JP2005354882A - Protector and protecting method of distribution system - Google Patents

Protector and protecting method of distribution system Download PDF

Info

Publication number
JP2005354882A
JP2005354882A JP2004176282A JP2004176282A JP2005354882A JP 2005354882 A JP2005354882 A JP 2005354882A JP 2004176282 A JP2004176282 A JP 2004176282A JP 2004176282 A JP2004176282 A JP 2004176282A JP 2005354882 A JP2005354882 A JP 2005354882A
Authority
JP
Japan
Prior art keywords
load
current
power supply
phase difference
distribution line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004176282A
Other languages
Japanese (ja)
Other versions
JP4028521B2 (en
Inventor
Hiroshi Watanabe
渡辺  弘
Takayuki Miura
孝之 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Energy Support Corp
Original Assignee
Energy Support Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Energy Support Corp filed Critical Energy Support Corp
Priority to JP2004176282A priority Critical patent/JP4028521B2/en
Publication of JP2005354882A publication Critical patent/JP2005354882A/en
Application granted granted Critical
Publication of JP4028521B2 publication Critical patent/JP4028521B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a protector and a protection method of distribution system in which arrangement of a load-break switch can be simplified. <P>SOLUTION: When a decision is made that power flows into premises (forward power flow), a control section 35 excites a trip coil 25 to open a load-break switch 17. When a decision is made that power flows out from premises (reverse power flow), the control section 35 does not excite the trip coil 25 but sustains throw-in of the load-break switch 17. Consequently, unnecessary opening of the load-break switch 17 due to generation of an eddy current caused by short circuit failure on the outside of premises can be suppressed in a distribution line 11 linked with a distributed power supply 15 in the premises. Furthermore, an operating power supply voltage on the consumer load 14 side is employed as a reference voltage for judging power flow direction. Since power flow direction is judged based on the phase of a load current I<SB>R</SB>for a control power supply voltage Vp, an extra voltage sensor is not required in the load-break switch 17. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、分散型電源が連系した配電系統を保護する配電系統の保護装置及び配電系統の保護方法に関するものである。   The present invention relates to a power distribution system protection device and a power distribution system protection method for protecting a power distribution system connected to a distributed power source.

従来、過電流保護機能を有する負荷開閉器(例えばSOG形高圧負荷開閉器)の制御装置は、需要家側で設定値(負荷開閉器のロック電流値)を超過する過電流(又は短絡電流)が発生すると、負荷開閉器をロックして過電流中の開放を防止する。変電所の保護継電器が動作して異常発生区間を選択遮断し、当該配電線を切離すことにより停電が発生し、停電により過電流が消滅した後(即ち、配電線路が無電圧状態になった後)に事故原因のある需要家の負荷開閉器は開放される。所定時間経過後、前記配電線が再閉路される。事故原因のある需要家以外の需要家へ電力が供給され、事故原因のある需要家の引込線路は前記負荷開閉器により開放されたままなので、需要家構内は停電が継続される。その後事故原因を取り除いて、人手により負荷開閉器を投入して復旧するようになっている。   Conventionally, a control device for a load switch having an overcurrent protection function (for example, a SOG type high voltage load switch) has an overcurrent (or short circuit current) exceeding a set value (lock current value of the load switch) on the consumer side. When this occurs, the load switch is locked to prevent opening during overcurrent. After the protective relay of the substation operates and selectively cuts off the abnormal section, the power line is cut off by disconnecting the distribution line, and after the overcurrent disappears due to the power outage (that is, the distribution line is in a no-voltage state) Later, the load switch of the customer who caused the accident is opened. After a predetermined time has elapsed, the distribution line is reclosed. Since power is supplied to customers other than the customer who has the cause of the accident and the service line of the customer having the cause of the accident remains open by the load switch, the power outage continues in the customer premises. After that, the cause of the accident is removed, and the load switch is turned on manually to recover.

ところで、近年、構内に分散型電源(自家発電装置)を備え、商用電源の電力供給と併用して使用する需要家が増大すると共に当該需要家の発電容量が増大する傾向にある。また、配電系統に連係可能な分散型電源の発電容量が例えば2000kW(キロワット)未満と規定されていることにより、分散型電源から供給される電流が過電流レベル(負荷開閉器のロック電流値を超えるレベル)を超えるケースが発生している。ところが、前記従来の負荷開閉器の制御装置は、需要家が電力会社から電力の供給を受けるのみということを前提として動作する。このため、需要家の構外で事故が発生すると、分散型電源から配電線側へ逆潮流が発生し、この逆潮流が過電流とみなされることにより需要家の設備で事故が発生していない健全な引込線路であるにもかかわらず負荷開閉器が開放される場合があった。   By the way, in recent years, a distributed power source (in-house power generation device) is provided on the premises, and the number of consumers who use it in combination with the power supply of the commercial power source is increasing and the power generation capacity of the consumer tends to increase. In addition, since the power generation capacity of the distributed power source that can be linked to the power distribution system is defined to be less than 2000 kW (kilowatts), for example, the current supplied from the distributed power source is overcurrent level (the load switch lock current value (Exceeding level) has occurred. However, the conventional load switch control device operates on the premise that the consumer only receives power supply from the power company. For this reason, when an accident occurs outside the customer's premises, a reverse power flow occurs from the distributed power source to the distribution line, and this reverse power flow is regarded as an overcurrent, so no accident has occurred in the customer's equipment. In some cases, the load switch was opened despite the fact that it was a long service line.

詳述すると、需要家の構外で事故が発生すると、配電線路は変電所のトリップにより停電となる。しかし、分散型電源を有する需要家から配電線側への電流の流れ込み、即ち逆潮流が発生する。この逆潮流は過電流レベルとなり、前記制御装置はこの過電流を検出し、所定のロック時間(例えば0.1秒間)経過後に負荷開閉器の開放動作をロックして無電圧状態まで開放動作の待機状態とする。分散型電源はその設備規格として配電線の停電時には停電の発生から所定の停止時間(2秒程度)までに停止することが義務付けられている。一般に、配電線停電時における分散型電源の停止時間は負荷開閉器のロック時間よりも長い。このため、制御装置は逆潮流を過電流とみなして検出すると共に、分散型電源の停止により配電線の無電圧状態を検知して負荷開閉器は自動開放する。   In detail, if an accident occurs outside the customer's premises, the distribution line will be out of service due to a trip at the substation. However, current flows from a consumer having a distributed power source to the distribution line side, that is, reverse power flow occurs. This reverse power flow becomes an overcurrent level, and the control device detects this overcurrent, locks the opening operation of the load switch after a predetermined lock time (for example, 0.1 seconds), and performs the opening operation to the no-voltage state. Set to the standby state. As a facility standard, a distributed power source is obliged to be stopped within a predetermined stop time (about 2 seconds) after the occurrence of a power failure when a distribution line is interrupted. In general, the stop time of the distributed power supply at the time of distribution line power failure is longer than the lock time of the load switch. For this reason, the control device detects the reverse power flow as an overcurrent, detects the non-voltage state of the distribution line by stopping the distributed power supply, and automatically opens the load switch.

従って、他の需要家又は電力配電線路中の事故(需要家構外での事故)が原因で変電所の遮断器が遮断(トリップ)し、この遮断器が再投入された場合、事故を発生していない分散型電源を設置した需要家の負荷開閉器は開放状態にある。このため、前記遮断器が再投入された場合に再び配電線路に電源が供給されているにもかかわらず引き続き需要家構内では停電状態が継続する。また、この開放状態の負荷開閉器を投入するためには、有資格者による点検及び復帰操作等、それ相応の回復手順が必要であり、負荷開閉器の投入は時間を要するものであった。このように、需要家側での負荷開閉器の復旧作業は繁雑であるので、需要家構外での事故であるにもかかわらず、無闇に需要家構内の負荷開閉器が開放されることは好ましくなかった。需要家構内での事故(短絡)を検出したときだけ負荷開閉器を開放させることが望まれていた。   Therefore, if the circuit breaker of the substation is cut off (tripped) due to an accident in another customer or the power distribution line (accident outside the customer's premises) and this circuit breaker is turned on again, an accident will occur. The load switch of the customer who installed the distributed power supply that is not used is open. For this reason, when the circuit breaker is turned on again, the power failure state continues in the customer premises even though power is supplied to the distribution line again. In addition, in order to turn on the load switch in the open state, a corresponding recovery procedure such as inspection and return operation by a qualified person is necessary, and it takes time to turn on the load switch. Thus, since the load switch restoration work on the customer side is complicated, it is preferable that the load switch in the customer premises is opened without any darkness despite the accident outside the customer premises. There wasn't. It has been desired to open the load switch only when an accident (short circuit) is detected on the customer premises.

更に分散型電源を設置していないが、大型の誘導電動機(モータ)を負荷として使用している需要家においても、需要家の構外で事故が発生して配電線路が変電所のトリップによって停電となった場合に前記誘導電動機が回生により電流を流し続けようとするため逆潮流が発生する。制御装置はこの逆潮流を過電流とみなして検出すると共に、前記誘導電動機が構内系統から切り離されることにより配電線の無電圧状態を検知して負荷開閉器は自動開放する。前述の分散型電源を設置している場合と同様に需要家構外での事故であるにもかかわらず負荷開閉器が開放するため、同様の対策を施すことが望まれていた。即ち、配電線路の停電時において分散型電源からの電流もしくは大型の電動機からの電流により負荷開閉器が開放されないようにする必要があった。   Furthermore, even though there is no distributed power supply installed, even customers who use large induction motors (loaders) as loads will experience power outages due to trips at substations due to accidents outside the customer's premises. When this happens, the induction motor tries to keep current flowing due to regeneration, and reverse power flow occurs. The control device detects this reverse power flow as an overcurrent and detects the non-voltage state of the distribution line by disconnecting the induction motor from the premises system, and the load switch is automatically opened. Similar to the case where the distributed power source is installed, the load switch opens in spite of the accident outside the customer's premises, so it is desired to take the same measures. That is, it has been necessary to prevent the load switch from being opened by a current from a distributed power source or a current from a large motor during a power failure in the distribution line.

このような問題を解決するために、従来、線路電流の潮流方向をその判断材料とし、分散型電源からの逆潮流に対しては負荷開閉器の開放動作を禁止するようにした負荷開閉器が提案されている(例えば、特許文献1参照。)。即ち、負荷開閉器の制御装置は、停電発生時に相電圧及び負荷電流を検出し、この検出した相電圧及び負荷電流の位相差により潮流方向を決定すると共に、この潮流方向と過電流検出手段からの信号とにより過電流方向を検出する。過電流事故が構内又は構外のどちらか一方で発生したかを特定できるので、構外での事故に起因した過電流による負荷開閉器の開放動作が防止される。このため、変電所の遮断器の再投入後において、投入状態を維持した負荷開閉器を介して需要家へ円滑に電力の供給が行われる。
特開2003−158820号公報
In order to solve such problems, conventionally, a load switch that uses the current flow direction of the line current as the judgment material and prohibits the opening operation of the load switch for reverse power flow from the distributed power source has been used. It has been proposed (see, for example, Patent Document 1). That is, the load switch control device detects the phase voltage and the load current when a power failure occurs, determines the flow direction from the phase difference between the detected phase voltage and the load current, and detects the flow direction and the overcurrent detection means. The overcurrent direction is detected by the signal. Since it is possible to specify whether the overcurrent accident has occurred on the premises or on the premises, the opening operation of the load switch due to the overcurrent caused by the accident on the premises is prevented. For this reason, after the circuit breaker of the substation is turned on again, electric power is smoothly supplied to the customer through the load switch that maintains the input state.
JP 2003-158820 A

ところが、前記従来の負荷開閉器の制御装置においては、相電圧を検出する相電圧検出センサを設ける必要があった。相電圧は線路電流の潮流方向を決定するために必要不可欠であるので、相電圧検出センサを省略することは困難であり、負荷開閉器及びその制御装置の構成の簡素化を阻害する一因となっていた。   However, in the conventional load switch control device, it is necessary to provide a phase voltage detection sensor for detecting the phase voltage. Since the phase voltage is indispensable for determining the flow direction of the line current, it is difficult to omit the phase voltage detection sensor, which is one factor that hinders the simplification of the configuration of the load switch and its control device. It was.

本発明は上記問題点を解決するためになされたものであって、その目的は、負荷開閉器の構成の簡素化が図られる配電系統の保護装置及び配電系統の保護方法を提供することにある。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a distribution system protection device and a distribution system protection method capable of simplifying the configuration of the load switch. .

請求項1に記載の発明は、配電線路に引込線路及び当該引込線路上に設けられた負荷開閉器を介して接続された需要家負荷に対して前記配電線路から供給される電力とは別に電力を供給する分散型電源を備えた配電系統の保護装置において、前記配電線路の3相各相のうちいずれか1相の負荷電流を検出する負荷電流検出部と、前記負荷電流検出部により検出された負荷電流が過電流レベルであるか否かを判別する過電流検出部と、前記負荷電流検出部により検出された負荷電流と需要家構内の制御電源電圧との位相差を演算する位相差演算部と、前記位相差演算部により算出された位相差に基づいて前記引込線路の潮流方向を判定する潮流方向判定部と、前記過電流検出部による判別結果及び前記潮流方向判定部による判定結果に基づいて前記負荷開閉器を開放又は投入維持する制御部とを備えたことを要旨とする。   The invention according to claim 1 provides power separately from power supplied from the distribution line to a consumer load connected to the distribution line via a service line and a load switch provided on the service line. In a protection device for a distribution system having a distributed power supply to be supplied, a load current detection unit that detects a load current of any one of the three phases of the distribution line, and the load current detection unit An overcurrent detection unit that determines whether or not the load current is at an overcurrent level, and a phase difference calculation unit that calculates a phase difference between the load current detected by the load current detection unit and a control power supply voltage in the customer premises And a flow direction determination unit that determines a flow direction of the incoming line based on the phase difference calculated by the phase difference calculation unit, a determination result by the overcurrent detection unit, and a determination result by the flow direction determination unit The And summarized in that and a control unit for opening or turned maintain serial load break switch.

請求項2に記載の発明は、請求項1に記載の発明において、前記配電線路が停電されてから再閉路された復電時において、当該配電線路の潮流方向を前記潮流方向判定部により新たに判定するようにし、その判定結果を記憶する記憶部を備えたことを要旨とする。   The invention according to claim 2 is the invention according to claim 1, wherein the power flow direction of the distribution line is newly determined by the power flow direction determination unit when the power distribution line is reclosed after a power failure. The gist is that a determination unit is provided and a storage unit for storing the determination result is provided.

請求項3に記載の発明は、配電線路に引込線路及び当該引込線路上に設けられた負荷開閉器を介して接続された需要家負荷に対して前記配電線路から供給される電力とは別に電力を供給する分散型電源を備えた配電系統の保護装置において、前記配電線路の3相各相のうちいずれか1相の負荷電流を検出する負荷電流検出部と、前記負荷電流検出部により検出された負荷電流が過電流レベルであるか否かを判別する過電流検出部と、前記負荷開閉器に内蔵された制御電源及び需要家側の制御電源のうちいずれか一方の電流を検出する制御電源電流検出部と、前記制御電源電流検出部により得られた電流と前記負荷電流検出部により検出された負荷電流との位相差を演算する位相差演算部と、前記位相差演算部により算出された位相差に基づいて前記配電線の潮流方向を判定する潮流方向判定部と、前記過電流検出部による判別結果及び前記潮流方向判定部による判定結果に基づいて前記負荷開閉器を開放又は投入維持する制御部とを備えたことを要旨とする。   The invention according to claim 3 provides power separately from power supplied from the distribution line to a consumer load connected to the distribution line via a service line and a load switch provided on the service line. In a protection device for a distribution system having a distributed power supply to be supplied, a load current detection unit that detects a load current of any one of the three phases of the distribution line, and the load current detection unit An overcurrent detection unit for determining whether or not the load current is at an overcurrent level, and a control power supply current for detecting one of a control power supply built in the load switch and a control power supply on the customer side A detection unit, a phase difference calculation unit that calculates a phase difference between the current obtained by the control power supply current detection unit and the load current detected by the load current detection unit, and a level calculated by the phase difference calculation unit. Based on phase difference A power flow direction determination unit that determines a power flow direction of the distribution line, and a control unit that opens or maintains the load switch based on a determination result by the overcurrent detection unit and a determination result by the power flow direction determination unit. This is the summary.

請求項4に記載の発明は、請求項3に記載の発明において、前記負荷開閉器に内蔵された制御電源及び前記需要家構内の制御電源は、それぞれ制御電源用変圧器であり、前記制御電源電流検出部は前記制御電源用変圧器の二次側に設けられた変流器であることを要旨とする。   According to a fourth aspect of the present invention, in the third aspect of the present invention, the control power source built in the load switch and the control power source in the customer premises are each a control power source transformer, and the control power source The gist of the present invention is that the current detector is a current transformer provided on the secondary side of the control power transformer.

請求項5に記載の発明は、請求項3又は請求項4に記載の発明において、前記配電線路が停電してから再閉路された復電時において、前記負荷電流検出部により検出された負荷電流と前記制御電源電流検出部により得られた電流との位相差を新たに位相差演算部にて演算するようにし、その演算結果を記憶する記憶部を備えたことを要旨とする。   The invention according to claim 5 is the load current detected by the load current detection unit in the invention according to claim 3 or claim 4, when the distribution line is reclosed after a power failure. And a current difference obtained from the control power supply current detection unit are newly calculated by the phase difference calculation unit, and a storage unit for storing the calculation result is provided.

請求項6に記載の発明は、配電線路に引込線路及び当該引込線路上に設けられた負荷開閉器を介して接続された需要家負荷に対して前記配電線路から供給される電力とは別に電力を供給する分散型電源を備えた配電系統の保護方法において、前記配電線路の3相各相のうちいずれか1相の負荷電流が過電流レベルであるか否かを判別する段階と、前記負荷電流と需要家構内の制御電源電圧との位相差を演算する段階と、前記算出された位相差に基づいて前記配電線路の潮流方向を判定する段階と、前記負荷電流が過電流レベルであるか否かの判別結果及び前記配電線路の潮流方向の判定結果に基づいて前記負荷開閉器を開放又は投入維持する段階とを備えたことを要旨とする。   The invention according to claim 6 provides power separately from power supplied from the distribution line to a consumer load connected to the distribution line via a service line and a load switch provided on the service line. In a protection method for a distribution system including a distributed power supply to be supplied, a step of determining whether a load current of any one of three phases of the distribution line is at an overcurrent level; and the load current Calculating the phase difference between the power supply voltage and the control power supply voltage in the customer premises, determining the flow direction of the distribution line based on the calculated phase difference, and whether the load current is at an overcurrent level And a step of opening or maintaining the load switch based on the determination result and the determination result of the flow direction of the distribution line.

請求項7に記載の発明は、配電線路に引込線路及び当該引込線路上に設けられた負荷開閉器を介して接続された需要家負荷に対して前記配電線路から供給される電力とは別に電力を供給する分散型電源を備えた配電系統の保護方法において、前記配電線路の3相各相のうちいずれか1相の負荷電流が過電流レベルであるか否かを判別する段階と、前記負荷開閉器に内蔵された制御電源及び需要家構内の制御電源のうちいずれか一方の電流を検出する段階と、前記電流検出により得られた電流と前記負荷電流との位相差を演算する段階と、前記算出された位相差に基づいて前記配電線の潮流方向を判定する段階と、前記負荷電流が過電流レベルであるか否かの判別結果及び前記配電線路の潮流方向の判定結果に基づいて前記負荷開閉器を開放又は投入維持する段階とを備えたことを要旨とする。   The invention according to claim 7 provides power separately from power supplied from the distribution line to a consumer load connected to the distribution line via a service line and a load switch provided on the service line. A method of protecting a power distribution system including a distributed power source to supply, determining whether or not a load current of any one of the three phases of the distribution line is at an overcurrent level; and Detecting a current of one of a control power supply built in a container and a control power supply in a customer premises, calculating a phase difference between the current obtained by the current detection and the load current, The step of determining the flow direction of the distribution line based on the calculated phase difference, the determination result of whether or not the load current is an overcurrent level, and the determination result of the flow direction of the distribution line Open or close the switch And summarized in that and a step of introducing maintained.

(作用)
請求項1又は請求項6に記載の発明によれば、検出された負荷電流が過電流レベルであるか否かが判別され、その上で、当該負荷電流と需要家構内の制御電源電圧との位相差により潮流方向が判定される。その潮流方向の判定結果に基づいて負荷開閉器は開閉制御される。潮流方向が順方向(即ち、負荷開閉器の負荷側;構内)であると判断された場合には負荷開閉器が開放される。潮流方向が逆潮流(即ち、負荷開閉器の電源側;構外)であると判断された場合には負荷開閉器が投入維持される。このため、構内の分散型電源が連系した配電系統において、構外事故が原因の過電流発生による負荷開閉器の不必要な開放を抑制することができる。また、需要家構内の制御電源電圧を潮流方向判定の基準電圧としたことにより、例えば負荷開閉器内に電圧検出センサを別途設ける必要はない。従って、負荷開閉器の構成の簡素化、ひいては配電系統の保護装置の構成の簡素化が図られる。
(Function)
According to the invention described in claim 1 or claim 6, it is determined whether or not the detected load current is at an overcurrent level, and then the load current and the control power supply voltage in the customer premises are calculated. The tidal direction is determined from the phase difference. The load switch is controlled to open and close based on the determination result of the flow direction. When it is determined that the flow direction is the forward direction (that is, the load side of the load switch; the premises), the load switch is opened. When it is determined that the power flow direction is reverse power flow (that is, the power supply side of the load switch; off-premise), the load switch is turned on and maintained. For this reason, in the distribution system in which the distributed power sources on the premises are connected, it is possible to suppress unnecessary opening of the load switch due to the occurrence of an overcurrent due to an off-site accident. In addition, since the control power supply voltage in the customer premises is used as a reference voltage for determining the tidal direction, it is not necessary to separately provide a voltage detection sensor in the load switch, for example. Therefore, simplification of the configuration of the load switch, and consequently simplification of the configuration of the protection device of the distribution system can be achieved.

請求項2に記載の発明によれば、請求項1に記載の発明の作用に加えて、配電線路が停電されてから再閉路された復電時において、前記負荷電流検出部により検出された負荷電流と需要家構内の制御電源電圧との位相差が新たに位相差演算部により演算され、その演算結果が記憶される。このため、負荷電流が過電流レベルと判別された時の当該負荷電流と需要家構内の制御電源電圧との位相差が、前記配電線路が停電してから再閉路された復電時において記憶された位相差と大幅に(例えば180度程度)変化したことをもって潮流方向が逆潮流と判断できる。ただし、これは復電時の潮流方向が順潮流の場合を想定している。従って、制御電源電圧の位相を位相差演算部に予め入力する必要がない。換言すれば、制御電源電圧の位相が、配電線路における各線間電圧又はそれらの逆相電圧のどれと同相かを入力する必要がない。   According to the invention described in claim 2, in addition to the action of the invention described in claim 1, the load detected by the load current detection unit at the time of power recovery after the distribution line is re-closed after a power failure. The phase difference between the current and the control power supply voltage in the customer premises is newly calculated by the phase difference calculation unit, and the calculation result is stored. Therefore, the phase difference between the load current when the load current is determined to be an overcurrent level and the control power supply voltage in the customer premises is stored at the time of power recovery when the distribution line is re-closed after a power failure. The tidal direction can be determined to be a reverse tidal current when the phase difference has changed significantly (for example, about 180 degrees). However, this assumes that the power flow direction at the time of power recovery is a forward power flow. Therefore, it is not necessary to input the phase of the control power supply voltage into the phase difference calculation unit in advance. In other words, it is not necessary to input whether the phase of the control power supply voltage is in phase with each line voltage in the distribution line or their reverse phase voltage.

請求項3又は請求項7に記載の発明によれば、負荷開閉器に内蔵された制御電源の電流及び需要家構内の制御電源の電流のうちいずれか一方の電流が制御電源検出部により検出される。また、検出された負荷電流が過電流レベルであるか否かが判別され、その上で、当該負荷電流と前述の制御電源検出部により得られた電流との位相差により潮流方向が判定される。その潮流方向の判定結果に基づいて負荷開閉器は開閉制御される。潮流方向が構内(即ち、負荷開閉器の負荷側)であると判断された場合には負荷開閉器が開放される。潮流方向が構外(即ち、負荷開閉器の電源側)であると判断された場合には負荷開閉器が投入維持される。このため、構内の分散型電源が連系した配電系統において、構外事故が原因の過電流発生による負荷開閉器の不必要な開放を抑制することができる。このように、負荷開閉器に内蔵された制御電源又は需要家側の制御電源を利用することにより、例えば負荷開閉器内に電圧検出センサを別途設ける必要はない。従って、負荷開閉器の構成の簡素化、ひいては配電系統の保護装置の構成の簡素化が図られる。   According to the invention described in claim 3 or 7, either one of the current of the control power source built in the load switch and the current of the control power source in the customer premises is detected by the control power source detector. The In addition, it is determined whether or not the detected load current is at an overcurrent level, and then the flow direction is determined based on the phase difference between the load current and the current obtained by the control power source detection unit. . The load switch is controlled to open and close based on the determination result of the flow direction. When it is determined that the flow direction is on the premises (that is, the load side of the load switch), the load switch is opened. When it is determined that the flow direction is off-premise (that is, the power supply side of the load switch), the load switch is turned on and maintained. For this reason, in the distribution system in which the distributed power sources on the premises are connected, it is possible to suppress unnecessary opening of the load switch due to the occurrence of an overcurrent due to an off-site accident. Thus, by using the control power supply built in the load switch or the control power supply on the customer side, there is no need to separately provide a voltage detection sensor in the load switch, for example. Therefore, the structure of the load switch can be simplified, and the structure of the protection device for the distribution system can be simplified.

請求項4に記載の発明によれば、請求項3に記載の発明の作用に加えて、制御電源用変圧器の二次側に流れる電流は、当該制御電源用変圧器の二次側に設けられた変流器により電流変換される。この電流変換により得られた電流と前記負荷電流(相電流)との位相差に基づいて潮流方向の判定がなされる。   According to the invention described in claim 4, in addition to the operation of the invention described in claim 3, the current flowing in the secondary side of the control power transformer is provided on the secondary side of the control power transformer. The current is converted by the current transformer. The direction of the power flow is determined based on the phase difference between the current obtained by this current conversion and the load current (phase current).

請求項5に記載の発明によれば、請求項3又は請求項4に記載の発明の作用に加えて、配電線路が停電されてから再閉路された復電時において、前記負荷電流検出部により検出された負荷電流と前記制御電源電流検出部により得られた電流との位相差が位相差演算部により新たに演算され、この演算結果が記憶部に記憶される。このため、負荷電流が過電流レベルと判別された時の当該負荷電流と前記制御電源電流検出部により得られた電流との位相差が、前記配電線路が停電してから再閉路された復電時において記憶された位相差と大幅(例えば180度程度)に変化したことをもって潮流方向が逆潮流と判断できる。ただし、これは復電時の潮流方向が順潮流の場合を想定している。従って、制御電源電圧の位相を位相差演算部に予め入力する必要がない。換言すれば、制御電源電流の位相が、配電線路における各線間電圧の位相に対して何度ずれているかを入力する必要がない。   According to the invention described in claim 5, in addition to the operation of the invention described in claim 3 or claim 4, at the time of power recovery when the distribution line is re-closed after a power failure, the load current detection unit The phase difference between the detected load current and the current obtained by the control power supply current detection unit is newly calculated by the phase difference calculation unit, and the calculation result is stored in the storage unit. For this reason, the phase difference between the load current when the load current is determined to be an overcurrent level and the current obtained by the control power supply current detection unit is the power restored after the distribution line is cut off. The tidal direction can be determined as a reverse tidal current when the phase difference memorized at the time has changed significantly (for example, about 180 degrees). However, this assumes that the power flow direction at the time of power recovery is a forward power flow. Therefore, it is not necessary to input the phase of the control power supply voltage into the phase difference calculation unit in advance. In other words, it is not necessary to input how many times the phase of the control power supply current is deviated from the phase of each line voltage in the distribution line.

本発明によれば、例えば負荷開閉器内に電圧検出センサを別途設ける必要はないので、当該負荷開閉器の構成の簡素化が図られる。   According to the present invention, for example, it is not necessary to separately provide a voltage detection sensor in the load switch, so that the configuration of the load switch can be simplified.

<第1実施形態>
以下、本発明を、分散型電源が連系した配電系統の保護装置に具体化した第1実施形態を図1及び図2(a),(b)に従って説明する。
<First Embodiment>
Hereinafter, a first embodiment in which the present invention is embodied in a protection device for a distribution system in which distributed power sources are connected will be described with reference to FIGS. 1, 2A, and 2B.

図1に示すように、電力会社側の配電線路11には引込線路13を介して需要家負荷14が接続されており、通常の受電時には需要家構外の配電線路11からの電力が需要家負荷14へ順方向潮流として供給される。配電線路11上において、需要家負荷14の電源側には分散型電源15が接続されており、当該分散型電源15により発電された電力を需要家負荷14へ供給可能とされている。本実施形態において、分散型電源15は発電機とされている。   As shown in FIG. 1, a consumer load 14 is connected to a distribution line 11 on the power company side via a lead-in line 13, and power from the distribution line 11 outside the customer premises is consumed by the customer load during normal power reception. 14 is supplied as a forward current. On the distribution line 11, a distributed power source 15 is connected to the power source side of the customer load 14, and the power generated by the distributed power source 15 can be supplied to the customer load 14. In the present embodiment, the distributed power source 15 is a generator.

また、配電線路11上において、需要家負荷14の電源側には需要家構内制御電源用変圧器16が設けられている。需要家構内制御電源用変圧器16の一次側巻線の両端は一例としてそれぞれ引込線路13のS相,T相に接続されており、同じく二次側巻線の両端はそれぞれ前記制御装置18に接続されている。需要家構内制御電源用変圧器16の二次側巻線には一次側巻線との巻数比に応じた起電圧が発生する。   On the distribution line 11, a customer premises control power transformer 16 is provided on the power source side of the customer load 14. Both ends of the primary side winding of the customer premises control power transformer 16 are connected to the S phase and T phase of the lead-in line 13 as an example, and both ends of the secondary side winding are respectively connected to the control device 18. It is connected. An electromotive voltage is generated in the secondary winding of the customer premises control power transformer 16 in accordance with the turn ratio with the primary winding.

引込線路13上において、分散型電源15及び需要家構内制御電源用変圧器16の接続点よりも電源側には負荷開閉器17が設けられており、この負荷開閉器17は制御装置18により開閉制御される。また、負荷開閉器17は責任分界点上に設置されている。負荷開閉器17及び制御装置18は配電系統の保護装置を構成している。   On the lead-in line 13, a load switch 17 is provided on the power supply side from the connection point of the distributed power supply 15 and the customer premises control power transformer 16, and the load switch 17 is opened and closed by the control device 18. Be controlled. Moreover, the load switch 17 is installed on the responsibility demarcation point. The load switch 17 and the control device 18 constitute a protection device for the distribution system.

<負荷開閉器>
図1に示すように、負荷開閉器17内において、R相、S相及びT相からなる各相の引込線路13上には、開閉部20、零相変流器21、零相電圧検出用コンデンサ22及び過電流検出用の2つの変流器24r,24tが設けられている。開閉部20は引込線路13の各相に設けられた複数のスイッチ20r,20s,20tを備えている。零相変流器21は開閉部20の電源側に設けられており、引込線路13のR相,S相,T相の零相電流(地絡電流)を検出する。零相電圧検出用コンデンサ22は開閉部20の負荷側に設けられており、負荷側の地絡故障と電源側の地絡故障との選択保護を行うための零相電圧を検出する。引込線路13上において、零相電圧検出用コンデンサ22よりも負荷側には2つの変流器24r,24tが配置されている。両変流器24r,24tはそれぞれ引込線路13のR相,T相に設けられている。
<Load switch>
As shown in FIG. 1, in the load switch 17, a switching unit 20, a zero-phase current transformer 21, and a zero-phase voltage detection are provided on a lead-in line 13 of each phase composed of an R phase, an S phase, and a T phase. A capacitor 22 and two current transformers 24r and 24t for detecting overcurrent are provided. The opening / closing unit 20 includes a plurality of switches 20r, 20s, and 20t provided in each phase of the lead-in line 13. The zero-phase current transformer 21 is provided on the power source side of the switching unit 20 and detects the zero-phase current (ground fault current) of the R-phase, S-phase, and T-phase of the lead-in line 13. The zero-phase voltage detection capacitor 22 is provided on the load side of the switching unit 20 and detects a zero-phase voltage for performing selective protection between a load-side ground fault and a power-side ground fault. On the lead-in line 13, two current transformers 24r and 24t are arranged on the load side of the zero-phase voltage detection capacitor 22. Both current transformers 24r and 24t are provided in the R phase and the T phase of the lead-in line 13, respectively.

また、負荷開閉器17内には開閉部20を自動でトリップ動作(開放動作)させるためのトリップコイル25が設けられている。ちなみに、自動トリップ動作には地絡トリップ動作及び過電流トリップ動作がある。地絡トリップ動作とは、負荷側に発生した地絡事故によって引込線路13に地絡電流が流れたとき、この地絡電流を検出して整定値以上である場合、トリップコイル25を励磁して開閉部20を自動開放する動作である。過電流トリップ動作とは、短絡事故において、ある設定値以上の過電流を検出したときには開閉部20を自動開放しないようにロックさせ、変電所の図示しない遮断器がトリップして配電線路11及び引込線路13が無電圧状態になった後に、トリップコイル25を励磁して自動的に開閉部20を瞬時に開放する動作である。   A trip coil 25 for automatically tripping (opening) the switching unit 20 is provided in the load switch 17. Incidentally, the automatic trip operation includes a ground fault trip operation and an overcurrent trip operation. The ground fault trip operation means that when a ground fault current flows through the lead-in line 13 due to a ground fault occurring on the load side, when the ground fault current is detected and the set value is exceeded, the trip coil 25 is excited. In this operation, the opening / closing part 20 is automatically opened. The overcurrent trip operation means that when an overcurrent exceeding a certain set value is detected in a short-circuit accident, the switching unit 20 is locked so as not to be automatically opened, and a circuit breaker (not shown) at the substation trips to cause the distribution line 11 and the lead-in line. This is an operation of exciting the trip coil 25 and automatically opening and closing the opening / closing unit 20 instantaneously after the path 13 is in a no-voltage state.

<制御装置>
制御装置18は、制御電源部30、地絡電流検出部31、過電流検出部32、位相差演算部33、潮流方向判定部34、制御部35及び制御電源電圧位相判定部36を備えている。
<Control device>
The control device 18 includes a control power supply unit 30, a ground fault current detection unit 31, an overcurrent detection unit 32, a phase difference calculation unit 33, a power flow direction determination unit 34, a control unit 35, and a control power supply voltage phase determination unit 36. .

制御電源部30には需要家構内制御電源用変圧器16の二次側巻線の両端がそれぞれ接続されている。需要家構内制御電源用変圧器16の二次側に誘起される制御電源電圧Vp(AC100V)が入力される。制御電源部30は動作電源を制御装置18の各部に供給する。   The control power supply unit 30 is connected to both ends of the secondary winding of the customer-premises control power supply transformer 16. The control power supply voltage Vp (AC100V) induced on the secondary side of the customer premises control power supply transformer 16 is input. The control power supply unit 30 supplies operating power to each unit of the control device 18.

地絡電流検出部31は零相変流器21から出力される零相電流(地絡電流)を検出し、この検出結果を制御部35へ出力する。過電流検出部32は両変流器24r,24tから出力される負荷電流(正確には、引込線路13のR相,T相を流れる負荷電流)を検出すると共にこの検出した負荷電流が過電流レベルか否か(即ち、負荷開閉器17のロック電流値を超えているか否か)を判断し、この判断結果を制御部35へ出力する。   The ground fault current detection unit 31 detects the zero phase current (ground fault current) output from the zero phase current transformer 21 and outputs the detection result to the control unit 35. The overcurrent detector 32 detects the load current (more precisely, the load current flowing through the R phase and T phase of the lead-in line 13) output from the current transformers 24r and 24t, and the detected load current is the overcurrent. It is determined whether or not it is level (that is, whether or not the lock current value of the load switch 17 is exceeded), and the determination result is output to the control unit 35.

位相差演算部33には、需要家構内制御電源用変圧器16の二次側巻線の両端がそれぞれ分岐接続されている。位相差演算部33は需要家構内制御電源用変圧器16の二次側に誘起された制御電源電圧Vp及び変流器24rにより検出された負荷電流Iの各値に基づいて、当該制御電源電圧Vpと負荷電流Iとの位相差を演算し、その演算結果を潮流方向判定部34へ送る。 Both ends of the secondary winding of the customer premises control power transformer 16 are connected to the phase difference calculation unit 33 in a branched manner. Phase difference calculation unit 33 based on the value of the load current I R detected by the induced control power supply voltage Vp and the current transformer 24r on the secondary side of the customer premises control power transformer 16, the control power It calculates the phase difference between the voltage Vp and the load current I R, and sends the calculation result to the power flow direction determination unit 34.

制御電源電圧位相判定部36は、外部からの情報入力により、制御電源電圧Vpが配電線路11における各線間電圧VRS,VST,VTR又はこれらの逆相電圧のどれと同相かどうかを判定し、その判定結果を潮流方向判定部34へ送る。 The control power supply voltage phase determination unit 36 determines whether the control power supply voltage Vp is in phase with each of the line voltages V RS , V ST , V TR in the distribution line 11 or any of these negative-phase voltages based on information input from the outside. Then, the determination result is sent to the tidal direction determination unit 34.

潮流方向判定部34は、位相差演算部33により算出された制御電源電圧Vpと負荷電流Iとの位相差及び制御電源電圧位相判定部36からの制御電源電圧Vpの位相に基づいて潮流方向を判定し、その判定結果を制御部35へ送る。 Flow direction determination unit 34, flow direction based on the phase of the control power supply voltage Vp from the phase difference and the control power supply voltage phase determining unit 36 of the control power supply voltage Vp calculated by the phase difference calculation section 33 and the load current I R And the determination result is sent to the control unit 35.

制御部35は地絡電流検出部31により地絡電流が検出されたときにはトリップコイル25を励磁して開閉部20を自動開放させる。また、制御部35は過電流検出部32により設定値(負荷開閉器17のロック電流値)以上の過電流を検出したときには、潮流方向判定部34により判定された潮流方向に基づいて、負荷開閉器17を開放又は投入維持する。即ち、制御部35は短絡事故が需要家構外(負荷開閉器17の電源側)及び需要家構内(負荷開閉器17の負荷側)のいずれの側で発生したのかの判断結果に基づいて、負荷開閉器17を開放又は投入維持する。   When the ground fault current is detected by the ground fault current detector 31, the controller 35 excites the trip coil 25 to automatically open the opening / closing part 20. Further, when the overcurrent detection unit 32 detects an overcurrent that is equal to or greater than a set value (the lock current value of the load switch 17), the control unit 35 switches the load on and off based on the flow direction determined by the flow direction determination unit 34. The container 17 is kept open or charged. That is, the control unit 35 determines whether the short-circuit accident has occurred outside the customer premises (the power source side of the load switch 17) or on the customer premises (the load side of the load switch 17). The switch 17 is opened or turned on.

具体的には、潮流方向判定部34は、制御電源電圧Vp(正確には、電圧ベクトル)と負荷電流I(正確には、電流ベクトル)との位相差、即ち制御電源電圧Vpに対する負荷電流Iの位相が、0度から+180度の時に順潮流と判定し、また、0度から−180度の時に逆潮流と判定する。この潮流方向判定部34の判定結果(順/逆潮流判定)に基づいて、制御部35は需要家構内短絡事故、または構外短絡事故の判定をする。そして、制御部35は負荷開閉器17の開放動作、または投入維持の判定をする。 Specifically, the power flow direction determination unit 34 determines the phase difference between the control power supply voltage Vp (exactly voltage vector) and the load current I R (exactly current vector), that is, the load current with respect to the control power supply voltage Vp. phase I R may determine the forward power flow when 0 ° +180 degrees, determines that reverse flow when the 0 ° -180 °. Based on the determination result (forward / reverse power flow determination) of the power flow direction determination unit 34, the control unit 35 determines whether the customer premises short circuit accident or the premises short circuit accident. Then, the control unit 35 determines whether the load switch 17 is opened or maintained.

図2(a)に示すように、需要家構内及び構外負荷の力率が100%、且つ制御電源電圧Vpが配電線路11における線間電圧VSTと同相の場合、この制御電源電圧Vpに対する負荷電流Iの位相が90度のとき、潮流方向判定部34は順潮流であると判定する。同じく、図2(b)に示すように、制御電源電圧Vpに対する負荷電流Iの位相が−90度の場合、潮流方向判定部34は逆潮流であると判定する。そして、制御部35は、順潮流と判定した場合には負荷開閉器17の開放動作を行い、逆潮流と判定した場合には負荷開閉器17を投入維持する。 As shown in FIG. 2 (a), customer premises and off-premises load power factor of 100%, and when the control power supply voltage Vp is the line voltage V ST and phase in the power distribution line 11, the load on the control power supply voltage Vp when the phase of the current I R is 90 degrees, it is determined that the power flow direction determination unit 34 is the forward power flow. Also, as shown in FIG. 2 (b), when the phase of the load current I R with respect to the control power supply voltage Vp is -90 degrees, determines that the power flow direction determination unit 34 is a reverse flow. Then, the control unit 35 performs the opening operation of the load switch 17 when it is determined as a forward power flow, and turns on and maintains the load switch 17 when it is determined as a reverse power flow.

<実施形態の作用>
次に、前述のように構成した配電系統の保護装置の短絡事故時の作用を説明する。
需要家構内又は需要家構外での短絡事故時、引込線路13には短絡電流(負荷開閉器17のロック電流値を超える過電流レベルの電流)が流れる。この短絡電流は過電流検出部32により検出される。また、各変流器24r,24tにより検出されたR相の負荷電流Iと、需要家構内制御電源用変圧器16の二次側に誘起された制御電源電圧Vpとに基づいて、位相差演算部33は前記負荷電流Iと前記制御電源電圧Vpとの位相差を演算する。この位相差演算部33により算出された負荷電流IRと前記制御電源電圧Vpとのとの位相差及び制御電源電圧位相判定部36からの制御電源電圧Vpの位相に基づいて、潮流方向判定部34は潮流方向を判定する。
<Operation of Embodiment>
Next, the operation at the time of a short-circuit accident of the protective device for the distribution system configured as described above will be described.
At the time of a short circuit accident inside or outside the customer premises, a short circuit current (current of an overcurrent level exceeding the lock current value of the load switch 17) flows through the lead-in line 13. This short circuit current is detected by the overcurrent detector 32. Each current transformer 24r, and the load current I R of the R-phase detected by 24t, based on the control power supply voltage Vp is induced in the secondary side of the customer premises control power transformer 16, the phase difference calculation unit 33 calculates the phase difference between the control power supply voltage Vp and the load current I R. Based on the phase difference between the load current IR calculated by the phase difference calculation unit 33 and the control power supply voltage Vp and the phase of the control power supply voltage Vp from the control power supply voltage phase determination unit 36, the power flow direction determination unit 34 determines the tidal direction.

潮流方向判定部34により潮流方向が順潮流であると判断された場合には、制御部35は需要家構内での短絡事故と判断してトリップコイル25を励磁し、負荷開閉器17を開放する。潮流方向判定部34により潮流方向が逆潮流であると判断された場合には、制御部35は需要家構外での短絡事故と判断してトリップコイル25を励磁することなく負荷開閉器17を投入維持する。即ち、負荷開閉器の電源側及び負荷側のどちら側で短絡が発生しているかを判断することにより、分散型電源15が連系された配電線路11において、構外短絡事故が原因の過電流発生による負荷開閉器17の不必要な開放が抑制される。   If the tidal direction determination unit 34 determines that the tidal direction is forward tidal flow, the control unit 35 determines that a short-circuit accident has occurred in the customer premises and excites the trip coil 25 to open the load switch 17. . When the tidal direction determination unit 34 determines that the tidal direction is reverse tidal current, the control unit 35 determines that a short circuit accident has occurred outside the customer premises and turns on the load switch 17 without exciting the trip coil 25. maintain. That is, by determining whether a short circuit has occurred on either the power source side or the load side of the load switch, overcurrent occurs due to an external short circuit accident in the distribution line 11 connected to the distributed power source 15. Unnecessary opening of the load switch 17 due to is suppressed.

例えば、配電線路11から需要家側が給電を受けている場合において、構内、即ち需要家側で短絡事故が発生したとき、配電線路11からの電力が故障点へ流れ込む。この故障点へ流れ込む負荷電流Iを過電流検出部32が過電流であると判定すると共に、潮流方向判定部34は、前記位相差演算部33により算出された負荷電流I(過電流)と前記制御電源電圧Vpとの位相差及び制御電源電圧位相判定部36からの制御電源電圧Vpの位相に基づいて、負荷電流Iの潮流方向を判定する。この場合、制御電源電圧Vpが配電線路11における線間電圧VSTと同相のとき、当該制御電源電圧Vpに対する負荷電流Iの位相は0度から+90度の範囲内となり、潮流方向判定部34は負荷電流Iの潮流方向は順潮流であると判定する。負荷電流Iの潮流方向が順方向であることを受けて、制御部35は構内、即ち需要家負荷14側において短絡事故が発生していると判断する。そして、制御部35はトリップコイル25を励磁して開閉部20の各スイッチ20r,20s,20tをそれぞれ開放させる。 For example, when the customer side receives power from the distribution line 11, when a short circuit accident occurs on the premises, that is, on the customer side, the power from the distribution line 11 flows into the failure point. The load current I R flowing into the fault point with determining the overcurrent detection unit 32 is overcurrent flow direction determination unit 34, the phase difference load current I R that is calculated by the arithmetic unit 33 (overcurrent) based on the phase of the control power supply voltage Vp from the phase difference and the control power supply voltage phase determining section 36 and the control power supply voltage Vp and to determine flow direction of the load current I R. In this case, when the control power supply voltage Vp is the line voltage V ST and phase in the power distribution line 11, the phase of the control power source voltage load on Vp current I R becomes a range of +90 degrees from the 0 degree, flow direction determination unit 34 It determines that the flow direction of the load current I R is forward power flow. In response to flow direction of the load current I R is forward, the control unit 35 premises, that is, short circuit in the customer load 14 side is determined to be occurring. Then, the control unit 35 excites the trip coil 25 to open the switches 20r, 20s, and 20t of the opening / closing unit 20, respectively.

また、例えば他の需要家又は配電線路11において短絡事故が発生し、変電所の遮断器がトリップして配電線路11が停電した場合、若しくは予期しない配電線路11の停電時には、分散型電源15の電力が配電線路11側へ流出する。この分散型電源15からの電流を過電流検出部32が過電流であると判定すると共に、潮流方向判定部34は、前記位相差演算部33により算出された負荷電流Iと前記制御電源電圧Vpとの位相差及び制御電源電圧位相判定部36からの制御電源電圧Vpの位相に基づいて、負荷電流Iの潮流方向を判定する。この場合、構外負荷の力率100%且つ制御電源電圧Vpが配電線路11における線間電圧VSTと同相のとき、当該制御電源電圧Vpに対する負荷電流Iの位相は−90度となり、潮流方向判定部34は負荷電流Iの潮流方向は逆潮流であると判定する。負荷電流Iの潮流方向が逆方向であることを受けて、制御部35は構外、即ち配電線路11側において事故が発生していると判断する。そして、制御部35は開閉部20の各スイッチ20r,20s,20tをそれぞれ投入状態に維持する。このように開閉部20がロックされた状態において、変電所の遮断器がトリップして配電線路11及び引込線路13が無電圧状態になっても、制御部35はトリップコイル25を励磁することなく開閉部20の各スイッチ20r,20s,20tをそれぞれ投入状態に維持する。 In addition, for example, when a short circuit accident occurs in another customer or the distribution line 11, the circuit breaker of the substation trips and the distribution line 11 fails, or when the distribution line 11 has an unexpected power failure, Electric power flows out to the distribution line 11 side. The current from the distributed power supply 15 as well as determined that the overcurrent detection unit 32 is overcurrent flow direction determination unit 34, calculated by the phase difference calculation unit 33 the load current I R and the control power supply voltage based on the phase of the control power supply voltage Vp from the phase difference and the control power supply voltage phase determining unit 36 of the Vp, it determines flow direction of the load current I R. In this case, when the power factor of 100% and the control power supply voltage Vp of off-premises load line voltage VST phase with the distribution line 11, the phase of the load current I R with respect to the control power supply voltage Vp becomes -90 degrees, power flow direction determination part 34 flow direction of the load current I R is determined to be reverse power flow. In response to flow direction of the load current I R is reverse, the control unit 35 off-premises, i.e. it is determined that an accident has occurred in the power distribution line 11 side. And the control part 35 maintains each switch 20r, 20s, and 20t of the opening-and-closing part 20 in an ON state, respectively. Even when the switching unit 20 is locked in this way, the control unit 35 does not excite the trip coil 25 even if the circuit breaker of the substation trips and the distribution line 11 and the lead-in line 13 become a non-voltage state. Each switch 20r, 20s, 20t of the opening / closing part 20 is maintained in the on state.

このように、制御電源電圧Vpに対する負荷電流Iの位相に基づいて潮流方向を判定することにより、短絡事故が需要家構内又は需要家構外のいずれで発生したかを特定できるので、需要家構外での短絡事故等による停電に起因した過電流による負荷開閉器17の不必要な開放動作が防止される。従って、変電所の遮断器の再投入後において、投入状態に保たれている負荷開閉器17を介して需要家負荷14への電力の供給が確実に行われる。また、制御電源電圧Vpを負荷電流Iの潮流方向を判定するため電圧基準とすることにより、基準電圧を検出するための電圧検出センサを例えば負荷開閉器17に別途設ける必要はない。 Thus, by determining the flow direction based on the phase of the load current I R with respect to the control power supply voltage Vp, since short circuit can be identified whether it has occurred in any of the customer's premises or customer off-premises, the customer off-premises Unnecessary opening operation of the load switch 17 due to overcurrent caused by a power failure due to a short circuit accident or the like in the case is prevented. Therefore, after the circuit breaker of the substation is turned on again, power is reliably supplied to the consumer load 14 via the load switch 17 kept in the turned on state. Further, by the voltage reference for the control power supply voltage Vp to determine the flow direction of the load current I R, the reference voltage is not necessary to separately provide a voltage detection sensor, for example, load break switch 17 for detecting.

<実施形態の効果>
従って、本実施形態によれば、以下の効果を得ることができる。
・短絡事故発生時には、引込線路13上に配置された負荷開閉器17の電源側及び負荷側のいずれの側で短絡事故が発生したのかを判断し、その判断結果に基づいて前記負荷開閉器17を開放又は投入維持するようにした。即ち、潮流方向が構内(順潮流;負荷開閉器17の負荷側)であると判断した場合には、制御部35はトリップコイル25を励磁し、負荷開閉器17を開放する。潮流方向が構外(逆潮流;負荷開閉器17の電源側)であると判断した場合には、制御部35はトリップコイル25を励磁することなく負荷開閉器17を投入維持する。このため、構内の分散型電源15が連系した配電線路11において、構外短絡事故等による停電が原因の過電流発生による負荷開閉器17の不必要な開放を抑制することができる。即ち、需要家負荷14側での短絡事故のみを検出して負荷開閉器17を開放させることができる。換言すれば、配電線路11の停電時において分散型電源15から供給される電流で負荷開閉器17を不必要にトリップさせないようにすることができる。さらに、本実施形態では、需要家負荷14側の動作電源電圧を潮流方向判定の基準電圧としたことにより、例えば負荷開閉器17内に電圧検出センサを別途設ける必要はない。従って、負荷開閉器17の構成の簡素化が図られる。
<Effect of embodiment>
Therefore, according to the present embodiment, the following effects can be obtained.
When a short-circuit accident occurs, it is determined whether a short-circuit accident has occurred on the power supply side or the load side of the load switch 17 arranged on the lead-in line 13, and the load switch 17 is based on the determination result. Was kept open or charged. That is, when it is determined that the flow direction is the premises (forward flow; load side of the load switch 17), the control unit 35 excites the trip coil 25 and opens the load switch 17. When it is determined that the flow direction is off-premise (reverse flow; on the power supply side of the load switch 17), the control unit 35 turns on and maintains the load switch 17 without exciting the trip coil 25. For this reason, in the distribution line 11 in which the distributed power supply 15 on the premises is connected, unnecessary opening of the load switch 17 due to the occurrence of an overcurrent caused by a power failure due to an external short circuit accident or the like can be suppressed. That is, only the short-circuit accident on the customer load 14 side can be detected and the load switch 17 can be opened. In other words, it is possible to prevent the load switch 17 from being tripped unnecessarily by the current supplied from the distributed power source 15 at the time of a power failure in the distribution line 11. Furthermore, in the present embodiment, since the operating power supply voltage on the customer load 14 side is used as the reference voltage for determining the flow direction, it is not necessary to separately provide a voltage detection sensor in the load switch 17, for example. Therefore, the configuration of the load switch 17 can be simplified.

<第2実施形態>
次に、本発明の第2実施形態を図3(a),(b)に基づいて説明する。本実施形態は、潮流方向の判定手法の点で前記第1実施形態と異なる。従って、前記第1実施形態と同一の部材構成については同一の符号を付し、その詳細な説明を省略する。
Second Embodiment
Next, a second embodiment of the present invention will be described based on FIGS. 3 (a) and 3 (b). This embodiment is different from the first embodiment in the method of determining the tidal direction. Therefore, the same members as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

<内蔵VTの利用>
図4に示すように、負荷開閉器17に制御電源用変圧器41が内蔵されている場合には、制御装置18は前記需要家構内制御電源用変圧器16からではなく制御電源用変圧器41から動作電源を得る。この制御電源用変圧器41は引込線路13上における変流器24r,24tよりも下流側に設けられている。制御電源用変圧器41の一次側巻線の両端はそれぞれ引込線路13のS相,T相に接続されており、同じく二次側巻線は制御電源部30に接続されている。
<Use of built-in VT>
As shown in FIG. 4, in the case where the control power transformer 41 is built in the load switch 17, the control device 18 controls the control power transformer 41 rather than from the consumer premises control power transformer 16. Get the operating power from. The control power transformer 41 is provided on the downstream side of the current transformers 24 r and 24 t on the lead-in line 13. Both ends of the primary side winding of the control power source transformer 41 are connected to the S phase and T phase of the lead-in line 13, respectively, and the secondary side winding is also connected to the control power source unit 30.

制御電源用変圧器41の二次巻線の一方の端部には変流器42が設けられている。変流器42により制御電源用変圧器41の二次側電流が電流Iv1に変換され、この変換された電流Iv1は位相差演算部33へ出力される。位相差演算部33は、前述の制御電源用変圧器41の2次側電流から変換された電流Iv1及び変流器24rにより検出された負荷電流Iの各値に基づいて、当該電流Iv1と負荷電流Iとの位相差を演算し、その演算結果を潮流方向判定部34へ送る。 A current transformer 42 is provided at one end of the secondary winding of the control power transformer 41. The secondary current of the control power transformer 41 is converted into a current Iv 1 by the current transformer 42, and the converted current Iv 1 is output to the phase difference calculator 33. Phase difference calculation unit 33, based on each value of the load current I R detected by converted current Iv1 and current transformers 24r from the secondary side current of the transformer 41 for controlling the power supply described above, with the current Iv1 It calculates the phase difference between the load current I R, and sends the calculation result to the power flow direction determination unit 34.

制御装置18は制御電源電圧位相判定部36に換えて、制御電源電流位相判定部37を備えている。この制御電源電流位相判定部37は、外部からの情報入力により、電流Iv1又は電流Iv2(制御電源電流)の位相が配電線路11における各線間電圧VRS,VST,VTRの位相に対して何度ずれているかを判定し、その判定結果を潮流方向判定部34へ送る。潮流方向判定部34は位相差演算部33により算出された電流Iv1と負荷電流Iとの位相差及び制御電源電流位相判定部37からの電流Iv1の力率に基づいて潮流方向を判定する。 The control device 18 includes a control power supply current phase determination unit 37 instead of the control power supply voltage phase determination unit 36. The control power supply current phase determination unit 37 is configured to shift the phase of the current Iv1 or current Iv2 (control power supply current) with respect to the phase of each line voltage VRS, VST, VTR in the distribution line 11 by information input from the outside. And the determination result is sent to the tidal direction determination unit 34. Power flow direction determination unit 34 determines flow direction based on the power factor of the current Iv1 from the phase difference and controlling the power supply current phase determination unit 37 and a current Iv1 calculated by the phase difference calculation section 33 and the load current I R.

具体的には、潮流方向判定部34は、電流Iv1(正確には、電流ベクトル)と負荷電流I(正確には、電流ベクトル)との位相差、即ち電流Iv1の力率が100%の場合、電流Iv1に対する負荷電流Iの位相が0度から+180度のときに順潮流と判定し、また、0度から−180度のときに逆潮流と判定する。この潮流方向判定部34の判定結果(順/逆潮流判定)に基づいて、制御部35は需要家構内短絡事故又は構外短絡事故の判定をする。そして、制御部35は負荷開閉器17の開放動作又は投入維持の判定をする。 Specifically, the power flow direction determination unit 34 has a phase difference between the current Iv1 (more precisely, current vector) and the load current I R (more precisely, current vector), that is, the power factor of the current Iv1 is 100%. If, it is determined that the forward power flow when the phase of the load current I R for current Iv1 is +180 degrees 0 degrees, determines that reverse flow when the 0 ° -180 °. Based on the determination result (forward / reverse power flow determination) of the power flow direction determination unit 34, the control unit 35 determines whether a customer premises short circuit accident or a premises short circuit accident. Then, the control unit 35 determines whether the load switch 17 is opened or maintained.

図3(a)に示すように、需要家構内及び構外負荷の力率が100%、且つ電流Iv1の力率が100%の場合、この電流Iv1に対する負荷電流Iの位相が90度のとき、潮流方向判定部34は順潮流であると判定する。同じく、図3(b)に示すように、電流Iv1に対する負荷電流Iの位相が−90度のとき、潮流方向判定部34は逆潮流であると判定する。そして、制御部35は、順潮流と判定した場合には負荷開閉器17の開放動作を行い、逆潮流と判定した場合には負荷開閉器17を投入維持する。 As shown in FIG. 3 (a), 100% is the customer premises and off-premises load power factor, and when the power factor of the current Iv1 is 100%, when the phase of the load current I R for the current Iv1 is 90 degrees The tidal current direction determination unit 34 determines that the current is a forward tidal current. Also it determined, as shown in FIG. 3 (b), when the phase in the load current I R for current Iv1 is -90 degrees, and the power flow direction determination unit 34 is a reverse flow. Then, the control unit 35 performs the opening operation of the load switch 17 when the forward flow is determined, and turns on and maintains the load switch 17 when the reverse flow is determined.

<需要家側変圧器の利用>
ところで、負荷開閉器17に制御電源用変圧器41が内蔵されていない場合には、例えば需要家構内制御電源用変圧器16から制御電源を得るようにする。その際、需要家構内制御電源用変圧器16の二次側巻線の一端には、変流器43を設ける。変流器43により需要家構内制御電源用変圧器16の二次側電流が電流Iv2に変換され、この変換された電流Iv2は位相差演算部33へ出力される。位相差演算部33は、前述の制御電源用変圧器2次側電流から電流変換された電流Iv2及び変流器24rにより検出された負荷電流Iの各値に基づいて、当該電流Iv2と負荷電流Iとの位相差を演算し、その演算結果を潮流方向判定部34へ送る。潮流方向判定部34は位相差演算部33により算出された電流Iv2と負荷電流Iとの位相差及び制御電源電流位相判定部37からの電流Iv2の力率に基づいて潮流方向を判定する。以下、潮流方向判定部34による潮流方向の具体的判定手法については、前述した電流Iv1と負荷電流Iとの位相差に基づいて判定する場合と同様であるので、その詳細な説明を省略する。尚、本実施形態において、変流器42及び変流器43はそれぞれ電流変換部を構成する。
<Use of customer side transformer>
By the way, when the control power transformer 41 is not built in the load switch 17, for example, the control power is obtained from the customer premises control power transformer 16. At that time, a current transformer 43 is provided at one end of the secondary winding of the customer premises control power transformer 16. The secondary current of the customer premises control power supply transformer 16 is converted into a current Iv 2 by the current transformer 43, and the converted current Iv 2 is output to the phase difference calculation unit 33. Phase difference calculation unit 33, based on each value of the load current I R detected by the current converted current Iv2 and current transformers 24r from control power transformer secondary current above, the load and the current Iv2 It calculates the phase difference between the current I R, and sends the calculation result to the power flow direction determination unit 34. Power flow direction determination unit 34 determines flow direction based on the power factor of the current Iv2 from the phase difference and controlling the power supply current phase determination unit 37 and a current Iv2 calculated by the phase difference calculation section 33 and the load current I R. Hereinafter, specific method of determining the flow direction by power flow direction determination unit 34 is similar to the case of determining based on the phase difference between the load current I R and current Iv1 described above, a detailed description thereof is omitted . In the present embodiment, the current transformer 42 and the current transformer 43 each constitute a current converter.

従って、本実施形態によれば、以下の効果を得ることができる。
・負荷開閉器17に制御電源用変圧器41が内蔵されている場合には、この制御電源用変圧器41の二次側巻線の一端に変流器42を設ける。負荷開閉器17に制御電源用変圧器41が内蔵されていない場合には、需要家構内制御電源用変圧器16の二次側巻線の一端に変流器43を設ける。そして、潮流方向判定部34は、変流器42により検出された電流Iv1又は変流器43により検出された電流Iv2と、負荷電流Iとの位相差に基づいて潮流方向を判定するようにした。このように、負荷開閉器17に内蔵された制御電源用変圧器41又は需要家構内制御電源用変圧器16を利用することにより、例えば負荷開閉器17内に電圧検出センサを別途設ける必要はない。従って、負荷開閉器17の構成の簡素化が図られる。
Therefore, according to the present embodiment, the following effects can be obtained.
In the case where the control power transformer 41 is built in the load switch 17, a current transformer 42 is provided at one end of the secondary winding of the control power transformer 41. When the load switch 17 does not include the control power transformer 41, a current transformer 43 is provided at one end of the secondary winding of the customer premises control power transformer 16. The flow direction determination unit 34 includes a current Iv2 detected by current Iv1 or current transformer 43 which is detected by the current transformer 42, to determine the flow direction on the basis of the phase difference between the load current I R did. Thus, by using the control power source transformer 41 or the customer premises control power source transformer 16 built in the load switch 17, for example, there is no need to separately provide a voltage detection sensor in the load switch 17. . Therefore, the configuration of the load switch 17 can be simplified.

・制御電源用変圧器41又は需要家構内制御電源用変圧器16の二次側に誘起された制御電源電流を変流器42又は変流器43により電流Iv1又は電流Iv2に変換するようにした。そして、この変換した電流Iv1又は電流Iv2を位相差演算部33に取込むようにした。このため、例えば制御電源電圧Vpを位相差演算部33に直接的に取込むようにした前記第1実施形態と比較して、位相差演算部33に対する絶縁設計が容易となる。   The control power supply current induced on the secondary side of the control power transformer 41 or the customer premises control power transformer 16 is converted into the current Iv1 or the current Iv2 by the current transformer 42 or the current transformer 43. . The converted current Iv1 or current Iv2 is taken into the phase difference calculator 33. For this reason, for example, compared with the first embodiment in which the control power supply voltage Vp is directly taken into the phase difference calculator 33, the insulation design for the phase difference calculator 33 is facilitated.

(別の実施形態)
尚、前記各実施形態は、次のように変更して実施してもよい。
・第1及び第2実施形態において、電圧メモリ機能を持たせるようにしてもよい。即ち、制御装置18内に記憶部60を設け、当該記憶部60に電圧位相検出可能状態時の電圧位相を記憶する。この記憶部60に記憶される電圧位相は所定周期毎に更新される。例えば需要家の至近で短絡事故が発生した場合、3相各相間電圧が消滅するおそれがある。この場合、潮流方向判定部34は記憶部60に記憶された電圧位相に基づいて潮流方向を判定する。従って、何らかの原因で検出された電圧が極端に低下して電圧位相が検出不能な状態になった場合、又は各相間電圧が消滅した場合においても、記憶部60に格納された電圧位相に基づいて潮流方向の判断を行うことができる。
(Another embodiment)
In addition, you may implement each said embodiment as follows.
In the first and second embodiments, a voltage memory function may be provided. That is, the storage unit 60 is provided in the control device 18, and the voltage phase when the voltage phase can be detected is stored in the storage unit 60. The voltage phase stored in the storage unit 60 is updated every predetermined period. For example, when a short-circuit accident occurs in the vicinity of the customer, there is a risk that the voltage between the three phases disappears. In this case, the power flow direction determination unit 34 determines the power flow direction based on the voltage phase stored in the storage unit 60. Therefore, even when the voltage detected for some reason is extremely lowered and the voltage phase becomes undetectable, or when the voltage between the phases disappears, the voltage phase stored on the storage unit 60 is used. The direction of the tidal current can be determined.

・第1実施形態において、前記配電線路11が停電してから再閉路された復電時において、変流器24r,24tにより検出された負荷電流と需要家構内の制御電源電圧Vpとの位相差を位相差演算部33により新たに演算し、その演算結果を記憶部60に記憶するようにしてもよい。このようにすれば、制御電源電圧位相の事前の入力が不要となり、制御電源電圧位相判定部36及び当該制御電源電圧位相判定部36への外部からの情報入力が不要となる。   In the first embodiment, the phase difference between the load current detected by the current transformers 24r and 24t and the control power supply voltage Vp in the customer premises when the distribution line 11 is reclosed after a power failure. May be newly calculated by the phase difference calculation unit 33, and the calculation result may be stored in the storage unit 60. This eliminates the need for prior input of the control power supply voltage phase, and eliminates the need to input information to the control power supply voltage phase determination unit 36 and the control power supply voltage phase determination unit 36 from the outside.

・第2実施形態において、前記配電線路11が停電してから再閉路された復電時において、変流器24r,24tにより検出された負荷電流と制御電源電流位相判定部37により得られた電流との位相差を新たに位相差演算部33により演算し、その演算結果を記憶部60に記憶するようにしてもよい。このようにすれば、制御電源電流位相の事前の入力が不要となり、制御電源電流位相判定部37及び当該制御電源電流位相判定部37への外部からの情報入力が不要となる。   In the second embodiment, the load current detected by the current transformers 24r and 24t and the current obtained by the control power source current phase determination unit 37 when the power distribution line 11 is reclosed after a power failure. May be newly calculated by the phase difference calculation unit 33 and the calculation result may be stored in the storage unit 60. This eliminates the need for prior input of the control power supply current phase, and eliminates the need to input information to the control power supply current phase determination unit 37 and the control power supply current phase determination unit 37 from the outside.

・第1及び第2実施形態において、制御電源電圧Vpに対するR相の負荷電流Iに対する位相に基づいて潮流方向を判定するようにしたが、次のようにしてもよい。即ち、R相に代えてS相の負荷電流I又はT相の負荷電流Iを検出し、制御電源電圧Vpに対するS相の負荷電流I又はT相の負荷電流Iの位相差に基づいて潮流方向を判定する。 · In the first and second embodiments, so as to determine the flow direction on the basis of the phase with respect to the load current I R of the R-phase with respect to the control power supply voltage Vp, it may be as follows. That is, to detect the load current I T of S-phase of the load current I S or T phase instead of R-phase, the phase difference between the load current I S or T phase of the load current I T of S phase to control the power supply voltage Vp The direction of the tidal current is determined based on this.

・第1実施形態では制御電源を需要家構内制御電源用変圧器16から取るようにし、第2実施形態では制御電源を制御電源用変圧器41又は需要家構内制御電源用変圧器16から取るようにしたが、次のようにしてもよい。即ち、第1及び第2実施形態において、制御電源を負荷開閉器17の電源側から取るようにしてもよい。   In the first embodiment, the control power is taken from the customer premises control power transformer 16. In the second embodiment, the control power is taken from the control power transformer 41 or the customer premises control power transformer 16. However, it may be as follows. That is, in the first and second embodiments, the control power supply may be taken from the power supply side of the load switch 17.

第1実施形態における配電系統の保護装置の概略構成図。The schematic block diagram of the protection apparatus of the power distribution system in 1st Embodiment. (a)は順潮流時における需要家構内の制御電源電圧に対する相電流の位相を示す位相特性図、(b)は、逆潮流時における需要家構内の制御電源電圧に対する相電流の位相を示す位相特性図。(A) is a phase characteristic diagram showing the phase of the phase current with respect to the control power supply voltage in the customer premises during forward flow, and (b) is the phase showing the phase of the phase current with respect to the control power supply voltage in the customer premises during reverse flow. Characteristic diagram. (a)は順潮流時において制御電源変圧器の2次側電流から変換された電流に対する相電流の位相を示す位相特性図、(b)は、逆潮流時において制御電源変圧器の2次側電流から変換された電流に対する相電流の位相を示す位相特性図。(A) is a phase characteristic diagram showing the phase of the phase current with respect to the current converted from the secondary current of the control power transformer during forward power flow, and (b) is the secondary side of the control power transformer during reverse power flow. The phase characteristic figure which shows the phase of the phase current with respect to the electric current converted from the electric current. 第2実施形態における配電系統の保護装置の概略構成図。The schematic block diagram of the protection apparatus of the power distribution system in 2nd Embodiment.

符号の説明Explanation of symbols

11…配電線路、13…引込線路、14…需要家負荷、15…分散型電源、
16…需要家側制御電源用変圧器、
17…配電系統の保護装置を構成する負荷開閉器、
18…配電系統の保護装置を構成する制御装置、
24r,24t…負荷電流検出部を構成する変流器、32…過電流検出部、
33…位相差演算部、34…潮流方向判定部、35…制御部、
36…制御電源電圧位相判定部、37…制御電源電流位相判定部、
41…制御電源用変圧器、42,43…制御電源電流検出部を構成する変流器、
60…記憶部、I,I,I…負荷電流、Iv1,Iv2…電流(制御電源電流)、
Vp…制御電源電圧。
DESCRIPTION OF SYMBOLS 11 ... Distribution line, 13 ... Service line, 14 ... Consumer load, 15 ... Distributed power supply,
16 ... Transformer for customer side control power supply,
17 ... Load switch constituting a protection device for the distribution system,
18 ... Control device constituting protection device of distribution system,
24r, 24t ... current transformers constituting the load current detection unit, 32 ... overcurrent detection unit,
33 ... Phase difference calculation unit, 34 ... Tidal direction determination unit, 35 ... Control unit,
36 ... Control power supply voltage phase determination unit, 37 ... Control power supply current phase determination unit,
41 ... Control power supply transformer, 42, 43 ... Current transformer constituting the control power supply current detector,
60: storage unit, I R , I S , I T ... load current, Iv1, Iv2 ... current (control power supply current),
Vp: Control power supply voltage.

Claims (7)

配電線路に引込線路及び当該引込線路上に設けられた負荷開閉器を介して接続された需要家負荷に対して前記配電線路から供給される電力とは別に電力を供給する分散型電源を備えた配電系統の保護装置において、
前記配電線路の3相各相のうちいずれか1相の負荷電流を検出する負荷電流検出部と、
前記負荷電流検出部により検出された負荷電流が過電流レベルであるか否かを判別する過電流検出部と、
前記負荷電流検出部により検出された負荷電流と需要家構内の制御電源電圧との位相差を演算する位相差演算部と、
前記位相差演算部により算出された位相差に基づいて前記引込線路の潮流方向を判定する潮流方向判定部と、
前記過電流検出部による判別結果及び前記潮流方向判定部による判定結果に基づいて前記負荷開閉器を開放又は投入維持する制御部とを備えた配電系統の保護装置。
Power distribution provided with a distributed power source that supplies power separately from power supplied from the distribution line to a consumer load connected to the distribution line via a service line and a load switch provided on the service line In the system protection device,
A load current detector for detecting a load current of any one of the three phases of the distribution line;
An overcurrent detection unit for determining whether or not the load current detected by the load current detection unit is at an overcurrent level;
A phase difference calculation unit for calculating a phase difference between the load current detected by the load current detection unit and the control power supply voltage in the customer premises;
A tidal direction determination unit that determines a tidal direction of the service line based on the phase difference calculated by the phase difference calculation unit;
A distribution system protection device comprising: a control unit that opens or maintains the load switch based on a determination result by the overcurrent detection unit and a determination result by the power flow direction determination unit.
前記配電線路が停電してから再閉路された復電時において、前記負荷電流検出部により検出された負荷電流と需要家構内の制御電源電圧との位相差を新たに位相差演算部にて演算するようにし、その演算結果を記憶する記憶部を備えた請求項1に記載の配電系統の保護装置。   When power is restored after a power failure in the distribution line, the phase difference between the load current detected by the load current detector and the control power supply voltage in the customer premises is newly calculated by the phase difference calculator. The power distribution system protection device according to claim 1, further comprising a storage unit configured to store the calculation result. 配電線路に引込線路及び当該引込線路上に設けられた負荷開閉器を介して接続された需要家負荷に対して前記配電線路から供給される電力とは別に電力を供給する分散型電源を備えた配電系統の保護装置において、
前記配電線路の3相各相のうちいずれか1相の負荷電流を検出する負荷電流検出部と、
前記負荷電流検出部により検出された負荷電流が過電流レベルであるか否かを判別する過電流検出部と、
前記負荷開閉器に内蔵された制御電源及び需要家構内の制御電源のうちいずれか一方の電流を検出する制御電源電流検出部と、
前記制御電源電流検出部により得られた電流と前記負荷電流検出部により検出された負荷電流との位相差を演算する位相差演算部と、
前記位相差演算部により算出された位相差に基づいて前記配電線の潮流方向を判定する潮流方向判定部と、
前記過電流検出部による判別結果及び前記潮流方向判定部による判定結果に基づいて前記負荷開閉器を開放又は投入維持する制御部とを備えた配電系統の保護装置。
Power distribution provided with a distributed power source that supplies power separately from power supplied from the distribution line to a consumer load connected to the distribution line via a service line and a load switch provided on the service line In the system protection device,
A load current detector for detecting a load current of any one of the three phases of the distribution line;
An overcurrent detection unit for determining whether or not the load current detected by the load current detection unit is at an overcurrent level;
A control power supply current detection unit for detecting a current of any one of a control power supply built in the load switch and a control power supply in a customer premises; and
A phase difference calculation unit that calculates a phase difference between the current obtained by the control power supply current detection unit and the load current detected by the load current detection unit;
A tidal direction determination unit that determines a tidal direction of the distribution line based on the phase difference calculated by the phase difference calculation unit;
A distribution system protection device comprising: a control unit that opens or maintains the load switch based on a determination result by the overcurrent detection unit and a determination result by the power flow direction determination unit.
前記負荷開閉器に内蔵された制御電源及び前記需要家構内の制御電源は、それぞれ制御電源用変圧器であり、
前記制御電源電流検出部は前記制御電源用変圧器の二次側に設けられた変流器である請求項3に記載の配電系統の保護装置。
The control power source built in the load switch and the control power source in the customer premises are each a control power transformer,
The distribution system protection device according to claim 3, wherein the control power source current detection unit is a current transformer provided on a secondary side of the control power source transformer.
前記配電線路が停電してから再閉路された復電時において、前記負荷電流検出部により検出された負荷電流と前記制御電源電流検出部により得られた電流との位相差を新たに位相差演算部にて演算するようにし、その演算結果を記憶する記憶部を備えた請求項3又は請求項4に記載の配電系統の保護装置。   A new phase difference calculation is performed on the phase difference between the load current detected by the load current detection unit and the current obtained by the control power supply current detection unit at the time of power recovery after the distribution line has been shut down. The distribution system protection device according to claim 3, further comprising a storage unit configured to perform calculation in the unit and store the calculation result. 配電線路に引込線路及び当該引込線路上に設けられた負荷開閉器を介して接続された需要家負荷に対して前記配電線路から供給される電力とは別に電力を供給する分散型電源を備えた配電系統の保護方法において、
前記配電線路の3相各相のうちいずれか1相の負荷電流が過電流レベルであるか否かを判別する段階と、
前記負荷電流と需要家構内の制御電源電圧との位相差を演算する段階と、
前記算出された位相差に基づいて前記配電線路の潮流方向を判定する段階と、
前記負荷電流が過電流レベルであるか否かの判別結果及び前記配電線路の潮流方向の判定結果に基づいて前記負荷開閉器を開放又は投入維持する段階とを備えた配電系統の保護方法。
Power distribution provided with a distributed power source that supplies power separately from power supplied from the distribution line to a consumer load connected to the distribution line via a service line and a load switch provided on the service line In the system protection method,
Determining whether the load current of any one of the three phases of the distribution line is at an overcurrent level; and
Calculating a phase difference between the load current and a control power supply voltage in a customer premises;
Determining a flow direction of the distribution line based on the calculated phase difference;
A method of protecting a distribution system, comprising: determining whether or not the load current is at an overcurrent level and opening or closing the load switch based on a determination result of a flow direction of the distribution line.
配電線路に引込線路及び当該引込線路上に設けられた負荷開閉器を介して接続された需要家負荷に対して前記配電線路から供給される電力とは別に電力を供給する分散型電源を備えた配電系統の保護方法において、
前記配電線路の3相各相のうちいずれか1相の負荷電流が過電流レベルであるか否かを判別する段階と、
前記負荷開閉器に内蔵された制御電源及び需要家側の制御電源のうちいずれか一方の電流を検出する段階と、
前記電流検出により得られた電流と前記負荷電流との位相差を演算する段階と、
前記算出された位相差に基づいて前記配電線の潮流方向を判定する段階と、
前記負荷電流が過電流レベルであるか否かの判別結果及び前記配電線路の潮流方向の判定結果に基づいて前記負荷開閉器を開放又は投入維持する段階とを備えた配電系統の保護方法。
Power distribution provided with a distributed power source that supplies power separately from power supplied from the distribution line to a consumer load connected to the distribution line via a service line and a load switch provided on the service line In the system protection method,
Determining whether the load current of any one of the three phases of the distribution line is at an overcurrent level; and
Detecting a current of one of a control power supply built in the load switch and a control power supply on the customer side; and
Calculating a phase difference between the current obtained by the current detection and the load current;
Determining a flow direction of the distribution line based on the calculated phase difference;
A method of protecting a distribution system, comprising: determining whether or not the load current is at an overcurrent level and opening or closing the load switch based on a determination result of a flow direction of the distribution line.
JP2004176282A 2004-06-14 2004-06-14 Distribution system protection device and distribution system protection method Expired - Fee Related JP4028521B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004176282A JP4028521B2 (en) 2004-06-14 2004-06-14 Distribution system protection device and distribution system protection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004176282A JP4028521B2 (en) 2004-06-14 2004-06-14 Distribution system protection device and distribution system protection method

Publications (2)

Publication Number Publication Date
JP2005354882A true JP2005354882A (en) 2005-12-22
JP4028521B2 JP4028521B2 (en) 2007-12-26

Family

ID=35588852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004176282A Expired - Fee Related JP4028521B2 (en) 2004-06-14 2004-06-14 Distribution system protection device and distribution system protection method

Country Status (1)

Country Link
JP (1) JP4028521B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013055727A (en) * 2011-09-01 2013-03-21 Togami Electric Mfg Co Ltd Load switch
CN110676824A (en) * 2019-11-28 2020-01-10 国网江苏省电力有限公司镇江供电分公司 110kV line disconnection protection method for collecting bus voltage of line load end
CN111224384A (en) * 2019-12-09 2020-06-02 国网江苏省电力有限公司镇江供电分公司 Method for comparing line voltage vector difference on two sides of line and protecting line breakage by adopting loop closing and opening operation
JP2020183879A (en) * 2019-05-01 2020-11-12 株式会社辰巳菱機 Load test device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013055727A (en) * 2011-09-01 2013-03-21 Togami Electric Mfg Co Ltd Load switch
JP2020183879A (en) * 2019-05-01 2020-11-12 株式会社辰巳菱機 Load test device
CN110676824A (en) * 2019-11-28 2020-01-10 国网江苏省电力有限公司镇江供电分公司 110kV line disconnection protection method for collecting bus voltage of line load end
CN110676824B (en) * 2019-11-28 2021-03-23 国网江苏省电力有限公司镇江供电分公司 110kV line disconnection protection method for collecting bus voltage of line load end
CN111224384A (en) * 2019-12-09 2020-06-02 国网江苏省电力有限公司镇江供电分公司 Method for comparing line voltage vector difference on two sides of line and protecting line breakage by adopting loop closing and opening operation

Also Published As

Publication number Publication date
JP4028521B2 (en) 2007-12-26

Similar Documents

Publication Publication Date Title
TW480800B (en) Protection system for power receiving station
JP2008148505A (en) Power compensator to prevent overload
KR20060110749A (en) Ground fault circuit interrupter
JP2007141562A (en) Ground-fault interrupter
KR20140121593A (en) Power quality recovery relay
JP4028521B2 (en) Distribution system protection device and distribution system protection method
JP2011097797A (en) Protection system of loop system
JP2005354881A (en) Protective device for distribution system and protection method for distribution system
JP2006020452A (en) Protection relay system for generator main circuit
JP4385920B2 (en) Voltage drop detection device
JP2005354884A (en) Switching controller and control method of distribution system
JP4072961B2 (en) Control device with system interconnection protection function of SOG switch
JP2010273478A (en) Method and system for detection of line-to-ground fault in dc and ac circuit
JP5733115B2 (en) Load switch
JP3812423B2 (en) Load switch drive control apparatus and method
JP5166730B2 (en) Three-phase earth leakage breaker
JP2005354883A (en) Switching controller and control method of distribution system
JP4620497B2 (en) Transmission direction discriminating device for distribution lines
JP2008104262A (en) Islanding pevention for apparatus distributed power unit
JP4885594B2 (en) Switch
KR101437568B1 (en) A earth leakage circuit breaker with a selection switch
JP4483386B2 (en) Earth leakage breaker
JP2623933B2 (en) Gas switchgear
US20210313797A1 (en) Dc power distribution system
JPH09233680A (en) Power failure detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071011

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111019

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111019

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121019

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121019

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131019

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees