位置から絶縁基体110の後端側にかけて、セメント材204が塗布される。
[ヒータ素子積層工程]
さらに、別工程で製造されたヒータ素子150が、セメント材204の塗布された検出素子100と、先端部分を揃えて貼り合わされ、ヒータ素子150と検出素子100とがセメント材204によって固着され、熱処理を行ってセメント材204を固化させてセメント部104を作成し、積層体として一体となったガスセンサ素子10が完成される。
このようにガスセンサ素子10では、絶縁基体110およびその主面上に形成されたコート層85を積層方向に沿って見たときに、少なくとも、固体電解質体114の主面上に形成された電極130のリード部132と、固体電解質体114の主面側に積層配置される絶縁基体110の主面上に形成されるセメント部104の縁部分とが重なる位置(第1の実施の形態ではセメント部104の先端75とリード部132とが積層方向に交差する位置を含むその周辺部位が相当する。)には、セメント部104と電極130とが連通可能なピンホール等の貫通孔が存在しない。このため、ガスセンサ素子10が高温で還元性の排気ガス雰囲気に晒されて、絶縁基体110の主面側に形成されたセメント部104(固化前のセメント材204)に含有されるリンが滲み出しても、絶縁基体110の裏面側に配置された電極130のリード部132に達することがなく、リンと白金との化学反応に伴う電極130の断線等が生ずることがない。
次に、第2の実施の形態のガスセンサ素子350について説明する。第2の実施の形態のガスセンサ素子350の検出素子300は、第1の実施の形態のガスセンサ素子10の検出素子100のように保護領域80にコート層85による層を形成する代わりに、押圧処理を施して、保護領域内において存在し得るピンホール等の貫通孔を潰して塞ぐ処理を行ったものである。従って、第2の実施の形態のガスセンサ素子350の構造は、第1の実施の形態のガスセンサ素子10の構造と比べ、検出素子100の主面上へのコート層85の形成の有無のみ異なり、その他の部位については同一であるため、構造についての説明は省略し、以下、製造方法について図7を参照しながら説明する。図7は、第2の実施の形態のガスセンサ素子350の製造工程を模式的に示す図である。
図7に示すように、第2の実施の形態のガスセンサ素子350は、第1の実施の形態と同様の電極形成工程および積層工程を経て、未焼成検出素子400の積層体を得る。
[加圧工程]
次の加圧工程では、図6で説明した保護領域80に対し、未焼成検出素子400の主面側から積層方向に加圧がなされる。これにより、保護領域80内における未焼成絶縁基体210を構成する材料の密度が高められる。保護領域80内において存在し得るピンホール等の貫通孔は潰され、保護領域80は、貫通孔の形成されていない領域として構成される。
その後、第1の実施の形態と同様に、焼成工程にて未焼成検出素子400が焼成されて検出素子300となり、セメント材塗布工程にて検出素子300の主面上の塗布予定領域90(図6参照)にセメント材204が塗布され、ヒータ素子積層工程にて検出素子300とヒータ素子150とが貼り合わされる。さらに熱処理によりセメント材204が固化されて形成されるセメント部104を介し、検出素子300とヒータ素子150とが積層体として一体となった、第2の実施の形態のガスセンサ素子350が完成する。
第1の実施の形態のガスセンサ素子10と同様に、第2の実施の形態のガスセンサ素子10の検出素子300においても、少なくとも絶縁基体110の保護領域80には、絶縁基体110の主面上に形成されるセメント部104と、絶縁基体110の裏面側に配置される電極130とが連通可能なピンホール等の貫通孔が存在しない。従って、ガスセンサ素子350が高温で還元性の排気ガス雰囲気に晒されて、絶縁基体300の主面側に形成されたセメント部104(固化前のセメント材204)に含有されるリンが滲み出しても、絶縁基体300の裏面側に配置された電極130のリード部132に達することがなく、リンと白金との化学反応に伴う電極130の断線等が生ずることがない。
[実施例1]
このように、第1の実施の形態では、絶縁基体の保護領域にコート層を形成した検出素子を得て、第2の実施の形態では、保護領域に押圧処理を施した検出素子を得たが、その保護領域おいて実際に、ピンホール等の貫通孔が存在しないことを確認するため評価試験を行った。この評価試験では、図5で説明した第1の実施の形態のガスセンサ素子10の製造方法に従って焼成工程までを行い、保護領域にコート層が形成された検出素子の第1のサンプルを作製した。同様に、図7で説明した第2の実施の形態のガスセンサ素子350の製造方法に従って焼成工程までを行い、保護領域を押圧処理した検出素子の第2のサンプルを作製した。さらに、比較対象として、図5で説明した第1の実施の形態のガスセンサ素子10の製造方法に従いつつも、コート層形成工程を省き、焼成工程までを行い、保護領域にコート層が形成されていない検出素子の第3のサンプルを作製した。次に、第1〜第3のサンプルそれぞれの保護領域を除く部分にマスキングを施し、各サンプルの保護領域にカーボンスプレーを塗布した。そして、第1実施の形態の電極130に相当する電極と、塗布されたカーボンスプレーとの間に100Vの電圧を印加し、1MΩのレンジにて導通試験を行った。
その結果、第1,第2のサンプルでは、絶縁基体を介して導通が確認された検出素子はなかった。しかし、第3のサンプルでは、約65%の検出素子において、絶縁基体を介した導通が確認された。つまり、保護領域にコート層が形成されておらず、加圧処理も施されていない第3のサンプルでは、保護領域内においてピンホール等の貫通孔が存在し得る場合があるが、コート層を形成した第1のサンプルや、加圧処理を施した第2のサンプルでは、保護領域内において、例え貫通孔が存在したとしてもコート層によって塞がれ、保護領域内にはピンホール等の貫通孔が存在し得ないことがわかった。
なお、本発明は上記各実施の形態に限られず、各種の変形が可能である。例えば、保護領域80に形成したコート層85は絶縁基体110と同一の材料から調製したが、異なる材料を用いてもよい。また、保護領域80は、検出素子100の積層方向に沿ってみたときに、電極130とセメント部104の先端75とが重なる位置を含み、その先端75を前後方向(軸線O方向)に跨ぐ位置に設けたが、先端75のみならず、セメント部104の縁部分が電極130と重なる位置であれば、電極130の延設方向に沿って位置を跨ぐように設けてもよい。
また、第1,第2の実施の形態では、保護領域80へのコート層85の形成や押圧処理は焼成前の未焼成検出素子200,400に対して行ったが、焼成後の保護領域80に対し、絶縁性を有する材料の塗布や噴霧を行って貫通孔を埋めたり塞いだりしてもよい。また、絶縁基体110と固体電解質体114との間に、他の固体電解質体を積層配置させて、貫通孔を塞いでもよい。あるいは、絶縁基体110の主面側あるいは裏面側に、さらに、他の絶縁基体を積層配置させて、貫通孔を塞いでもよい。
また、第1の実施の形態のガスセンサ素子10の製造方法では1つの検出素子100の製造過程に着目して説明を行ったが、焼成前までの製造過程では、複数の未焼成検出素子が幅方向並んで一体となった状態で形成し、コート材による層の形成後に、各未焼成検出素子を単体に切断し、焼成してもよい。この場合、コート層形成工程では、図8に示すように、例えば4個の未焼成検出素子550が一体となった未焼成検出素子体500の未焼成絶縁基体510の主面上に、第1の実施の形態と同様の未焼成コート材585による層の形成を行うが、このとき、各検出素子の列設方向、すなわち幅方向に帯状となるように形成するとよい。後のセメント材塗布工程において、単体に単離された各検出素子に塗布するセメント材の塗布予定領域90は、コート層形成工程においては4箇所設けられることとなるが、それぞれの先端予定位置91を前後方向(軸線O方向)に跨いだ状態で未焼成コート材585が帯状に形成されるとよい。このようにすれば、コート材の形成を一度の工程で行うことができる。そして、図9に示すように、切断工程によって、各未焼成検出素子550を単体に切断し、以降は第1の実施の形態と同様の過程を経て、一度に4つのガスセンサ素子を形成すればよい。
なお、第1,第2の実施の形態では、保護領域80に存在しうるピンホール等の貫通孔に対し埋める、塞ぐあるいは潰すなどの処理を未焼成絶縁基体210の形成後に行って、保護領域80に貫通孔が形成されないようにしたが、その他の方法として、未焼成絶縁基体210の形成の際に、予め作製した貫通孔のない層を、未焼成絶縁基体210の保護領域80に値する部位に埋設させてもよいし、あるいは未焼成絶縁基体210自体を密に形成し、未焼成絶縁基体210そのものを、貫通孔が存在し得ない部材として構成してもよい。また、保護領域80を含む未焼成絶縁基体210の全体に対し、上記のような層を形成して存在し得る貫通孔を塞いだり、または埋めたりしてもよいし、あるいは加圧により存在し得る貫通孔を潰したりしてもよく、こうした処理を行った結果、少なくとも保護領域80において貫通孔が形成されていなければよい。
本発明のガスセンサ素子およびその製造方法は、窒素酸化物、酸素および炭化水素などを検出するセンサのガスセンサ素子に適用でき、特定のガス濃度を検出可能な各種センサに用いられるガスセンサ素子にも利用できる。
第1の実施の形態のガスセンサ1の縦断面図である。 第1の実施の形態のガスセンサ素子10の斜視図である。 第1の実施の形態のガスセンサ素子10の構造を説明するための分解斜視図である。 図3の2点鎖線A−Aにおいて矢視方向から見た、完成後の第1の実施の形態のガスセンサ素子10の断面図である。 第1の実施の形態のガスセンサ素子10の製造工程を模式的に示す図である。 セメント材塗布工程において塗布されるセメント材の塗布予定領域90と、シート層形成工程においてシート層が形成される保護領域80とを重ねて示した、未焼成検出素子200を未焼成絶縁基体210側から見た図である。 第2の実施の形態のガスセンサ素子350の製造工程を模式的に示す図である。 複数の未焼成検出素子が一体となった未焼成検出素子体500にセメント材を塗布するセメント材塗布工程を示す斜視図である。 セメント材が塗布された未焼成検出素子体500を切断し、単体の未焼成検出素子550を形成する切断工程を示す斜視図である。
1 ガスセンサ
4 主体金具
10 ガスセンサ素子
71 先端側部位
72 後端側部位
75 先端
80 保護領域
85 コート層
90 塗布予定領域
100 検出素子
101 検出部
104 セメント部
110 絶縁基体
114 固体電解質体
130,135 電極
131,136 電極部
132,137 リード部
150 ヒータ素子
204 セメント材

Claims (7)

  1. 軸線方向に延びる短冊状の固体電解質体と、当該固体電解質体上に設けられた一対の電極であって、前記固体電解質体の前記軸線方向先端側に形成された電極部、および、当該電極部から前記軸線方向の後端側に向けて延びるリード部からそれぞれが構成され、互いの前記電極部が対向する一対の電極と、当該一対の電極のうち一方の電極の少なくとも前記リード部を覆う絶縁層と、を有する検出素子と、
    当該検出素子の軸線方向と平行な方向に延設されると共に前記絶縁層側に設けられ、前記検出素子を加熱する短冊状のヒータ素子と、
    前記絶縁層と前記ヒータ素子とに挟まれ、自身の先端が、前記絶縁層の先端よりも前記軸線方向後端側に位置するように設けられたセメント部と、
    を有するガスセンサ素子において、
    前記セメント部には、リンが含有されており、
    前記絶縁層は、前記リード部上で、且つ前記セメント部の先端よりも先端側に位置する先端側部位から、前記セメント部の先端よりも後端側に位置する後端側部位に跨って設けられ、複数の層が積層されてなる、貫通孔が形成されていない跨設部を有することを特徴とするガスセンサ素子。
  2. 軸線方向に延びる短冊状の固体電解質体と、当該固体電解質体上に設けられた一対の電極であって、前記固体電解質体の前記軸線方向先端側に形成された電極部、および、当該電極部から前記軸線方向の後端側に向けて延びるリード部からそれぞれが構成され、互いの前記電極部が対向する一対の電極と、当該一対の電極のうち一方の電極の少なくとも前記リード部を覆う絶縁層と、を有する検出素子と、
    当該検出素子の軸線方向と平行な方向に延設されると共に前記絶縁層側に設けられ、前記検出素子を加熱する短冊状のヒータ素子と、
    前記絶縁層と前記ヒータ素子とに挟まれ、自身の先端が、前記絶縁層の先端よりも前記軸線方向後端側に位置するように設けられたセメント部と、
    を有するガスセンサ素子において、
    前記セメント部には、リンが含有されており、
    前記絶縁層は、前記リード部上で、且つ前記セメント部の先端よりも先端側に位置する先端側部位から、前記セメント部の先端よりも後端側に位置する後端側部位に跨って設けられる領域をなす跨設部であって、当該領域内の材料の密度が前記絶縁層の他の領域よりも高められて貫通孔が形成されていない跨設部を有することを特徴とするガスセンサ素子。
  3. 前記跨設部は、前記絶縁層と同一の材料から形成されていることを特徴とする請求項1または2に記載のガスセンサ素子。
  4. 軸線方向に延びるガスセンサ素子と、
    当該ガスセンサ素子を固定する筒状の主体金具と、
    を備えるガスセンサであって、
    前記ガスセンサ素子は、請求項1乃至3のいずれかに記載のガスセンサ素子を用いることを特徴とするガスセンサ。

  5. 軸線方向に延びる短冊状の固体電解質体と、当該固体電解質体上に設けられた一対の電極であって、前記固体電解質体の前記軸線方向先端側に形成された電極部、および、当該電極部から前記軸線方向の後端側に向けて延びるリード部からそれぞれが構成され、互いの前記電極部が対向する一対の電極と、当該一対の電極のうち一方の電極の少なくとも前記リード部を覆う絶縁層と、を有する検出素子と、
    当該検出素子の軸線方向と平行な方向に延設されると共に前記絶縁層側に設けられ、前記検出素子を加熱する短冊状のヒータ素子と、
    前記絶縁層と前記ヒータ素子とに挟まれ、自身の先端が、前記絶縁層の先端よりも前記軸線方向後端側に位置するように設けられたセメント部と、
    を有するガスセンサ素子の製造方法において、
    前記固体電解質体上に前記一対の電極を形成する電極形成工程と、
    前記一対の電極のうち一方の電極の少なくとも前記リード部を覆うように前記絶縁層を形成する絶縁層形成工程と、
    前記絶縁層に貫通孔が形成されないように、前記絶縁層を積層方向に加圧する加圧工程と、
    リンを含有し、前記セメント部となるセメント材を前記絶縁層上に塗布するセメント材塗布工程と、
    前記セメント材を介し、前記絶縁層側に前記ヒータ素子を積層するヒータ素子積層工程と、
    を有することを特徴とするガスセンサ素子の製造方法。
  6. 軸線方向に延びる短冊状の固体電解質体と、当該固体電解質体上に設けられた一対の電極であって、前記固体電解質体の前記軸線方向先端側に形成された電極部、および、当該電極部から前記軸線方向の後端側に向けて延びるリード部からそれぞれが構成され、互いの前記電極部が対向する一対の電極と、当該一対の電極のうち一方の電極の少なくとも前記リード部を覆う絶縁層と、を有する検出素子と、
    当該検出素子の軸線方向と平行な方向に延設されると共に前記絶縁層側に設けられ、前記検出素子を加熱する短冊状のヒータ素子と、
    前記絶縁層と前記ヒータ素子とに挟まれ、自身の先端が、前記絶縁層の先端よりも前記軸線方向後端側に位置するように設けられたセメント部と、
    を有するガスセンサ素子の製造方法において、
    前記固体電解質体上に前記一対の電極を形成する電極形成工程と、
    前記一対の電極のうち一方の電極の少なくとも前記リード部を覆うように前記絶縁層を形成する絶縁層形成工程と、
    前記絶縁層上の前記セメント部の先端が予定される先端予定位置を、前記軸線方向に跨ぐようにして、コート層を形成するコート層形成工程と、
    リンを含有するセメント材の先端を前記コート層上に位置させつつ、前記軸線方向後端側へ向けて、前記絶縁層上に前記セメント材を塗布するセメント材塗布工程と、
    前記セメント材を介し、前記絶縁層側に前記ヒータ素子を積層するヒータ素子積層工程と、
    を有することを特徴とするガスセンサ素子の製造方法。
  7. 前記検出素子は、前記軸線方向と直交する方向に複数の前記検出素子が連結されて一体となった板状体として形成され、
    前記コート層形成工程では、前記コート層を前記板状体を構成する個々の前記検出素子の前記絶縁層上の前記先端予定位置を前記軸線方向に跨ぐようにして前記検出素子の直交方向に帯状に形成するものであり、
    前記コート層形成工程後に、前記板状体を、個々の前記検出素子にあわせて切断する切断工程を有したことを特徴とする請求項6に記載のガスセンサ素子の製造方法。
JP2006185544A 2006-07-05 2006-07-05 ガスセンサ素子およびそれを用いたガスセンサ、ガスセンサ素子の製造方法 Expired - Fee Related JP4795874B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006185544A JP4795874B2 (ja) 2006-07-05 2006-07-05 ガスセンサ素子およびそれを用いたガスセンサ、ガスセンサ素子の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006185544A JP4795874B2 (ja) 2006-07-05 2006-07-05 ガスセンサ素子およびそれを用いたガスセンサ、ガスセンサ素子の製造方法

Publications (2)

Publication Number Publication Date
JP2008014764A JP2008014764A (ja) 2008-01-24
JP4795874B2 true JP4795874B2 (ja) 2011-10-19

Family

ID=39071921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006185544A Expired - Fee Related JP4795874B2 (ja) 2006-07-05 2006-07-05 ガスセンサ素子およびそれを用いたガスセンサ、ガスセンサ素子の製造方法

Country Status (1)

Country Link
JP (1) JP4795874B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4897912B2 (ja) 2009-11-02 2012-03-14 日本特殊陶業株式会社 ガスセンサ
JP5832479B2 (ja) 2012-08-09 2015-12-16 日本特殊陶業株式会社 ガスセンサ

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3711597B2 (ja) * 1994-10-24 2005-11-02 株式会社日本自動車部品総合研究所 空燃比検出装置
JP3521170B2 (ja) * 1996-03-19 2004-04-19 日本特殊陶業株式会社 排気ガスセンサ及びそれを用いたセンサシステム
JP3510050B2 (ja) * 1996-07-10 2004-03-22 日本特殊陶業株式会社 酸素センサ用電極
JP2004251729A (ja) * 2003-02-19 2004-09-09 Ngk Spark Plug Co Ltd ガスセンサ
JP4192067B2 (ja) * 2003-09-30 2008-12-03 日本特殊陶業株式会社 ガスセンサ
JP4125224B2 (ja) * 2003-12-15 2008-07-30 日本特殊陶業株式会社 ガスセンサの製造方法

Also Published As

Publication number Publication date
JP2008014764A (ja) 2008-01-24

Similar Documents

Publication Publication Date Title
US8992752B2 (en) Gas sensor element and gas sensor
US9829462B2 (en) Gas sensor element and gas sensor
US8591712B2 (en) Gas sensor element and gas sensor
JP6059110B2 (ja) センサ素子およびセンサ
US20070095662A1 (en) Structure of gas element ensuring high catalytic activity and conductivity and production method thereof
US20080121020A1 (en) Sensor element, method of manufacturing a sensor element, and gas sensor
US6866517B2 (en) Contact slidable structure with a high durability
US9989487B2 (en) Gas sensor
JP4172279B2 (ja) ガスセンサ
JP2000206080A (ja) ヒ―タ付き酸素センサ及びその製造方法
US20220065809A1 (en) Gas sensor
CN110261463B (zh) 气体传感器
JP4795874B2 (ja) ガスセンサ素子およびそれを用いたガスセンサ、ガスセンサ素子の製造方法
WO2020262106A1 (ja) ガスセンサ及びその製造方法
JP2013234896A (ja) ガスセンサ素子およびガスセンサ
JP5472208B2 (ja) ガスセンサ素子及びその製造方法、並びにガスセンサ
JP4216291B2 (ja) ガスセンサ素子およびガスセンサ
JP5508338B2 (ja) ガスセンサ素子の製造方法
US9696274B2 (en) Gas sensor element and gas sensor
JP5139955B2 (ja) セラミックヒータ、ガスセンサ素子及びガスセンサ
US20060157474A1 (en) Reliable ceramic heater and manufacturing method thereof
JP5115247B2 (ja) ガスセンサ素子
JP2002107335A (ja) 積層型ガスセンサ素子の製造方法
JP2005351741A (ja) 酸素濃度検出素子
US11535569B2 (en) Method for manufacturing sensor element

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080223

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110705

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110728

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees