JP4792629B2 - Epoxy resin composition and semiconductor device - Google Patents

Epoxy resin composition and semiconductor device Download PDF

Info

Publication number
JP4792629B2
JP4792629B2 JP2000316065A JP2000316065A JP4792629B2 JP 4792629 B2 JP4792629 B2 JP 4792629B2 JP 2000316065 A JP2000316065 A JP 2000316065A JP 2000316065 A JP2000316065 A JP 2000316065A JP 4792629 B2 JP4792629 B2 JP 4792629B2
Authority
JP
Japan
Prior art keywords
epoxy resin
phenol
resin composition
resin
epoxy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000316065A
Other languages
Japanese (ja)
Other versions
JP2002121263A (en
Inventor
茂久 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2000316065A priority Critical patent/JP4792629B2/en
Publication of JP2002121263A publication Critical patent/JP2002121263A/en
Application granted granted Critical
Publication of JP4792629B2 publication Critical patent/JP4792629B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、高温保管特性及び耐半田クラック性に優れた半導体封止用エポキシ樹脂組成物及び半導体装置に関するものである。
【0002】
【従来の技術】
従来、ダイオ−ド、トランジスタ、集積回路等の電子部品は、主にエポキシ樹脂組成物で封止されている。この組成物中には、難燃剤としてハロゲン系難燃剤或いはハロゲン系難燃剤と三酸化アンチモンが配合されており、高温においてハロゲンガス或いはハロゲン化アンチモンガスを発生させ難燃化を図っている。
しかし、前記エポキシ樹脂組成物は、ハロゲン系難燃剤或いはハロゲン系難燃剤と三酸化アンチモンを含んでいるため、電子部品が高温にさらされている間にハロゲン或いはハロゲン化アンチモンによるアルミニウム配線の腐食や、半導体素子のアルミパッドと金線の結合部の切断等の不良を招き大きな問題となっている。
【0003】
この様な問題に対して、使用環境より高いガラス転移温度を有するエポキシ樹脂組成物を使用し、高温保管中のハロゲン或いはハロゲン化アンチモンの拡散を低減させて高温保管特性を改善する方法、イオン捕捉剤を添加し、高温保管中のハロゲン或いはハロゲン化アンチモンを捕捉する方法、更にこれらを組み合わせた方法が実用化されている。
【0004】
近年電子部品の表面実装化、小型化薄型化が進み、回路基板への実装時の耐半田クラック性向上への要求が厳しくなってきており、高温保管特性と耐半田クラック性の両方を満足するものが望まれている。しかしながら、ハロゲン系難燃剤或いはハロゲン系難燃剤と三酸化アンチモンを併用した難燃剤系を用いると、耐半田クラック性に優れたエポキシ樹脂組成物の様にガラス転移温度が低いと、イオン捕捉剤を配合しても高温保管特性を満足させるレベルまで達せず、一方高いガラス転移温度のエポキシ樹脂組成物では耐半田クラック性が達成されていないため、低いガラス転移温度でも高温保管特性を満足させるエポキシ樹脂組成物が求められている。
【0005】
【発明が解決しようとする課題】
本発明は、この様な問題に対して、イオン性不純物の低減と半導体装置の使用温度でのハロゲンイオンを抑えることにより、ガラス転移温度が低くても高温保管特性に優れ、エポキシ樹脂とフェノール樹脂の組み合わせによって耐半田クラック性も優れた半導体封止用エポキシ樹脂組成物を提供するところにある。
【0006】
【課題を解決するための手段】
本発明は、(A)エポキシ樹脂、(B)フェノール樹脂、(C)硬化促進剤及び(D)溶融シリカ粉末を必須成分とするエポキシ樹脂組成物であって、(A)エポキシ樹脂がビフェニル型エポキシ樹脂、ビスフェノール型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、トリフェノールメタン型エポキシ化合物、又はジシクロペンタジエン変性エポキシ樹脂であり、(B)フェノール樹脂がフェノールノボラック樹脂、フェニレン及び/又はジフェニレン骨格を含むフェノールアラルキル樹脂、テルペン変性フェノール樹脂、又はトリフェノールメタン型樹脂であり、(A)エポキシ樹脂のエポキシ基数と(B)フェノール樹脂の水酸基数の比が0.8〜1.2であり、前記エポキシ樹脂組成物中に臭素化エポキシ樹脂である臭素化フェノールノボラックエポキシ樹脂を0.2〜0.5重量%含有し、(D)溶融シリカ粉末がエポキシ樹脂組成物中に85〜91重量%含有し、酸化アンチモン化合物及びハイドロタルサイト化合物を含有しないものであり、前記エポキシ樹脂組成物の硬化物を200℃で100時間処理した後、最大粒径100μm、平均粒径5〜15μmに粉砕した粉砕物を125℃、20時間の条件下でプレッシャークッカー抽出したもののハロゲンイオンが1000ppm以下で、かつ前記硬化物のガラス転移温度が150℃以下であることを特徴とする半導体封止用エポキシ樹脂組成物及びこれを用いて半導体素子を封止してなることを特徴とする半導体装置である。
【0007】
【発明の実施の形態】
以下に本発明を詳細に説明する。
本発明に用いられるエポキシ樹脂は、1分子中にエポキシ基を2個以上有するモノマー、オリゴマー、ポリマー全般を言い、例えばビフェニル型エポキシ樹脂、ビスフェノール型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、トリフェノールメタン型エポキシ化合物、ジシクロペンタジエン変性エポキシ樹脂等が挙げられ、単独でも混合しても差し支えない。
本発明に用いられるフェノール樹脂は、フェノールノボラック樹脂、フェノールアラルキル(フェニレン及び/又はジフェニレン骨格を含む)樹脂、テルペン変性フェノール樹脂、トリフェノールメタン型樹脂等が挙げられ、これらは単独でも混合して用いてもよい。これらのフェノール樹脂の配合量は、エポキシ樹脂のエポキシ基数とフェノール樹脂の水酸基数の比が0.8〜1.2が好ましい。又樹脂中の加水分解性ハロゲン等の不純物は極力少ないものが好ましく、エポキシ樹脂及びフェノール樹脂としては、100ppm以下が望ましい。難燃剤の配合量を抑えるためには、樹脂構造として脂肪族側鎖、主鎖が少ないものが望ましい。
【0008】
本発明に用いられる硬化促進剤は、エポキシ基と水酸基との硬化反応を促進させるものであればよく、一般に封止材料に使用されているものを広く使用することができる。例えば、1,8−ジアザビシクロ(5,4,0)ウンデセン−7、トリフェニルホスフィンや2−メチルイミダゾール等が挙げられ、単独でも混合しても差し支えない。
本発明に用いられる溶融シリカ粉末としては、破砕状及び球状があり、溶融シリカ粉末を高充填化するには、粒度分布が広く、かつ球状のものが好ましい。溶融シリカ粉末の特性を損なわない範囲で結晶シリカ、アルミナ、窒化珪素等を配合してもよい。
配合量については成形性と信頼性のバランスから、全エポキシ樹脂組成物中に60〜93重量%が好ましい。
【0009】
本発明の(A)エポキシ樹脂、(B)フェノール樹脂、(C)硬化促進剤及び(D)溶融シリカ粉末を必須成分とするエポキシ樹脂組成物の硬化物を、以下の処理条件で処理した時のハロゲンイオンが、1000ppm以下だと、前記エポキシ樹脂組成物を用いて半導体素子を封止した半導体装置は、高温保管特性が優れており、1000ppmを越えるとアルミニウム配線の腐食や、半導体素子のアルミパッドと金線の結合部の切断等の不良を生じ好ましくない。
本発明で言う硬化物とは、前記エポキシ樹脂組成物を175℃、75Kg/cm2、120秒の条件で硬化させた後、175℃、8時間でポストキュアしたものである。ハロゲンイオンとは、前記硬化物を空気中で、200℃、100時間処理した後、最大粒径100μm、平均粒径5〜15μmとなるように粉砕し、硬化物の粉砕物5gと蒸留水50mlを抽出容器に入れ、125℃、20時間の条件下でプレッシャークッカー抽出を行い、イオンクロマトグラフィーにて測定する。この測定値と硬化物の重量、蒸留水量からハロゲンイオンの総量を算出する。
更に本発明のエポキシ樹脂組成物の硬化物のガラス転移温度としては、耐半田クラック性の点から150℃以下が好ましい。150℃を越えると耐半田クラック性が劣るおそれがある。ガラス転移温度測定用の硬化物は、前記硬化物と同一の硬化条件で作成したものである。ガラス転移温度は、熱機械分析により試験片を0℃から昇温速度5℃/分で加熱し、温度上昇に伴う寸法変化を測定して求めた。
【0010】
本発明のエポキシ樹脂組成物は、成分(A)〜(D)以外にも必要に応じて、臭素化エポキシ樹脂、三酸化アンチモン等の難燃剤、カップリング剤、天然ワックス及び合成ワックス等の離型剤、シリコーンオイル、ゴム等の低応力成分が適宜配合可能である。
本発明のエポキシ樹脂組成物は、各成分を混合後、加熱ニーダーや熱ロールにより加熱混練し、続いて冷却、粉砕することにより得ることができる。
本発明のエポキシ樹脂組成物を用いて半導体素子を封止し、半導体装置を製造するには、トランスファーモールド、コンプレッションモールド、インジェクションモールド等の従来からの成形方法で硬化成形すればよい。
【0011】
【実施例】
以下、本発明を実施例で具体的に説明する。配合割合は、重量部とする。

Figure 0004792629
上記の全成分をミキサーにより混合した後、表面温度が90℃と45℃の2本ロールを用いて30回混練し、得られた混練物シートを冷却後粉砕して、樹脂組成物とした。得られた樹脂組成物の特性を以下の方法で評価をした。評価結果を表1に示す。
【0012】
【化1】
Figure 0004792629
【0013】
評価方法
得られた樹脂組成物をタブレット化し、低圧トランスファー成形機にて175℃、75Kg/cm2、120秒の条件で成形し、175℃、8時間でポストキュアしたプレッシャークッカー抽出用硬化物、耐難燃性試験片(127mm×12.7mm×3.2mm)及びガラス転移温度用試験片(15mm×4mm×3mm)を調製し、更に高温保管特性試験用、耐半田クラック性試験用の6mm×6mmのテスト用素子を80pQFPに封止した。封止したテスト用素子について、下記の高温保管特性試験及び耐半田クラック試験を行った。
プレッシャークッカー抽出試験:プレッシャークッカー抽出用硬化物を200℃で100時間処理した後、振動ミル粉砕機にて最大粒径100μm、平均粒径5〜15μmの大きさに粉砕し、硬化物の粉砕物5gと蒸留水50mlを抽出容器に入れ、125℃、20時間プレッシャークッカー抽出を行い、イオンクロマトグラフィーにて測定する。この測定値と硬化物の重量、蒸留水量からハロゲンイオンの総量を算出する。
ガラス転移温度試験:熱機械分析により試験片を0℃から昇温速度5℃/分で加熱し、温度上昇に伴う寸法変化を測定し、ガラス転移温度を測定した。
高温保管特性試験:封止したテスト用素子を185℃に放置し、抵抗値の増加、断線を観測し、抵抗値上昇開始時間を測定した。
耐半田クラック性試験:封止したテスト用素子(パッケージ10個)を85℃、相対湿度85%の雰囲気に、72時間放置後、半田(260℃)に浸漬しパッケージの亀裂の有無を観察した。
耐難燃性試験:UL−94垂直試験(試料厚さ3.2mm)
【0014】
実施例2、3、比較例1、2
表1に従って配合し、実施例1と同様にして樹脂組成物を得、同様に評価した。これらの評価結果を表1に示す。
実施例、比較例で用いたエポキシ樹脂、フェノール樹脂の性状を以下に記す。
フェノールノボラック型エポキシ樹脂[軟化点65℃、エポキシ当量185、加水分解性塩素300ppm]
フェノールノボラック樹脂[軟化点90℃、水酸基当量105]
臭素化エポキシ樹脂II(テトラブロムビスフェノールA型エポキシ樹脂)[軟化点55℃、水酸基当量360]
【0015】
【表1】
Figure 0004792629
【0016】
【発明の効果】
本発明に従うと、高温保管特性及び耐半田クラック性に優れた半導体装置を得ることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an epoxy resin composition for semiconductor encapsulation and a semiconductor device, which are excellent in high-temperature storage characteristics and solder crack resistance.
[0002]
[Prior art]
Conventionally, electronic components such as diodes, transistors, and integrated circuits are mainly sealed with an epoxy resin composition. In this composition, a halogen-based flame retardant or a halogen-based flame retardant and antimony trioxide are blended as a flame retardant, and a halogen gas or an antimony halide gas is generated at a high temperature to make the flame retardant.
However, since the epoxy resin composition contains a halogen-based flame retardant or a halogen-based flame retardant and antimony trioxide, corrosion or corrosion of aluminum wiring by halogen or antimony halide while an electronic component is exposed to high temperatures. As a result, defects such as cutting of the joint between the aluminum pad and the gold wire of the semiconductor element are caused and become a big problem.
[0003]
In order to solve such problems, a method of improving high-temperature storage characteristics by using an epoxy resin composition having a glass transition temperature higher than the usage environment and reducing diffusion of halogen or antimony halide during high-temperature storage, ion trapping A method of adding an agent to capture halogen or antimony halide during high-temperature storage and a method of combining these have been put into practical use.
[0004]
In recent years, surface mounting, miniaturization, and thinning of electronic components have progressed, and the demand for improved solder crack resistance when mounted on circuit boards has become strict, satisfying both high-temperature storage characteristics and solder crack resistance. Things are desired. However, when a flame retardant system using a halogen flame retardant or a halogen flame retardant and antimony trioxide is used, and the glass transition temperature is low like an epoxy resin composition having excellent solder crack resistance, an ion scavenger is used. Even if it is blended, it does not reach the level that satisfies the high-temperature storage characteristics. On the other hand, the epoxy resin composition having a high glass transition temperature does not achieve solder crack resistance, so that the epoxy resin satisfies the high-temperature storage characteristics even at a low glass transition temperature. There is a need for a composition.
[0005]
[Problems to be solved by the invention]
With respect to such problems, the present invention has excellent high-temperature storage characteristics even when the glass transition temperature is low, by reducing ionic impurities and suppressing halogen ions at the operating temperature of the semiconductor device. Thus, the present invention provides a semiconductor sealing epoxy resin composition having excellent solder crack resistance.
[0006]
[Means for Solving the Problems]
The present invention is an epoxy resin composition comprising (A) an epoxy resin, (B) a phenol resin, (C) a curing accelerator and (D) a fused silica powder as essential components, wherein (A) the epoxy resin is a biphenyl type An epoxy resin, a bisphenol type epoxy resin, a phenol novolak type epoxy resin, a cresol novolak type epoxy resin, a triphenolmethane type epoxy compound, or a dicyclopentadiene modified epoxy resin, and (B) the phenol resin is a phenol novolak resin, phenylene, Or a phenol aralkyl resin containing a diphenylene skeleton, a terpene-modified phenol resin, or a triphenolmethane type resin, and the ratio of the number of epoxy groups in the (A) epoxy resin to the number of hydroxyl groups in the (B) phenol resin is 0.8 to 1.2. And the epoxy resin composition Containing 0.2 to 0.5% by weight of brominated phenol novolac epoxy resin , which is a brominated epoxy resin , and (D) fused silica powder containing 85 to 91% by weight in the epoxy resin composition, antimony oxide A compound and a hydrotalcite compound are not contained, and after the cured product of the epoxy resin composition is treated at 200 ° C. for 100 hours, a pulverized product crushed to a maximum particle size of 100 μm and an average particle size of 5 to 15 μm is 125 ° C. The epoxy resin composition for encapsulating a semiconductor, characterized in that the halogen ion of the pressure cooker extracted under the condition of 20 hours is 1000 ppm or less and the glass transition temperature of the cured product is 150 ° C. or less A semiconductor device characterized by sealing a semiconductor element.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is described in detail below.
The epoxy resin used in the present invention refers to all monomers, oligomers, and polymers having two or more epoxy groups in one molecule. For example, biphenyl type epoxy resin, bisphenol type epoxy resin, phenol novolak type epoxy resin, cresol novolak type epoxy. Examples thereof include resins, triphenolmethane type epoxy compounds, dicyclopentadiene-modified epoxy resins and the like, and they may be used alone or in combination.
Examples of the phenol resin used in the present invention include a phenol novolac resin, a phenol aralkyl (including phenylene and / or diphenylene skeleton) resin, a terpene-modified phenol resin, a triphenolmethane type resin, and the like. May be. The blending amount of these phenol resins is preferably such that the ratio of the number of epoxy groups of the epoxy resin to the number of hydroxyl groups of the phenol resin is 0.8 to 1.2. Also, impurities such as hydrolyzable halogens in the resin are preferably as small as possible, and the epoxy resin and phenol resin are preferably 100 ppm or less. In order to suppress the blending amount of the flame retardant, a resin structure having few aliphatic side chains and main chains is desirable.
[0008]
The curing accelerator used in the present invention is not particularly limited as long as it accelerates the curing reaction between the epoxy group and the hydroxyl group, and those generally used for sealing materials can be widely used. For example, 1,8-diazabicyclo (5,4,0) undecene-7, triphenylphosphine, 2-methylimidazole and the like can be mentioned, and they may be used alone or in combination.
The fused silica powder used in the present invention has a crushed shape and a spherical shape, and in order to make the fused silica powder highly filled, a spherical particle size distribution is preferable. You may mix | blend crystalline silica, an alumina, silicon nitride, etc. in the range which does not impair the characteristic of a fused silica powder.
About the compounding quantity, 60 to 93 weight% is preferable in all the epoxy resin compositions from the balance of a moldability and reliability.
[0009]
When the cured product of the epoxy resin composition containing (A) an epoxy resin, (B) a phenol resin, (C) a curing accelerator and (D) a fused silica powder of the present invention as essential components is treated under the following processing conditions. If the halogen ion is less than 1000 ppm, the semiconductor device in which the semiconductor element is encapsulated using the epoxy resin composition has excellent high-temperature storage characteristics. If it exceeds 1000 ppm, corrosion of aluminum wiring, aluminum in the semiconductor element, and the like. Defects such as cutting of the joint between the pad and the gold wire occur, which is not preferable.
The cured product referred to in the present invention is a product obtained by curing the epoxy resin composition at 175 ° C., 75 Kg / cm 2 , 120 seconds, and then post-curing at 175 ° C. for 8 hours. Halogen ion means that the cured product is treated in air at 200 ° C. for 100 hours, and then pulverized to have a maximum particle size of 100 μm and an average particle size of 5 to 15 μm. Is put into an extraction container, subjected to pressure cooker extraction at 125 ° C. for 20 hours, and measured by ion chromatography. The total amount of halogen ions is calculated from this measured value, the weight of the cured product, and the amount of distilled water.
Furthermore, the glass transition temperature of the cured product of the epoxy resin composition of the present invention is preferably 150 ° C. or less from the viewpoint of solder crack resistance. If it exceeds 150 ° C, solder crack resistance may be inferior. The cured product for measuring the glass transition temperature is prepared under the same curing conditions as the cured product. The glass transition temperature was determined by heating a test piece from 0 ° C. at a heating rate of 5 ° C./min by thermomechanical analysis and measuring a dimensional change accompanying the temperature rise.
[0010]
In addition to the components (A) to (D), the epoxy resin composition of the present invention can be separated from flame retardants such as brominated epoxy resins and antimony trioxide, coupling agents, natural waxes, synthetic waxes and the like as necessary. Low stress components such as molds, silicone oils, and rubbers can be appropriately blended.
The epoxy resin composition of the present invention can be obtained by mixing each component, followed by heating and kneading with a heating kneader or hot roll, followed by cooling and pulverization.
In order to seal a semiconductor element using the epoxy resin composition of the present invention and to manufacture a semiconductor device, it may be cured by a conventional molding method such as transfer molding, compression molding, injection molding or the like.
[0011]
【Example】
Hereinafter, the present invention will be specifically described with reference to Examples. The blending ratio is parts by weight.
Figure 0004792629
After mixing all the above components with a mixer, the mixture was kneaded 30 times using two rolls with surface temperatures of 90 ° C. and 45 ° C., and the resulting kneaded product sheet was cooled and pulverized to obtain a resin composition. The characteristics of the obtained resin composition were evaluated by the following methods. The evaluation results are shown in Table 1.
[0012]
[Chemical 1]
Figure 0004792629
[0013]
Evaluation method The obtained resin composition was tableted, molded under the conditions of 175 ° C., 75 Kg / cm 2 , 120 seconds with a low-pressure transfer molding machine, and post-cured at 175 ° C. for 8 hours. Prepare flame retardant test pieces (127mm x 12.7mm x 3.2mm) and glass transition temperature test pieces (15mm x 4mm x 3mm), and further 6mm for high temperature storage characteristics test and solder crack resistance test A 6 mm test element was sealed in 80 pQFP. The sealed test element was subjected to the following high temperature storage characteristic test and solder crack resistance test.
Pressure cooker extraction test: The cured product for pressure cooker extraction was treated at 200 ° C. for 100 hours, and then pulverized to a maximum particle size of 100 μm and an average particle size of 5 to 15 μm with a vibration mill pulverizer. 5 g and 50 ml of distilled water are put in an extraction container, subjected to pressure cooker extraction at 125 ° C. for 20 hours, and measured by ion chromatography. The total amount of halogen ions is calculated from this measured value, the weight of the cured product, and the amount of distilled water.
Glass transition temperature test: A test piece was heated from 0 ° C. at a rate of temperature increase of 5 ° C./min by thermomechanical analysis, the dimensional change accompanying the temperature increase was measured, and the glass transition temperature was measured.
High temperature storage characteristic test: The sealed test element was left at 185 ° C., the increase in resistance value and the disconnection were observed, and the resistance value increase start time was measured.
Solder crack resistance test: Sealed test elements (10 packages) were left in an atmosphere of 85 ° C. and 85% relative humidity for 72 hours and then immersed in solder (260 ° C.) to observe the presence of cracks in the package. .
Flame resistance test: UL-94 vertical test (sample thickness 3.2 mm)
[0014]
Examples 2 and 3, Comparative Examples 1 and 2
It compounded according to Table 1, it obtained the resin composition like Example 1, and evaluated similarly. These evaluation results are shown in Table 1.
The properties of the epoxy resin and the phenol resin used in Examples and Comparative Examples are described below.
Phenol novolac type epoxy resin [softening point 65 ° C., epoxy equivalent 185, hydrolyzable chlorine 300 ppm]
Phenol novolac resin [softening point 90 ° C., hydroxyl equivalent 105]
Brominated epoxy resin II (tetrabromobisphenol A type epoxy resin) [softening point 55 ° C., hydroxyl group equivalent 360]
[0015]
[Table 1]
Figure 0004792629
[0016]
【The invention's effect】
According to the present invention, a semiconductor device excellent in high-temperature storage characteristics and solder crack resistance can be obtained.

Claims (2)

(A)エポキシ樹脂、(B)フェノール樹脂、(C)硬化促進剤及び(D)溶融シリカ粉末を必須成分とするエポキシ樹脂組成物であって、(A)エポキシ樹脂がビフェニル型エポキシ樹脂、ビスフェノール型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、トリフェノールメタン型エポキシ化合物、又はジシクロペンタジエン変性エポキシ樹脂であり、(B)フェノール樹脂がフェノールノボラック樹脂、フェニレン及び/又はジフェニレン骨格を含むフェノールアラルキル樹脂、テルペン変性フェノール樹脂、又はトリフェノールメタン型樹脂であり、(A)エポキシ樹脂のエポキシ基数と(B)フェノール樹脂の水酸基数の比が0.8〜1.2であり、前記エポキシ樹脂組成物中に臭素化エポキシ樹脂である臭素化フェノールノボラックエポキシ樹脂を0.2〜0.5重量%含有し、(D)溶融シリカ粉末がエポキシ樹脂組成物中に85〜91重量%含有し、酸化アンチモン化合物及びハイドロタルサイト化合物を含有しないものであり、前記エポキシ樹脂組成物の硬化物を200℃で100時間処理した後、最大粒径100μm、平均粒径5〜15μmに粉砕した粉砕物を125℃、20時間の条件下でプレッシャークッカー抽出したもののハロゲンイオンが1000ppm以下で、かつ前記硬化物のガラス転移温度が150℃以下であることを特徴とする半導体封止用エポキシ樹脂組成物。(A) an epoxy resin, (B) a phenol resin, (C) a curing accelerator, and (D) an epoxy resin composition containing fused silica powder as essential components, (A) the epoxy resin is a biphenyl type epoxy resin, bisphenol Type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, triphenolmethane type epoxy compound, or dicyclopentadiene modified epoxy resin, (B) phenol resin has phenol novolac resin, phenylene and / or diphenylene skeleton A phenol aralkyl resin, a terpene-modified phenol resin, or a triphenolmethane type resin, wherein the ratio of the number of epoxy groups in (A) the epoxy resin and the number of hydroxyl groups in the (B) phenol resin is 0.8 to 1.2, Bromination in epoxy resin composition 0.2 to 0.5% by weight of brominated phenol novolac epoxy resin which is an epoxy resin, (D) 85 to 91% by weight of fused silica powder in the epoxy resin composition, antimony oxide compound and hydrotal It does not contain a site compound, and after the cured product of the epoxy resin composition is treated at 200 ° C. for 100 hours, the pulverized product is crushed to a maximum particle size of 100 μm and an average particle size of 5 to 15 μm at 125 ° C. for 20 hours. An epoxy resin composition for encapsulating a semiconductor, characterized in that the halogen ion of the pressure cooker extracted under conditions is 1000 ppm or less, and the glass transition temperature of the cured product is 150 ° C. or less. 請求項1記載のエポキシ樹脂組成物で半導体素子を封止してなることを特徴とする半導体装置。  A semiconductor device comprising a semiconductor element sealed with the epoxy resin composition according to claim 1.
JP2000316065A 2000-10-17 2000-10-17 Epoxy resin composition and semiconductor device Expired - Fee Related JP4792629B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000316065A JP4792629B2 (en) 2000-10-17 2000-10-17 Epoxy resin composition and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000316065A JP4792629B2 (en) 2000-10-17 2000-10-17 Epoxy resin composition and semiconductor device

Publications (2)

Publication Number Publication Date
JP2002121263A JP2002121263A (en) 2002-04-23
JP4792629B2 true JP4792629B2 (en) 2011-10-12

Family

ID=18795065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000316065A Expired - Fee Related JP4792629B2 (en) 2000-10-17 2000-10-17 Epoxy resin composition and semiconductor device

Country Status (1)

Country Link
JP (1) JP4792629B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6830191B2 (en) * 2016-07-11 2021-02-17 パナソニックIpマネジメント株式会社 Epoxy resin composition, prepreg, metal-clad laminate and printed wiring board

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2865439B2 (en) * 1991-02-26 1999-03-08 日本化薬株式会社 Epoxy resin and its cured product
JPH07179728A (en) * 1993-12-21 1995-07-18 Yuka Shell Epoxy Kk Flame-retarded epoxy resin composition for sealing semiconductor
JPH07228580A (en) * 1993-12-21 1995-08-29 Yuka Shell Epoxy Kk Modified polyvalent epoxy compound, production of the compound and epoxy resin composition
JPH08100049A (en) * 1994-09-30 1996-04-16 Dainippon Ink & Chem Inc Epoxy resin composition for semiconductor-sealing material
JPH09309941A (en) * 1996-05-22 1997-12-02 Sumitomo Chem Co Ltd Epoxy resin composition and resin-sealed semiconductor device
JPH10298408A (en) * 1997-04-28 1998-11-10 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device sealed therewith

Also Published As

Publication number Publication date
JP2002121263A (en) 2002-04-23

Similar Documents

Publication Publication Date Title
US6190787B1 (en) Epoxy resin compositions for encapsulating semiconductors, and semiconductor devices
JP3334998B2 (en) Epoxy resin composition
JP3377933B2 (en) Epoxy resin composition and semiconductor device using the same
JP4306329B2 (en) Epoxy resin composition and semiconductor device
JP4792629B2 (en) Epoxy resin composition and semiconductor device
JP5098125B2 (en) Epoxy resin composition and semiconductor device
JP2000169671A (en) Epoxy resin composition and semiconductor device
JP4380101B2 (en) Epoxy resin composition and semiconductor device
JP2002179773A (en) Epoxy resin composition and semiconductor device
JP2004091533A (en) Epoxy resin composition and semiconductor device
JPH1077390A (en) Epoxy resin composition
JP2003064157A (en) Epoxy resin composition and semiconductor device
JPH10279667A (en) Epoxy resin composition for semiconductor sealing
JP2002317102A (en) Epoxy resin composition and semiconductor device
JP2006206748A (en) Epoxy resin composition and semiconductor device
JP2005139260A (en) Epoxy resin composition and semiconductor device
JP2002293886A (en) Epoxy resin composition and semiconductor device
JP2003105170A (en) Epoxy resin composition and semiconductor device
JPH10147628A (en) Epoxy resin composition for sealing semiconductor
JP2002053735A (en) Epoxy resin composition and semiconductor device
JP2001253999A (en) Epoxy resin molding material and semiconductor device
JP2004002495A (en) Epoxy resin composition and semiconductor device
CN110791052A (en) High-reliability epoxy resin composition and application thereof
JPH06100658A (en) Epoxy resin composition
JP2003192769A (en) Epoxy resin composition and semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110628

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110711

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4792629

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees