JP4793395B2 - Overvoltage protection circuit - Google Patents

Overvoltage protection circuit Download PDF

Info

Publication number
JP4793395B2
JP4793395B2 JP2008049730A JP2008049730A JP4793395B2 JP 4793395 B2 JP4793395 B2 JP 4793395B2 JP 2008049730 A JP2008049730 A JP 2008049730A JP 2008049730 A JP2008049730 A JP 2008049730A JP 4793395 B2 JP4793395 B2 JP 4793395B2
Authority
JP
Japan
Prior art keywords
power supply
phase
voltage
relay
overvoltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008049730A
Other languages
Japanese (ja)
Other versions
JP2009207329A (en
Inventor
丈夫 大城戸
雅文 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2008049730A priority Critical patent/JP4793395B2/en
Publication of JP2009207329A publication Critical patent/JP2009207329A/en
Application granted granted Critical
Publication of JP4793395B2 publication Critical patent/JP4793395B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、過電圧保護回路に関するものである。   The present invention relates to an overvoltage protection circuit.

多相電源を用いた回路における過電圧に対する保護回路として過電圧保護回路が実用化されている。このような技術としては、下掲の特許文献1,2に開示されている。過電圧の原因としては、全相の電圧が上昇して過電圧を引き起こす場合と、中点の開放(以下、単に「中性点の欠相」又は「N相の欠相」ともいう)や相電圧の欠相により各相の電圧が非平衡となって過電圧を引き起こす場合とがある。   An overvoltage protection circuit has been put into practical use as a protection circuit against overvoltage in a circuit using a multiphase power supply. Such a technique is disclosed in the following Patent Documents 1 and 2. Causes of overvoltage include when the voltage of all phases rises to cause overvoltage, opening of the midpoint (hereinafter also simply referred to as “neutral phase of neutral point” or “N-phase phase loss”) and phase voltage In some cases, the voltage of each phase becomes non-equilibrium due to an open phase, and an overvoltage is caused.

図3(a)は正常な(全相の電圧上昇がなく欠相もない)状態における3相4線式交流電源の模式図である。3相4線式交流電源を例に採ると、中性点は正三角形の中心点N0に相当し、当該中心点を基点として正三角形の各頂点へと向かうベクトルのそれぞれが3つの相電圧L1,L2,L3に相当する。ここで、各ベクトルの大きさは相電圧の電圧値に等しいので、正常な状態では各相の相電圧は全て等しい。   FIG. 3A is a schematic diagram of a three-phase four-wire AC power source in a normal state (no voltage increase in all phases and no phase loss). Taking a three-phase four-wire AC power source as an example, the neutral point corresponds to the center point N0 of the equilateral triangle, and each of the vectors going from the center point to each vertex of the equilateral triangle has three phase voltages L1. , L2 and L3. Here, since the magnitude of each vector is equal to the voltage value of the phase voltage, all the phase voltages of each phase are equal in a normal state.

図3(b)はN相が欠相した場合に図3(a)から遷移した状態を示す模式図である。例えばN相が欠相すると、図3(b)に示す如く各ベクトルの長さが不揃いになるので、各相の電圧が非平衡となり、過電圧を引き起こす。なお、図3(b)では図3(a)の状態よりも電圧が増加した(換言すれば、ベクトルが長くなった)相電圧を太く、電圧が減少した(換言すれば、ベクトルが短くなった)相電圧を細く図示している。すなわち、N相が欠相して3つのベクトルの基点N1がL3相寄りに位置した場合には、L1相及びL2相の相電圧は増加し、L3相の相電圧は減少する。   FIG. 3B is a schematic diagram showing a state transitioned from FIG. 3A when the N phase is lost. For example, if the N phase is lost, the lengths of the vectors are not uniform as shown in FIG. 3B, so that the voltages of the phases become unbalanced and cause overvoltage. In FIG. 3 (b), the voltage increases (in other words, the vector becomes longer) and the voltage decreases (in other words, the vector becomes shorter) than in the state of FIG. 3 (a). A) The phase voltage is shown finely. That is, when the N phase is lost and the base point N1 of the three vectors is positioned closer to the L3 phase, the phase voltages of the L1 phase and the L2 phase increase, and the phase voltage of the L3 phase decreases.

図4(a)は多相電源に対する制御電源及び負荷の配置の従来の一の例を示す概略図である。負荷には各相から給電される。制御電源はL2相と中性点たるN相との間で相電圧を受電し、この相電圧に基づいて制御用、例えば過電圧保護回路(図示省略)用の電源を生成する。図4(b)N相が欠相した場合の図4(a)の構成を等価的に示す概略図である。   FIG. 4A is a schematic diagram showing a conventional example of the arrangement of the control power supply and the load with respect to the multiphase power supply. Power is supplied to the load from each phase. The control power supply receives a phase voltage between the L2 phase and the N phase which is a neutral point, and generates a power supply for control, for example, an overvoltage protection circuit (not shown) based on this phase voltage. FIG. 4B is a schematic diagram equivalently showing the configuration of FIG. 4A when the N phase is lost.

多相電源を用いた回路において過電圧保護回路を制御する制御電源としては、一例として図4(a)に示す如く、当該多相電源の相電圧を用いる技術が提案されているが、当該回路においてN相が欠相した場合には、図4(b)に示す如く制御電源は相電圧を受電することができず、制御用の電源を生成することができない。   As a control power source for controlling the overvoltage protection circuit in a circuit using a multiphase power source, as shown in FIG. 4A as an example, a technique using the phase voltage of the multiphase power source has been proposed. When the N phase is lost, the control power supply cannot receive the phase voltage as shown in FIG. 4B, and the control power supply cannot be generated.

図5(a)は多相電源に対する制御電源及び負荷の配置の従来の他の例を示す概略図である。この例では、制御電源はL2相とL3相との間で線間電圧を受電し、この線間電圧に基づいて制御用の電源を生成する。図5(b)はL3相が欠相した場合の図5(a)の構成を等価的に示す概略図である。   FIG. 5A is a schematic diagram showing another conventional example of the arrangement of the control power supply and the load with respect to the multiphase power supply. In this example, the control power supply receives a line voltage between the L2 phase and the L3 phase, and generates a control power supply based on the line voltage. FIG. 5B is a schematic diagram equivalently showing the configuration of FIG. 5A when the L3 phase is lost.

制御電源生成の他の例としては、図5(a)に示す如く当該多相電源の線間電圧を用いる技術も提案されているが、当該回路においてL3相が欠相した場合には、図5(b)に示す如く制御電源は線間電圧を受電することができず、制御用の電源を生成することができない。   As another example of the generation of the control power supply, a technique using the line voltage of the multiphase power supply as shown in FIG. 5 (a) has been proposed. As shown in FIG. 5 (b), the control power supply cannot receive the line voltage and cannot generate a control power supply.

また、3相4線式交流電源に接続された遮断器において4本の導線の遮断・接続を行う際に、導線ごとの遮断・接続の時間的ズレによってN相の欠相が生じることがある。当該遮断器よりも負荷に近い側に設けられた分岐台においてN相を担う中性線を3本に分岐している場合、このような欠相が生じると、3相を担うそれぞれの電力線は接続されたままになっている。したがって例えば、第1の相電源線→負荷→中性線→分岐台→中性線→負荷→第2の相電源線のような閉回路が形成され、負荷に対して過大な電圧が印加されてしまう。このような欠相に対応すべく、下掲の特許文献3には、N相欠相時に形成される当該閉回路の形成を回避する技術が提案されている。   Further, when the four conductors are disconnected and connected in a circuit breaker connected to a three-phase four-wire AC power source, an N-phase phase loss may occur due to a time shift in the interruption and connection of each conductor. . When the neutral line that bears the N phase is branched into three on the branch stand that is closer to the load than the circuit breaker, when such an open phase occurs, each power line that bears the three phases Stay connected. Therefore, for example, a closed circuit such as the first phase power line → load → neutral line → branch stand → neutral line → load → second phase power line is formed, and an excessive voltage is applied to the load. End up. In order to cope with such a phase loss, Patent Document 3 listed below proposes a technique for avoiding the formation of the closed circuit formed when the N phase is lost.

また、下掲の特許文献4〜9には、N相を含む相電源に欠相が生じたときに導通状態から非導通状態へと遷移する開閉器を設け、当該開閉器が非導通状態にあるときはリレーが継電動作を行わない技術が開示されている。   Patent Documents 4 to 9 listed below include a switch that transitions from a conducting state to a non-conducting state when a phase loss occurs in a phase power supply including the N phase, and the switch is brought into a non-conducting state. In some cases, a technique is disclosed in which the relay does not perform the relay operation.

特開平4−161743号公報JP-A-4-161743 特開平11−218346号公報JP-A-11-218346 特開2002−268195号公報JP 2002-268195 A 特開2006−033999号公報JP 2006-033999 A 特開2006−141114号公報JP 2006-141114 A 特開2006−262660号公報JP 2006-262660 A 特開2007−104858号公報JP 2007-104858 A 特開2007−155256号公報JP 2007-155256 A 特開2007−244019号公報JP 2007-244019 A

しかしながら、上記特許文献3〜9に開示されている技術は、いずれも欠相に対する回路の保護を図るものであり、過電圧を検知して負荷の保護を図るものではないため、全相の電圧が上昇することによる過電圧には対応できない。   However, all of the techniques disclosed in Patent Documents 3 to 9 are intended to protect the circuit against an open phase, and are not intended to protect the load by detecting an overvoltage. It cannot cope with overvoltage caused by rising.

全相の電圧上昇による過電圧と、欠相による過電圧とに対して負荷を保護するためには、欠相した場合であっても過電圧保護回路を制御する制御電源を確保することが肝要である。   In order to protect the load against overvoltage due to voltage increase in all phases and overvoltage due to phase loss, it is important to secure a control power source that controls the overvoltage protection circuit even in the case of phase loss.

本発明は上記課題に鑑み、全相の電圧上昇による過電圧と、欠相による過電圧との双方に対して対応可能な技術を提供することを目的とする。   In view of the above problems, an object of the present invention is to provide a technique capable of dealing with both overvoltage due to voltage increase in all phases and overvoltage due to phase loss.

上記課題を解決すべく、第1の発明は、多相電源(12)から負荷(16)へ継電するリレー(14)と、前記多相電源の相電圧が予め定められた電圧閾値を超えたことをもって前記多相電源の過電圧を検知する過電圧検知回路(22)と、前記過電圧が検知されたことを契機として前記リレーに遮断動作を行わせるリレー駆動部(24)と、前記リレーよりも前記多相電源に近い側で前記相電圧に基づいて前記過電圧検知回路及び前記リレー駆動部に供給する電力を生成する制御電源部(26)とを備える、過電圧保護回路(10)である。   In order to solve the above-mentioned problem, the first invention is the relay (14) relaying from the multiphase power supply (12) to the load (16), and the phase voltage of the multiphase power supply exceeds a predetermined voltage threshold. An overvoltage detection circuit (22) for detecting an overvoltage of the multi-phase power supply, a relay drive unit (24) for causing the relay to perform a cut-off operation when the overvoltage is detected, and more than the relay It is an overvoltage protection circuit (10) provided with the control power supply part (26) which produces | generates the electric power supplied to the said overvoltage detection circuit and the said relay drive part based on the said phase voltage by the side near the said multiphase power supply.

第2の発明は、第1の発明であって、前記多相電源として、第1の相電源(31)、第2の相電源(32)、第3の相電源(33)及び中性点(34)を有する3相4線式交流電源(12)が採用され、前記第1の相電源に接続される第1の相電源線(41)と、前記第2の相電源に接続される第2の相電源線(42)と、前記第3の相電源に接続される第3の相電源線(43)と、前記中性点に接続される中性点電源線(44)とを有し、前記制御電源部(26)は、前記リレーよりも前記3相4線式交流電源に近い側において、前記リレーに接続される一の前記相電源線と、前記中性点電源線との間の電圧を用いて第1の電源を生成する第1の制御電源(261)と、前記リレーよりも前記3相4線式交流電源に近い側において、前記リレーに接続されている他の前記相電源線と、前記中性点電源線との間の電圧を用いて第2の電源を生成する第2の制御電源(262)とを有し、前記制御電源部は、前記第1の制御電源の出力電圧と前記第2の制御電源の出力電圧との合成電圧を用いて電力を前記過電圧検知回路(22)及び前記リレー駆動部(24)に供給する。   2nd invention is 1st invention, Comprising: As said multiphase power supply, 1st phase power supply (31), 2nd phase power supply (32), 3rd phase power supply (33), and neutral point A three-phase four-wire AC power supply (12) having (34) is adopted, and is connected to the first phase power supply line (41) connected to the first phase power supply and the second phase power supply. A second phase power supply line (42), a third phase power supply line (43) connected to the third phase power supply, and a neutral point power supply line (44) connected to the neutral point And the control power supply unit (26) has one phase power supply line connected to the relay on the side closer to the three-phase four-wire AC power supply than the relay, the neutral point power supply line, A first control power supply (261) that generates a first power supply using a voltage between the relay and the relay closer to the three-phase four-wire AC power supply than the relay. And a second control power source (262) that generates a second power source using a voltage between the other phase power source line connected to the neutral point power source line and the neutral point power source line. The power supply unit supplies power to the overvoltage detection circuit (22) and the relay drive unit (24) using a combined voltage of the output voltage of the first control power supply and the output voltage of the second control power supply. .

第3の発明は、第2の発明であって、前記過電圧検知回路(22)は、前記3相4線式交流電源(12)と前記リレー(14)との間で前記第1の相電源線(41)に接続され、前記第1の相電源(31)の相電圧を整流する第1の整流素子(51)と、前記3相4線式交流電源と前記リレーとの間で前記第2の相電源線(42)に接続され、前記第2の相電源(32)の相電圧を整流する第2の整流素子(52)と、前記3相4線式交流電源と前記リレー前記リレーとの間で前記第3の相電源線(43)に接続され、前記第3の相電源(33)の相電圧を整流する第3の整流素子(53)と、前記第1の整流素子ないし前記第3の整流素子のそれぞれからの出力電圧を合成した合成電圧と、参照電圧とを比較するコンパレータ(55)とを有し、前記コンパレータは前記合成電圧が前記参照電圧よりも高い場合には前記過電圧であると判断して検知信号を前記リレー駆動部(24)に送出し、前記リレー駆動部は、前記信号を受信した場合には前記リレー(14)に遮断動作を行わせる。   3rd invention is 2nd invention, Comprising: The said overvoltage detection circuit (22) is a said 1st phase power supply between the said 3 phase 4 wire type AC power supply (12) and the said relay (14). A first rectifier element (51) connected to a line (41) and rectifying a phase voltage of the first phase power source (31); and between the three-phase four-wire AC power source and the relay. A second rectifier element (52) connected to a second phase power supply line (42) and rectifying a phase voltage of the second phase power supply (32); the three-phase four-wire AC power supply; the relay the relay And a third rectifier element (53) connected to the third phase power supply line (43) for rectifying the phase voltage of the third phase power supply (33), and the first rectifier element to A combined voltage obtained by combining output voltages from the third rectifier elements and a comparator (55) for comparing the reference voltage When the combined voltage is higher than the reference voltage, the comparator determines that it is the overvoltage and sends a detection signal to the relay drive unit (24), and the relay drive unit receives the signal. If it does, the relay (14) is cut off.

第1の発明によれば、負荷を保護するために継電するリレーよりも電源に近い側で、過電圧検知及び負荷の保護動作(過電圧保護動作)に供する制御電源を備えているので、リレーよりも負荷に近い側を過電圧に対応させることなく過電圧保護動作ができる。   According to the first aspect of the present invention, the control power supply for overvoltage detection and load protection operation (overvoltage protection operation) is provided on the side closer to the power supply than the relay relaying to protect the load. The overvoltage protection operation can be performed without making the side near the load correspond to the overvoltage.

第2の発明によれば、第1ないし第3の相電源及び中性点のうちいずれか1つが欠相した場合にも制御電源を生成できる。   According to the second aspect, the control power supply can be generated even when any one of the first to third phase power supplies and the neutral point is lost.

第3の発明によれば、過電圧検知に資する。   According to the third invention, it contributes to overvoltage detection.

以下、本発明の好適な実施形態について、図面を参照しながら説明する。なお、図1を初めとする以下の図には、本発明に関係する要素のみを示す。   Preferred embodiments of the present invention will be described below with reference to the drawings. In the following drawings including FIG. 1, only elements related to the present invention are shown.

〈電源−負荷間の回路構成〉
図1は本発明の実施形態に係る過電圧保護回路10の回路構成を例示する図である。過電圧保護回路10は3相4線式交流電源12からリレー14を介して電力を供給して負荷16を稼働させる。なお、本実施形態においては、負荷16はダイオードブリッジ13、コンデンサ15及びインバータ17を備えている。
<Circuit configuration between power supply and load>
FIG. 1 is a diagram illustrating a circuit configuration of an overvoltage protection circuit 10 according to an embodiment of the invention. The overvoltage protection circuit 10 supplies power from the three-phase four-wire AC power supply 12 via the relay 14 to operate the load 16. In the present embodiment, the load 16 includes a diode bridge 13, a capacitor 15, and an inverter 17.

3相4線式交流電源12は第1の相電源31、第2の相電源32、第3の相電源33及び中性点34を有しており、それぞれ第1の相電源線41、第2の相電源線42、第3の相電源線43及び中性点電源線44が接続されている。   The three-phase four-wire AC power supply 12 includes a first phase power supply 31, a second phase power supply 32, a third phase power supply 33, and a neutral point 34. A second phase power line 42, a third phase power line 43, and a neutral point power line 44 are connected.

第1の相電源線41〜第3の相電源線43はリレー14を介してダイオードブリッジ13に接続され、中性点電源線44は直接にダイオードブリッジ13に接続されている。ダイオードブリッジ13に接続された3相4線式交流電源12の電圧は、ダイオードブリッジ13とコンデンサ15とが協働することによって平滑化されインバータ17に印加される。   The first phase power supply line 41 to the third phase power supply line 43 are connected to the diode bridge 13 via the relay 14, and the neutral point power supply line 44 is directly connected to the diode bridge 13. The voltage of the three-phase four-wire AC power supply 12 connected to the diode bridge 13 is smoothed and applied to the inverter 17 by the cooperation of the diode bridge 13 and the capacitor 15.

リレー14に接続されている一の電源線(例えば第2の相電源線42)には、中性点電源線44との間で第1の相電圧を得る第1の制御電源261が設けられ、他の電源線(例えば第3の相電源線43)には、中性点電源線44との間で第2の相電圧を得る第2の制御電源262が設けられている。第1及び第2の制御電源261,262は少なくとも相電圧の半分以上の電圧が給電されれば所定の電圧を生成できる能力を有する。かかる能力を有する回路構成は当業者にとっては周知技術であるので、詳細は省略する。電圧合成部265は両制御電源261,262の電圧を合成して合成電圧を生成する。電圧合成部265を実現する回路構成も当業者にとっては周知技術であるので、詳細は省略する。これら第1及び第2の制御電源261,262及び電圧合成部265が制御電源部26を構成している。この制御電源部26が、後述する過電圧保護回路、具体的には過電圧検知回路22及びリレー駆動部24に電力を供給する。   One power supply line (for example, the second phase power supply line 42) connected to the relay 14 is provided with a first control power supply 261 that obtains a first phase voltage with respect to the neutral point power supply line 44. A second control power source 262 that obtains a second phase voltage with respect to the neutral point power source line 44 is provided in the other power source line (for example, the third phase power source line 43). The first and second control power supplies 261 and 262 have an ability to generate a predetermined voltage when at least half of the phase voltage is supplied. A circuit configuration having such a capability is well known to those skilled in the art, and details thereof are omitted. The voltage combiner 265 combines the voltages of both control power supplies 261 and 262 to generate a combined voltage. Since the circuit configuration for realizing the voltage synthesizer 265 is also a well-known technique for those skilled in the art, the details are omitted. The first and second control power sources 261 and 262 and the voltage synthesis unit 265 constitute the control power source unit 26. The control power supply unit 26 supplies electric power to an overvoltage protection circuit, which will be described later, specifically, an overvoltage detection circuit 22 and a relay drive unit 24.

このようにして制御電源部26を設けることにより、例えば中性点34が欠相した場合には、第1の制御電源261と第2の制御電源262とが接続されて、第2の相電源線42と第3の相電源線43との間の線間電圧から制御用の電源を生成することができる。また、例えば第3の相電源33が欠相した場合には、第1の制御電源261を過電圧検知回路22及びリレー駆動部24の制御電源として出力する。電源第3の相電源33が欠相した場合には、第2の制御電源262が生成する電圧は非常に低下するからである。   By providing the control power supply unit 26 in this way, for example, when the neutral point 34 is out of phase, the first control power supply 261 and the second control power supply 262 are connected, and the second phase power supply is connected. A control power supply can be generated from the line voltage between the line 42 and the third phase power supply line 43. Further, for example, when the third phase power supply 33 is lost, the first control power supply 261 is output as the control power supply for the overvoltage detection circuit 22 and the relay drive unit 24. This is because the voltage generated by the second control power supply 262 is very low when the power supply third phase power supply 33 is lost in phase.

以上のように、負荷16を稼働するために継電するリレー14よりも3相4線式交流電源12に近い側で、過電圧検知及び負荷16の保護動作(過電圧保護動作)に供する制御電源部26を備えているので、リレー14よりも負荷16に近い側を過電圧に対応させることなく過電圧保護動作ができる。   As described above, on the side closer to the three-phase four-wire AC power supply 12 than the relay 14 that relays the load 16 to operate, the control power supply unit used for overvoltage detection and load 16 protection operation (overvoltage protection operation). 26, the overvoltage protection operation can be performed without making the side closer to the load 16 than the relay 14 correspond to the overvoltage.

〈過電圧検知回路22及びリレー駆動部24の回路構成〉
制御電源部26からの電力供給を受けて駆動する過電圧保護回路の過電圧検知回路22の構成は以下のようになっている。なお、制御電源部26及び以下に示す構成要素は、過電圧保護回路10において想定される過電圧に十分対応可能な仕様となっている。
<Circuit Configuration of Overvoltage Detection Circuit 22 and Relay Drive Unit 24>
The configuration of the overvoltage detection circuit 22 of the overvoltage protection circuit that is driven by receiving power supply from the control power supply unit 26 is as follows. The control power supply unit 26 and the components shown below have specifications that can sufficiently cope with an overvoltage assumed in the overvoltage protection circuit 10.

第1の相電源線41は、リレー14よりも3相4線式交流電源12に近い側の位置P1で分岐し、分岐した電源線41aは第1の相電源31の相電圧を整流する第1の整流素子51に接続されている。また、第2の相電源線42は、リレー14よりも3相4線式交流電源12に近い側の位置P2で分岐し、分岐した電源線42aは第2の相電源32の相電圧を整流する第2の整流素子52に接続されている。また、第3の相電源線43は、リレー14よりも3相4線式交流電源12に近い側の位置P3で分岐し、分岐した電源線43aは第3の相電源33の相電圧を整流する第3の整流素子53に接続されている。第1ないし第3の整流素子51〜53は整流された各相の相電圧を合成する。   The first phase power supply line 41 branches at a position P1 closer to the three-phase four-wire AC power supply 12 than the relay 14, and the branched power supply line 41a rectifies the phase voltage of the first phase power supply 31. 1 rectifier element 51. The second phase power supply line 42 branches at a position P2 closer to the three-phase four-wire AC power supply 12 than the relay 14, and the branched power supply line 42a rectifies the phase voltage of the second phase power supply 32. Connected to the second rectifying element 52. The third phase power supply line 43 branches at a position P3 closer to the three-phase four-wire AC power supply 12 than the relay 14, and the branched power supply line 43a rectifies the phase voltage of the third phase power supply 33. Connected to the third rectifying element 53. The first to third rectifying elements 51 to 53 synthesize phase voltages of the rectified phases.

中性点電源線44は、リレー14よりも3相4線式交流電源12に近い側の位置P4で分岐する。分岐した電源線44aの電圧と、各整流素子51〜53で合成された合成電圧VJとの差は、抵抗R1,R2を用いて分圧され、電圧VKが得られる。   The neutral point power supply line 44 branches at a position P4 closer to the three-phase four-wire AC power supply 12 than the relay 14. The difference between the voltage of the branched power line 44a and the synthesized voltage VJ synthesized by the rectifying elements 51 to 53 is divided by using the resistors R1 and R2, and the voltage VK is obtained.

電圧VKは、高圧側コンパレータ55によって過電圧の判定基準となる参照電圧61の電圧値ref1と比較される。高圧側コンパレータ55は電圧VKが参照電圧61の電圧値ref1よりも高い場合には過電圧が発生したと判断して過電圧検知信号を判定部56に送出する。判定部56は、過電圧検知信号が所定の時間継続してアクティブである場合にリレー駆動部24にリレー14を遮断させ、誤作動を抑制する。   The voltage VK is compared with the voltage value ref1 of the reference voltage 61, which is a criterion for overvoltage, by the high-voltage side comparator 55. When the voltage VK is higher than the voltage value ref 1 of the reference voltage 61, the high voltage side comparator 55 determines that an overvoltage has occurred and sends an overvoltage detection signal to the determination unit 56. The determination unit 56 causes the relay drive unit 24 to shut off the relay 14 when the overvoltage detection signal is continuously active for a predetermined time, and suppresses malfunction.

また、電圧VKは、抵抗R3及びコンデンサC1を備えるローパスフィルタLFを経て低圧側コンパレータ57にも入力される。低圧側コンパレータ57には、不足電圧の判定基準となる参照電圧62の電圧値ref2も入力されており、低圧側コンパレータ57は、電圧VKが参照電圧62の電圧値ref2よりも低い場合には不足電圧が発生したと判断して不足電圧検知信号を判定部56に送出する。判定部56は、不足電圧検知信号が所定の時間継続してアクティブである場合にリレー駆動部24にリレー14を遮断させ、誤作動を抑制する。   The voltage VK is also input to the low voltage side comparator 57 via a low pass filter LF including a resistor R3 and a capacitor C1. The low voltage side comparator 57 is also supplied with the voltage value ref2 of the reference voltage 62 that is a criterion for determining the insufficient voltage. The low voltage side comparator 57 is insufficient when the voltage VK is lower than the voltage value ref2 of the reference voltage 62. It is determined that a voltage has been generated, and an undervoltage detection signal is sent to the determination unit 56. The determination unit 56 causes the relay drive unit 24 to shut off the relay 14 when the undervoltage detection signal is active for a predetermined time, thereby suppressing malfunction.

制御電源部26からの電力供給を受けて駆動するリレー駆動部24は過電圧検知信号あるいは不足電圧検知信号を受信した判定部56の制御の下、励磁コイル14aへの通電を制御し、リレー14に遮断動作を行わせる。   The relay drive unit 24 that is driven by receiving power supply from the control power supply unit 26 controls the energization of the excitation coil 14 a under the control of the determination unit 56 that has received the overvoltage detection signal or the undervoltage detection signal, Performs a shut-off operation.

電圧VKは合成電圧VJを分圧して得られ、合成電圧VJは上述のように相電圧ごとに整流されて合成されて得られる。よって電圧VKを参照電圧61と比較して上述のように過電圧検知信号を得ることは、間接的に、相電圧が予め定められた電圧閾値を超えたことをもって多相電源の過電圧を検知することになる。   The voltage VK is obtained by dividing the combined voltage VJ, and the combined voltage VJ is obtained by rectifying and combining each phase voltage as described above. Therefore, comparing the voltage VK with the reference voltage 61 to obtain the overvoltage detection signal as described above indirectly detects the overvoltage of the multiphase power supply when the phase voltage exceeds a predetermined voltage threshold. become.

〈過電圧保護回路の動作〉
図2は本発明の動作説明図である。以上のような構成を備えた過電圧保護回路10の動作を説明する。
<Operation of overvoltage protection circuit>
FIG. 2 is a diagram for explaining the operation of the present invention. The operation of the overvoltage protection circuit 10 having the above configuration will be described.

3相4線式交流電源12がONになると、図2のフローチャートに沿った処理が開始され、第1の制御電源261が第2の相電源線42及び中性点電源線44から供給される相電圧から制御用の電源を生成し、また、第2の制御電源262が第3の相電源線43及び中性点電源線44から供給される相電圧から制御用の電源を生成する(ステップS11)。   When the three-phase four-wire AC power supply 12 is turned on, processing according to the flowchart of FIG. 2 is started, and the first control power supply 261 is supplied from the second phase power supply line 42 and the neutral point power supply line 44. The control power source is generated from the phase voltage, and the second control power source 262 generates the control power source from the phase voltage supplied from the third phase power source line 43 and the neutral point power source line 44 (step) S11).

また、第1の相電源線41〜第3相電源線43のそれぞれから分岐した電源線41a〜43aに接続された整流素子51〜53が各相電圧を半波整流し、半波整流された各相電圧を合成して合成電圧VJを得る(ステップS12,S13)。   Further, the rectifying elements 51 to 53 connected to the power supply lines 41a to 43a branched from the first phase power supply line 41 to the third phase power supply line 43 perform half-wave rectification and half-wave rectification of each phase voltage. The phase voltages are combined to obtain a combined voltage VJ (steps S12 and S13).

合成電圧VJは過電圧検知回路22、具体的には高圧側コンパレータ55及び低圧側コンパレータ57において参照電圧61,62のそれぞれの電圧値と比較されて、過電圧又は不足電圧の発生の有無が判定される(ステップS14)。   The combined voltage VJ is compared with the respective voltage values of the reference voltages 61 and 62 in the overvoltage detection circuit 22, specifically, the high voltage side comparator 55 and the low voltage side comparator 57, and it is determined whether or not an overvoltage or undervoltage has occurred. (Step S14).

高圧側コンパレータ55は参照電圧61の電圧値ref1と合成電圧VJを分圧した電圧VKとを比較して過電圧が発生したか否かを判断し、肯定的結果が出た場合には過電圧検知信号を判定部56に送出する(ステップS15,S16)。高圧側コンパレータ55において否定的結果が出た場合には、低圧側コンパレータ57は参照電圧62の電圧値ref2と電圧VKとを比較して不足電圧が発生したか否かを判断し、肯定的結果が出た場合には、不足電圧検知信号を判定部56に送出する(ステップS17,S18)。   The high-voltage side comparator 55 compares the voltage value ref1 of the reference voltage 61 with the voltage VK obtained by dividing the composite voltage VJ to determine whether or not an overvoltage has occurred, and if a positive result is obtained, an overvoltage detection signal Is sent to the determination unit 56 (steps S15 and S16). When a negative result is obtained in the high-voltage side comparator 55, the low-voltage side comparator 57 compares the voltage value ref2 of the reference voltage 62 with the voltage VK to determine whether or not an undervoltage has occurred, and a positive result Is output, an undervoltage detection signal is sent to the determination unit 56 (steps S17 and S18).

高圧側コンパレータ55及び低圧側コンパレータ57のいずれにおいても否定的結果が出た場合には、リレー14を駆動して継電し、ステップS12に戻って一連の処理が繰り返される(ステップS19)。   If a negative result is obtained in either the high-voltage side comparator 55 or the low-voltage side comparator 57, the relay 14 is driven and relayed, and the process returns to step S12 to repeat a series of processes (step S19).

過電圧検知信号又は不足電圧検知信号を受信した判定部56は、それぞれがアクティブとなる期間が所定期間よりも長い場合に、リレー駆動部24に遮断処理を行わせる。具体的には、リレー駆動部24をして励磁コイル14aへの通電を制御させ、リレー14に遮断動作を行わせる(ステップS20)。以後、ステップS12に戻って一連の処理が繰り返され、3相4線式交流電源12がOFFになると処理が終了される。   The determination unit 56 that has received the overvoltage detection signal or the undervoltage detection signal causes the relay drive unit 24 to perform a blocking process when the period during which each is active is longer than the predetermined period. Specifically, the relay drive unit 24 is controlled to control the energization to the excitation coil 14a, and the relay 14 is made to perform a cutoff operation (step S20). Thereafter, the process returns to step S12, and a series of processes are repeated. When the three-phase four-wire AC power supply 12 is turned off, the process is terminated.

本発明の実施形態に係る過電圧保護回路の回路構成を例示する図である。It is a figure which illustrates the circuit structure of the overvoltage protection circuit which concerns on embodiment of this invention. 本発明の動作説明図である。It is operation | movement explanatory drawing of this invention. (a)正常な状態における3相4線式交流電源の模式図である。図3(b)N相が欠相した場合に図3(a)から遷移した状態を示す模式図である。(A) It is a schematic diagram of the three-phase four-wire type AC power supply in a normal state. FIG. 3B is a schematic diagram showing a state transitioned from FIG. 3A when the N phase is lost. (a)多相電源に対する制御電源及び負荷の配置の従来の一の例を示す概略図である。図4(b)N相が欠相した場合の図4(a)の構成を等価的に示す概略図である。(A) It is the schematic which shows one conventional example of arrangement | positioning of the control power supply and load with respect to a multiphase power supply. FIG. 4B is a schematic diagram equivalently showing the configuration of FIG. 4A when the N phase is lost. (a)多相電源に対する制御電源及び負荷の配置の従来の他の例を示す概略図である。図5(b)L3相が欠相した場合の図5(a)の構成を等価的に示す概略図である。(A) It is the schematic which shows other conventional examples of arrangement | positioning of the control power supply and load with respect to a multiphase power supply. FIG. 5B is a schematic diagram equivalently showing the configuration of FIG. 5A when the L3 phase is lost.

符号の説明Explanation of symbols

10 過電圧保護回路
12 3相4線式交流電源(多相電源)
14 リレー
16 負荷
22 過電圧検知回路
24 リレー駆動部
26 制御電源部
261,262 制御電源
262 第2の制御電源
31〜33 相電源
34 中性点
41〜43 相電源線
44 中性点電源線
51〜53 整流素子
55 高圧側コンパレータ
10 Overvoltage protection circuit 12 3-phase 4-wire AC power supply (multi-phase power supply)
DESCRIPTION OF SYMBOLS 14 Relay 16 Load 22 Overvoltage detection circuit 24 Relay drive part 26 Control power supply part 261,262 Control power supply 262 2nd control power supply 31-33 Phase power supply 34 Neutral point 41-43 Phase power supply line 44 Neutral point power supply line 51- 53 Rectifier 55 High side comparator

Claims (3)

多相電源(12)から負荷(16)へ継電するリレー(14)と、
前記多相電源の相電圧が予め定められた電圧閾値を超えたことをもって前記多相電源の過電圧を検知する過電圧検知回路(22)と、
前記過電圧が検知されたことを契機として前記リレーに遮断動作を行わせるリレー駆動部(24)と、
前記リレーよりも前記多相電源に近い側で前記相電圧に基づいて前記過電圧検知回路及び前記リレー駆動部に供給する電力を生成する制御電源部(26)と
を備える、過電圧保護回路(10)。
A relay (14) for relaying from the multiphase power source (12) to the load (16);
An overvoltage detection circuit (22) for detecting an overvoltage of the multiphase power supply when a phase voltage of the multiphase power supply exceeds a predetermined voltage threshold;
A relay drive unit (24) for causing the relay to perform a cut-off operation when the overvoltage is detected;
An overvoltage protection circuit (10) comprising: a control power supply unit (26) that generates electric power to be supplied to the overvoltage detection circuit and the relay drive unit based on the phase voltage on a side closer to the multiphase power supply than the relay. .
請求項1記載の過電圧保護回路(10)であって、
前記多相電源として、第1の相電源(31)、第2の相電源(32)、第3の相電源(33)及び中性点(34)を有する3相4線式交流電源(12)が採用され、
前記第1の相電源に接続される第1の相電源線(41)と、
前記第2の相電源に接続される第2の相電源線(42)と、
前記第3の相電源に接続される第3の相電源線(43)と、
前記中性点に接続される中性点電源線(44)と
を有し、
前記制御電源部(26)は、
前記リレーよりも前記3相4線式交流電源に近い側において、前記リレーに接続されている一の前記相電源線と、前記中性点電源線との間の電圧を用いて第1の電源を生成する第1の制御電源(261)と、
前記リレーよりも前記3相4線式交流電源に近い側において、前記リレーに接続されている他の前記相電源線と、前記中性点電源線との間の電圧を用いて第2の電源を生成する第2の制御電源(262)と
を有し、
前記制御電源部は、前記第1の制御電源の出力電圧と前記第2の制御電源の出力電圧との合成電圧を用いて電力を前記過電圧検知回路(22)及び前記リレー駆動部(24)に供給する、過電圧保護回路。
An overvoltage protection circuit (10) according to claim 1,
As the multiphase power supply, a three-phase four-wire AC power supply (12) having a first phase power supply (31), a second phase power supply (32), a third phase power supply (33), and a neutral point (34). )
A first phase power supply line (41) connected to the first phase power supply;
A second phase power supply line (42) connected to the second phase power supply;
A third phase power supply line (43) connected to the third phase power supply;
A neutral point power line (44) connected to the neutral point;
The control power supply unit (26)
On the side closer to the three-phase four-wire AC power source than the relay, a first power source using a voltage between the one phase power source line connected to the relay and the neutral point power source line A first control power supply (261) for generating
On the side closer to the three-phase four-wire AC power source than the relay, a second power source is used by using a voltage between the other phase power source line connected to the relay and the neutral point power source line. A second control power supply (262) for generating
The control power supply unit uses the combined voltage of the output voltage of the first control power supply and the output voltage of the second control power supply to supply power to the overvoltage detection circuit (22) and the relay drive unit (24). Supply overvoltage protection circuit.
請求項2記載の過電圧保護回路(10)であって、
前記過電圧検知回路(22)は、
前記3相4線式交流電源(12)と前記リレー(14)との間で前記第1の相電源線(41)に接続され、前記第1の相電源(31)の相電圧を整流する第1の整流素子(51)と、
前記3相4線式交流電源と前記リレーとの間で前記第2の相電源線(42)に接続され、前記第2の相電源(32)の相電圧を整流する第2の整流素子(52)と、
前記3相4線式交流電源と前記リレーとの間で前記第3の相電源線(43)に接続され、前記第3の相電源(33)の相電圧を整流する第3の整流素子(53)と、
前記第1の整流素子ないし前記第3の整流素子のそれぞれからの出力電圧を合成した合成電圧と、参照電圧とを比較するコンパレータ(55)と
を有し、
前記コンパレータは前記合成電圧が前記参照電圧よりも高い場合には前記過電圧であると判断して検知信号を前記リレー駆動部(24)に送出し、
前記リレー駆動部は、前記信号を受信した場合には前記リレー(14)に遮断動作を行わせる、過電圧保護回路。
An overvoltage protection circuit (10) according to claim 2,
The overvoltage detection circuit (22)
Connected to the first phase power supply line (41) between the three-phase four-wire AC power supply (12) and the relay (14), and rectifies the phase voltage of the first phase power supply (31). A first rectifying element (51);
A second rectifying element (rectifier connected to the second phase power supply line (42) between the three-phase four-wire AC power supply and the relay to rectify the phase voltage of the second phase power supply (32) ( 52),
A third rectifying element (rectifier connected to the third phase power supply line (43) between the three-phase four-wire AC power supply and the relay to rectify the phase voltage of the third phase power supply (33) ( 53)
A comparator (55) that compares a synthesized voltage obtained by synthesizing output voltages from each of the first rectifier element to the third rectifier element with a reference voltage;
When the combined voltage is higher than the reference voltage, the comparator determines that the overvoltage is the overvoltage, and sends a detection signal to the relay driving unit (24).
An overvoltage protection circuit for causing the relay (14) to perform a cut-off operation when the relay driving unit receives the signal.
JP2008049730A 2008-02-29 2008-02-29 Overvoltage protection circuit Expired - Fee Related JP4793395B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008049730A JP4793395B2 (en) 2008-02-29 2008-02-29 Overvoltage protection circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008049730A JP4793395B2 (en) 2008-02-29 2008-02-29 Overvoltage protection circuit

Publications (2)

Publication Number Publication Date
JP2009207329A JP2009207329A (en) 2009-09-10
JP4793395B2 true JP4793395B2 (en) 2011-10-12

Family

ID=41149028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008049730A Expired - Fee Related JP4793395B2 (en) 2008-02-29 2008-02-29 Overvoltage protection circuit

Country Status (1)

Country Link
JP (1) JP4793395B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015128357A (en) * 2013-12-27 2015-07-09 ダイキン工業株式会社 Overvoltage protection circuit and power conversion device having the same
JP6540203B2 (en) * 2015-04-30 2019-07-10 マックス株式会社 Equipment

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55136819A (en) * 1979-04-10 1980-10-25 Fuji Electric Co Ltd Power voltage malfunction detecting circuit
JPS5895143U (en) * 1981-12-22 1983-06-28 デンゲン株式会社 Open phase detection device for three-phase power supply
JPH01123428U (en) * 1988-02-12 1989-08-22
JP2603528B2 (en) * 1988-11-11 1997-04-23 河村電器産業株式会社 AA neutral line open phase detection point extension unit
JPH04161743A (en) * 1990-10-25 1992-06-05 Mitsubishi Electric Corp Protecting device for air conditioner
JPH0510380U (en) * 1991-07-16 1993-02-09 株式会社日立ビルシステムサービス Elevator control equipment
JPH05182576A (en) * 1991-12-27 1993-07-23 Togami Electric Mfg Co Ltd Protective relay
JPH11218346A (en) * 1998-02-03 1999-08-10 Sanyo Electric Co Ltd Control device of air conditioner
JP2002268195A (en) * 2001-03-08 2002-09-18 Nidec Copal Corp Power supply device
JP2005065473A (en) * 2003-08-20 2005-03-10 Sanyo Electric Co Ltd Three-phase power supply phase interruption detection circuit and high-frequency heating apparatus
JP2006033999A (en) * 2004-07-16 2006-02-02 Matsushita Electric Ind Co Ltd Controller for air conditioner
JP2006141114A (en) * 2004-11-11 2006-06-01 Matsushita Electric Ind Co Ltd Controller for air conditioner
JP2006262660A (en) * 2005-03-18 2006-09-28 Matsushita Electric Ind Co Ltd Control unit for air conditioner
JP2007104858A (en) * 2005-10-07 2007-04-19 Matsushita Electric Ind Co Ltd Control unit for air conditioner
JP2007155256A (en) * 2005-12-07 2007-06-21 Matsushita Electric Ind Co Ltd Controller for air conditioner
JP2007244019A (en) * 2006-03-06 2007-09-20 Matsushita Electric Ind Co Ltd Controller of air conditioner

Also Published As

Publication number Publication date
JP2009207329A (en) 2009-09-10

Similar Documents

Publication Publication Date Title
US9646795B2 (en) Low-frequency circuit breaker
US7365519B2 (en) Excitation system having inner loop voltage regulator with by-pass capability
JP2006280106A (en) Power conversion device
KR101801729B1 (en) The 3-phase earth leakage breaker installed power and leakage test circuit operating while open phase
WO2018139565A1 (en) Method for controlling inverter during startup and control device
JP4793395B2 (en) Overvoltage protection circuit
KR101641234B1 (en) Apparatus and method for controlling single-phase induction motor
JP4793396B2 (en) Overvoltage protection circuit
KR19990006552A (en) Starting method and device of AC motor
JP4345640B2 (en) Inrush current suppression device for power converter
JP4753910B2 (en) Uninterruptible power system
JP5166730B2 (en) Three-phase earth leakage breaker
KR102274048B1 (en) Independent microgrid system and inverter device
US10615683B2 (en) Method for controlling inverter
JP5575424B2 (en) Synchronous generator
JP6834804B2 (en) Automatic voltage regulator for generator
JP5223320B2 (en) Shared printed circuit board and DC power supply circuit using the same
KR101537708B1 (en) Apparatus and method for controlling single-phase induction motor
JP2004153932A (en) Exciting rush current reduction circuit for transformer
JP2005096881A (en) Elevator safety circuit
JP2008202443A (en) Engine generator
JP4706999B2 (en) Excitation current suppression device
KR20110035115A (en) Apparatus and method for controlling single-phase induction motor
JP2006238577A (en) Three-phase phase interruption detection circuit of air conditioner
JP2014049079A (en) Photovoltaic power generation power conversion system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110628

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110711

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees