JP2005354884A - Switching controller and control method of distribution system - Google Patents

Switching controller and control method of distribution system Download PDF

Info

Publication number
JP2005354884A
JP2005354884A JP2004176284A JP2004176284A JP2005354884A JP 2005354884 A JP2005354884 A JP 2005354884A JP 2004176284 A JP2004176284 A JP 2004176284A JP 2004176284 A JP2004176284 A JP 2004176284A JP 2005354884 A JP2005354884 A JP 2005354884A
Authority
JP
Japan
Prior art keywords
line
overcurrent
voltage
lead
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004176284A
Other languages
Japanese (ja)
Inventor
Hiroshi Watanabe
渡辺  弘
Takayuki Miura
孝之 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Energy Support Corp
Original Assignee
Energy Support Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Energy Support Corp filed Critical Energy Support Corp
Priority to JP2004176284A priority Critical patent/JP2005354884A/en
Publication of JP2005354884A publication Critical patent/JP2005354884A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide switching controller and control method of distribution system in which unnecessary opening of a load-break switch due to overcurrent of reverse power flow occurring upon service interruption of a distribution line due to some cause can be suppressed. <P>SOLUTION: When a power flow direction decision section 34 decides reverse power flow, a voltage detection signal of an incoming line 13 arranged with a load-break switch 16 is outputted artificially to an overcurrent detecting section 32 even when the voltage of the incoming line 13 (i.e. control power supply) disappears. Consequently, no-voltage state of the distribution line 11 and the incoming line 13 is not detected at the overcurrent detecting section 32 even if reverse power flow from a distributed power supply 15 is regarded as overcurrent and detected and the distributed power supply 15 is stopped. Open operation (SO operation) of the load-break switch 16 is thereby locked and throw-in state is sustained. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、配電系統の開閉制御装置及び配電系統の開閉制御方法に関するものである。   The present invention relates to a power distribution system switching control device and a power distribution system switching control method.

従来、過電流保護機能を有する負荷開閉器(例えばSOG形高圧負荷開閉器)の制御装置は、需要家側で設定値(負荷開閉器のロック電流値)を超過する過電流(又は短絡電流)が発生すると、負荷開閉器をロックして過電流中の開放を防止する。変電所の保護継電器が動作して異常発生区間を選択遮断し、当該配電線を切離すことにより停電が発生し、停電により過電流が消滅した後(即ち、配電線路が無電圧状態になった後)に事故原因のある需要家の負荷開閉器は開放される。所定時間経過後、前記配電線が再閉路される。事故原因のある需要家以外の需要家へ電力が供給され、事故原因のある需要家の引込線路は前記負荷開閉器により開放されたままなので、需要家構内は停電が継続される。その後事故原因を取り除いて、人手により負荷開閉器を投入して復旧するようになっている。   Conventionally, a control device for a load switch having an overcurrent protection function (for example, a SOG type high voltage load switch) has an overcurrent (or short circuit current) exceeding a set value (lock current value of the load switch) on the consumer side. When this occurs, the load switch is locked to prevent opening during overcurrent. After the protective relay of the substation operates and selectively cuts off the abnormal section, the power line is cut off by disconnecting the distribution line, and after the overcurrent disappears due to the power outage (that is, the distribution line is in a no-voltage state) Later, the load switch of the customer who caused the accident is opened. After a predetermined time has elapsed, the distribution line is reclosed. Since power is supplied to customers other than the customer who has the cause of the accident and the service line of the customer having the cause of the accident remains open by the load switch, the power outage continues in the customer premises. After that, the cause of the accident is removed, and the load switch is turned on manually to recover.

ところで、近年、構内に分散型電源(自家発電装置)を備え、商用電源の電力供給と併用して使用する需要家が増大すると共に当該需要家の発電容量が増大する傾向にある。また、配電系統に連係可能な分散型電源の発電容量が例えば2000kW(キロワット)未満と規定されていることにより、分散型電源から供給される電流が過電流レベル(負荷開閉器のロック電流値を超えるレベル)を超えるケースが発生している。ところが、前記従来の負荷開閉器の制御装置は、需要家が電力会社から電力の供給を受けるのみということを前提として動作する。このため、需要家の構外で事故が発生すると、分散型電源から配電線側へ逆潮流が発生し、この逆潮流が過電流とみなされることにより需要家の設備で事故が発生していない健全な引込線路であるにもかかわらず負荷開閉器が開放される場合があった。   By the way, in recent years, a distributed power source (in-house power generation device) is provided on the premises, and the number of consumers who use it in combination with the power supply of the commercial power source is increasing and the power generation capacity of the consumer tends to increase. In addition, since the power generation capacity of the distributed power source that can be linked to the power distribution system is defined as less than 2000 kW (kilowatts), for example, the current supplied from the distributed power source is overcurrent level (the load switch lock current value (Exceeding level) has occurred. However, the conventional load switch control device operates on the premise that the consumer only receives power from the power company. For this reason, when an accident occurs outside the customer's premises, a reverse power flow occurs from the distributed power source to the distribution line, and this reverse power flow is regarded as an overcurrent, so no accident has occurred in the customer's equipment. In some cases, the load switch was opened despite the fact that it was a large service line.

詳述すると、需要家の構外で事故が発生すると、配電線路は変電所のトリップにより停電となる。しかし、分散型電源を有する需要家から配電線側への電流の流れ込み、即ち逆潮流が発生する。この逆潮流は過電流レベルとなり、前記制御装置はこの過電流を検出し、所定のロック時間(例えば0.1秒間)経過後に負荷開閉器の開放動作をロックして無電圧状態まで開放動作の待機状態とする。分散型電源はその設備規格として配電線の停電時には停電の発生から所定の停止時間(2秒程度)までに停止することが義務付けられている。一般に、配電線停電時における分散型電源の停止時間は負荷開閉器のロック時間よりも長い。このため、制御装置は逆潮流を過電流とみなして検出すると共に、分散型電源の停止により配電線の無電圧状態を検知して負荷開閉器は自動開放する。   In detail, if an accident occurs outside the customer's premises, the distribution line will be out of service due to a trip at the substation. However, current flows from a consumer having a distributed power source to the distribution line side, that is, reverse power flow occurs. This reverse power flow becomes an overcurrent level, and the control device detects this overcurrent, locks the opening operation of the load switch after a predetermined lock time (for example, 0.1 seconds), and performs the opening operation to the no-voltage state. Set to the standby state. As a facility standard, a distributed power source is required to stop within a predetermined stop time (about 2 seconds) from the occurrence of a power failure at the time of a power failure of a distribution line. In general, the stop time of the distributed power supply at the time of distribution line power failure is longer than the lock time of the load switch. For this reason, the control device detects the reverse power flow as an overcurrent, detects the non-voltage state of the distribution line by stopping the distributed power supply, and automatically opens the load switch.

従って、他の需要家又は電力配電線路中の事故(需要家構外での事故)が原因で変電所の遮断器が遮断(トリップ)し、この遮断器が再投入された場合、事故を発生していない分散型電源を設置した需要家の負荷開閉器は開放状態にある。このため、前記遮断器が再投入された場合に再び配電線路に電源が供給されているにもかかわらず引き続き需要家構内では停電状態が継続する。また、この開放状態の負荷開閉器を投入するためには、有資格者による点検及び復帰操作等、それ相応の回復手順が必要であり、負荷開閉器の投入は時間を要するものであった。このように、需要家側での負荷開閉器の復旧作業は繁雑であるので、需要家構外での事故であるにもかかわらず、無闇に需要家構内の負荷開閉器が開放されることは好ましくなかった。需要家構内での事故(短絡)を検出したときだけ負荷開閉器を開放させることが望まれていた。   Therefore, if the circuit breaker of the substation is cut off (tripped) due to an accident in another customer or power distribution line (accident outside the customer's premises) and this circuit breaker is turned on again, an accident will occur. The load switch of the customer who installed the distributed power supply that is not used is open. For this reason, when the circuit breaker is turned on again, the power failure state continues in the customer premises even though power is supplied to the distribution line again. In addition, in order to turn on the load switch in the open state, a corresponding recovery procedure such as inspection and return operation by a qualified person is necessary, and it takes time to turn on the load switch. As described above, since the load switch restoration work on the customer side is complicated, it is preferable that the load switch in the customer premises is opened in a dark manner despite an accident outside the customer premises. There wasn't. It was desired to open the load switch only when an accident (short circuit) was detected on the customer premises.

更に分散型電源を設置していないが、大型の電動機(モータ)を負荷として使用している需要家においても、需要家の構外で事故が発生して配電線路が変電所のトリップによって停電となった場合に前記電動機が回生により電流を流し続けようとするため逆潮流が発生する。制御装置はこの逆潮流を過電流とみなして検出すると共に、前記電動機が構内系統から切り離されることにより配電線の無電圧状態を検知して負荷開閉器は自動開放する。前述の分散型電源を設置している場合と同様に需要家構外での事故であるにもかかわらず負荷開閉器が開放するため、同様の対策を施すことが望まれていた。即ち、配電線路の停電時において分散型電源からの電流もしくは大型の電動機からの電流により負荷開閉器が開放されないようにする必要があった。   Furthermore, even though there is no distributed power supply installed, customers who use large motors (motors) as loads will experience an accident outside the customer's premises and the distribution line will be out of service due to a substation trip. In this case, a reverse power flow is generated because the electric motor tries to keep a current flowing due to regeneration. The control device detects this reverse power flow as an overcurrent and detects the non-voltage state of the distribution line by disconnecting the electric motor from the premises system, so that the load switch is automatically opened. Similar to the case where the distributed power source is installed, the load switch opens in spite of the accident outside the customer's premises, so it is desired to take the same measures. That is, it has been necessary to prevent the load switch from being opened by a current from a distributed power source or a current from a large motor during a power failure in the distribution line.

このような問題を解決するために、従来、線路電流の潮流方向をその判断材料とし、分散型電源からの逆潮流に対しては負荷開閉器の開放動作を禁止するようにした負荷開閉器が提案されている(例えば、特許文献1参照。)。即ち、負荷開閉器の制御装置は、停電発生時に相電圧及び負荷電流を検出し、この検出した相電圧及び負荷電流の位相差により潮流方向を決定すると共に、この潮流方向と過電流検出手段からの信号とにより過電流方向を検出する。過電流事故が構内又は構外のどちらか一方で発生したかを特定できるので、構外での事故に起因した過電流による負荷開閉器の開放動作が防止される。このため、変電所の遮断器の再投入後において、投入状態を維持した負荷開閉器を介して需要家へ円滑に電力の供給が行われる。
特開2003−158820号公報
In order to solve such problems, conventionally, a load switch that uses the current flow direction of the line current as the judgment material and prohibits the opening operation of the load switch for reverse power flow from the distributed power source has been used. It has been proposed (see, for example, Patent Document 1). That is, the load switch control device detects the phase voltage and the load current when a power failure occurs, determines the flow direction from the phase difference between the detected phase voltage and the load current, and detects the flow direction and the overcurrent detection means. The overcurrent direction is detected by the signal. Since it is possible to specify whether the overcurrent accident has occurred on the premises or on the premises, the opening operation of the load switch due to the overcurrent caused by the accident on the premises is prevented. For this reason, after the circuit breaker of the substation is turned on again, electric power is smoothly supplied to the customer through the load switch that maintains the input state.
JP 2003-158820 A

前記従来の負荷開閉器の制御装置においては、潮流方向に基づいて、その潮流が構内短絡事故によるものか、何らかの原因で配電線路が停電したときに発生する逆潮流の過電流によるものかを判断する。そして、前記制御装置は構内短絡事故によるものであると判断した場合には負荷開閉器を開放する一方、何らかの原因で配電線路が停電したときに発生する逆潮流の過電流によるものであると判断した場合には負荷開閉器を投入維持するようになっている。ところが、何らかの原因で配電線路が停電したときに発生する逆潮流の過電流によるものであると判断して負荷開閉器を投入維持する場合、当該負荷開閉器の開放をどのようにしてロックするのかについては十分に検討がなされていなかった。   In the conventional load switch control device, based on the direction of power flow, it is determined whether the power flow is due to a short circuit accident on the premises or due to an overcurrent of a reverse power flow that occurs when the distribution line is interrupted for some reason. To do. Then, when it is determined that the control device is caused by a local short-circuit accident, the load switch is opened, while it is determined that the control device is caused by an overcurrent of a reverse power flow that occurs when the distribution line is interrupted for some reason. In such a case, the load switch is turned on and maintained. However, how to lock the opening of the load switch when it is determined that it is caused by an overcurrent of reverse power flow that occurs when the distribution line fails for some reason. Has not been fully studied.

本発明は上記問題点を解決するためになされたものであって、その目的は、何らかの原因で配電線路が停電したときに発生する逆潮流の過電流によって負荷開閉器が不必要に開放することを抑制することができる配電系統の開閉制御装置及び配電系統の開閉制御方法を提供することにある。   The present invention has been made to solve the above problems, and its purpose is to unnecessarily open a load switch due to an overcurrent of a reverse power flow that occurs when a distribution line fails for some reason. Disclosed is a distribution system switching control apparatus and a distribution system switching control method capable of suppressing the power distribution.

請求項1に記載の発明は、配電線路に引込線路及び当該引込線路上に設けられた負荷開閉器を介して接続された負荷に対して前記配電線路から供給される電力とは別に電力を供給する分散型電源と、前記引込線路の負荷電流が過電流レベルであるか否かを判別すると共に前記配電線路及び引込線路の無電圧状態を検知する過電流検出部と、前記負荷電流と前記引込線路の線間電圧との位相差に基づいて前記配電線路の潮流方向を判定する潮流方向判定部と、前記過電流検出部による判別結果及び前記潮流方向判定部による判定結果に基づいて前記負荷開閉器を開放又は投入維持する制御部と、を備えた配電系統の開閉制御装置であって、前記引込線路の電圧の有無を検出してその検出信号を過電流検出部に出力する電源検出部と、前記引込線路の電圧がある旨の検出信号を過電流検出部へ擬似的に出力可能とした疑似検出信号生成部と、をさらに備え、前記疑似検出信号から前記過電流検出部への疑似検出信号の出力ライン上には常開接点又は常閉接点を設け、前記潮流方向判定部には、前記潮流方向が逆潮流である旨の逆潮流判定をしたときに、前記常開接点を投入することにより、又は前記常閉接点を開放することにより、前記過電流検出部に前記引込線路の電圧を擬似的に有り状態と検知させる接点駆動手段を備えたことを要旨とする。   The invention according to claim 1 supplies power separately from the power supplied from the distribution line to a load connected to the distribution line via a service line and a load switch provided on the service line. A distributed power source, an overcurrent detection unit for determining whether or not a load current of the lead-in line is at an overcurrent level and detecting a no-voltage state of the distribution line and the lead-in line, the load current and the lead-in line A load flow direction determining unit that determines a flow direction of the distribution line based on a phase difference from the line voltage of the distribution line, the load switch based on a determination result by the overcurrent detection unit and a determination result by the flow direction determination unit A control unit for opening or maintaining the input, and a switching control device for a distribution system comprising: a power detection unit that detects the presence or absence of the voltage of the lead-in line and outputs the detection signal to the overcurrent detection unit; Lead wire A pseudo detection signal generation unit that can pseudo-output a detection signal indicating that the voltage is present to the overcurrent detection unit, and an output line of the pseudo detection signal from the pseudo detection signal to the overcurrent detection unit A normally open contact or a normally closed contact is provided on the top, and when the reverse flow is determined to the effect that the flow direction is a reverse flow, the flow direction determination unit is inserted with the normally open contact, or The gist of the invention is that the overcurrent detector is provided with contact driving means for detecting the voltage of the lead-in line in a pseudo state by opening the normally closed contact.

請求項2に記載の発明は、請求項1に記載の配電系統の開閉制御装置において、前記過電流検出部により過電流が検出されたとき、前記負荷開閉器は予め設定された準備時間内に蓄勢トリップの準備を完了し、その後、前記配電線路が無電圧となってから予め設定された待機時間経過後に開放動作を行うようにされており、
前記潮流方向判定部は、前記負荷開閉器の蓄勢トリップの準備が完了してから前記待機時間が経過するまでの間に、前記潮流方向が逆潮流である旨の逆潮流判定をしたときに前記常開接点を投入し、前記過電流検出部に前記引込線路の電圧を擬似的に有り状態と検知させるようにしたことを要旨とする。
According to a second aspect of the present invention, in the switching control device for a distribution system according to the first aspect, when the overcurrent is detected by the overcurrent detection unit, the load switch is within a preset preparation time. After completing the preparation for energy storage trip, after that, after the distribution line has become no voltage, the opening operation is performed after a preset standby time,
The tidal current direction determination unit performs a reverse tidal current determination that the tidal current direction is a reverse power flow after the standby time of the load switch has been prepared and the standby time has elapsed. The gist is that the normally open contact is inserted to cause the overcurrent detection unit to detect the voltage of the lead-in line in a pseudo state.

請求項3に記載の発明は、配電線路に引込線路及び当該引込線路上に設けられた負荷開閉器を介して接続された負荷に対して前記配電線路から供給される電力とは別に電力を供給する分散型電源を備え、前記引込線路の負荷電流が過電流レベルであるか否かを判別すると共に前記配電線路及び引込線路の無電圧状態を検知する段階と、前記負荷電流と前記引込線路の線間電圧との位相差に基づいて前記配電線路の潮流方向を判定する段階と、前記負荷電流が過電流レベルであるか否かの判別結果及び前記配電線路の潮流方向の判定結果に基づいて前記負荷開閉器を開放又は投入維持する段階と、を備えた配電系統の開閉制御方法であって、前記潮流方向が逆潮流である旨の逆潮流判定がなされたとき、前記引込線路の電圧がある旨の検出信号を擬似的に出力することにより、前記負荷開閉器の開放動作をロックするようにしたことを要旨とする。   The invention according to claim 3 supplies power separately from the power supplied from the distribution line to a load connected to the distribution line via a service line and a load switch provided on the service line. A distributed power source, determining whether or not the load current of the lead-in line is at an overcurrent level and detecting a no-voltage state of the distribution line and the lead-in line; and the load current and the line of the lead-in line Determining the power flow direction of the distribution line based on the phase difference between the voltage, the determination result whether the load current is an overcurrent level and the determination result of the power flow direction of the distribution line A switching control method for a distribution system comprising: opening or maintaining a load switch; and when there is a reverse power flow determination that the power flow direction is a reverse power flow, there is a voltage of the lead-in line Detection signal By outputting artificially, and summarized in that which is adapted to lock the opening operation of the load switch.

(作用)
請求項1に記載の発明によれば、分散型電源からの逆潮流が過電流とみなされて検出された場合に、負荷開閉器が設置されている引込線路の電圧がなくなっても、当該引込線路の電圧がある旨の検出信号が過電流検出部へ擬似的に出力される。これにより、当該分散型電源が停止しても、配電線路及び引込線路の無電圧状態が過電流検出部に検知されることはない。このため、負荷開閉器の開放動作はロックされ、投入状態に保持される。従って、需要家構外事故が原因の過電流発生による負荷開閉器の不必要な開放を抑制することができる。
(Function)
According to the first aspect of the present invention, when the reverse power flow from the distributed power source is detected as an overcurrent, even if the voltage of the service line in which the load switch is installed disappears, the service line A detection signal indicating that there is a voltage on the road is pseudo-output to the overcurrent detection unit. Thereby, even if the said distributed power supply stops, the no-voltage state of a distribution line and a drawing-in line is not detected by the overcurrent detection part. For this reason, the opening operation of the load switch is locked and held in the closed state. Therefore, unnecessary opening of the load switch due to the occurrence of overcurrent due to an off-site customer accident can be suppressed.

請求項2に記載の発明は、請求項1に記載の発明の作用に加えて、過電流検出部により過電流が検出されたとき、前記負荷開閉器は予め設定された準備時間内に蓄勢トリップの準備を完了し、その後、前記配電線路が無電圧となってから予め設定された待機時間経過後に開放動作を行う。このような条件の下、潮流方向判定部は、前記潮流方向が逆潮流である旨の逆潮流判定をしたときには、負荷開閉器の蓄勢トリップの準備が完了してから前記待機時間が経過するまでの間に前記常開接点を投入する。このように、前記負荷開閉器が設置されている引込線路の電圧が完全に落ちる前(即ち、分散型電源が停止される前)に、当該引込線路の電圧有りの疑似検出信号が過電流検出部へ出力されることにより、負荷開閉器の開放動作をロックすることができる。   According to a second aspect of the present invention, in addition to the operation of the first aspect of the invention, when the overcurrent is detected by the overcurrent detection unit, the load switch stores energy within a preset preparation time. After the preparation for the trip is completed, the opening operation is performed after a standby time set in advance after the distribution line becomes no voltage. Under such conditions, when the tidal direction determination unit makes a reverse tidal current determination that the tidal direction is a reverse tidal current, the standby time elapses after the load switch is ready for a storage trip. In the meantime, the normally open contact is inserted. Thus, before the voltage of the incoming line in which the load switch is installed completely drops (that is, before the distributed power supply is stopped), the pseudo detection signal with the incoming line voltage is detected as an overcurrent. By outputting to the unit, the opening operation of the load switch can be locked.

請求項3に記載の発明によれば、分散型電源からの逆潮流が過電流とみなされて検出された場合に、負荷開閉器が設置されている引込線路の電圧がなくなっても、当該引込線路の電圧がある旨の検出信号が擬似的に出力される。これにより、当該分散型電源が停止しても、配電線路及び引込線路の無電圧状態が検知されることはない。このため、負荷開閉器の開放動作はロックされ、投入状態に保持される。従って、需要家構外事故が原因の過電流発生による負荷開閉器の不必要な開放を抑制することができる。   According to the third aspect of the present invention, when the reverse power flow from the distributed power source is detected as an overcurrent, even if the voltage of the service line in which the load switch is installed disappears, the service line A detection signal indicating that the voltage of the road is present is output in a pseudo manner. Thereby, even if the said distributed power supply stops, the no-voltage state of a distribution line and a drawing-in line is not detected. For this reason, the opening operation of the load switch is locked and held in the closing state. Therefore, unnecessary opening of the load switch due to the occurrence of overcurrent due to an off-site customer accident can be suppressed.

本発明によれば、需要家構外事故が原因の過電流発生による負荷開閉器の不必要な開放を抑制することができる。   ADVANTAGE OF THE INVENTION According to this invention, the unnecessary opening | release of the load switch by overcurrent generation | occurrence | production caused by a customer off-site accident can be suppressed.

以下、本発明を、分散型電源が連系した配電系統の開閉制御装置に具体化した一実施形態を図1に従って説明する。
図1に示すように、電力会社側の配電線路11には引込線路13を介して負荷14が接続されており、通常の受電時には需要家構外の配電線路11からの電力が負荷14へ順方向潮流として供給される。また、需要家構内には分散型電源15が設置されており、当該分散型電源15により発電された電力を負荷14へ供給可能としている。本実施形態において、分散型電源15は発電機とされている。引込線路13上において、分散型電源15の接続点よりも電源側には負荷開閉器16が設けられており、この負荷開閉器16は制御装置17により開閉制御される。また、負荷開閉器16は責任分界点上に設置されている。制御装置17は配電系統の開閉制御装置を構成している。
Hereinafter, an embodiment in which the present invention is embodied in an open / close control device for a distribution system interconnected with distributed power sources will be described with reference to FIG.
As shown in FIG. 1, a load 14 is connected to a distribution line 11 on the power company side via a lead-in line 13, and power from the distribution line 11 outside the customer premises is forward to the load 14 during normal power reception. Supplied as a tidal current. In addition, a distributed power source 15 is installed in the customer premises, and the power generated by the distributed power source 15 can be supplied to the load 14. In the present embodiment, the distributed power source 15 is a generator. On the lead-in line 13, a load switch 16 is provided on the power supply side of the connection point of the distributed power supply 15, and the load switch 16 is controlled to be opened and closed by the control device 17. Moreover, the load switch 16 is installed on the responsibility demarcation point. The control device 17 constitutes a switching control device for the distribution system.

<負荷開閉器>
図1に示すように、負荷開閉器16内において、R相、S相及びT相からなる各相の引込線路13上には、開閉部20、零相変流器21、零相電圧検出用コンデンサ22、制御電源用変圧器23、及び過電流検出用の2つの変流器24r,24tが設けられている。開閉部20は引込線路13の各相に設けられた複数のスイッチ20r,20s,20tを備えている。零相変流器21は開閉部20の電源側に設けられており、引込線路13のR相,S相,T相の零相電流(地絡電流)を検出する。零相電圧検出用コンデンサ22は開閉部20の負荷側に設けられており、負荷側の地絡故障と電源側の地絡故障との選択保護を行うための零相電圧を検出する。
<Load switch>
As shown in FIG. 1, in the load switch 16, a switching unit 20, a zero-phase current transformer 21, and a zero-phase voltage detection are provided on the lead-in line 13 of each phase composed of the R phase, the S phase, and the T phase. A capacitor 22, a control power source transformer 23, and two current transformers 24r and 24t for overcurrent detection are provided. The opening / closing unit 20 includes a plurality of switches 20r, 20s, and 20t provided in each phase of the lead-in line 13. The zero-phase current transformer 21 is provided on the power supply side of the switching unit 20 and detects the zero-phase current (ground fault current) of the R-phase, S-phase, and T-phase of the lead-in line 13. The zero-phase voltage detection capacitor 22 is provided on the load side of the switching unit 20 and detects a zero-phase voltage for selective protection between a load-side ground fault and a power-supply side ground fault.

制御電源用変圧器23は引込線路13上における零相電圧検出用コンデンサ22よりも負荷側に設けられている。制御電源用変圧器23の一次側巻線の両端部はそれぞれ引込線路13のS相,T相に接続されており、制御電源用変圧器23の二次側巻線には一次側巻線との巻数比に応じた起電圧が発生する。変流器24r,24tは引込線路13上における零相電圧検出用コンデンサ22と制御電源用変圧器23との間に配置されている。両変流器24r,24tはそれぞれ引込線路13のR相,T相に設けられている。   The control power transformer 23 is provided on the load side with respect to the zero-phase voltage detection capacitor 22 on the lead-in line 13. Both ends of the primary side winding of the control power transformer 23 are connected to the S phase and T phase of the lead-in line 13, respectively. The secondary side winding of the control power transformer 23 includes a primary side winding and An electromotive voltage is generated according to the turn ratio. The current transformers 24 r and 24 t are arranged between the zero-phase voltage detection capacitor 22 and the control power transformer 23 on the lead-in line 13. Both current transformers 24r and 24t are provided in the R phase and the T phase of the lead-in line 13, respectively.

また、負荷開閉器16内には開閉部20を自動でトリップ動作(開放動作)させるためのトリップコイル25が設けられている。ちなみに、自動トリップ動作には地絡トリップ動作及び過電流トリップ動作がある。地絡トリップ動作とは、負荷側に発生した地絡事故によって引込線路13に地絡電流が流れたとき、この地絡電流を検出して整定値以上である場合、トリップコイル25を励磁して開閉部20を自動開放する動作である。過電流トリップ動作とは、短絡事故において、ある設定値以上の過電流を検出したときには開閉部20を自動開放しないようにロックさせ、変電所の遮断器がトリップして配電線路11及び引込線路13が無電圧状態になった後に、トリップコイル25を励磁して自動的に開閉部20を瞬時に開放する動作である。   In addition, a trip coil 25 for automatically tripping (opening) the switching unit 20 is provided in the load switch 16. Incidentally, the automatic trip operation includes a ground fault trip operation and an overcurrent trip operation. The ground fault trip operation means that when a ground fault current flows through the lead-in line 13 due to a ground fault occurring on the load side, when the ground fault current is detected and the set value is exceeded, the trip coil 25 is excited. In this operation, the opening / closing part 20 is automatically opened. The overcurrent trip operation means that when an overcurrent exceeding a certain set value is detected in a short circuit accident, the switching unit 20 is locked so as not to automatically open, and the circuit breaker of the substation trips to cause the distribution line 11 and the incoming line 13. Is the operation of exciting the trip coil 25 and automatically opening and closing the opening / closing part 20 instantly after the no-voltage state.

<制御装置>
制御装置17は、トリップ用電源P、地絡電流検出部31、過電流検出部32、位相差演算部33、潮流方向判定部34及び制御部35を備えている。
<Control device>
The control device 17 includes a trip power supply P, a ground fault current detection unit 31, an overcurrent detection unit 32, a phase difference calculation unit 33, a power flow direction determination unit 34, and a control unit 35.

トリップ用電源Pは例えばコンデンサであり、トリップコイル25を励磁するための電力を供給する。トリップ用電源Pとトリップコイル25との間には電力供給ラインL1が接続されており、当該電力供給ラインL1上には常開接点MS1が設けられている。   The trip power source P is a capacitor, for example, and supplies power for exciting the trip coil 25. A power supply line L1 is connected between the trip power supply P and the trip coil 25, and a normally open contact MS1 is provided on the power supply line L1.

地絡電流検出部31は零相変流器21から出力される零相電流(地絡電流)と零相電圧検出用コンデンサ22から出力される零相電圧とを検出し、それらの検出結果を制御部35へ出力する。   The ground fault current detection unit 31 detects the zero phase current (ground fault current) output from the zero phase current transformer 21 and the zero phase voltage output from the zero phase voltage detection capacitor 22, and outputs the detection results. Output to the control unit 35.

過電流検出部32は両変流器24r,24tから出力される負荷電流(正確には、引込線路13のR相,T相を流れる負荷電流)を検出すると共にこの検出した負荷電流が過電流レベルか否か(即ち、負荷開閉器16のロック電流値を超えているか否か)を判断し、この判断結果を制御部35へ出力する。また、過電流検出部32は配電線路11及び引込線路13の電圧の有無(即ち、無電圧状態か否か)を検知し、その検知結果を制御部35へ送る。   The overcurrent detector 32 detects the load current (more precisely, the load current flowing through the R phase and T phase of the lead-in line 13) output from the current transformers 24r and 24t, and the detected load current is the overcurrent. It is determined whether or not it is level (that is, whether or not the lock current value of the load switch 16 is exceeded), and the determination result is output to the control unit 35. Further, the overcurrent detection unit 32 detects the presence / absence of the voltage of the distribution line 11 and the lead-in line 13 (that is, whether or not it is in a no-voltage state), and sends the detection result to the control unit 35.

位相差演算部33は制御電源用変圧器23により検出された線間電圧(本実施形態では、S相とT相との間の電圧)及び両変流器24r,24tにより検出された負荷電流の各値に基づいて、当該線間電圧を基準に負荷電流との位相差を演算し、その演算結果を潮流方向判定部34へ送る。   The phase difference calculation unit 33 includes a line voltage (in this embodiment, a voltage between the S phase and the T phase) detected by the control power transformer 23 and a load current detected by the current transformers 24r and 24t. Based on each value, the phase difference from the load current is calculated based on the line voltage, and the calculation result is sent to the power flow direction determination unit 34.

潮流方向判定部34は位相差演算部33により算出された線間電圧と負荷電流との位相差に基づいて(正確には、線間電圧ベクトルに対する負荷電流ベクトルの位相変化に基づいて)潮流方向を判定し、その判定結果を制御部35へ送る。また、潮流方向判定部34は励磁コイル34aを備えている。潮流方向判定部34は潮流方向が逆潮流であると判断した場合、前記励磁コイル34aを励磁して、後述の常開接点43を閉じる。   The power flow direction determination unit 34 is based on the phase difference between the line voltage and the load current calculated by the phase difference calculation unit 33 (more precisely, based on the phase change of the load current vector with respect to the line voltage vector). And the determination result is sent to the control unit 35. Moreover, the tidal current direction determination unit 34 includes an exciting coil 34a. When the power flow direction determination unit 34 determines that the power flow direction is reverse power flow, the power flow direction determination unit 34 excites the excitation coil 34a and closes a normally-open contact 43 described later.

制御部35は地絡電流検出部31により地絡電流が検出されたときにはトリップコイル25を励磁して開閉部20を自動開放させる。また、制御部35は過電流検出部32により設定値(負荷開閉器16のロック電流値)以上の過電流を検出したときには、潮流方向判定部34により判定された潮流方向に基づいて、負荷開閉器16を開放又は投入維持する。   When the ground fault current is detected by the ground fault current detector 31, the controller 35 excites the trip coil 25 to automatically open the opening / closing part 20. When the overcurrent detection unit 32 detects an overcurrent that is equal to or greater than a set value (the load switch 16 lock current value), the control unit 35 opens and closes the load based on the flow direction determined by the flow direction determination unit 34. The vessel 16 is kept open or charged.

また、図1に示すように、制御装置17は、常開接点41、保護抵抗46及び直流電源42との直列回路C1、並びに常開接点43、保護抵抗47及び直流電源44との直列回路C2を備えている。直列回路C1,C2は互いに並列接続されている。直列回路C1の常開接点41側及び直列回路C2の常開接点43の一端は信号出力ラインL2を介してそれぞれ過電流検出部32に接続されており、同じく直流電源42,44側の他端はそれぞれ接地されている。   As shown in FIG. 1, the control device 17 includes a series circuit C1 including a normally open contact 41, a protective resistor 46, and a DC power source 42, and a series circuit C2 including a normally open contact 43, a protective resistor 47, and a DC power source 44. It has. The series circuits C1 and C2 are connected in parallel to each other. One end of the normally open contact 41 side of the series circuit C1 and one end of the normally open contact 43 of the series circuit C2 are connected to the overcurrent detection unit 32 through the signal output line L2, respectively, and the other end on the DC power sources 42 and 44 side is also used. Are each grounded.

制御電源用変圧器23の二次側巻線の両端間には、励磁コイル45が設けられている。この励磁コイル45は配電線路11に電流が流れている通常時においては常時励磁されており、常開接点41を閉じた状態に保持する。すると、直流電源42の電圧が制御電源検出信号Sとして過電流検出部32に出力される。短絡事故等により配電線路11及び引込線路13がそれぞれ停電して無電圧状態になると、励磁コイル45は消磁されて常開接点41は開き、過電流検出部32への制御電源検出信号Sの出力が停止される。一方、常開接点43は、前記潮流方向判定部34により逆潮流判定がなされて当該潮流方向判定部34の励磁コイル34aが励磁されたときに閉じる。すると、直流電源44の電圧が制御電源、即ち前記引込線路13の電圧の疑似検出信号Sgとして過電流検出部32に出力される。   Excitation coils 45 are provided between both ends of the secondary winding of the control power transformer 23. The excitation coil 45 is always excited in a normal time when a current flows through the distribution line 11 and keeps the normally open contact 41 closed. Then, the voltage of the DC power supply 42 is output to the overcurrent detection unit 32 as the control power supply detection signal S. When the distribution line 11 and the lead-in line 13 are brought into a no-voltage state due to a short circuit accident or the like, the exciting coil 45 is demagnetized and the normally open contact 41 is opened, and the control power supply detection signal S is output to the overcurrent detection unit 32. Is stopped. On the other hand, the normally open contact 43 is closed when the reverse flow is determined by the flow direction determination unit 34 and the excitation coil 34a of the flow direction determination unit 34 is excited. Then, the voltage of the DC power supply 44 is output to the overcurrent detection unit 32 as a pseudo power detection signal Sg of the control power supply, that is, the voltage of the lead-in line 13.

尚、本実施形態において、励磁コイル34aは常開接点43を投入する接点駆動手段を構成する。直列回路C1は、制御装置17の制御電源、即ち前記負荷開閉器16が設置されている引込線路13の電圧の有無を検出してその検出信号(制御電源検出信号S)を過電流検出部32に出力する電源検出部を構成する。また、直列回路C2は、潮流方向判定部34が前記潮流方向を逆潮流である旨の逆潮流判定をしたときに前記制御電源、即ち前記引込線路の電圧がある旨の検出信号(即ち、疑似検出信号Sg)を過電流検出部へ擬似的に出力可能とした疑似検出信号生成部を構成する。   In the present embodiment, the exciting coil 34 a constitutes a contact driving means for inserting the normally open contact 43. The series circuit C1 detects the presence or absence of the voltage of the control power source of the control device 17, that is, the lead-in line 13 in which the load switch 16 is installed, and sends the detection signal (control power source detection signal S) to the overcurrent detection unit 32. The power supply detection part which outputs to is comprised. Further, the series circuit C2 detects a detection signal (that is, a pseudo signal indicating that the voltage of the control power supply, that is, the lead-in line is present) when the power flow direction determination unit 34 performs a reverse power flow determination that the power flow direction is a reverse power flow. A pseudo detection signal generation unit is configured that can pseudo-output the detection signal Sg) to the overcurrent detection unit.

<実施形態の作用>
次に、前述のように構成した配電系統の開閉制御装置の構内短絡事故時及び何らかの原因で配電線路11が停電して逆潮流の過電流が発生したときの作用を説明する。
<Operation of Embodiment>
Next, a description will be given of the operation in the event of an internal short circuit accident of the switching control device for the distribution system configured as described above and when the distribution line 11 is interrupted due to some cause and an overcurrent of reverse power flow occurs.

さて、需要家構内又は需要家構外での短絡事故時もしくは何らかの原因で配電線路11が停電したときに逆潮流が発生した際には、引込線路13には短絡電流(負荷開閉器16のロック電流値を超える過電流レベルの電流)が流れる。この短絡電流は過電流検出部32により検出される。また、両変流器24r,24tにより検出されたR相,T相の負荷電流のうちいずれか一方の負荷電流(本実施形態ではR相の負荷電流)と、制御電源用変圧器23により検出されたS相とT相との線間電圧とに基づいて、位相差演算部33は前記負荷電流と前記各線間電圧との位相差を演算する。この位相差演算部33により算出された位相差に基づいて、潮流方向判定部34は潮流方向を判定する。   Now, in the event of a short circuit accident inside or outside the customer premises, or when a reverse power flow occurs when the distribution line 11 fails for some reason, a short circuit current (the lock current of the load switch 16 is applied to the lead-in line 13). Overcurrent level current exceeding the value) flows. This short-circuit current is detected by the overcurrent detection unit 32. Further, one of the R-phase and T-phase load currents detected by the current transformers 24r and 24t (in this embodiment, the R-phase load current) and the control power transformer 23 detect the load current. Based on the line voltage between the S phase and the T phase, the phase difference calculator 33 calculates the phase difference between the load current and each line voltage. Based on the phase difference calculated by the phase difference calculator 33, the tidal direction determination unit 34 determines the tidal direction.

潮流方向判定部34により潮流方向が構内(負荷開閉器16の負荷側)であると判断された場合には、制御部35は常開接点MS1をオンする。すると、トリップ用電源Pからの電力が電力供給ラインL1を介してトリップコイル25へ供給される。この結果、トリップコイル25が励磁され、負荷開閉器16の開閉部20は開放する。   If the tidal direction determining unit 34 determines that the tidal direction is on the premises (the load side of the load switch 16), the control unit 35 turns on the normally open contact MS1. Then, the power from the trip power supply P is supplied to the trip coil 25 via the power supply line L1. As a result, the trip coil 25 is excited and the opening / closing part 20 of the load switch 16 is opened.

潮流方向判定部34により逆潮流判定がなされた場合、当該潮流方向判定部34は励磁コイル34aを励磁することにより常開接点43を閉じる。詳述すると、過電流検出部32により過電流が検出されたとき、負荷開閉器16は予め設定された準備時間(例えば0.1秒以下)内に蓄勢トリップの準備を完了し、その後、変電所の遮断器がトリップされることにより配電線路11が無電圧となってから予め設定された待機時間(例えば0.5秒以上)経過後に開放動作を行うようにされている。配電線路11が無電圧状態になっても、分散型電源15が単独運転状態である間は当該分散型電源15からの制御電源は供給される。しかし、分散型電源15の単独運転状態が検出されてから所定時間経過すると、当該分散型電源15は停止され、その結果、制御電源は完全に遮断される。ちなみに、配電線路11及び引込線路13の無電圧状態は、常開接点41が開くことにより過電流検出部32において検知される。   When the reverse flow determination is made by the flow direction determination unit 34, the flow direction determination unit 34 closes the normally open contact 43 by exciting the excitation coil 34a. More specifically, when an overcurrent is detected by the overcurrent detection unit 32, the load switch 16 completes preparation for a storage trip within a preset preparation time (for example, 0.1 seconds or less), and then An opening operation is performed after a preset standby time (for example, 0.5 seconds or more) has elapsed since the distribution line 11 has no voltage due to the tripping of the circuit breaker of the substation. Even if the distribution line 11 is in a no-voltage state, the control power from the distributed power source 15 is supplied while the distributed power source 15 is in the single operation state. However, when a predetermined time elapses after detection of the single operation state of the distributed power source 15, the distributed power source 15 is stopped, and as a result, the control power source is completely shut off. Incidentally, the no-voltage state of the distribution line 11 and the lead-in line 13 is detected by the overcurrent detector 32 when the normally open contact 41 is opened.

このような条件の下、前記潮流方向判定部34により逆潮流判定がなされた場合、負荷開閉器16の蓄勢トリップの準備が完了してから前記待機時間が経過するまでの間に、当該潮流方向判定部34は励磁コイル34aを励磁して常開接点43を閉じる。その結果、直流電源44の電圧が、前記引込線路13の電圧(即ち、制御電源)がある旨の疑似検出信号Sgとして過電流検出部32へ出力される。これにより、過電流検出部32は配電線路11及び引込線路13が無電圧状態になっていない(制御電源、即ち前記引込線路13の電圧が遮断されていない)と擬似的に認識する。その結果、負荷開閉器16がSO動作(過電流ロック動作及び過電流蓄勢トリップ動作)に移行することはなくロック状態に保持される。   Under such conditions, when the reverse flow determination is made by the flow direction determination unit 34, the load flow 16 is ready for the storage trip until the standby time elapses. The direction determination unit 34 excites the exciting coil 34 a to close the normally open contact 43. As a result, the voltage of the DC power supply 44 is output to the overcurrent detection unit 32 as a pseudo detection signal Sg indicating that the voltage of the lead-in line 13 (that is, the control power supply) is present. Thereby, the overcurrent detection part 32 recognizes artificially that the distribution line 11 and the drawing-in line 13 are not in a no-voltage state (the control power supply, ie, the voltage of the drawing-in line 13 is not cut off). As a result, the load switch 16 is not locked to the SO operation (overcurrent lock operation and overcurrent storage trip operation) and is held in the locked state.

換言すれば、過電流検出部32から無電圧検出の旨の信号が制御部35へ出力されることがない。このため、制御部35は常開接点MS1をオンすることはなく、トリップ用電源Pからの電力が電力供給ラインL1を介してトリップコイル25へ供給されることもない。従って、トリップコイル25は励磁されることなく負荷開閉器16は投入維持されるので、何らかの原因で配電線路11が停電したときに発生する逆潮流の過電流に起因する負荷開閉器16の不必要な開放を抑制することができる。   In other words, a signal indicating no voltage detection is not output from the overcurrent detection unit 32 to the control unit 35. For this reason, the control unit 35 does not turn on the normally open contact MS1, and the power from the trip power supply P is not supplied to the trip coil 25 via the power supply line L1. Therefore, since the trip switch 25 is not excited and the load switch 16 is turned on and maintained, the load switch 16 is unnecessary due to the reverse current overcurrent that occurs when the distribution line 11 fails for some reason. Can be prevented.

従って、本実施形態によれば、以下の効果を得ることができる。
(1)潮流方向判定部34により逆潮流判定がなされたとき、負荷開閉器16が設置されている引込線路13の電圧(即ち、制御電源)がなくなっても、当該引込線路13の電圧がある旨の制御電源検出信号Sを過電流検出部32へ擬似的に出力するようにした。これにより、分散型電源15からの逆潮流が過電流とみなされて検出されると共に、当該分散型電源15が停止しても、配電線路11及び引込線路13の無電圧状態が過電流検出部32に検知されることはない。このため、負荷開閉器16の開放動作(SO動作)はロックされ、投入状態に保持される。従って、需要家構外事故が原因の過電流発生による負荷開閉器16の不必要な開放を抑制することができる。
Therefore, according to the present embodiment, the following effects can be obtained.
(1) When reverse power flow is determined by the power flow direction determination unit 34, even if the voltage of the service line 13 (that is, the control power supply) in which the load switch 16 is installed disappears, there is a voltage of the service line 13 A control power supply detection signal S to the effect is output to the overcurrent detection unit 32 in a pseudo manner. Thereby, the reverse power flow from the distributed power source 15 is detected as an overcurrent, and even if the distributed power source 15 is stopped, the non-voltage state of the distribution line 11 and the incoming line 13 is detected as an overcurrent detection unit. 32 is not detected. For this reason, the opening operation (SO operation) of the load switch 16 is locked and held in the closing state. Therefore, unnecessary opening of the load switch 16 due to the occurrence of overcurrent caused by an accident outside the customer premises can be suppressed.

(2)過電流検出部により過電流が検出されたとき、前記負荷開閉器は予め設定された準備時間内に蓄勢トリップの準備を完了し、その後、前記配電線路が無電圧となってから予め設定された待機時間経過後に開放動作を行う。このような条件の下、潮流方向判定部は、前記潮流方向が逆潮流である旨の逆潮流判定をしたときには、負荷開閉器の蓄勢トリップの準備が完了してから前記待機時間が経過するまでの間に前記常開接点43を投入する。このように、前記引込線路13の電圧(制御電源)が完全に落ちる前に、即ち分散型電源15が停止される前に、前記引込線路13の電圧が有る旨の疑似検出信号Sgが過電流検出部32へ出力されることにより、負荷開閉器16の開放動作をロックすることができる。   (2) When an overcurrent is detected by the overcurrent detection unit, the load switch completes preparation for a storage trip within a preset preparation time, and then the distribution line becomes no-voltage. The opening operation is performed after a preset waiting time has elapsed. Under such conditions, when the tidal direction determination unit makes a reverse tidal current determination that the tidal direction is a reverse tidal current, the standby time elapses after the load switch is ready for a power storage trip. In the meantime, the normally open contact 43 is inserted. Thus, before the voltage (control power supply) of the lead-in line 13 completely drops, that is, before the distributed power supply 15 is stopped, the pseudo detection signal Sg indicating that the voltage of the lead-in line 13 is present is an overcurrent. By outputting to the detection unit 32, the opening operation of the load switch 16 can be locked.

(3)直列回路C1からの制御電源検出信号Sの出力ライン及び直列回路C2からの疑似検出信号Sgの出力ラインを、それぞれ一つの信号出力ラインL2で兼用するようにした。このため、回路構成が簡単になる。   (3) The output line of the control power supply detection signal S from the series circuit C1 and the output line of the pseudo detection signal Sg from the series circuit C2 are shared by one signal output line L2. This simplifies the circuit configuration.

<別の実施形態>
尚、前記実施形態は、以下のように変更して実施してもよい。
・本実施形態においては、潮流方向判定部34により逆潮流が検出されたときに励磁コイル34aを励磁するようにしたが、次のようにしてもよい。即ち、分散型電源15の単独運転を検出する単独運転検出部(図示略)を設けると共に、当該単独運転検出部に励磁コイル34aを設ける。そして、前記単独運転検出部により分散型電源15の単独運転が検出されたときに励磁コイル34aを励磁する。このようにしても、本実施形態と同様の効果を得ることができる。
<Another embodiment>
In addition, you may implement the said embodiment as follows.
In the present embodiment, the excitation coil 34a is excited when a reverse power flow is detected by the power flow direction determination unit 34, but may be as follows. That is, an isolated operation detection unit (not shown) for detecting the isolated operation of the distributed power source 15 is provided, and an excitation coil 34a is provided in the isolated operation detection unit. Then, when the isolated operation of the distributed power source 15 is detected by the isolated operation detection unit, the excitation coil 34a is excited. Even if it does in this way, the effect similar to this embodiment can be acquired.

・また、本実施形態において、直列回路C2から過電流検出部32への疑似検出信号Sgの信号出力ラインL2上には例えば常開接点43を設けるようにしたが、常閉接点としてもよい。この場合、潮流方向判定部34は前記潮流方向が順潮流である旨の順潮流方向判定をしたときに、若しくは逆潮流と判定しなかったときに前記常閉接点を開放させるようにする。このようにしても、本実施形態と同様の効果を得ることができる。また、常開接点43と異なり、前記常閉接点においては引込線路13の電圧(即ち、制御電源)が無くなった後の保持回路を考慮する必要がない。このため、常開接点43に比べて回路を簡素化することができる。   In the present embodiment, for example, the normally open contact 43 is provided on the signal output line L2 of the pseudo detection signal Sg from the series circuit C2 to the overcurrent detection unit 32. However, a normally closed contact may be used. In this case, the tidal current direction determination unit 34 opens the normally closed contact when the forward tidal current direction is determined to indicate that the tidal current direction is a forward tidal current, or when the tidal current direction is not determined to be a reverse tidal current. Even if it does in this way, the effect similar to this embodiment can be acquired. Further, unlike the normally open contact 43, the normally closed contact does not need to consider a holding circuit after the voltage of the lead-in line 13 (that is, the control power supply) is lost. For this reason, the circuit can be simplified as compared with the normally open contact 43.

・前記電源検出部からの信号の出力ライン及び疑似検出信号生成部からの信号の出力ラインを、それぞれ別ラインとしてもよい。
<別の技術的思想>
・前記疑似検出信号生成部は直流電源である請求項1又は請求項2に記載の配電系統の開閉制御装置。
The signal output line from the power supply detection unit and the signal output line from the pseudo detection signal generation unit may be separate lines.
<Another technical idea>
The switching control device for a distribution system according to claim 1 or 2, wherein the pseudo detection signal generation unit is a DC power supply.

・前記電源検出部からの信号の出力ライン及び疑似検出信号生成部からの信号の出力ラインを、それぞれ一つの出力ライン(L2)で兼用するようにした請求項1又は請求項2に記載の配電系統の開閉制御装置。   The power distribution according to claim 1 or 2, wherein the output line of the signal from the power supply detection unit and the output line of the signal from the pseudo detection signal generation unit are shared by one output line (L2). System switching control device.

本実施形態における負荷開閉器及び制御装置のブロック構成図。The block block diagram of the load switch and control apparatus in this embodiment.

符号の説明Explanation of symbols

11…配電線路、13…引込線路、14…需要家負荷、15…分散型電源、
16…負荷開閉器、17…制御装置(開閉制御装置)、32…過電流検出部、
34…潮流方向判定部、34a…接点駆動手段を構成する励磁コイル、35…制御部、43…常開接点、C1…電源検出部を構成する直列回路、
C2…疑似検出信号生成部を構成する直列回路、
L2…信号出力ライン(疑似検出信号の出力ライン)、S…制御電源検出信号、
Sg…疑似検出信号。
DESCRIPTION OF SYMBOLS 11 ... Distribution line, 13 ... Service line, 14 ... Consumer load, 15 ... Distributed power supply,
16 ... Load switch, 17 ... Control device (switch control device), 32 ... Overcurrent detector,
34 ... Tidal direction determination unit, 34a ... excitation coil constituting contact driving means, 35 ... control unit, 43 ... normally open contact, C1 ... series circuit constituting power source detection unit,
C2: a series circuit constituting a pseudo detection signal generation unit,
L2 ... signal output line (output line of pseudo detection signal), S ... control power supply detection signal,
Sg: pseudo detection signal.

Claims (3)

配電線路に引込線路及び当該引込線路上に設けられた負荷開閉器を介して接続された負荷に対して前記配電線路から供給される電力とは別に電力を供給する分散型電源と、
前記引込線路の負荷電流が過電流レベルであるか否かを判別すると共に前記配電線路及び引込線路の無電圧状態を検知する過電流検出部と、
前記負荷電流と前記引込線路の線間電圧との位相差に基づいて前記配電線路の潮流方向を判定する潮流方向判定部と、
前記過電流検出部による判別結果及び前記潮流方向判定部による判定結果に基づいて前記負荷開閉器を開放又は投入維持する制御部と、を備えた配電系統の開閉制御装置であって、
前記引込線路の電圧の有無を検出してその検出信号を過電流検出部に出力する電源検出部と、
前記引込線路の電圧がある旨の検出信号を過電流検出部へ擬似的に出力可能とした疑似検出信号生成部と、をさらに備え、
前記疑似検出信号から前記過電流検出部への疑似検出信号の出力ライン上には常開接点又は常閉接点を設け、
前記潮流方向判定部には、前記潮流方向が逆潮流である旨の逆潮流判定をしたときに、前記常開接点を投入することにより、又は前記常閉接点を開放することにより、前記過電流検出部に前記引込線路の電圧を擬似的に有り状態と検知させる接点駆動手段を備えた配電系統の開閉制御装置。
A distributed power source that supplies power separately from the power supplied from the distribution line to the load connected to the distribution line via a service line and a load switch provided on the service line;
An overcurrent detector that determines whether the load current of the lead-in line is at an overcurrent level and detects a no-voltage state of the distribution line and the lead-in line,
A tidal direction determination unit that determines a tidal direction of the distribution line based on a phase difference between the load current and a line voltage of the lead-in line;
A control unit for opening or maintaining the load switch based on a determination result by the overcurrent detection unit and a determination result by the power flow direction determination unit, and a switching control device for a distribution system comprising:
A power source detection unit that detects the presence or absence of the voltage of the lead-in line and outputs the detection signal to the overcurrent detection unit;
A pseudo detection signal generation unit capable of pseudo-outputting a detection signal indicating that there is a voltage of the lead-in line to an overcurrent detection unit; and
On the output line of the pseudo detection signal from the pseudo detection signal to the overcurrent detection unit, a normally open contact or a normally closed contact is provided,
When the reverse flow is determined that the flow direction is reverse flow, the overflow current is determined by turning on the normally open contact or opening the normally closed contact. A switching control device for a power distribution system, comprising contact driving means for causing the detection unit to detect the voltage of the lead-in line in a pseudo state.
前記過電流検出部により過電流が検出されたとき、前記負荷開閉器は予め設定された準備時間内に蓄勢トリップの準備を完了し、その後、前記配電線路が無電圧となってから予め設定された待機時間経過後に開放動作を行うようにされており、
前記潮流方向判定部は、前記負荷開閉器の蓄勢トリップの準備が完了してから前記待機時間が経過するまでの間に、前記潮流方向が逆潮流である旨の逆潮流判定をしたときに前記常開接点を投入し、前記過電流検出部に前記引込線路の電圧を擬似的に有り状態と検知させるようにした請求項1に記載の配電系統の開閉制御装置。
When an overcurrent is detected by the overcurrent detection unit, the load switch completes preparation for a storage trip within a preset preparation time, and then presets after the distribution line becomes no-voltage. The release operation is performed after the waiting time passed,
When the tidal current direction determination unit makes a reverse tidal current determination that the tidal current direction is a reverse tidal current between the time when the standby time elapses after the load switch is ready for the energy storage trip, 2. The switching control device for a distribution system according to claim 1, wherein the normally open contact is inserted to cause the overcurrent detection unit to detect the voltage of the lead-in line in a pseudo state.
配電線路に引込線路及び当該引込線路上に設けられた負荷開閉器を介して接続された負荷に対して前記配電線路から供給される電力とは別に電力を供給する分散型電源を備え、
前記引込線路の負荷電流が過電流レベルであるか否かを判別すると共に前記配電線路及び引込線路の無電圧状態を検知する段階と、
前記負荷電流と前記引込線路の線間電圧との位相差に基づいて前記配電線路の潮流方向を判定する段階と、
前記負荷電流が過電流レベルであるか否かの判別結果及び前記配電線路の潮流方向の判定結果に基づいて前記負荷開閉器を開放又は投入維持する段階と、を備えた配電系統の開閉制御方法であって、
前記潮流方向が逆潮流である旨の逆潮流判定がなされたとき、前記引込線路の電圧がある旨の検出信号を擬似的に出力することにより、前記負荷開閉器の開放動作をロックするようにした配電系統の開閉制御方法。
A distributed power source that supplies power separately from the power supplied from the distribution line to the load connected to the distribution line via a service line and a load switch provided on the service line,
Determining whether the load current of the lead-in line is at an overcurrent level and detecting a no-voltage state of the distribution line and the lead-in line;
Determining the flow direction of the distribution line based on the phase difference between the load current and the line voltage of the lead-in line;
Opening and closing the load switch based on a determination result of whether or not the load current is at an overcurrent level and a determination result of a flow direction of the distribution line, and a switching control method for a distribution system comprising: Because
When a reverse power flow determination is made that the power flow direction is a reverse power flow, a detection signal indicating that there is a voltage on the lead-in line is output in a pseudo manner to lock the opening operation of the load switch. Open / close control method for distribution system.
JP2004176284A 2004-06-14 2004-06-14 Switching controller and control method of distribution system Pending JP2005354884A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004176284A JP2005354884A (en) 2004-06-14 2004-06-14 Switching controller and control method of distribution system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004176284A JP2005354884A (en) 2004-06-14 2004-06-14 Switching controller and control method of distribution system

Publications (1)

Publication Number Publication Date
JP2005354884A true JP2005354884A (en) 2005-12-22

Family

ID=35588854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004176284A Pending JP2005354884A (en) 2004-06-14 2004-06-14 Switching controller and control method of distribution system

Country Status (1)

Country Link
JP (1) JP2005354884A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210051787A (en) * 2019-10-31 2021-05-10 한국전력공사 System and method for anti-islanding of distributed power generation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210051787A (en) * 2019-10-31 2021-05-10 한국전력공사 System and method for anti-islanding of distributed power generation
KR102258898B1 (en) * 2019-10-31 2021-06-02 한국전력공사 System and method for anti-islanding of distributed power generation

Similar Documents

Publication Publication Date Title
JP3184459B2 (en) Power receiving protection device
KR960003362B1 (en) Downed conductor automatic detecting device
CA2910749A1 (en) Method of tripping a circuit interrupter in a back fed configuration
WO2007054811A2 (en) Power system for ultraviolet lighting
KR101658705B1 (en) Uninterruptible Power Receiving And Substation Facility with 2 Bus-bars
Proctor Application of undervoltage protection to critical motors
JP2011097797A (en) Protection system of loop system
JPH08205377A (en) Protective device for feeding equipment
JP4028521B2 (en) Distribution system protection device and distribution system protection method
JP2005354881A (en) Protective device for distribution system and protection method for distribution system
JP2005354884A (en) Switching controller and control method of distribution system
JP2001135204A (en) Transient current preventing unit in incoming substation facility
JP4885594B2 (en) Switch
JP3812423B2 (en) Load switch drive control apparatus and method
KR20100074829A (en) Breaker for high tension power board
JP4072961B2 (en) Control device with system interconnection protection function of SOG switch
JP2005354883A (en) Switching controller and control method of distribution system
JP5733115B2 (en) Load switch
JPH06233459A (en) Power system protective system
JP2008181843A (en) Automatic switch
JP3490197B2 (en) Plant control device
JP2623933B2 (en) Gas switchgear
CN116014683A (en) Emergency bus segment control circuit
JPH09233680A (en) Power failure detector
JPH0819180A (en) Normal service spare changeover type receiving installation

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060616

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070706

A131 Notification of reasons for refusal

Effective date: 20070710

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20071106

Free format text: JAPANESE INTERMEDIATE CODE: A02