JP5166730B2 - Three-phase earth leakage breaker - Google Patents

Three-phase earth leakage breaker Download PDF

Info

Publication number
JP5166730B2
JP5166730B2 JP2006356205A JP2006356205A JP5166730B2 JP 5166730 B2 JP5166730 B2 JP 5166730B2 JP 2006356205 A JP2006356205 A JP 2006356205A JP 2006356205 A JP2006356205 A JP 2006356205A JP 5166730 B2 JP5166730 B2 JP 5166730B2
Authority
JP
Japan
Prior art keywords
circuit
phase
leakage
trip coil
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006356205A
Other languages
Japanese (ja)
Other versions
JP2008166187A (en
Inventor
博之 外山
Original Assignee
河村電器産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 河村電器産業株式会社 filed Critical 河村電器産業株式会社
Priority to JP2006356205A priority Critical patent/JP5166730B2/en
Publication of JP2008166187A publication Critical patent/JP2008166187A/en
Application granted granted Critical
Publication of JP5166730B2 publication Critical patent/JP5166730B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、欠相保護機能を有する三相漏電遮断器に関する。   The present invention relates to a three-phase circuit breaker having a phase loss protection function.

近年、漏電遮断器の技術分野では、JIS規格を国際規格であるIECに整合させていく方向にある。例えば、漏電遮断器の遮断動作時間について、IECでは反限時形(過大な漏電時は動作時間0.04秒以下)で規定している。これに対してJIS規格では、0.1秒以内と規定している。IECでは、JIS規格に比べて、非常に短い時間で遮断動作を完了する必要があり、難しい課題である。また、JIS規格には無かったが、IECには三相のうち一相が欠相しても、負荷側で漏電があった場合、遮断する漏電遮断器の区分が設けられている。また、最近、太陽光発電等の自家用発電が普及し、漏電遮断器が遮断動作した後も負荷側に電圧が残るケースが多いため、遮断動作後、負荷側に電圧がかかり続けても故障しない、いわゆる逆接続可能な漏電遮断器が求められている。   In recent years, in the technical field of earth leakage circuit breakers, there is a direction to make the JIS standard consistent with the international standard IEC. For example, the interruption operation time of the earth leakage circuit breaker is defined by the IEC in an inverse time form (the operation time is 0.04 seconds or less at the time of excessive electric leakage). On the other hand, the JIS standard stipulates that it is within 0.1 seconds. In IEC, it is necessary to complete the blocking operation in a very short time compared to the JIS standard, which is a difficult problem. Although not in the JIS standard, the IEC is provided with an earth leakage breaker section that cuts off if there is a leakage on the load side even if one of the three phases is missing. In addition, recently, private power generation such as solar power generation has become widespread, and there are many cases in which voltage remains on the load side even after the earth leakage circuit breaker has been cut off. Therefore, there is a demand for an earth leakage circuit breaker that can be reversely connected.

上記要求を一部満たす従来の三相漏電遮断器の技術としては、次の特許文献1,2のものが知られている。
特許文献1には、漏電検出部の電源を三相のうち二相からとり、サイリスタSCRがONすると商用電圧を半波整流した電圧波形がトリップコイルTCに印加され、半波整流電流波形でトリップコイルTCが励磁され、接点S1〜S3を引き外す技術が記載されている。
また、特許文献2には、漏電検出部の電源を三相からとり、漏電検出し、サイリスタSCRがONすると、商用電圧を三相全波整流した電圧波形がトリップコイルTCに印加され、直流電流波形でトリップコイルTCを励磁して、接点S1〜S3を引き外す技術が記載されている。
The following patent documents 1 and 2 are known as conventional three-phase earth leakage circuit breaker technologies that partially satisfy the above requirements.
In Patent Document 1, the power source of the leakage detection unit is taken from two of the three phases, and when the thyristor SCR is turned on, a voltage waveform obtained by half-wave rectifying the commercial voltage is applied to the trip coil TC and tripped with a half-wave rectified current waveform A technique is described in which the coil TC is excited and the contacts S1 to S3 are removed.
Further, in Patent Document 2, when the power supply of the leakage detection unit is taken from three phases, leakage detection is performed, and when the thyristor SCR is turned on, a voltage waveform obtained by rectifying the three-phase full wave of the commercial voltage is applied to the trip coil TC. A technique is described in which the trip coil TC is excited with a waveform to trip the contacts S1 to S3.

特開平5−290715号公報JP-A-5-290715 特開2004−015961号公報JP 2004-015961 A

しかし、特許文献1では、漏電を検出してサイリスタSCRがONしても、半波整流電圧がかかっているため、トリップコイルTCが励磁されない時間が最悪半サイクル(50Hzの場合0.01秒)強発生する。また動作時間規格値が0.04秒以内であるため非常に多くの時間が無駄になるし、三相中一相が欠相すると漏電が起こっても動作しない。
また特許文献2では、逆接続で使用された場合や、負荷側に太陽光発電等の自家用発電設備があり、漏電遮断後も負荷側に電圧が残った場合、サイリスタSCRがOFFせず、トリップコイルTCに励磁電流が流れ続け、焼損する恐れがあった。
However, in Patent Document 1, even if the leakage is detected and the thyristor SCR is turned on, a half-wave rectified voltage is applied, so the time during which the trip coil TC is not excited is the worst half cycle (0.01 seconds at 50 Hz). Strongly generated. Also, since the operating time standard value is within 0.04 seconds, a very large amount of time is wasted, and if one of the three phases is lost, it will not operate even if a leakage occurs.
Further, in Patent Document 2, when a reverse connection is used, or when there is a private power generation facility such as solar power generation on the load side, and voltage remains on the load side even after leakage is interrupted, the thyristor SCR does not turn off and trips. There was a possibility that the exciting current continued to flow through the coil TC and burnt out.

そこで、本発明では上記課題を鑑み、遮断動作時間を短縮し、三相のうち一相が欠相しても負荷側で漏電があった場合でも遮断でき、逆接続しても故障しないようにできる三相漏電遮断器の提供を課題とする。   Therefore, in view of the above problems, the present invention shortens the interruption operation time so that even if one of the three phases is lost, even if there is a leakage on the load side, it can be interrupted, and even if it is reversely connected, it will not break down. An object is to provide a three-phase earth leakage circuit breaker that can be used.

上記課題を解決するため、請求項1の発明に係る三相漏電遮断器は、自家用発電設備から負荷側に電力を供給可能な三相電路の3本の電力線の漏電を検出して信号を出力する零相変流器と、零相変流器の出力信号に基づき漏電を検出して信号を出力する漏電検出回路と、励磁電流を流したトリップコイルで三相電路の接点を引き外す引き外し機構と、三相電路の三相交流電力から励磁電流を生成する励磁電流生成回路と、漏電検出回路の出力信号に基づき励磁電流生成回路で生成された励磁電流をトリップコイルに流すスイッチング素子と、を備えてなり、励磁電流生成回路が、励磁電流を、所定電圧まで降圧した交流電圧を整流し単一の容量性素子に充電して生成し、スイッチング素子が、零相変流器が漏電を検出した際に、単一の容量性素子に充電状態から放電完了状態まで励磁電流を放電させてトリップコイルに流すように構成される。 In order to solve the above-mentioned problem, the three-phase circuit breaker according to the invention of claim 1 detects the leakage of the three power lines of the three-phase circuit that can supply power from the private power generation equipment to the load side, and outputs a signal. A tripping circuit that trips the contact of a three-phase circuit with a trip coil that detects the leakage current and outputs a signal based on the output signal of the zero-phase current transformer and outputs a signal. A mechanism, an exciting current generating circuit that generates an exciting current from the three-phase AC power of the three-phase circuit, a switching element that causes the exciting current generated by the exciting current generating circuit based on the output signal of the leakage detection circuit to flow to the trip coil, The exciting current generation circuit rectifies the alternating current obtained by stepping down the excitation current to a predetermined voltage and charges it to a single capacitive element, and the switching element generates a leakage current in the zero-phase current transformer. Single capacitive when detected From the charging state to the child until the discharge completion state by discharging the excitation current configured to channel the trip coil.

請求項2の発明に係る三相漏電遮断器は、励磁電流生成回路が、三相電路の3本の電力線の各相電圧を所定電圧に調整する降圧回路と、降圧回路の各出力電圧を整流する整流回路と、容量性素子として、整流回路の出力電圧を平滑するとともにトリップコイルに流す励磁電流を充電するコンデンサと、を備え、コンデンサを充電した後の余剰電力を動作電力として漏電検出回路へ供給するように構成される。   The three-phase leakage circuit breaker according to the invention of claim 2 is a step-down circuit in which the excitation current generating circuit adjusts each phase voltage of the three power lines of the three-phase circuit to a predetermined voltage, and rectifies each output voltage of the step-down circuit. And a capacitor that smoothes the output voltage of the rectifier circuit and charges the excitation current flowing through the trip coil as a capacitive element, and uses the surplus power after charging the capacitor as operating power to the leakage detection circuit Configured to supply.

請求項3の発明に係る三相漏電遮断器は、トリップコイルが、釈放電磁式であるように構成される。   The three-phase earth leakage circuit breaker according to the invention of claim 3 is configured such that the trip coil is a negative discharge magnetic type.

請求項1、3の発明によれば、励磁電流生成回路によって、三相電路の電源電圧を一定値の直流電圧に平滑したので、漏電の検出後、瞬時に遮断動作を起こすことができ、漏電遮断器の遮断動作時間をIECの反限時形により近づくように短縮できる。また、容量性素子の容量を調整することで、三相中一相が欠相しても遮断動作させるための励磁電流を確保して遮断動作でき、安全性を向上できる。逆接続された場合や、負荷側に電圧が残った場合でも、容量性素子が放電してしまえば、トリップコイルに大きな励磁電流は流れ続けることがないため、トリップコイルや周辺の接続部品が焼損する恐れをなくし、焼損に伴う断線や短絡等の故障を防止可能となる。   According to the first and third aspects of the present invention, since the power supply voltage of the three-phase circuit is smoothed to a constant DC voltage by the exciting current generating circuit, the interruption operation can be instantaneously performed after the detection of the leakage. The breaking operation time of the circuit breaker can be shortened so as to be closer to the IEC inverse time form. In addition, by adjusting the capacitance of the capacitive element, even if one of the three phases is lost, it is possible to secure an exciting current for performing a cutoff operation and to improve the safety. Even if the connection is reversed or voltage remains on the load side, if the capacitive element is discharged, a large excitation current will not continue to flow through the trip coil. It is possible to prevent failures such as disconnection and short circuit due to burning.

請求項2の発明によれば、励磁電流生成回路を、信頼性の高い安価な部品を使用して構成できる。   According to the second aspect of the present invention, the exciting current generating circuit can be configured using highly reliable and inexpensive parts.

以下、本発明を具体化した実施の形態を、図面に基づいて詳細に説明する。図1は本発明に係る三相漏電遮断器の一例を示す回路図であり、1は制御部、2は零相変流器、3はトリップコイル、4は接点、5は三相電路であり、6はIC化された漏電検出回路、8は容量性素子としてのコンデンサを示している。また、5aは遮断器の電源側端子、5bは遮断器の負荷側端子である。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, embodiments of the invention will be described in detail with reference to the drawings. FIG. 1 is a circuit diagram showing an example of a three-phase leakage breaker according to the present invention, wherein 1 is a control unit, 2 is a zero-phase current transformer, 3 is a trip coil, 4 is a contact, and 5 is a three-phase circuit. , 6 is an IC leakage detection circuit, and 8 is a capacitor as a capacitive element. 5a is a power supply side terminal of the circuit breaker, and 5b is a load side terminal of the circuit breaker.

零相変流器2は三相電路5の3本の電力線を挿通させて設置され、零相変流器2の出力電流は制御部1で電圧に変換されて検出信号として漏電検出回路6に入力される。そして、制御部1は、三相電路5のR,S,T各相から動作電源を漏電検出回路6に供給する3本の電源線路を有している。3本の電源線路には、三相電路5の三相交流電力から励磁電流を生成する励磁電流生成回路16が接続されている。3本の電源線路の三相電路側には、コンデンサC5,C6,C7の両端に対応する抵抗R1〜R6を直列接続してなる降圧回路11が設けられ、降圧回路11の後段にはダイオードD1〜D6からなる整流回路12が設けられている。整流回路12による整流後の電源線路の集合端は、整流電圧を平滑するとともにトリップコイル3の励磁電流を充電するコンデンサ8を介して接地線に接続されている。励磁電流生成回路16は、これら降圧回路11、全波整流回路12、及びコンデンサ8によって構成されている。トリップコイル3は、励磁電流を流すことで三相電路5の接点4を引き外す引き外し機構の一構成として機能している。   The zero-phase current transformer 2 is installed by inserting the three power lines of the three-phase electric circuit 5, and the output current of the zero-phase current transformer 2 is converted into a voltage by the control unit 1 and supplied to the leakage detection circuit 6 as a detection signal. Entered. The control unit 1 has three power supply lines that supply operating power to the leakage detection circuit 6 from the R, S, and T phases of the three-phase circuit 5. An excitation current generating circuit 16 that generates an excitation current from the three-phase AC power of the three-phase electric circuit 5 is connected to the three power lines. On the three-phase electric circuit side of the three power supply lines, a step-down circuit 11 is provided in which resistors R1 to R6 corresponding to both ends of the capacitors C5, C6, and C7 are connected in series. A rectifier circuit 12 composed of .about.D6 is provided. The collective end of the power line after rectification by the rectifier circuit 12 is connected to the ground line via a capacitor 8 that smoothes the rectified voltage and charges the excitation current of the trip coil 3. The exciting current generation circuit 16 includes the step-down circuit 11, the full-wave rectifier circuit 12, and the capacitor 8. The trip coil 3 functions as a configuration of a tripping mechanism that trips the contact 4 of the three-phase circuit 5 by passing an exciting current.

さらに整流後の電源線路の集合端は、漏電検出回路6の電源端子及びトリップコイル3の一端に接続されている。トリップコイル3の他端は、漏電検出回路6の出力信号に基づき励磁電流生成回路16で生成された励磁電流をトリップコイル3に流すスイッチング素子としてのサイリスタ9のアノード端に接続され、サイリスタ9のカソード端は接地線に接続されている。   Further, the collective end of the rectified power supply line is connected to the power supply terminal of the leakage detection circuit 6 and one end of the trip coil 3. The other end of the trip coil 3 is connected to the anode end of a thyristor 9 as a switching element that causes the exciting current generated by the exciting current generating circuit 16 to flow to the trip coil 3 based on the output signal of the leakage detection circuit 6. The cathode end is connected to a ground line.

ここで、トリップコイル3は、励磁電流を流していない場合、永久磁石の磁力でバネを蓄勢して接点を閉状態で保持する一方、励磁電流を流した場合、永久磁石の磁束を打ち消して磁力を弱め、蓄勢されたバネを釈放して接点を開放動作させるような、いわゆる釈放電磁式で構成されている。また降圧回路11は、トリップコイル3を開放動作可能な励磁電流を流すことができる電圧値まで電源電圧を電圧降下させ、コンデンサ8は、全波整流回路12の全波整流電圧を予め規定した電圧変動範囲内で平滑するように構成されている。尚、電圧変動範囲は、一相のみを全波整流して平滑した場合であってもトリップコイル3を引き外し動作できる値にすることが望ましい。   Here, when the exciting current is not flowing, the trip coil 3 accumulates the spring by the magnetic force of the permanent magnet and holds the contact in the closed state. On the other hand, when the exciting current is flowed, the trip coil 3 cancels the magnetic flux of the permanent magnet. It is composed of a so-called magnetic discharge type that weakens the magnetic force and releases the stored spring to open the contact. The step-down circuit 11 drops the power supply voltage to a voltage value at which an excitation current capable of opening the trip coil 3 can flow, and the capacitor 8 is a voltage that predefines the full-wave rectified voltage of the full-wave rectifier circuit 12. It is comprised so that it may smooth within the fluctuation range. It should be noted that the voltage fluctuation range is preferably set to a value that allows tripping of the trip coil 3 even when only one phase is smoothed by full-wave rectification.

次に上記回路の動作を説明する。
三相電路5で漏電が生じていない時、励磁電流生成回路16では、各相の交流電圧が降圧回路11および整流回路12で所定電圧まで電圧降下及び全波整流される。また整流回路12の集合端では、コンデンサ8が、整流電圧を所定値の直流電圧に平滑し、トリップコイル3を開放動作させるのに十分な励磁電流を出力可能に常時充電する。またコンデンサ8を充電した後の余剰電力は、動作電力として漏電検出回路6へ供給され、所定値の直流電圧によって漏電検出回路6が動作する。
Next, the operation of the above circuit will be described.
When there is no leakage in the three-phase electric circuit 5, the exciting current generation circuit 16 drops and full-wave rectifies the AC voltage of each phase to a predetermined voltage by the step-down circuit 11 and the rectifier circuit 12. Further, at the collective end of the rectifier circuit 12, the capacitor 8 always charges the rectified voltage so as to smooth the rectified voltage to a predetermined DC voltage and output an excitation current sufficient to open the trip coil 3. The surplus power after charging the capacitor 8 is supplied to the leakage detection circuit 6 as operating power, and the leakage detection circuit 6 is operated by a predetermined DC voltage.

三相のうちいずれかの相で漏電が生じた時、漏電を検出した零相変流器2から出力された検出信号によって、サイリスタがONする。そしてコンデンサ8がサイリスタ9を経由して接地線に放電し、充電状態から放電完了状態までの所定時間の間、トリップコイル3に励磁電流を流す。そして、サイリスタ9がONになってから時間差無く、接点4を開放動作させ三相電路5を電源から引き外す。また、三相中一相が欠相した場合でも、同様に整流回路12の集合端で所定値の直流電圧を出力して、遮断動作を行う。   When leakage occurs in any of the three phases, the thyristor is turned on by the detection signal output from the zero-phase current transformer 2 that has detected the leakage. Then, the capacitor 8 is discharged to the ground line via the thyristor 9, and an exciting current is supplied to the trip coil 3 for a predetermined time from the charging state to the discharging completion state. Then, the contact 4 is opened and the three-phase electric circuit 5 is disconnected from the power supply without time difference after the thyristor 9 is turned on. Even when one of the three phases is lost, the DC voltage of a predetermined value is output at the collective end of the rectifier circuit 12 in the same manner, and the cutoff operation is performed.

本漏電遮断器によれば、降圧回路11、整流回路12及びコンデンサ8によって、三相電路5の電源電圧を一定値の直流電圧に平滑したので、漏電の検出後、瞬時に遮断動作を起こすことができ、漏電遮断器の遮断動作時間をIECの規定値以下にまで短縮することが可能となる。また、コンデンサ8の容量を調整することで、三相中一相が欠相しても遮断動作させるための励磁電流を確保でき、遮断動作できる。加えて、逆接続された場合や、負荷側に電圧が残った場合でも、コンデンサ8が放電してしまえば、トリップコイル3に大きな励磁電流は流れ続けることがないため、トリップコイル3や周辺の接続部品が焼損する恐れをなくし、焼損に伴う断線や短絡等の故障を防止可能となる。またコンデンサ8を充電した後の余剰電力を動作電力として漏電検出回路6へ供給するので、励磁電流生成回路16と共用でき、回路構成を簡素化できる。また、励磁電流生成回路16を、信頼性の高い安価な部品を使用して構成できる。   According to this earth leakage breaker, the power supply voltage of the three-phase circuit 5 is smoothed to a constant DC voltage by the step-down circuit 11, the rectifier circuit 12, and the capacitor 8, so that the breaking operation is instantaneously performed after the detection of the earth leakage. Therefore, it is possible to shorten the interruption operation time of the earth leakage circuit breaker to the IEC specified value or less. In addition, by adjusting the capacity of the capacitor 8, even if one of the three phases is lost, an exciting current for performing the cutoff operation can be secured, and the cutoff operation can be performed. In addition, if the capacitor 8 is discharged even if it is reversely connected or if the voltage remains on the load side, a large exciting current will not continue to flow through the trip coil 3, so It is possible to eliminate the risk of burnout of the connected parts and prevent failures such as disconnection and short circuit due to the burnout. Moreover, since the surplus power after charging the capacitor 8 is supplied to the leakage detection circuit 6 as operating power, it can be shared with the exciting current generation circuit 16 and the circuit configuration can be simplified. Further, the exciting current generating circuit 16 can be configured using highly reliable and inexpensive parts.

尚、本発明は上記実施形態に限定されるものではなく、以下に示すように本発明の趣旨を逸脱しない範囲で各部の形状並びに構成を適宜に変更して実施することも可能である。
(1)励磁電流生成回路は、漏電検出回路の電源回路を別回路にして、励磁電流のみを生成するように構成してもよい。
(2)トリップコイルは、釈放電磁式に限らず、励磁電流を流すことで接点を引き外す構造のものであれば良く、バネで付勢して閉状態を保持させた接点を、付勢力よりも強い磁力を生じるように励磁連流を流すことで引き外すもの等、で構成しても良い。
(3)スイッチング素子は、サイリスタSCRに限らず、いわゆるトランジスタやFET等で構成しても良い。
(4)降圧回路は、所定の電圧まで降下できれば良く、他の回路で構成しても良い。
In addition, this invention is not limited to the said embodiment, As shown below, it is also possible to implement by changing suitably the shape and structure of each part in the range which does not deviate from the meaning of this invention.
(1) The excitation current generation circuit may be configured to generate only the excitation current by using a separate power source circuit for the leakage detection circuit.
(2) The trip coil is not limited to a magnetic discharge type, and any trip coil may be used as long as it has a structure in which the contact is pulled off by flowing an exciting current. Alternatively, it may be configured to be removed by flowing an excitation continuous current so as to generate a strong magnetic force.
(3) The switching element is not limited to the thyristor SCR, and may be a so-called transistor or FET.
(4) The step-down circuit only needs to be able to drop to a predetermined voltage, and may be composed of other circuits.

本発明に係る三相漏電遮断器のブロック図である。It is a block diagram of the three-phase earth-leakage circuit breaker according to the present invention.

符号の説明Explanation of symbols

1・・制御部、2・・零相変流器、3・・トリップコイル、4・・接点、5・・三相電路、6・・漏電検出回路、8・・コンデンサ、9・・サイリスタ、11・・電圧降下回路、12・・励磁電流生成回路。   1 .... Control unit, 2 .... Zero phase current transformer, 3 .... Trip coil, 4 .... Contact, 5 .... Three phase circuit, 6 .... Leakage detection circuit, 8 .... Capacitor, 9 .... Thyristor, 11 .... Voltage drop circuit, 12 .... Excitation current generation circuit.

Claims (3)

自家用発電設備から負荷側に電力を供給可能な三相電路の3本の電力線の漏電を検出して信号を出力する零相変流器と、
零相変流器の出力信号に基づき漏電を検出して信号を出力する漏電検出回路と、
励磁電流を流したトリップコイルで三相電路の接点を引き外す引き外し機構と、
三相電路の三相交流電力から励磁電流を生成する励磁電流生成回路と、
漏電検出回路の出力信号に基づき励磁電流生成回路で生成された励磁電流をトリップコイルに流すスイッチング素子と、
を備えてなり、
励磁電流生成回路は、
励磁電流を、所定電圧まで降圧した交流電圧を整流し単一の容量性素子に充電して生成し、
スイッチング素子は、
零相変流器が漏電を検出した際に、単一の容量性素子に充電状態から放電完了状態まで励磁電流を放電させてトリップコイルに流す、
ことを特徴とする三相漏電遮断器。
A zero-phase current transformer that detects a leakage of three power lines in a three-phase circuit that can supply power from a private power generation facility to the load side, and outputs a signal;
A leakage detection circuit that detects a leakage based on the output signal of the zero-phase current transformer and outputs a signal;
A tripping mechanism that trips the contacts of the three-phase circuit with a trip coil that passes excitation current,
An exciting current generating circuit for generating an exciting current from the three-phase AC power of the three-phase electric circuit;
A switching element that causes the excitation current generated by the excitation current generation circuit to flow through the trip coil based on the output signal of the leakage detection circuit;
With
The exciting current generator circuit
The excitation current is generated by rectifying an alternating voltage that is stepped down to a predetermined voltage and charging it to a single capacitive element.
Switching elements are
When the zero-phase current transformer detects a leakage, a single capacitive element is discharged from the charging state to the discharging completion state, and the exciting current is discharged to the trip coil.
A three-phase earth leakage circuit breaker.
励磁電流生成回路は、
三相電路の3本の電力線の各相電圧を所定電圧まで降圧する降圧回路と、
降圧回路の各出力電圧を整流する整流回路と、
容量性素子として、整流回路の出力電圧を平滑するとともにトリップコイルに流す励磁電流を充電するコンデンサと、を備え、
コンデンサを充電した後の余剰電力を動作電力として漏電検出回路へ供給する、
請求項1に記載の三相漏電遮断器。
The exciting current generator circuit
A step-down circuit that steps down each phase voltage of the three power lines of the three-phase circuit to a predetermined voltage;
A rectifier circuit that rectifies each output voltage of the step-down circuit;
As a capacitive element, a capacitor that smoothes the output voltage of the rectifier circuit and charges an exciting current that flows through the trip coil, and
Supply surplus power after charging the capacitor to the leakage detection circuit as operating power,
The three-phase ground fault circuit breaker according to claim 1.
トリップコイルは、釈放電磁式である、
請求項1または2に記載の三相漏電遮断器。
The trip coil is a parallel discharge type,
The three-phase earth leakage circuit breaker according to claim 1 or 2.
JP2006356205A 2006-12-28 2006-12-28 Three-phase earth leakage breaker Active JP5166730B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006356205A JP5166730B2 (en) 2006-12-28 2006-12-28 Three-phase earth leakage breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006356205A JP5166730B2 (en) 2006-12-28 2006-12-28 Three-phase earth leakage breaker

Publications (2)

Publication Number Publication Date
JP2008166187A JP2008166187A (en) 2008-07-17
JP5166730B2 true JP5166730B2 (en) 2013-03-21

Family

ID=39695366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006356205A Active JP5166730B2 (en) 2006-12-28 2006-12-28 Three-phase earth leakage breaker

Country Status (1)

Country Link
JP (1) JP5166730B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017060250A (en) * 2015-09-15 2017-03-23 サンケン電気株式会社 Electric leakage detection device
KR102083600B1 (en) * 2018-11-19 2020-03-02 엘에스산전 주식회사 Elcb(earth leakage circuit breaker) and control method for the elcb

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5755720A (en) * 1980-09-17 1982-04-02 Tokyo Shibaura Electric Co Circuit breaker
JPS5755719A (en) * 1980-09-17 1982-04-02 Tokyo Shibaura Electric Co Circuit breaker
JP2745758B2 (en) * 1989-04-04 1998-04-28 富士電機株式会社 Earth leakage breaker
JPH0591648A (en) * 1991-09-25 1993-04-09 Hitachi Ltd Earth leakage breaker
JP4623560B2 (en) * 2004-09-30 2011-02-02 河村電器産業株式会社 Earth leakage breaker

Also Published As

Publication number Publication date
JP2008166187A (en) 2008-07-17

Similar Documents

Publication Publication Date Title
JP4742232B2 (en) Earth leakage breaker
JP5955484B1 (en) Converter unit system and converter unit
JP2009224198A (en) Ground-fault circuit interrupter
JP3965037B2 (en) DC vacuum interrupter
JP4931754B2 (en) Earth leakage breaker
JP2007141562A (en) Ground-fault interrupter
CN104901273B (en) Rccb
JP2013182680A (en) Electric leakage circuit breaker
JP5104718B2 (en) DC circuit breaker
JP5166730B2 (en) Three-phase earth leakage breaker
JP2008271618A (en) Uninterruptible power supply
JP2007242268A (en) Ground-fault interrupter
JP2009070629A (en) Three-phase ground-fault circuit interrupter
JP2017045706A (en) Earth leakage circuit breaker
JP2009059607A (en) Three-phase ground-fault interrupter
JP4483386B2 (en) Earth leakage breaker
JP2005019133A (en) Fuse blowout detecting device
JP5192777B2 (en) 3-phase earth leakage circuit breaker
KR20170008578A (en) Grid tied polarvoltaic inverter system
JP3189930B2 (en) Earth leakage breaker
KR100905018B1 (en) A crow bar circuit for a wind power generator
JP2010040326A (en) Ground fault interrupter
JP2005354882A (en) Protector and protecting method of distribution system
JP2007299688A (en) Ground fault interrupter
RU2400004C1 (en) Device for protection of three-phase electric motor against open-phase mode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121221

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5166730

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250