JP2006280106A - Power conversion device - Google Patents

Power conversion device Download PDF

Info

Publication number
JP2006280106A
JP2006280106A JP2005096096A JP2005096096A JP2006280106A JP 2006280106 A JP2006280106 A JP 2006280106A JP 2005096096 A JP2005096096 A JP 2005096096A JP 2005096096 A JP2005096096 A JP 2005096096A JP 2006280106 A JP2006280106 A JP 2006280106A
Authority
JP
Japan
Prior art keywords
phase
power
voltage
phases
power conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005096096A
Other languages
Japanese (ja)
Inventor
Takashi Suenaga
高史 末永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2005096096A priority Critical patent/JP2006280106A/en
Publication of JP2006280106A publication Critical patent/JP2006280106A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Inverter Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power conversion device capable of bringing electric power into a reverse power flow and a utility interactive system using this power conversion device. <P>SOLUTION: The power conversion device includes: a power conversion unit that converts the direct-current power of a direct-current power source into alternating-current power and supplies it to a single-phase, three-wire commercial system and an alternating-current load to interconnect them; a commercial system voltage monitoring unit that monitors the commercial system voltage between phases U and O and that between phase O and W of the single-phase, three-wire commercial system; and an output changing unit that connects the power conversion unit to any of between phases U and O, between phases O and W, and between phases U and W. The output changing unit is changed to any of between phases U and O, between phases O and W, and phases U and W according the respective voltages between phase U and O, between phase O and W, and between phases U and W, and brings the power conversion unit and the single-phase, three-wire commercial system into utility interconnected operation. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、たとえば太陽電池や風力発電、燃料電池などの直流電源と商用電力系統とを連系させるための電力変換装置に関するものである。   The present invention relates to a power conversion device for connecting a DC power source such as a solar cell, wind power generation, and a fuel cell and a commercial power system.

従来、図5に示すように、系統連系システムJは太陽電池などの直流電源1が、直流を交流に変換する電力変換装置であるパワーコンディショナ5を介して、商用電力系統である単相3線式配電線3に接続されて成る。一般に、単相3線式配電線3はU相の電線U3、O相(中性線)の電線O3、W相の電線W3が接続されており、O相を基点としてU−O相間で100V、O−W相間で100Vを得ることができ、一般家庭などで使用される交流100Vの負荷4(4a、4b)に供給されている。また、U−W間では200Vの電圧を得ることができるので、交流200Vの負荷(例えばエアコンディショナなど)のように100V系よりも電流損失の少ない機器を用いることもできる。   Conventionally, as shown in FIG. 5, the grid connection system J is a single-phase commercial power system in which a DC power source 1 such as a solar cell is connected to a power conditioner 5 that is a power conversion device that converts DC to AC. It is connected to a three-wire distribution line 3. In general, a single-phase three-wire distribution line 3 is connected to a U-phase electric wire U3, an O-phase (neutral wire) O3, and a W-phase electric wire W3. , 100V can be obtained between the O-W phases, and is supplied to a load 4 (4a, 4b) of AC 100V used in a general home. In addition, since a voltage of 200 V can be obtained between U and W, a device with less current loss than the 100 V system such as an AC 200 V load (for example, an air conditioner) can be used.

ところで、パワーコンディショナ5は、直流電源1で発電した直流電力を交流200Vに変換し、単相3線式配電線3を介して負荷4に電力供給したり、電力会社に売電したりしているが、このとき、電力を送出しているのは端子部U31と端子部W31の2相間の200Vのみであり、O相の端子部O31からは電力は出力されない。よって、パワーコンディショナ5から出力された200Vの交流電力は、一旦、単相3線式配電線3に200Vとして電力供給するしかないが、単相3線式配電線3に接続することにより、前記単相3線式配電線3のO相である電線O31を中性線として使用できるようになるため、負荷4a、4bに100Vの電力として供給することができる。通常、パワーコンディショナ5には、単相3線式配電線3からO相である端子部O31が接続されているが、これは電力送電用ではなく、後述する系統電圧上昇抑制を行なうために、単相3線式配電線であるU−O相間、及びO−W相間の電圧を検知する必要があり、そのために中性線を接続しているものである。   By the way, the power conditioner 5 converts the DC power generated by the DC power source 1 into an AC voltage of 200 V, supplies power to the load 4 via the single-phase three-wire distribution line 3, and sells the power to the power company. However, at this time, power is transmitted only at 200 V between the two phases of the terminal portion U31 and the terminal portion W31, and no power is output from the O-phase terminal portion O31. Therefore, the AC power of 200 V output from the power conditioner 5 can only be supplied to the single-phase three-wire distribution line 3 as 200 V once, but by connecting to the single-phase three-wire distribution line 3, Since the electric wire O31 which is the O phase of the single-phase three-wire distribution line 3 can be used as a neutral wire, it can be supplied to the loads 4a and 4b as 100V electric power. Normally, the power conditioner 5 is connected to the O-phase terminal portion O31 from the single-phase three-wire distribution line 3, but this is not for power transmission but to suppress the system voltage rise described later. It is necessary to detect the voltage between the U-O phase and the OW phase, which are single-phase three-wire distribution lines, and for this purpose, a neutral wire is connected.

一般に、家庭内負荷にはU−O相間の負荷4aと、O−W相間の負荷4bが存在しており、これら負荷の容量バランスでU−O相間電圧3aと、O−W相間電圧3bのバランスが決まる。すなわち、負荷4aの消費が大きく負荷4bの消費が小さければ、U−O相間電圧3aの電圧が低下し、ほぼ変化しないO−W相間電圧3bとのバランスが崩れる現象が生じる。この様子を示したのが図6である。図6に示すように、例えば負荷4aの消費増加によって、U−O間電圧3aが95Vに低下しても、比較的消費の少ないO−W間電圧3bは105V程度の電圧がある。このとき、パワーコンディショナ5は単相3線式配電線3のU相とW相(31点と33点)に200Vの電力を出力するので、U相−W相間電圧が200V(95V+105V=200V)となり、問題なく電力供給され、逆潮流も可能である。   In general, there are a load 4a between the U-O phase and a load 4b between the OW phases in the home load, and the U-O phase voltage 3a and the OW phase voltage 3b are balanced by the capacity balance of these loads. The balance is determined. That is, if the consumption of the load 4a is large and the consumption of the load 4b is small, the voltage of the U-O interphase voltage 3a is lowered, and a phenomenon occurs in which the balance with the almost unchanged O-W interphase voltage 3b is lost. This is shown in FIG. As shown in FIG. 6, for example, even if the U-O voltage 3a is reduced to 95V due to an increase in consumption of the load 4a, the relatively low consumption O-W voltage 3b is about 105V. At this time, the power conditioner 5 outputs 200V power to the U phase and W phase (31 and 33 points) of the single-phase three-wire distribution line 3, so the voltage between the U phase and the W phase is 200V (95V + 105V = 200V). Therefore, power can be supplied without problems and reverse power flow is possible.

一般住宅等における系統電圧は、上記の他にも電圧上昇するといった変化があり、これは以下の2点などに起因する。   In addition to the above, the system voltage in ordinary houses has a change such as a voltage increase, which is caused by the following two points.

(ア)住宅周辺地域に工場等の大電力を使用する環境が存在する場合であって、工場が休日のときは、電力を使用しないことから、系統への負荷が少なくなり、平日の工場稼働日より数ボルト電圧が上昇することがある。例えば、通常100V前後の系統が103〜105Vになるといった状態であるが、これは規定で101±6Vの範囲と定められており、異常ではない。   (A) When there is an environment that uses a large amount of power, such as a factory, in the area surrounding the house, and when the factory is on a holiday, the power is not used, so the load on the system is reduced and the factory operates on weekdays. The voltage may rise several days from the day. For example, the system is usually in the state where the system around 100V becomes 103 to 105V, but this is defined as a range of 101 ± 6V by definition, and is not abnormal.

(イ)家庭内の負荷の変化や、自家発電装置による逆潮流の場合であって、家電製品の使用状況によりその地域の消費電力が大きく増減すると、使用中は供給電圧が下がらないように電力会社が供給量を多くして対応するが、使用量が低下すると電圧が上昇してしまうので供給量を制限する。   (B) In the case of a change in household load or a reverse power flow due to a private power generator, if the power consumption in the area greatly increases or decreases depending on the usage status of home appliances, the power will not decrease during use. The company responds by increasing the supply amount, but if the usage amount decreases, the voltage increases, so the supply amount is limited.

これらの他に、家庭内での使用電力は時間帯により各部屋で変化することによっても電圧上昇は生じる。これは、前述した負荷バランスで理解できる。単相3線式配電線3におけるU−O相間への負荷4aと、O−W相間への負荷4bが変化すると、負荷の大小により系統電圧も上下する。負荷が少なくなった場合を考えたとき、系統電圧は上昇する方向に変化することがわかる。   In addition to these, the electric power used in the home also increases in voltage when it changes in each room depending on the time of day. This can be understood from the load balance described above. When the load 4a between the U-O phases and the load 4b between the OW phases in the single-phase three-wire distribution line 3 change, the system voltage also increases or decreases depending on the magnitude of the load. When considering the case where the load decreases, it can be seen that the system voltage changes in an increasing direction.

ここで、例えば前記(ア)の状況と(イ)の状況が重なったとすると、最初、図7(a)に示すように、系統のU−O相間電圧とO−W相間電圧がともに105Vであったものが、急な負荷軽減によって、図7(b)に示すように、U−O相間電圧が上昇し、任意の電圧(一般には電圧抑制を行なうべき電圧である107V以下)より高くなる。   Here, for example, if the situation (a) and the situation (a) overlap, first, as shown in FIG. 7A, the U-O phase voltage and the OW phase voltage of the system are both 105V. As shown in FIG. 7 (b), the U-O phase voltage rises due to sudden load reduction, and becomes higher than an arbitrary voltage (generally 107 V or less, which is a voltage to be suppressed). .

また、一般住宅の屋根などに設置された太陽光発電装置のように住宅内の交流負荷への電力供給や商用電力系統への逆潮流を行なうものが多数ある場合、逆潮流によって地区の商用電力系統に電力が過剰供給されてしまい電圧が上昇するといったことも生じる。   In addition, when there are many things that supply power to the AC load in the house or reverse power flow to the commercial power system, such as solar power generators installed on the roofs of ordinary houses, the commercial power in the district is generated by the reverse power flow. There are also cases where power is excessively supplied to the system and the voltage rises.

このような場合、電力会社が電力量を調節することにより回復していくが、送電線などの電路等に残された電力が消費されるまで、電圧は最適値に下降しないため回復に時間を要する。日本では、107Vを超えると商用電力系統の規格値を逸脱することになるため、系統連系システムは系統保護のため系統電圧上昇抑制を行なう必要があり、この手段として太陽光発電装置等の自家発電装置からの逆潮流を停止させるなどして系統電圧が107V以下になるように動作する。   In such a case, the power company recovers by adjusting the amount of power, but the voltage does not drop to the optimum value until the power remaining in the power line such as the transmission line is consumed, so it takes time to recover. Cost. In Japan, if it exceeds 107V, it will deviate from the standard value of the commercial power system, so it is necessary for the grid-connected system to suppress the system voltage rise for system protection. It operates so that the system voltage becomes 107V or less by stopping the reverse power flow from the power generator.

これにより、少なくとも図7(c)に示すように、U−O相間電圧は107Vを下回るようになる。しかしながら、太陽光発電装置などの自家発電装置からの電力の逆潮流を停止させなくてはならず、その間の発電電力が有効に活用できなくなるといった問題が生じる。   As a result, the U-O phase voltage becomes lower than 107 V, as shown at least in FIG. However, there is a problem in that the reverse power flow from a private power generation device such as a solar power generation device must be stopped, and the generated power during that time cannot be used effectively.

この対策として、任意時刻の引込柱電圧を推定できるようにして、負荷の変動によらずに常に逆潮流時の引込柱電圧が107Vを超えないように、系統電圧上昇抑制を行なう方法が提案されている(例えば、特許文献1を参照)。
特開2000−312438号公報
As a countermeasure against this, a method has been proposed in which the pull-in column voltage at an arbitrary time can be estimated so that the pull-in column voltage during reverse flow does not always exceed 107V regardless of load fluctuations. (For example, refer to Patent Document 1).
JP 2000-31438 A

しかしながら、上述した系統連系システムでの前記系統電圧上昇抑制の方法は、そのときの出力電力を故意に低下させ、系統への逆潮流量を減少させることで、系統電圧の上昇を抑制することを実現しているものであり、直流電源に何の問題もない場合であっても、出力電力を下げることがあるということであり、これは、使用者にとっては、トータル効率を低下させることにも繋がる。   However, the above-described method for suppressing the system voltage increase in the system interconnection system described above suppresses the increase in the system voltage by intentionally decreasing the output power at that time and decreasing the reverse power flow to the system. This means that even if there is no problem with the DC power supply, the output power may be reduced, which will reduce the total efficiency for the user. Is also connected.

本発明は上述した従来の問題点に鑑みてなされたものであり、系統電圧の相の負荷バランスの崩れによる電圧上昇を生じさせない、もしくは生じにくくする制御を可能とし、また、万一電圧上昇抑制が生じた場合は、各相の電圧バランスを保つ制御を可能とし、電力を余すことなく逆潮流できる電力変換装置及びそれを用いた系統連系システムを提供することを目的とするものである。   The present invention has been made in view of the above-described conventional problems, and makes it possible to perform a control that does not cause or hardly causes a voltage increase due to a collapse of the load balance of the system voltage phase, and suppresses a voltage increase in the unlikely event. When this occurs, it is an object of the present invention to provide a power converter that can perform control to maintain the voltage balance of each phase and can reversely flow without leaving power and a grid interconnection system using the power converter.

上記課題を解決するため、本発明の電力変換装置は、直流電源の直流電力を交流電力に変換し、前記交流電力を単相3線式商用系統及び交流負荷に供給して系統連系する電力変換部と、前記単相3線式商用系統のU−O相間及び前記O−W相間のそれぞれの商用系統電圧を監視する商用系統電圧監視部と、前記電力変換部を前記U−O相間またはO−W相間またはU−W相間のいずれかに連系させる出力切替部とを備えた電力変換装置であって、前記U−O相間、O−W相間及びU−W相間のそれぞれの電圧に応じて前記出力切替部を前記U−O相間またはO−W相間またはU−W相間のいずれかに切り替えて前記電力変換部と前記前記交流電力を単相3線式商用系統とを連系運転させるようにしたことを特徴とする。   In order to solve the above-described problems, a power conversion device according to the present invention converts DC power of a DC power source into AC power, and supplies the AC power to a single-phase three-wire commercial system and an AC load for system interconnection. A converter, a commercial system voltage monitoring unit that monitors respective commercial system voltages between the U-O phase and the OW phase of the single-phase three-wire commercial system, and the power conversion unit between the U-O phase or A power conversion device including an output switching unit linked to either the O-W phase or the U-W phase, wherein each voltage between the U-O phase, the O-W phase, and the U-W phase Accordingly, the output switching unit is switched between the U-O phase, the O-W phase, or the U-W phase, and the power conversion unit and the AC power are connected to a single-phase three-wire commercial system. It was made to let it be made to do.

本発明の電力変換装置によれば、直流電源の直流電力を交流電力に変換し、前記交流電力を単相3線式商用系統及び交流負荷に供給して系統連系する電力変換部と、前記単相3線式商用系統のU−O相間及び前記O−W相間のそれぞれの商用系統電圧を監視する商用系統電圧監視部と、前記電力変換部を前記U−O相間またはO−W相間またはU−W相間のいずれかに連系させる出力切替部とを備えた電力変換装置であって、前記U−O相間、O−W相間及びU−W相間のそれぞれの電圧に応じて前記出力切替部を前記U−O相間またはO−W相間またはU−W相間のいずれかに切り替えて前記電力変換部と前記前記交流電力を単相3線式商用系統とを連系運転させるようにしたことで、系統電圧の相の負荷バランスの崩れによる電圧上昇を生じさせない、もしくは生じにくくする制御を可能とし、電力を余すことなく逆潮流できる電力変換装置及びそれを用いた系統連系システムを構築することができる。   According to the power conversion device of the present invention, the DC power of the DC power supply is converted into AC power, the AC power is supplied to a single-phase three-wire commercial system and an AC load, and the power conversion unit is connected to the grid, and A commercial system voltage monitoring unit that monitors the commercial system voltage between the U-O phase of the single-phase three-wire commercial system and the OW phase, and the power conversion unit between the U-O phase or the OW phase, A power conversion device including an output switching unit linked to any of the U-W phases, wherein the output switching is performed according to respective voltages between the U-O phase, between the OW phase, and between the U-W phases. The unit is switched between the U-O phase, the OW phase, or the U-W phase so that the power conversion unit and the AC power are connected to the single-phase three-wire commercial system. The voltage rise due to the imbalance of the load balance of the system voltage phase Not staggered, or allow control of difficult to occur and then, it is possible to construct a system interconnection system using a power converter and its possible reverse flow without leaving power.

また、万一電圧上昇が生じた場合は、電圧上昇抑制中の系統電圧の状況により、連系する相(U−O相間、O−W相間、U−W相間のいずれか)および出力電圧(100V系、200V系のいずれか)を切り替えてから、電圧上昇抑制制御からの復帰および系統連系させるようにしたので、電圧上昇抑制中の系統電圧の状況により電圧の低い相へ再連系でき、かつ各相の電圧バランスを保つ制御を可能とし、電力を余すことなく逆潮流できる電力変換装置を提供することができる。   In the unlikely event that a voltage increase occurs, depending on the status of the system voltage during which the voltage increase is being suppressed, the phase to be linked (any of U-O phase, OW phase, or U-W phase) and output voltage ( After switching between 100V system and 200V system), it is possible to reconnect to a lower voltage phase depending on the status of the system voltage during the voltage increase suppression because the return from the voltage increase suppression control and the system interconnection are performed. In addition, it is possible to provide a power conversion device that enables control to maintain the voltage balance of each phase and can reversely flow without leaving power.

を構築することができる。 Can be built.

以下、本発明に係る電力変換装置及びそれを用いた系統連系システムの実施の形態を図面に基づいて、詳細に説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of a power conversion device and a grid interconnection system using the same according to the present invention will be described in detail based on the drawings.

図1に示すように、系統連系システムSは、太陽電池、風力発電手段、または燃料電池などの直流電源1が、直流を交流に変換する電力変換装置であるパワーコンディショナ2を介して、単相3線の商用電力系統である単相3線式配電線3に接続されて成る。単相3線式配電線3には、U−O相間負荷4a、O−W相間負荷4bが接続される。   As shown in FIG. 1, the grid interconnection system S includes a DC power source 1 such as a solar cell, a wind power generation unit, or a fuel cell via a power conditioner 2 that is a power conversion device that converts direct current to alternating current. It is connected to a single-phase three-wire distribution line 3 which is a single-phase three-wire commercial power system. A U-O interphase load 4a and an O-W interphase load 4b are connected to the single-phase three-wire distribution line 3.

パワーコンディショナ2は、U−O相間及び前記O−W相間のそれぞれの系統電圧を監視する系統電圧監視部25と、前記U−O相間またはO−W相間またはU−W相間のいずれかに連系させる出力切替部24と、逆潮流させる電圧を100V系または200V系のいずれかの電圧に切り替えることが可能な電圧変換部22と、電圧及び位相を同調させ前記単相3線式系統に逆潮流させるための電力変換部23と、前記各系統電圧監視部からの電圧情報により、前記出力切替部および電圧変換部および電力変換部を制御するための制御部21とで構成される。   The power conditioner 2 includes a system voltage monitoring unit 25 that monitors system voltages between the U-O phase and the OW phase, and between the U-O phase, the OW phase, and the U-W phase. The output switching unit 24 to be connected, the voltage conversion unit 22 capable of switching the voltage to be reversely flowed to either the 100V system or the 200V system, and the single-phase three-wire system by tuning the voltage and phase. The power conversion unit 23 is configured to perform reverse power flow, and the control unit 21 is configured to control the output switching unit, the voltage conversion unit, and the power conversion unit based on voltage information from each system voltage monitoring unit.

前記出力切替部24は、前記電力変換部23からの第一出力線INV1の出力をU相またはO相に接続する相切替スイッチ24aと、前記電力変換部23からの第二出力線INV2の出力をO相またはW相に接続する相切替スイッチ24bで構成される。   The output switching unit 24 includes a phase changeover switch 24a for connecting the output of the first output line INV1 from the power conversion unit 23 to the U phase or the O phase, and the output of the second output line INV2 from the power conversion unit 23. Is constituted by a phase changeover switch 24b for connecting the O to the O phase or the W phase.

ここで、パワーコンディショナ2は、U−O相間及びO−W相間の電圧を監視し、連系直前の系統電圧の状況により、連系する相(U−O相間、O−W相間、U−W相間のいずれか)および出力電圧(100V系、200V系のいずれか)を切り替えてから、系統連系させるようにしている。   Here, the power conditioner 2 monitors the voltage between the U-O phase and the OW phase, and depending on the state of the system voltage immediately before the linkage, the linked phases (between the U-O phase, the OW phase, the U-W, Any one of the -W phases) and the output voltage (either 100V system or 200V system) are switched before grid interconnection.

そして、このように構成された電力変換装置を、直流電源1と単相3線式系統との間に設けて、単相3線式系統へ直流電源1からの電力を逆潮流させる系統連系システムを構築している。   Then, the power conversion device configured as described above is provided between the DC power source 1 and the single-phase three-wire system, and the grid interconnection is used to reversely flow the power from the DC power source 1 to the single-phase three-wire system. A system is being built.

以下、本発明の系統連系システムの動作について説明する。   The operation of the grid interconnection system of the present invention will be described below.

商用電力系統であるU相U3、O相O3、W相W3間の各電圧は、通常U−O相間電圧3aが101V±6V、O−W相間電圧3bも101V±6Vである。パワーコンディショナ2は太陽電池等の直流電源1から得た電力を前述の交流電圧に合わせるべく直交変換(DC/AC変換)を行ない、単相3線式配電線3に出力する。   As for the voltages between the U phase U3, O phase O3, and W phase W3, which are commercial power systems, the U-O phase voltage 3a is typically 101V ± 6V, and the OW phase voltage 3b is also 101V ± 6V. The power conditioner 2 performs orthogonal transformation (DC / AC conversion) to match the electric power obtained from the DC power source 1 such as a solar cell with the AC voltage described above, and outputs it to the single-phase three-wire distribution line 3.

系統電圧監視部25は、系統の電圧や位相の情報を制御部21に送る。制御部21は、連系直前の電圧情報を元に出力モードを判断し、出力切替部24および電圧変換部22および電力変換部23に指令を出す。   The system voltage monitoring unit 25 sends system voltage and phase information to the control unit 21. The control unit 21 determines the output mode based on the voltage information immediately before the interconnection, and issues a command to the output switching unit 24, the voltage conversion unit 22, and the power conversion unit 23.

出力切替部24は、制御部21からの指令により、相切替スイッチ24a、24bを切り替える。ここで、出力切替部24の切り替えパターンを図2に示す。出力モードは、(1)U−W出力モード、(2)U−O出力モード、(3)O−W出力モードの3パターンとなる。   The output switching unit 24 switches the phase changeover switches 24 a and 24 b according to a command from the control unit 21. Here, the switching pattern of the output switching unit 24 is shown in FIG. There are three output modes: (1) U-W output mode, (2) U-O output mode, and (3) O-W output mode.

電圧変換部22は、制御部21からの指令により、出力電圧(100V系、200V系のいずれか)を切り替える。   The voltage conversion unit 22 switches the output voltage (either 100V system or 200V system) according to a command from the control unit 21.

電力変換部23は、直交変換(DC/AC変換)を行ない、制御部21からの位相情報により、出力電力の位相を調整し、系統に連系する。   The power conversion unit 23 performs orthogonal transform (DC / AC conversion), adjusts the phase of the output power based on the phase information from the control unit 21, and is linked to the system.

尚、連系時の系統の負荷バランスが時間的に一定ではなく、系統連系システムSが稼働中に負荷バランスが変化した場合は、上記システムであっても系統の電圧が上昇し、パワーコンディショナ2は電圧上昇抑制を行なう可能性もあるため、その場合は、制御部21は、電圧上昇抑制中の系統電圧の状況を系統電圧監視部25から入手し、再度出力モードを判断し、出力切替部24および電圧変換部22および電力変換部23に指令を出す。電圧上昇抑制制御から復帰する際には、電圧上昇抑制が働くその時間帯で最も効率のよい出力モードで運転することが可能となる。   If the load balance of the grid at the time of interconnection is not constant in time and the load balance changes while the grid interconnection system S is in operation, the voltage of the grid rises even in the above system, and the power condition In this case, the control unit 21 obtains the status of the system voltage during the suppression of the voltage increase from the system voltage monitoring unit 25, determines the output mode again, and outputs the signal. Commands are issued to the switching unit 24, the voltage conversion unit 22, and the power conversion unit 23. When returning from the voltage rise suppression control, it is possible to operate in the most efficient output mode in the time zone in which the voltage rise suppression works.

図3は、本実施形態にかかわる連系開始直前の出力電圧モードの判定方法を示すフローチャートである。以下、図3に基づいて本実施形態にかかわる出力電圧モードの判定方法を説明する。   FIG. 3 is a flowchart showing a method for determining the output voltage mode immediately before the start of interconnection according to the present embodiment. The output voltage mode determination method according to this embodiment will be described below with reference to FIG.

パワーコンディショナ2の起動判定により、連系が可能であると判断した場合、連系開始直前に図3に示すフローを実行させる。   If it is determined by the activation determination of the power conditioner 2 that the interconnection is possible, the flow shown in FIG. 3 is executed immediately before the start of the interconnection.

まず系統電圧(U−O相間電圧3aおよびO−W相間電圧3b)を計測し、両者の大小比較を行なう。ステップAでは、両者の差がほぼ等しいか(両者の差があらかじめ設定される誤差範囲内であるか)の検証を行ない、両者の差がほぼ等しい場合は、出力電圧モードをU−W出力モードに設定して、本フローを終了する。ステップAにおいて、両者の差が認められる場合は、ステップBに進む。ステップBでは、U−O相間電圧3aとO−W相間電圧3bとの比較により、U−O相間電圧3aの方が大きいかの検証を行なう。U−O相間電圧3aの方が大きい場合は、出力電圧モードをO−W出力モードに設定して、本フローを終了する。ステップBにおいて、U−O相間電圧3aの方が小さい場合は、出力電圧モードをU−O出力モードに設定して、本フローを終了する。   First, the system voltages (U-O phase voltage 3a and OW phase voltage 3b) are measured, and both are compared in magnitude. In step A, it is verified whether or not the difference between the two is substantially equal (whether the difference between the two is within a preset error range). If the difference between the two is substantially equal, the output voltage mode is set to the U-W output mode. Set this to end this flow. If a difference between the two is recognized in step A, the process proceeds to step B. In Step B, it is verified whether the U-O interphase voltage 3a is larger by comparing the U-O interphase voltage 3a and the O-W interphase voltage 3b. When the U-O interphase voltage 3a is larger, the output voltage mode is set to the O-W output mode, and this flow ends. In step B, if the U-O interphase voltage 3a is smaller, the output voltage mode is set to the U-O output mode, and this flow ends.

図4は、本実施形態にかかわる電圧上昇抑制中の出力電圧モードの再判定方法を示すフローチャートである。以下、図4に基づいて本実施形態にかかわる出力電圧モードの再判定方法を説明する。   FIG. 4 is a flowchart showing a method for re-determination of the output voltage mode during voltage rise suppression according to the present embodiment. Hereinafter, the re-determination method of the output voltage mode according to the present embodiment will be described with reference to FIG.

パワーコンディショナ2が電圧上昇抑制制御を行ない、出力抑制限界(通常出力は0kWまで制限される)に達した場合、図4に示すフローを実行させる。   When the power conditioner 2 performs the voltage rise suppression control and reaches the output suppression limit (normal output is limited to 0 kW), the flow shown in FIG. 4 is executed.

まずステップCでは、U−O相間電圧3aが電圧上昇抑制判定値よりも大きいか検証する。大きいと判断される場足は、ステップDに進み、今度はO−W相間電圧3bが電圧上昇抑制判定値よりも大きいか検証する。大きいと判断される場合は、U−O相間電圧3aおよびO−W相間電圧3bともに電圧上昇抑制判定値を超えていることになるため、再度、U−O相間電圧3aとO−W相間電圧3bとの大小判定を行なう。大小判定は前述の図3に示すフローと同じとなるためここでは省略する。判定終了後は本フローを終了する。ステップDにてO−W相間電圧3bが電圧上昇抑制判定値よりも小さいと判断される場合は、U−O相間電圧3aのみが電圧上昇抑制判定値よりも大きいことになるため、出力電圧モードをO−W出力モードに変更して、本フローを終了する。   First, in Step C, it is verified whether the U-O interphase voltage 3a is larger than the voltage rise suppression determination value. If it is determined that the voltage is large, the process proceeds to step D, and this time, it is verified whether the O-W interphase voltage 3b is larger than the voltage rise suppression determination value. When it is determined that the voltage is large, both the U-O phase voltage 3a and the OW phase voltage 3b exceed the voltage rise suppression determination value, so that the U-O phase voltage 3a and the OW phase voltage again. The size is determined to be 3b. The size determination is the same as the flow shown in FIG. After the determination is completed, this flow ends. When it is determined in step D that the OW phase voltage 3b is smaller than the voltage rise suppression determination value, only the U-O phase voltage 3a is larger than the voltage rise suppression determination value. Is changed to the O-W output mode, and this flow ends.

ステップCにてU−O相間電圧3aが電圧上昇抑制判定値よりも小さいと判断される場合は、ステップEに進む。ステップEでは、O−W相間電圧3bが電圧上昇抑制判定値よりも大きいか検証する。大きいと判断される場合は、O−W相間電圧3bのみが電圧上昇抑制判定値よりも大きいことになるため、出力電圧モードをU−O出力モードに変更して、本フローを終了する。ステップEにてO−W相間電圧3bが電圧上昇抑制判定値よりも小さいと判断される場合は、出力モードの変更は行なわずに本フローを終了する。   When it is determined in step C that the U-O interphase voltage 3a is smaller than the voltage increase suppression determination value, the process proceeds to step E. In Step E, it is verified whether the O-W phase voltage 3b is larger than the voltage rise suppression determination value. If it is determined that the voltage is larger, only the O-W interphase voltage 3b is larger than the voltage increase suppression determination value, so the output voltage mode is changed to the U-O output mode, and this flow ends. When it is determined in step E that the O-W interphase voltage 3b is smaller than the voltage increase suppression determination value, the present flow is terminated without changing the output mode.

このようにすることにより、系統電圧の相の負荷バランスの崩れによる電圧上昇を生じさせない、もしくは生じにくくする制御を可能とし、電力を余すことなく逆潮流できる電力変換装置及びそれを用いた系統連系システムを提供することを可能とする。   By doing so, it is possible to perform control that does not cause or hardly causes a voltage increase due to the load balance of the system voltage phase being lost, and a power converter that can reversely flow without leaving power, and a grid connection using the power converter. It is possible to provide a system.

また、電圧上昇抑制中の系統電圧の状況により電圧の低い相へ再連系でき、かつ各相の電圧バランスを保つ制御を可能とし、電力を余すことなく逆潮流できる電力変換装置及びそれを用いた系統連系システムを提供することを可能とする。   In addition, a power conversion device that can be reconnected to a low voltage phase depending on the system voltage condition during which voltage rise is being suppressed, and that can maintain the voltage balance of each phase, and that can perform reverse power flow without excess power, and its use It is possible to provide a grid interconnection system.

なお、本実施形態ではフローチャートの説明において、U−O相間電圧を基準とした判定による説明を行なっているが、O−W相間電圧を基準とした判定を行なうことでも本発明の適用が可能である。   In this embodiment, in the description of the flowchart, the description is based on the determination based on the U-O phase voltage, but the present invention can also be applied by performing the determination based on the O-W phase voltage. is there.

本発明に係る系統連系システムの実施形態を模式的に説明する概略構成図である。1 is a schematic configuration diagram schematically illustrating an embodiment of a grid interconnection system according to the present invention. 本発明に係る系統連系システムにおける、出力モードの切り替えパターンを説明する説明図である。It is explanatory drawing explaining the switching pattern of an output mode in the grid connection system which concerns on this invention. 本実施形態にかかわる連系開始直前の出力電圧モードの判定方法を示すフローチャートである。It is a flowchart which shows the determination method of the output voltage mode immediately before the grid connection start concerning this embodiment. 本実施形態にかかわる電圧上昇抑制中の出力電圧モードの再判定方法を示すフローチャートである。It is a flowchart which shows the re-determination method of the output voltage mode in the voltage rise suppression concerning this embodiment. 従来の系統連系システムの実施形態を模式的に説明する概略構成図である。It is a schematic block diagram which illustrates typically the embodiment of the conventional grid connection system. 従来の単相3線の商用電力系統の電圧上昇の様子を説明する概略説明図である。It is a schematic explanatory drawing explaining the mode of the voltage rise of the conventional single phase 3 wire commercial electric power system. 本発明に係る系統連系システムにおける、単相3線の商用電力系統の電圧変化の様子を説明する概略説明図である。It is a schematic explanatory drawing explaining the mode of the voltage change of the commercial electric power system of a single phase 3 line | wire in the grid connection system which concerns on this invention.

符号の説明Explanation of symbols

1:直流電源
2:パワーコンディショナ
21:制御部
22:電圧変換部
23:電力変換部
24:出力切替部
24a:U−O相切替スイッチ
24b:O−W相切替スイッチ
25:系統電圧監視部
3:単相3線式配電線
3a:U−O相間電圧
3b:O−W相間電圧
4、4a、4b:負荷
U3、U31:U相
O3、O31:O相
W3、W31:W相
J:系統連系システム
S:系統連系システム
1: DC power supply 2: Power conditioner 21: Control unit 22: Voltage conversion unit 23: Power conversion unit 24: Output switching unit 24a: U-O phase switching switch 24b: OW phase switching switch 25: System voltage monitoring unit 3: Single-phase three-wire distribution line 3a: U-O phase voltage 3b: O-W phase voltage 4, 4a, 4b: Load U3, U31: U-phase O3, O31: O-phase W3, W31: W-phase J: Grid interconnection system S: Grid interconnection system

Claims (1)

直流電源の直流電力を交流電力に変換し、前記交流電力を単相3線式商用系統及び交流負荷に供給して系統連系する電力変換部と、前記単相3線式商用系統のU−O相間及び前記O−W相間のそれぞれの商用系統電圧を監視する商用系統電圧監視部と、前記電力変換部を前記U−O相間またはO−W相間またはU−W相間のいずれかに連系させる出力切替部とを備えた電力変換装置であって、前記U−O相間、O−W相間及びU−W相間のそれぞれの電圧に応じて前記出力切替部を前記U−O相間またはO−W相間またはU−W相間のいずれかに切り替えて前記電力変換部と前記前記交流電力を単相3線式商用系統とを連系運転させるようにしたことを特徴とする電力変換装置。 A power conversion unit that converts DC power of a DC power source into AC power, supplies the AC power to a single-phase three-wire commercial system and an AC load, and interconnects the power; and U- of the single-phase three-wire commercial system A commercial system voltage monitoring unit that monitors the commercial system voltage between the O phases and between the O-W phases, and the power conversion unit is connected to either the U-O phase, the O-W phase, or the U-W phase. An output switching unit, wherein the output switching unit is connected between the U-O phase or the O--phase according to the respective voltages between the U-O phase, the OW phase, and the U-W phase. A power conversion device, wherein the power conversion unit and the AC power are switched to a single-phase three-wire commercial system by switching between W phase or U-W phase.
JP2005096096A 2005-03-29 2005-03-29 Power conversion device Pending JP2006280106A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005096096A JP2006280106A (en) 2005-03-29 2005-03-29 Power conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005096096A JP2006280106A (en) 2005-03-29 2005-03-29 Power conversion device

Publications (1)

Publication Number Publication Date
JP2006280106A true JP2006280106A (en) 2006-10-12

Family

ID=37214246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005096096A Pending JP2006280106A (en) 2005-03-29 2005-03-29 Power conversion device

Country Status (1)

Country Link
JP (1) JP2006280106A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008199703A (en) * 2007-02-08 2008-08-28 Kansai Electric Power Co Inc:The Low-voltage power distribution system
JP2010110041A (en) * 2008-10-28 2010-05-13 Chugoku Electric Power Co Inc:The Voltage adjusting system for home
JP2011135747A (en) * 2009-12-25 2011-07-07 Toyota Motor Corp Power control apparatus
JP2016505237A (en) * 2013-02-04 2016-02-18 フォータム オーワイジェイ System and method for coupling a single phase power source to a multiphase power network
JP2016086510A (en) * 2014-10-24 2016-05-19 株式会社日本自動車部品総合研究所 Power conversion equipment
JP2016111876A (en) * 2014-12-09 2016-06-20 シャープ株式会社 Power converter
JP2017041943A (en) * 2015-08-18 2017-02-23 株式会社日本総合研究所 AC voltage output device
JP2017063592A (en) * 2015-09-24 2017-03-30 台達電子工業股▲ふん▼有限公司Delta Electronics,Inc. Inverter device and interconnection photovoltaic power generation system
JP2018007366A (en) * 2016-06-29 2018-01-11 アイシン精機株式会社 System interconnection control device
JP2020162346A (en) * 2019-03-27 2020-10-01 大阪瓦斯株式会社 System interconnection device
JP2021027763A (en) * 2019-08-08 2021-02-22 住友電気工業株式会社 Distribution type power supply system and operation method for the same

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008199703A (en) * 2007-02-08 2008-08-28 Kansai Electric Power Co Inc:The Low-voltage power distribution system
JP2010110041A (en) * 2008-10-28 2010-05-13 Chugoku Electric Power Co Inc:The Voltage adjusting system for home
JP2011135747A (en) * 2009-12-25 2011-07-07 Toyota Motor Corp Power control apparatus
US10008951B2 (en) 2013-02-04 2018-06-26 Fortum Oyj System and method for coupling a monophase power source to a multiphase power network
JP2016505237A (en) * 2013-02-04 2016-02-18 フォータム オーワイジェイ System and method for coupling a single phase power source to a multiphase power network
JP2016086510A (en) * 2014-10-24 2016-05-19 株式会社日本自動車部品総合研究所 Power conversion equipment
JP2016111876A (en) * 2014-12-09 2016-06-20 シャープ株式会社 Power converter
JP2017041943A (en) * 2015-08-18 2017-02-23 株式会社日本総合研究所 AC voltage output device
JP2017063592A (en) * 2015-09-24 2017-03-30 台達電子工業股▲ふん▼有限公司Delta Electronics,Inc. Inverter device and interconnection photovoltaic power generation system
US10148222B2 (en) 2015-09-24 2018-12-04 Delta Electronics, Inc. Inverter apparatus and solar energy grid-connected power generation system
JP2018007366A (en) * 2016-06-29 2018-01-11 アイシン精機株式会社 System interconnection control device
JP2020162346A (en) * 2019-03-27 2020-10-01 大阪瓦斯株式会社 System interconnection device
JP7233279B2 (en) 2019-03-27 2023-03-06 大阪瓦斯株式会社 Grid connection device
JP2021027763A (en) * 2019-08-08 2021-02-22 住友電気工業株式会社 Distribution type power supply system and operation method for the same
JP7234852B2 (en) 2019-08-08 2023-03-08 住友電気工業株式会社 Distributed power supply system and its operation method

Similar Documents

Publication Publication Date Title
JP2006280106A (en) Power conversion device
JP5344759B2 (en) Power distribution system
JP6167252B2 (en) Power conversion apparatus, power management method, and power conversion system
US10033189B2 (en) Operation control apparatus for solar power system
JP2016214057A (en) Power distribution system and electric system
JP5284447B2 (en) Distributed power system
JP2010041886A (en) Power distribution system
JP2008283764A (en) Power conditioner for dispersed power sources and dispersed power system
JP2003289626A (en) Power conditioner for solar power generation system
JP6077225B2 (en) Grid interconnection power converter
JP2009207234A (en) Linkage system of hybrid system
KR101920695B1 (en) ESS for charging and discharging at the same time, and using ON-Grid and OFF-Grid
JP2012182868A (en) Photovoltaic power generator
JP2011139577A (en) Power conditioner and power generation system with the same
JP2004297960A (en) Power-converting device and systematically cooperating system using it
JP2011114930A (en) System-interconnected power generation system
JP4892417B2 (en) Power system supply and demand control system, command device, and power system supply and demand control method
JP5799548B2 (en) Power generation system
KR102568488B1 (en) Method and server for maintaining power quality of distribution system through renewable energy system
JP6343434B2 (en) Power conversion device and power conversion method
JP2006345679A (en) Solar energy power generation system
JP6027147B2 (en) Power conditioner and control method of power conditioner
JP2013031309A (en) Power conditioner
KR101566802B1 (en) Charging system for charging DC link
JP5790084B2 (en) Power generation system