JP4791743B2 - Dye-sensitized solar cell - Google Patents

Dye-sensitized solar cell Download PDF

Info

Publication number
JP4791743B2
JP4791743B2 JP2005089467A JP2005089467A JP4791743B2 JP 4791743 B2 JP4791743 B2 JP 4791743B2 JP 2005089467 A JP2005089467 A JP 2005089467A JP 2005089467 A JP2005089467 A JP 2005089467A JP 4791743 B2 JP4791743 B2 JP 4791743B2
Authority
JP
Japan
Prior art keywords
fluorine
dye
wavelength
complex
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005089467A
Other languages
Japanese (ja)
Other versions
JP2006269373A (en
Inventor
祥三 柳田
善人 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Osaka University NUC
Original Assignee
Daikin Industries Ltd
Osaka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd, Osaka University NUC filed Critical Daikin Industries Ltd
Priority to JP2005089467A priority Critical patent/JP4791743B2/en
Publication of JP2006269373A publication Critical patent/JP2006269373A/en
Application granted granted Critical
Publication of JP4791743B2 publication Critical patent/JP4791743B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Landscapes

  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Description

本発明は、太陽光の有効利用を図ることにより、光電変換率を向上させた色素増感太陽電池に関する。   The present invention relates to a dye-sensitized solar cell having an improved photoelectric conversion rate by effectively using sunlight.

太陽光を光電変換して電気エネルギーを取り出す半導体太陽電池としては、単結晶シリコン、アモルファスシリコンなどを用いる無機系太陽電池が主流であり、光電変換効率も30%程度にまで高められている。   Inorganic solar cells using single crystal silicon, amorphous silicon, and the like are mainstream as semiconductor solar cells that photoelectrically convert sunlight to extract electric energy, and the photoelectric conversion efficiency is increased to about 30%.

こうした無機系太陽電池では、アモルファスシリコンの吸収ピーク波長が600nm付近にあり、単結晶シリコンでは800nm付近にあるため、光電変換に有効に利用される光は600nm以上の長波長領域の光に限られている。   In such an inorganic solar cell, the absorption peak wavelength of amorphous silicon is around 600 nm, and the single crystal silicon is around 800 nm. Therefore, light that is effectively used for photoelectric conversion is limited to light in the long wavelength region of 600 nm or more. ing.

そこで、太陽光中の短波長領域の光も有効利用するため、短波長の光を希土類金属イオンや希土類金属錯体、蛍光色素などの蛍光物質により長波長の光に変換し、光電変換可能な光とすることが試みられている(特許文献1〜12)。かかる蛍光物質は、波長変換膜として、あるいは既存の透明電極や反射防止膜中に分散させて、さらにはカバーシートなどとして配設することにより、その効果を達成させようとしている。   Therefore, in order to effectively use light in the short wavelength region in sunlight, light that can be photoelectrically converted by converting short wavelength light into long wavelength light using fluorescent materials such as rare earth metal ions, rare earth metal complexes, and fluorescent dyes. (Patent Documents 1 to 12). Such a fluorescent substance is intended to achieve its effect by being disposed as a wavelength conversion film, or dispersed in an existing transparent electrode or antireflection film, and further disposed as a cover sheet or the like.

半導体系太陽電池には、無機系の太陽電池のほか、ローダミンBなどの有機色素やルテニウムなどの遷移金属の錯体の増感作用を利用する色素増感太陽電池がある(特許文献13〜16)。   In addition to inorganic solar cells, semiconductor solar cells include dye-sensitized solar cells that use the sensitizing action of organic dyes such as rhodamine B and transition metal complexes such as ruthenium (Patent Documents 13 to 16). .

かかる色素増感太陽電池は光の吸収ピーク波長位置を増感色素の選択によりある程度制御できる点、コスト面や製造の容易さの点で無機系太陽電池よりも優れているが、無機系太陽電池にはない色素増感太陽電池に固有の課題が残っており、光電変換効率が5%程度に止まっているのが現状である。   Such a dye-sensitized solar cell is superior to an inorganic solar cell in that the light absorption peak wavelength position can be controlled to some extent by the selection of a sensitizing dye, and in terms of cost and ease of manufacture. There are still problems inherent in dye-sensitized solar cells that are not present, and the photoelectric conversion efficiency is limited to about 5%.

そこで、最近、色素増感太陽電池においても、700nm以上の近赤外光領域の光を用いて波長が550nm付近の光に変換可能な蛍光体微粒子の層を受光面側に施す試み(特許文献17)や、500nm以下の光を波長が500〜600nmの光に変換可能な蛍光体の層を受光面側に施す試み(特許文献18)も行われている。   Therefore, recently, even in dye-sensitized solar cells, an attempt is made to provide a phosphor fine particle layer on the light receiving surface side that can be converted into light having a wavelength of around 550 nm using light in the near infrared region of 700 nm or more (Patent Document). 17) and attempts to apply a phosphor layer capable of converting light of 500 nm or less into light having a wavelength of 500 to 600 nm on the light receiving surface side (Patent Document 18).

特許文献17に開示の技術では、700nm以上の近赤外光領域の光を波長が550nm付近の光に変換して利用するものであるため、色素増感太陽電池システムにおいて酸化還元に用いられるヨウ素イオン(I-、I3 -)が450nm前後に吸収を有することから、太陽光に含まれているその波長付近の光を有効に光電変換に利用できず、波長変換効率において劣るものである。 In the technique disclosed in Patent Document 17, light in the near-infrared light region of 700 nm or more is used after being converted to light having a wavelength of around 550 nm. Therefore, iodine used for redox in a dye-sensitized solar cell system Since the ions (I , I 3 ) have absorption around 450 nm, the light in the vicinity of the wavelength contained in sunlight cannot be effectively used for photoelectric conversion, and the wavelength conversion efficiency is inferior.

一方、特許文献18に開示の技術では、太陽光に含まれている500nm以下の波長付近の光を有効に光電変換に利用できるものの、無機系蛍光体や有機系蛍光物質をポリスチレン、セルロースなどの有機系樹脂、シリカなどの無機系マトリックスに分散させた波長変換層が示唆されているだけであり、波長変換効率は充分ではない。   On the other hand, in the technique disclosed in Patent Document 18, although light having a wavelength of about 500 nm or less contained in sunlight can be effectively used for photoelectric conversion, inorganic phosphors and organic phosphors such as polystyrene and cellulose are used. Only a wavelength conversion layer dispersed in an inorganic matrix such as an organic resin or silica is suggested, and the wavelength conversion efficiency is not sufficient.

特開昭58−106877号公報JP 58-106877 A 特開昭63−6881号公報JP-A 63-6881 特開平8−204222号公報JP-A-8-204222 特開平9−230396号公報Japanese Patent Laid-Open No. 9-230396 特開平10−247739号公報Japanese Patent Laid-Open No. 10-247739 特開平11−345993号公報JP 11-345993 A 特開2000−313877号公報JP 2000-313877 A 特開2001−308365号公報JP 2001-308365 A 特開2001−352091号公報JP 2001-352091 A 特開2003−218367号公報JP 2003-218367 A 特開2003−218379号公報JP 2003-218379 A 特開2003−243682号公報JP 2003-243682 A 特開平10−255863号公報JP-A-10-255863 特開2002−363418号公報JP 2002-363418 A 特開2003−338326号公報JP 2003-338326 A 特開2003−317814号公報JP 2003-317814 A 特開2004−31050号公報JP 2004-31050 A 特開2004−171815号公報JP 2004-171815 A

本発明は、太陽光の有効利用を図り、色素増感太陽電池の光電変換効率を向上させることを目的とする。   An object of this invention is to aim at the effective utilization of sunlight, and to improve the photoelectric conversion efficiency of a dye-sensitized solar cell.

また、色素増感太陽電池が抱える色素増感太陽電池に固有の課題である酸化還元系電解質の光吸収による光電変換効率の低下の課題をも解決することを目的とする。   Another object of the present invention is to solve the problem of a decrease in photoelectric conversion efficiency due to light absorption of the redox electrolyte, which is a problem inherent to the dye-sensitized solar cell possessed by the dye-sensitized solar cell.

すなわち本発明は、太陽光中の短波長領域の光を色素増感半導体層により光電変換可能な500nm〜650nmの長波長領域の光に波長変換する蛍光物質(B)が分散している波長変換膜が、太陽光側の最外層として配設されており、前記波長変換膜が、非晶性含フッ素ポリマー(A)をマトリックスポリマーとし、蛍光物質(B)が該マトリックスポリマー中に分散している膜であることを特徴とする色素増感太陽電池に関する。   That is, in the present invention, the wavelength conversion in which the phosphor (B) that converts the wavelength of light in the short wavelength region of sunlight into light in the long wavelength region of 500 nm to 650 nm that can be photoelectrically converted by the dye-sensitized semiconductor layer is dispersed. The film is disposed as the outermost layer on the sunlight side, and the wavelength conversion film has an amorphous fluorine-containing polymer (A) as a matrix polymer, and the fluorescent material (B) is dispersed in the matrix polymer. It is related with the dye-sensitized solar cell characterized by being a film which is.

前記波長変換膜として、非晶性含フッ素ポリマー(A)をマトリックスポリマーとし、蛍光物質が該マトリックスポリマー中に分散している膜を用いることにより、蛍光物質(B)、特に希土類金属錯体の発光効率がさらに向上し、光電変換効率も向上する。   By using a film in which the amorphous fluorine-containing polymer (A) is a matrix polymer and the fluorescent material is dispersed in the matrix polymer as the wavelength conversion film, light emission of the fluorescent material (B), particularly a rare earth metal complex, is achieved. Efficiency is further improved and photoelectric conversion efficiency is also improved.

前記色素増感太陽電池における酸化還元系電解質がヨウ化物イオンまたは三ヨウ化物イオンであり、かつ波長変換膜中に含まれる蛍光物質が希土類金属錯体からなるときは、紫外光領域の光のみならず、ヨウ化物イオンまたは三ヨウ化物イオンが吸収する波長の光を希土類金属錯体で有効利用でき、光電変換効率の向上がさらに奏される。   When the redox electrolyte in the dye-sensitized solar cell is iodide ion or triiodide ion and the fluorescent substance contained in the wavelength conversion film is composed of a rare earth metal complex, not only light in the ultraviolet region Further, light having a wavelength absorbed by iodide ions or triiodide ions can be effectively used in the rare earth metal complex, and the photoelectric conversion efficiency is further improved.

前記波長変換膜中に含まれる蛍光物質(B)としては、Tb錯体またはEu錯体が好ましく、さらに、Tb錯体またはEu錯体が吸収スペクトルの最大吸収ピーク波長を400nm以下の波長領域に有しており、かつその最大吸収ピーク波長の吸光係数が1000以上である錯体であるときに、より光電変換効率の向上が達成できる。   As the fluorescent substance (B) contained in the wavelength conversion film, a Tb complex or Eu complex is preferable, and the Tb complex or Eu complex has a maximum absorption peak wavelength of an absorption spectrum in a wavelength region of 400 nm or less. And when it is a complex whose absorption coefficient of the maximum absorption peak wavelength is 1000 or more, the improvement of photoelectric conversion efficiency can be achieved more.

本発明の色素増感太陽電池によれば、太陽光の有効利用を図り、光電変換効率を向上させることができる。   According to the dye-sensitized solar cell of the present invention, it is possible to effectively use sunlight and improve the photoelectric conversion efficiency.

また、色素増感太陽電池が抱える固有の課題である酸化還元系電解質の光吸収による光電変換率の低下を抑制できる。   Moreover, the fall of the photoelectric conversion rate by the light absorption of the oxidation reduction type | system | group electrolyte which is the intrinsic problem which a dye-sensitized solar cell has can be suppressed.

本発明の色素増感太陽電池の基本構造を図1に従って説明する。   The basic structure of the dye-sensitized solar cell of the present invention will be described with reference to FIG.

図1において、1は波長変換膜であり、透明基板2、透明電極3、増感色素が吸着された半導体粒子5からなる色素増感半導体層4、電解液層(キャリア輸送層)6、対抗(ホール集電)電極7および支持基板8から構成されており、波長変換膜1側から太陽光9が入射される。これらの構造のうち、波長変換膜1以外は従来の色素増感太陽電池が有している基本構造であり、前記特許文献13〜18にそれぞれの構造、製法、成分などが記載されており、本発明でもそれらの記載を引用する。なお、従来の色素増感太陽電池において透明電極2から支持基板8までの基本構造に、たとえば透明電極保護層、反射防止膜、紫外線遮断膜などの配設など種々の変更が加えられていることがあるが、そうした変更された構造も、本発明の色素増感太陽電池に適用可能である。   In FIG. 1, reference numeral 1 denotes a wavelength conversion film, a transparent substrate 2, a transparent electrode 3, a dye-sensitized semiconductor layer 4 composed of semiconductor particles 5 on which a sensitizing dye is adsorbed, an electrolyte solution layer (carrier transport layer) 6, (Hall current collector) It is composed of an electrode 7 and a support substrate 8, and sunlight 9 enters from the wavelength conversion film 1 side. Among these structures, other than the wavelength conversion film 1 is a basic structure that a conventional dye-sensitized solar cell has, and each of the structures, production methods, components, and the like are described in Patent Documents 13 to 18, These descriptions are also cited in the present invention. In the conventional dye-sensitized solar cell, the basic structure from the transparent electrode 2 to the support substrate 8 has been subjected to various changes such as the arrangement of a transparent electrode protective layer, an antireflection film, an ultraviolet blocking film, etc. However, such a modified structure is also applicable to the dye-sensitized solar cell of the present invention.

本発明において、非晶性含フッ素ポリマー(A)をマトリックスポリマーとする波長変換膜中には蛍光物質(B)が分散されている。蛍光物質(B)は、太陽光中の短波長領域の光を色素増感半導体層により光電変換可能な500nm〜650nmの長波長領域の光に波長変換する機能を有しているものであり、無機系の太陽電池でも使用されている蛍光物質が使用できる。   In the present invention, the fluorescent material (B) is dispersed in the wavelength conversion film using the amorphous fluorine-containing polymer (A) as a matrix polymer. The fluorescent substance (B) has a function of wavelength-converting light in a short wavelength region in sunlight into light in a long wavelength region of 500 nm to 650 nm that can be photoelectrically converted by the dye-sensitized semiconductor layer, Fluorescent materials that are also used in inorganic solar cells can be used.

ただし、本発明では光電変換の中心を担う作用機構が色素増感作用であり、かつ効率的に光電変換可能な光の波長領域が500nm〜650nmであるため、色素増感半導体を構成する増感色素の種類(Ru系色素、クマリン系色素など)を考慮して選定する必要がある。   However, in the present invention, the mechanism responsible for photoelectric conversion is dye sensitization, and the wavelength region of light that can be efficiently photoelectrically converted is 500 nm to 650 nm. It is necessary to select in consideration of the type of pigment (Ru pigment, coumarin pigment, etc.).

また、蛍光物質(B)の選定の要因として、色素増感太陽電池に固有のものである酸化還元系電解液(電解質+溶媒)の作用も考慮することが重要である。すなわち、使用する酸化還元系電解質および溶媒はそれぞれ固有の吸収波長を有しており、それらが吸収した光はエネルギー変換には寄与しない。   In addition, as a factor for selecting the fluorescent substance (B), it is important to consider the action of a redox electrolyte solution (electrolyte + solvent) that is unique to the dye-sensitized solar cell. That is, each of the redox electrolyte and solvent used has a specific absorption wavelength, and the light absorbed by them does not contribute to energy conversion.

蛍光物質、増感色素および酸化還元系電解液の具体例および組合せについては後述する。   Specific examples and combinations of the fluorescent substance, the sensitizing dye, and the redox electrolyte will be described later.

蛍光物質が吸収する光は色素増感半導体層で有効に光電変換できない短波長領域の光であり、吸収スペクトルのピーク波長が500nm未満、好ましくは400nm以下にある光である。吸収ピーク波長の下限は通常200nm程度である。   The light absorbed by the fluorescent material is light in a short wavelength region that cannot be effectively photoelectrically converted by the dye-sensitized semiconductor layer, and is light having an absorption spectrum peak wavelength of less than 500 nm, preferably 400 nm or less. The lower limit of the absorption peak wavelength is usually about 200 nm.

また、吸収スペクトルのピークがシャープな蛍光物質でもよいが、短波長領域を広くカバーできる吸収波長領域幅が広い物質の方が太陽光をさらに有効に利用できる点で望ましい。   In addition, a fluorescent material having a sharp absorption spectrum peak may be used, but a material having a wide absorption wavelength range that can cover a short wavelength range widely is preferable in that sunlight can be used more effectively.

またさらに、上記した酸化還元系電解質および溶媒の固有の吸収波長をも吸収波長領域に含む物質が光電変換効率の低下を抑制できる点で好ましい。   Furthermore, a substance that also includes the above-described absorption wavelengths specific to the redox electrolyte and solvent in the absorption wavelength region is preferable in that it can suppress a decrease in photoelectric conversion efficiency.

蛍光物質の変換波長は500nmから650nmの範囲であり、この範囲にあれば、色素増感半導体により有効に光電変換される。   The conversion wavelength of the fluorescent material is in the range of 500 nm to 650 nm, and within this range, photoelectric conversion is effectively performed by the dye-sensitized semiconductor.

蛍光物質(B)の具体例としては、希土類金属錯体、希土類金属イオン、有機蛍光色素などがあげられる。   Specific examples of the fluorescent substance (B) include rare earth metal complexes, rare earth metal ions, and organic fluorescent dyes.

希土類金属錯体としては、Tb、Euの希土類金属の錯体であって有機化合物を配位子とするものが、吸収ピーク波長位置および吸収波長領域幅を制御できる点から好ましい。   As the rare earth metal complex, a rare earth metal complex of Tb and Eu and having an organic compound as a ligand is preferable from the viewpoint that the absorption peak wavelength position and the absorption wavelength region width can be controlled.

前記のとおり配位子を選択することにより吸収ピーク波長や吸収波長幅を制御できる。また、配位子としては、具体的には、β−ジケトン構造を有する配位子、β−ジスルフォニル構造を有する配位子、カルボニルイミド構造を有する配位子、スルホンイミド構造を有する配位子があげられ、これらは形成した錯体の発光効率が良好な点で好ましい。   The absorption peak wavelength and the absorption wavelength width can be controlled by selecting the ligand as described above. In addition, as a ligand, specifically, a ligand having a β-diketone structure, a ligand having a β-disulfonyl structure, a ligand having a carbonylimide structure, and a coordination having a sulfonimide structure These are preferable in that the luminous efficiency of the formed complex is good.

具体的には、   In particular,

Figure 0004791743
Figure 0004791743

が例示でき、なかでも Can be illustrated, among others

Figure 0004791743
Figure 0004791743

が、紫外領域における吸光係数が高い点、形成した錯体の発光効率が高い点で好ましく挙げられる。 Are preferable in terms of a high absorption coefficient in the ultraviolet region and a high luminous efficiency of the complex formed.

特に有効な蛍光物質(B)としては、Tb錯体またはEu錯体であって、吸収スペクトルの最大吸収ピーク波長を400nm以下の波長領域に有しており、かつ該最大吸収ピーク波長の吸光係数が1000以上、さらには10000以上である錯体が好ましい。吸光係数が大きい方が変換される波長の光の強度が強くなり、光電変換効率が向上する。   A particularly effective fluorescent substance (B) is a Tb complex or an Eu complex, which has a maximum absorption peak wavelength of an absorption spectrum in a wavelength region of 400 nm or less, and an extinction coefficient of the maximum absorption peak wavelength is 1000. More preferably, the complex is 10,000 or more. When the extinction coefficient is larger, the intensity of light having a wavelength to be converted is increased, and the photoelectric conversion efficiency is improved.

それらの具体的な錯体としては上記配位子を有するTb錯体およびEu錯体が挙げられ、これらは紫外光領域の光のみならず、ヨウ化物イオンまたは三ヨウ化物イオンが吸収する波長の光を吸収し、可視光領域の光に高効率に変換できる点から好ましい。   Specific examples of these complexes include Tb complexes and Eu complexes having the above-mentioned ligands, which absorb not only light in the ultraviolet region but also light having a wavelength that is absorbed by iodide ions or triiodide ions. However, it is preferable because it can be converted into light in the visible light region with high efficiency.

特に好ましい錯体としてはつぎのものが例示できる。   The following can be illustrated as a particularly preferable complex.

Figure 0004791743
Figure 0004791743

最大吸収ピーク波長:390nm
最大吸収ピーク波長の吸光係数:12000
吸収波長幅:300〜480nm
変換波長:615nm
Maximum absorption peak wavelength: 390 nm
Absorption coefficient of maximum absorption peak wavelength: 12000
Absorption wavelength width: 300 to 480 nm
Conversion wavelength: 615 nm

Figure 0004791743
Figure 0004791743

最大吸収ピーク波長:350nm
最大吸収ピーク波長の吸光係数:1500
吸収波長幅:300〜390nm
変換波長:615nm
Maximum absorption peak wavelength: 350 nm
Absorption coefficient of maximum absorption peak wavelength: 1500
Absorption wavelength width: 300 to 390 nm
Conversion wavelength: 615 nm

Figure 0004791743
Figure 0004791743

最大吸収ピーク波長:360nm
最大吸収ピーク波長の吸光係数:2300
吸収波長幅:300〜380nm
変換波長:550nm
Maximum absorption peak wavelength: 360 nm
Absorption coefficient of maximum absorption peak wavelength: 2300
Absorption wavelength width: 300 to 380 nm
Conversion wavelength: 550 nm

その他の蛍光物質としては、Tb3+、Eu3+などの希土類金属イオンや、ローダミンやクマリンなどの蛍光色素なども使用できる。 As other fluorescent substances, rare earth metal ions such as Tb 3+ and Eu 3+ and fluorescent dyes such as rhodamine and coumarin can be used.

本発明の特徴の1つは、波長変換膜のマトリックスポリマーとして非晶性含フッ素ポリマー(A)を用いることにある。非晶性含フッ素ポリマー(A)を用いることにより、透明性および耐候性、耐溶剤性、耐熱性などに優れた膜を形成でき、さらに蛍光物質、特に希土類金属錯体の発光効率をさらに向上させて光電変換効率を向上させることができる。   One of the characteristics of the present invention is that the amorphous fluorine-containing polymer (A) is used as the matrix polymer of the wavelength conversion film. By using the amorphous fluorine-containing polymer (A), it is possible to form a film excellent in transparency, weather resistance, solvent resistance, heat resistance, etc., and further improve the luminous efficiency of fluorescent substances, particularly rare earth metal complexes. Thus, the photoelectric conversion efficiency can be improved.

本発明で波長変換膜のマトリックスポリマーとして用いる非晶性含フッ素ポリマー(A)は、フッ素含有率のできる限り高いことが望ましい。好ましいフッ素含有率は、20質量%以上、好ましくは30質量%以上、より好ましくは40質量%以上、特に50質量%以上である。   The amorphous fluorine-containing polymer (A) used as the matrix polymer of the wavelength conversion film in the present invention desirably has as high a fluorine content as possible. A preferable fluorine content is 20% by mass or more, preferably 30% by mass or more, more preferably 40% by mass or more, and particularly 50% by mass or more.

上限は水素原子が全てフッ素原子に置き換えられたポリマーであるが、ポリマーの構造によって異なるものの、フッ素含有率が高くなりすぎると、蛍光物質との相溶性、分散性が低下してしまう傾向にある。   The upper limit is a polymer in which all of the hydrogen atoms are replaced with fluorine atoms, but depending on the structure of the polymer, if the fluorine content becomes too high, the compatibility and dispersibility with the fluorescent material tend to decrease. .

非晶性含フッ素ポリマー(A)としての好ましい第一のポリマーとしては、ポリマー側鎖を形成し得る部分またはポリマー主鎖を形成し得る部分の少なくとも一方に、フッ素原子を有する含フッ素アクリレート類由来の構造単位を有する含フッ素アクリレート系重合体(A1)である。   The preferred first polymer as the amorphous fluorine-containing polymer (A) is derived from fluorine-containing acrylates having a fluorine atom in at least one of a part capable of forming a polymer side chain or a part capable of forming a polymer main chain. It is a fluorine-containing acrylate-type polymer (A1) which has the following structural unit.

具体例としては、式(1):   As a specific example, the formula (1):

Figure 0004791743
Figure 0004791743

(式中、X1はH、F、Cl、CH3またはCF3;R1はエーテル結合を有していてもよい炭素数1〜50の1価の炭化水素基およびエーテル結合を有していてもよい炭素数1〜50の1価の含フッ素炭化水素基から選ばれる基であって、ただし、X1、R1の少なくとも一方にフッ素原子を含む)で表される含フッ素アクリレート類(a1−1)から選ばれる少なくとも1種の単量体由来の構造単位を有するものが好ましい。 (In the formula, X 1 is H, F, Cl, CH 3 or CF 3 ; R 1 has a C 1-50 monovalent hydrocarbon group which may have an ether bond and an ether bond. A fluorine-containing acrylate represented by a group selected from monovalent fluorine-containing hydrocarbon groups having 1 to 50 carbon atoms, wherein at least one of X 1 and R 1 contains a fluorine atom) Those having a structural unit derived from at least one monomer selected from a1-1) are preferred.

1を除いた具体的構造として、 As a specific structure excluding R 1 ,

Figure 0004791743
Figure 0004791743

などの構造を有するものが挙げられ、なかでも、 That have a structure such as

Figure 0004791743
Figure 0004791743

の構造を有するものが重合性の面で好ましく、さらには、 Those having the following structure are preferred in terms of polymerizability,

Figure 0004791743
Figure 0004791743

の構造を有するものが蛍光物質(B)との組成物とした場合、発光強度、発光効率を向上できる点で好ましく、さらに得られた重合体に透明性と耐熱性を付与できる点で、また機械的強度を付与できる点で好ましい。 When the composition having the following structure is used as a composition with the fluorescent substance (B), it is preferable in that the light emission intensity and the light emission efficiency can be improved, and in addition, transparency and heat resistance can be imparted to the obtained polymer. It is preferable at the point which can provide mechanical strength.

含フッ素アクリレート(a1−1)におけるXがFまたはCF3である場合、側鎖のR1は、フッ素原子を含んでいなくてもよいが、通常、エーテル結合を有していてもよい炭素数1〜50の1価の含フッ素アルキル基、エーテル結合を有していてもよい芳香族環状構造を含む炭素数2〜50の1価の含フッ素アリール基から選ばれる少なくとも1種であることが好ましい。 When X in the fluorine-containing acrylate (a1-1) is F or CF 3 , R 1 in the side chain may not contain a fluorine atom, but is usually carbon that may have an ether bond. It is at least one selected from a monovalent fluorine-containing alkyl group having 1 to 50 carbon atoms and a monovalent fluorine-containing aryl group having 2 to 50 carbon atoms including an aromatic cyclic structure which may have an ether bond. Is preferred.

それによって、含フッ素アクリレート系重合体(A1)のフッ素含有率を大幅に向上させることができ、蛍光物質(B)との組成物とした場合、発光強度、発光効率を向上できる点で好ましい。   Thereby, the fluorine content of the fluorine-containing acrylate polymer (A1) can be significantly improved, and the composition with the fluorescent material (B) is preferable in that the emission intensity and the emission efficiency can be improved.

なかでもエーテル結合を有していてもよい炭素数1〜50の1価の含フッ素アルキル基から選ばれる少なくとも1種であることが、透明性の点で、発光強度、発光効率の面でさらに向上し、好ましい。   Among these, it is at least one selected from monovalent fluorine-containing alkyl groups having 1 to 50 carbon atoms which may have an ether bond, and further in terms of light emission intensity and light emission efficiency in terms of transparency. Improved and preferred.

本発明において、含フッ素アクリレート系重合体(A1)を構成する構造単位を与える含フッ素アクリレート(a1−1)としては、具体的には以下の単量体が好ましく挙げられる。   In the present invention, specific examples of the fluorine-containing acrylate (a1-1) that gives the structural unit constituting the fluorine-containing acrylate polymer (A1) include the following monomers.

(a1−i)直鎖状の含フッ素アルキル基を有する単量体 (A1-i) Monomer having a linear fluorine-containing alkyl group

Figure 0004791743
Figure 0004791743

が好ましく挙げられ、なかでも
CH2=CF−COO−CH2CF2CF2H、
CH2=CF−COO−CH2(CF2CF22
が特に好ましく挙げられる。
Are preferred, and among them, CH 2 ═CF—COO—CH 2 CF 2 CF 2 H,
CH 2 = CF-COO-CH 2 (CF 2 CF 2) 2 H
Is particularly preferred.

また、
(a1−ii)分枝状の含フッ素アルキル基を有する単量体
Also,
(A1-ii) Monomer having a branched fluorine-containing alkyl group

Figure 0004791743
Figure 0004791743

が特に好ましく挙げられる。 Is particularly preferred.

(a1−iii)エーテル結合を有する含フッ素アルキル基を側鎖にもつ単量体 (A1-iii) A monomer having a fluorine-containing alkyl group having an ether bond in the side chain

Figure 0004791743
Figure 0004791743

が特に好ましく挙げられる。 Is particularly preferred.

また、含フッ素アクリレート系重合体(A1)の重量平均分子量は500〜1,000,000、さらには5,000〜800,000、特に10,000〜500,000が好ましい。   The weight average molecular weight of the fluorinated acrylate polymer (A1) is preferably 500 to 1,000,000, more preferably 5,000 to 800,000, and particularly preferably 10,000 to 500,000.

つぎに含フッ素アクリレート系重合体(A1)をガラス転移温度(Tg)とフッ素含有率の観点から説明し、例示する(具体例が前述の例と重複する場合もある)。   Next, the fluorinated acrylate polymer (A1) will be described and exemplified from the viewpoint of the glass transition temperature (Tg) and the fluorine content (specific examples may overlap with the above examples).

かかる観点から、好ましい含フッ素アクリレート系重合体(A1)の第一は、(A1−I)ガラス転移温度が40℃以上でフッ素含有率が50質量%以上である含フッ素アクリル重合体である。   From this viewpoint, the first of the preferred fluorine-containing acrylate polymer (A1) is (A1-I) a fluorine-containing acrylic polymer having a glass transition temperature of 40 ° C. or higher and a fluorine content of 50% by mass or higher.

ガラス転移温度が40℃より低いと室温で変形して形状安定性に問題があり、また希土類金属イオンが移動し再分布して相分離を惹き起こすことがある。ガラス転移温度は、発光素子などにした際に自己発熱によりマトリックスの重合体自体が加熱されるため、耐熱性の点から好ましくは65℃以上、さらには100℃以上である。上限は特に限定されないが、含フッ素アクリル重合体では通常200℃程度である。   If the glass transition temperature is lower than 40 ° C., there is a problem in shape stability due to deformation at room temperature, and rare earth metal ions may move and redistribute to cause phase separation. The glass transition temperature is preferably 65 ° C. or higher, more preferably 100 ° C. or higher from the viewpoint of heat resistance, because the matrix polymer itself is heated by self-heating when a light emitting device or the like is formed. Although an upper limit is not specifically limited, In a fluorine-containing acrylic polymer, it is about 200 degreeC normally.

もちろん、フッ素含有率が高い方が好ましく、52質量%以上、特に55質量%以上である。フッ素含有率の上限も特に限定されないが、蛍光物質との相溶性を悪化させない点、および化学構造的な制限から、通常76質量%程度である。   Of course, a higher fluorine content is preferable, and it is 52% by mass or more, particularly 55% by mass or more. The upper limit of the fluorine content is not particularly limited, but is usually about 76% by mass from the viewpoint that the compatibility with the fluorescent material is not deteriorated and the chemical structure is limited.

含フッ素アクリレート系重合体(A1−I)は、なかでも、式(2):   Among the fluorine-containing acrylate polymers (A1-I), the formula (2):

Figure 0004791743
Figure 0004791743

(式中、Rf1はエーテル結合を含んでいてもよい炭素数1〜40の含フッ素炭化水素基)の構造を含む含フッ素アクリル重合体が、単独重合体でも、さらには共重合体としても、ガラス転移温度が40℃以上、フッ素含有率が50質量%以上を示す重合体となりやすく、しかも発光(増幅)強度も充分高く好ましい。Rf1としてはエーテル結合を有していてもよい炭素数1〜40の含フッ素アルキル基またはエーテル結合を有していてもよい炭素数3〜40の含フッ素アリール基が好ましくあげられる。 (Wherein Rf 1 is a fluorine-containing hydrocarbon group having 1 to 40 carbon atoms which may contain an ether bond), the fluorine-containing acrylic polymer may be a homopolymer or a copolymer. A polymer having a glass transition temperature of 40 ° C. or more and a fluorine content of 50% by mass or more is easily obtained, and the light emission (amplification) intensity is sufficiently high. Rf 1 is preferably a fluorine-containing alkyl group having 1 to 40 carbon atoms which may have an ether bond or a fluorine-containing aryl group having 3 to 40 carbon atoms which may have an ether bond.

上記式(2)の含フッ素アクリル重合体を形成しうる、α位がフッ素原子であるアクリレート(以下、「αFアクリレート」という)としては、たとえばつぎのものが好ましく例示できる。なお、各モノマーの後の記載は、(略称)そして(単独重合体のガラス転移温度とフッ素含有率(質量%))である(以下同様)。   As the acrylate (hereinafter referred to as “αF acrylate”) in which the α-position is a fluorine atom, which can form the fluorine-containing acrylic polymer of the above formula (2), for example, the following can be preferably exemplified. The description after each monomer is (abbreviation) and (glass transition temperature and fluorine content (% by mass) of homopolymer) (hereinafter the same).

CH2=CFCOOCH225 (5FF)(101℃、51%)、
CH2=CFCOOCH2CF2CFHCF3 (6FF)(70℃、52%)、
CH2=CFCOOCH248H (8FF)(65℃、56%)、
CH2=CFCOOC24817 (17FF)(66℃、64%)、
CH2=CFCOOC(CF32H (HFIP−F)(104℃、55%)、
CH2=CFCOOC(CF3265 (147℃、56%)、
CH 2 = CFCOOCH 2 C 2 F 5 (5FF) (101 ° C., 51%),
CH 2 = CFCOOCH 2 CF 2 CFHCF 3 (6FF) (70 ° C., 52%),
CH 2 = CFCOOCH 2 C 4 F 8 H (8FF) (65 ° C., 56%),
CH 2 = CFCOOC 2 H 4 C 8 F 17 (17FF) (66 ° C., 64%),
CH 2 = CFCOOC (CF 3) 2 H (HFIP-F) (104 ℃, 55%),
CH 2 = CFCOOC (CF 3 ) 2 C 6 F 5 (147 ° C., 56%),

Figure 0004791743
Figure 0004791743

なかでもHFIP−F、8FFは錯体との親和性が高く好ましい。また、αFアクリレートは、側鎖に分岐構造をもつものがガラス転移温度を高くすることができる点で好ましい。   Of these, HFIP-F and 8FF are preferred because of their high affinity with the complex. Further, αF acrylate having a branched structure in the side chain is preferable in that the glass transition temperature can be increased.

また、含フッ素アクリレート系重合体(A1−I)は、式(3):   The fluorine-containing acrylate polymer (A1-I) is represented by the formula (3):

Figure 0004791743
Figure 0004791743

(式中、Rf3はエーテル結合を有していてもよい炭素数1〜40の含フッ素炭化水素基でフッ素原子の数が7個以上)の構造を含む含フッ素メタクリレート重合体が、単独重合体でもガラス転移温度が40℃以上、フッ素含有率が50質量%以上を示し、発光強度も充分高く好ましい。Rf3としてはエーテル結合を有していてもよい炭素数1〜40の含フッ素アルキル基またはエーテル結合を有していてもよい炭素数3〜40の含フッ素アリール基が好ましくあげられる。 (Wherein Rf 3 is a fluorine-containing hydrocarbon group having 1 to 40 carbon atoms which may have an ether bond and having 7 or more fluorine atoms), Even a coalescence is preferable because it has a glass transition temperature of 40 ° C. or more, a fluorine content of 50% by mass or more, and a sufficiently high emission intensity. Rf 3 is preferably a fluorine-containing alkyl group having 1 to 40 carbon atoms which may have an ether bond or a fluorine-containing aryl group having 3 to 40 carbon atoms which may have an ether bond.

式(3)で示される構造を与えるモノマーとしては、たとえばつぎのものが好ましく例示できる。
CH2=C(CH3)COOCH248H (8FM)(47℃、51%)、
CH2=C(CH3)COOC24817 (17FM)(40℃、61%)、
CH2=C(CH3)COOC(CF33 (9FtBuM)(156℃、56%)、
CH2=C(CH3)COOC(CF3265 (132℃、52%)
As the monomer giving the structure represented by the formula (3), for example, the following can be preferably exemplified.
CH 2 ═C (CH 3 ) COOCH 2 C 4 F 8 H (8FM) (47 ° C., 51%),
CH 2 = C (CH 3) COOC 2 H 4 C 8 F 17 (17FM) (40 ℃, 61%),
CH 2 = C (CH 3) COOC (CF 3) 3 (9FtBuM) (156 ℃, 56%),
CH 2 = C (CH 3) COOC (CF 3) 2 C 6 F 5 (132 ℃, 52%)

なかでも8FMは錯体との親和性が良く好ましい。また、含フッ素メタクリレートは、側鎖に分岐構造をもつものがガラス転移温度が高くなることから好ましい。   Of these, 8FM is preferable because of its good affinity with the complex. Further, as the fluorine-containing methacrylate, those having a branched structure in the side chain are preferable because the glass transition temperature becomes high.

またさらに、含フッ素アクリレート系重合体(A1−I)は、前記αFアクリレートと前記含フッ素メタクリレートとの共重合体であっても良く、共重合の組成および共重合比は、ガラス転移温度が40℃以上でフッ素含有率が50質量%以上の共重合体となる組成と共重合比が選択される。   Furthermore, the fluorine-containing acrylate polymer (A1-I) may be a copolymer of the αF acrylate and the fluorine-containing methacrylate, and the composition and copolymerization ratio of the copolymer have a glass transition temperature of 40. The composition and the copolymerization ratio are selected so as to be a copolymer having a fluorine content of 50% by mass or more at a temperature of 0 ° C. or higher.

この場合の、好ましい共重合体の組合せとしては、HFIP−Fと8FMの共重合体、6FON0と8FMの共重合体、17FFと8FMの共重合体などの組合せが、発光(増幅)強度や機械的強度に優れる点から好ましい。   In this case, as a preferable combination of copolymers, a combination of HFIP-F and 8FM copolymer, 6FON0 and 8FM copolymer, 17FF and 8FM copolymer, or the like is used. It is preferable from the viewpoint of excellent mechanical strength.

含フッ素アクリレート系重合体(A1−I)には、前記例示のαFアクリレートおよび/または含フッ素メタクリレートに加えて、共重合可能な他のモノマーを導入してもよい。   In addition to the αF acrylate and / or the fluorine-containing methacrylate exemplified above, other copolymerizable monomers may be introduced into the fluorine-containing acrylate polymer (A1-I).

他のモノマーとしては、得られる共重合体のガラス転移温度が40℃以上でフッ素含有率が50質量%以上の共重合体となる組成と共重合比を選択する。   As the other monomer, a composition and a copolymerization ratio are selected so that the resulting copolymer has a glass transition temperature of 40 ° C. or more and a fluorine content of 50% by mass or more.

他のモノマーとしては、たとえばつぎのものが例示できる。
CH2=C(CH3)COOCH3 (MMA)(120℃、0%)、
CH2=C(CH3)COOCH2C(CF32H (6FiP−M)(72℃、48%)、
CH2=C(CH3)COOCH2C(CF32CH3 (6FNPM)(120℃、43%)、
CH2=CFCOOCH2CF3 (3FF)(125℃、44%)、
CH2=CFCOOCH2C(CF32CH3 (6FNPF)(135℃、49%)、
CH2=CFCOOC(CH32H (IP−F)(93℃、14%)、
CH2=CFCOOC65 (PFPh−F)(160℃、45%)
Examples of other monomers include the following.
CH 2 ═C (CH 3 ) COOCH 3 (MMA) (120 ° C., 0%),
CH 2 = C (CH 3) COOCH 2 C (CF 3) 2 H (6FiP-M) (72 ℃, 48%),
CH 2 ═C (CH 3 ) COOCH 2 C (CF 3 ) 2 CH 3 (6FNPM) (120 ° C., 43%),
CH 2 = CFCOOCH 2 CF 3 (3FF) (125 ° C., 44%),
CH 2 = CFCOOCH 2 C (CF 3 ) 2 CH 3 (6FNPF) (135 ° C., 49%),
CH 2 = CFCOOC (CH 3) 2 H (IP-F) (93 ℃, 14%),
CH 2 = CFCOOC 6 F 5 (PFPh-F) (160 ° C., 45%)

他のモノマーとしては、なかでもMMAが機械的強度が向上改善される点で好ましい。また、6FNPM、6FNPF、PFPh−Fはフッ素含有率をほとんど低下させずにガラス転移点を上げられる点で好ましい。   Among other monomers, MMA is preferable because mechanical strength is improved and improved. Further, 6FNPM, 6FNPF, and PFPh-F are preferable in that the glass transition point can be raised without substantially reducing the fluorine content.

また、好ましい共重合体の組合せとしては、HFIP−FとMMAの2元共重合体、HFIP−FとMMAと6FNPFの3元共重合体、5FFと6FNPFの2元共重合体などの組合せが、機械的強度と発光(増幅)強度のバランスが良好な点から好ましい。   Preferred copolymer combinations include HFIP-F and MMA binary copolymer, HFIP-F, MMA and 6FNPF terpolymer, and 5FF and 6FNPF binary copolymer. From the viewpoint of good balance between mechanical strength and light emission (amplification) strength.

本発明の含フッ素アクリレート系重合体(A1)の好ましい第二は、(A1−II)ガラス転移温度が100℃以上でフッ素含有率が30質量%以上かつ50質量%未満である含フッ素アクリル重合体である。   A preferred second of the fluorine-containing acrylate polymer (A1) of the present invention is (A1-II) a fluorine-containing acrylic polymer having a glass transition temperature of 100 ° C. or higher and a fluorine content of 30% by mass or more and less than 50% by mass. It is a coalescence.

ガラス転移温度が100℃より高い場合、フッ素含有率が比較的小さくても充分な発光強度が得られる。もちろん、フッ素含有率が高い方が好ましく、35質量%以上、特に40質量%以上である。   When the glass transition temperature is higher than 100 ° C., sufficient emission intensity can be obtained even if the fluorine content is relatively small. Of course, a higher fluorine content is preferable, and it is 35% by mass or more, particularly 40% by mass or more.

ガラス転移温度の上限は特に限定されないが、含フッ素アクリル重合体では通常200℃程度である。   The upper limit of the glass transition temperature is not particularly limited, but is usually about 200 ° C. for a fluorine-containing acrylic polymer.

含フッ素アクリル重合体(A1−II)の具体例としては、つぎのものがあげられる。   Specific examples of the fluorine-containing acrylic polymer (A1-II) include the following.

(A1−IIa)含フッ素アクリル系モノマーの単独重合体:
式(1)で示される構造を与えるモノマーのうち、単独重合体で100℃以上でフッ素含有率が30質量%以上かつ50質量%未満を満たすものとしては、たとえば前記の(A1−I)で例示した3FF(125℃、44%)、6FNPF(135℃、49%)、PFPh−F(160℃、45%)、6FNPM(120℃、43%)などがあげられる。
(A1-IIa) Homopolymer of fluorine-containing acrylic monomer:
Among the monomers that give the structure represented by the formula (1), a homopolymer satisfying a fluorine content of 30% by mass or more and less than 50% by mass at 100 ° C. or higher is, for example, the above (A1-I) Examples include 3FF (125 ° C, 44%), 6FNPF (135 ° C, 49%), PFPh-F (160 ° C, 45%), 6FNPM (120 ° C, 43%), and the like.

なかでも6FNPFおよび6FNPMは蛍光物質、特には希土類金属錯体との親和性が高く好ましい。また、得られる含フッ素アクリル重合体は、側鎖に分岐構造をもつものがガラス転移温度が高くなることから好ましい。   Of these, 6FNPF and 6FNPM are preferred because of their high affinity with fluorescent materials, particularly rare earth metal complexes. Further, the obtained fluorine-containing acrylic polymer is preferably one having a branched structure in the side chain because the glass transition temperature becomes high.

(A1−IIb)前記(A1−IIa)で示す含フッ素アクリル系モノマー同士または他の含フッ素アクリル系モノマーとの共重合体:
共重合の組成および共重合比は、ガラス転移温度が100℃以上でフッ素含有率が30質量%以上かつ50質量%未満の共重合体となる組成と共重合比を選択する。
(A1-IIb) Copolymers of fluorine-containing acrylic monomers represented by the above (A1-IIa) or other fluorine-containing acrylic monomers:
The composition and copolymerization ratio of the copolymer are selected such that the glass transition temperature is 100 ° C. or higher and the fluorine content is 30% by mass or more and less than 50% by mass.

他の含フッ素アクリル系モノマーとしては、たとえば6FiP−M、IP−Fなどがあげられる。   Examples of other fluorine-containing acrylic monomers include 6FiP-M and IP-F.

また、好ましい共重合体の組合せとしては、3FFと6FNPMの共重合体、PFPh−Fと6FNPMの共重合体、6FNPFと6FNPMの共重合体などの組合せが、発光(増幅)強度や機械的強度が良好な点から好ましい。また、他の含フッ素アクリル系モノマーとして6FiP−MやIP−Fを使用するときは、ガラス転移温度を低下させずに機械的強度を付与できる点から好ましい。   Further, as a preferable combination of copolymers, a combination of a copolymer of 3FF and 6FNPM, a copolymer of PFPh-F and 6FNPM, a copolymer of 6FNPF and 6FNPM, and the like, the light emission (amplification) intensity and mechanical strength are used. Is preferable from the viewpoint of good. Further, when 6FiP-M or IP-F is used as the other fluorine-containing acrylic monomer, it is preferable because mechanical strength can be imparted without lowering the glass transition temperature.

(A1−IIc)前記(A1−IIa)で示す含フッ素アクリル系モノマーと非フッ素系アクリル系モノマーとの共重合体:
非フッ素系アクリル系モノマーとしては、得られる共重合体のガラス転移温度が100℃以上でフッ素含有率が30質量%以上かつ50質量%未満の共重合体となる組成と共重合比を選択する。
(A1-IIc) Copolymer of fluorine-containing acrylic monomer and non-fluorine acrylic monomer represented by (A1-IIa):
As the non-fluorine-based acrylic monomer, a composition and a copolymerization ratio are selected so that the resulting copolymer has a glass transition temperature of 100 ° C. or higher and a fluorine content of 30% by mass or more and less than 50% by mass. .

非フッ素系アクリルモノマーとしては、たとえばMMA(120℃、0%)は機械的強度を改善できる点で特に好ましい。   As the non-fluorinated acrylic monomer, for example, MMA (120 ° C., 0%) is particularly preferable because it can improve the mechanical strength.

好ましい共重合体としては、たとえば6FNPMとMMAの2元共重合体、6FNPFとMMAの2元共重合体、6FNPMとMMAとIP−Fの3元共重合体、6FNPFとMMAとIP−Fの3元共重合体が、さらにMMAと5FFの2元共重合体が、機械的強度と発光(増幅)強度のバランスが良好な点から好ましく例示できる。   Preferable copolymers include, for example, a binary copolymer of 6FNPM and MMA, a binary copolymer of 6FNPF and MMA, a terpolymer of 6FNPM, MMA, and IP-F, and a copolymer of 6FNPF, MMA, and IP-F. A ternary copolymer and a binary copolymer of MMA and 5FF can be preferably exemplified from the viewpoint of good balance between mechanical strength and light emission (amplification) strength.

含フッ素アクリル重合体(A1)の好ましい第三は、(A1−III)前記含フッ素アクリレート(a1−1)由来の構造単位に加えて、多官能アクリレート(a1−2)由来の構造単位を有することを特徴とする重合体である。   A preferred third of the fluorinated acrylic polymer (A1) has (A1-III) a structural unit derived from the polyfunctional acrylate (a1-2) in addition to the structural unit derived from the fluorinated acrylate (a1-1). It is a polymer characterized by this.

多官能アクリレート(a1−2)由来の構造単位を導入することで、蛍光物質との組成物からなる波長変換膜の光機能性(発光(増幅)強度および発光(増幅)効率)を大幅に向上させることができる。   By introducing structural units derived from polyfunctional acrylate (a1-2), the optical functionality (emission (amplification) intensity and emission (amplification) efficiency) of the wavelength conversion film composed of the composition with the fluorescent substance is greatly improved. Can be made.

本発明において、波長変換膜における非晶性含フッ素ポリマー(A)の好ましい第二は、硬化性の部位を側鎖または主鎖末端に有する含フッ素ポリマー(A2)である。   In the present invention, the second preferred amorphous fluoropolymer (A) in the wavelength conversion film is a fluoropolymer (A2) having a curable site at the side chain or main chain terminal.

硬化性部位を有する含フッ素ポリマー(A2)としては、WO02/72706号パンフレットやWO2004/016689号パンフレットに記載と同様のものが、具体的に好ましく挙げられる。   Specific examples of the fluorine-containing polymer (A2) having a curable site are preferably the same as those described in the pamphlet of WO02 / 72706 and pamphlet of WO2004 / 016689.

さらに、波長変換膜における非晶性含フッ素ポリマー(A)の好ましい第三は、用いる蛍光物質(B)中の希土類金属イオンと配位結合することが可能な官能基または錯体形成可能な官能基を側鎖または主鎖末端に有する含フッ素ポリマー(A3)である。   Further, the third preferable example of the amorphous fluorine-containing polymer (A) in the wavelength conversion film is a functional group capable of coordinating with a rare earth metal ion in the fluorescent substance (B) to be used or a functional group capable of forming a complex. Is a fluorine-containing polymer (A3) having a side chain or main chain terminal.

錯形成可能な官能基を有する含フッ素ポリマー(A3)としては、WO02/72696号パンフレットやWO03/91343号パンフレットに記載と同様のものが、具体的に好ましく挙げられる。   Specific examples of the fluorine-containing polymer (A3) having a functional group capable of forming a complex are the same as those described in the pamphlets of WO02 / 72696 and WO03 / 91343.

マトリックスポリマーを形成する非晶性含フッ素ポリマー(A)中に蛍光物質(B)が分散した波長変換膜を形成する方法としては、ポリマーを溶剤に溶解したのち蛍光物質を添加した蛍光物質分散ポリマー溶液をたとえば既存の色素増感太陽電池の透明基板上に塗布、乾燥し、波長変換膜を作製する方法があげられる。塗布方法としては、回転塗布(スピンコート)、流延塗布、ロール塗布、グラビア塗布などがあげられる。   As a method of forming a wavelength conversion film in which a fluorescent substance (B) is dispersed in an amorphous fluorine-containing polymer (A) forming a matrix polymer, a fluorescent substance-dispersed polymer in which a fluorescent substance is added after dissolving the polymer in a solvent For example, there is a method of preparing a wavelength conversion film by applying the solution on a transparent substrate of an existing dye-sensitized solar cell and drying it. Examples of the coating method include spin coating, spin coating, roll coating, and gravure coating.

そのほか、波長変換層のフィルムを溶融押出成型などにより形成した後、透明基板上に熱圧着などにより、波長変換層を形成するといった方法も採用できる。   In addition, after the film of the wavelength conversion layer is formed by melt extrusion molding or the like, the wavelength conversion layer can be formed on the transparent substrate by thermocompression bonding or the like.

波長変換膜中の蛍光物質の量は、蛍光物質を分散させるマトリックスポリマーとの相溶性などによっても異なるが、通常、波長変換膜の全質量の1質量%以上、好ましくは5質量%以上である。好ましい上限は30質量%である。蛍光物質の量が多すぎると波長変換膜の透過性が低下し、少なすぎると波長変換効果が低下する傾向にある。   The amount of the fluorescent substance in the wavelength conversion film varies depending on compatibility with the matrix polymer in which the fluorescent substance is dispersed, but is usually 1% by mass or more, preferably 5% by mass or more of the total mass of the wavelength conversion film. . A preferable upper limit is 30 mass%. If the amount of the fluorescent substance is too large, the transmittance of the wavelength conversion film is lowered, and if it is too small, the wavelength conversion effect tends to be lowered.

波長変換膜の膜厚は、分散させる蛍光物質の量、光の透過性、膜強度などを考慮して決めればよいが、通常、1nm以上、1mm以下である。   The film thickness of the wavelength conversion film may be determined in consideration of the amount of fluorescent material to be dispersed, light transmittance, film strength, and the like, but is usually 1 nm or more and 1 mm or less.

つぎに既存の色素増感太陽電池の構成成分である色素増感半導体および酸化還元系電解液について、本発明との関係で、特に好ましいものについて説明するが、本発明はそれらの説明、例示に限定されるものではない。   Next, the dye-sensitized semiconductor and the oxidation-reduction system electrolyte that are the components of the existing dye-sensitized solar cell will be described particularly preferable in relation to the present invention. It is not limited.

色素増感半導体(図1中の5)は、特許文献13〜18に詳しくかつ具体的に記載されており、代表的な例としては酸化チタンや酸化亜鉛などの酸化物半導体粒子に増感色素が吸着されたものである。本発明では、既存の色素増感太陽電池で使用されている色素増感半導体の吸収波長に合わせて蛍光物質を選定してもよいし、蛍光物質に合わせて色素増感半導体を選定してもよい。   The dye-sensitized semiconductor (5 in FIG. 1) is described in detail and specifically in Patent Documents 13 to 18, and representative examples include sensitizing dyes on oxide semiconductor particles such as titanium oxide and zinc oxide. Is adsorbed. In the present invention, the fluorescent material may be selected according to the absorption wavelength of the dye-sensitized semiconductor used in the existing dye-sensitized solar cell, or the dye-sensitized semiconductor may be selected according to the fluorescent material. Good.

増感色素としては従来公知の物質が使用でき、代表例としては特許文献13〜18、特に特開2003−338326号公報(特許文献15)に記載されているものが例示できる。それらのうち、強い吸収波長(ピーク波長)が500〜650nmの範囲にあるRuビピリジン色素、Ruターピリジン色素などのRu系色素、クマリン系色素などが好ましい。   Conventionally known substances can be used as the sensitizing dye, and typical examples thereof include those described in Patent Documents 13 to 18, particularly JP-A-2003-338326 (Patent Document 15). Among them, Ru dyes such as Ru bipyridine dyes and Ru terpyridine dyes having a strong absorption wavelength (peak wavelength) in the range of 500 to 650 nm, and coumarin dyes are preferable.

酸化還元系電解液は酸化還元系電解質と溶媒からなる液状物または酸化還元系電解質とポリマーからなる組成物などであり、色素増感半導体層中および対抗電極との間の空隙を充填している。   The redox electrolyte is a liquid consisting of a redox electrolyte and a solvent, or a composition consisting of a redox electrolyte and a polymer, and fills the gap between the dye-sensitized semiconductor layer and the counter electrode. .

酸化還元系電解質としては従来公知の物質が使用でき、特開2002−363418号公報(特許文献14)に詳しく記載されているもののほか、特許文献13、15〜16、18に記載されている物質などがあげられる。   Conventionally known substances can be used as the oxidation-reduction electrolyte. In addition to those described in detail in JP-A-2002-363418 (Patent Document 14), substances described in Patent Documents 13, 15-16 and 18 are used. Etc.

それらのうち、輸送効率が特に良好な点から、ヨウ化物イオン、三ヨウ化物イオンが好ましく使用できる。   Among them, iodide ions and triiodide ions can be preferably used from the viewpoint of particularly good transport efficiency.

また、溶媒としてはカーボネート類、ニトリル化合物類、アルコール類などが使用されており、それらのなかでもプロピレンカーボネートなどのカーボネート類およびアセトニトリル、メトキシアセトニトリルなどのニトリル化合物類が、吸収波長領域が光電変換に利用される領域から外れていることから好ましく使用される。   In addition, carbonates, nitrile compounds, alcohols, etc. are used as solvents. Among them, carbonates such as propylene carbonate and nitrile compounds such as acetonitrile and methoxyacetonitrile have an absorption wavelength range for photoelectric conversion. It is preferably used because it is out of the area used.

ところで前述したように、これらの酸化還元系電解質は固有の吸収波長帯域を有しており、その帯域が色素増感半導体の吸収波長に重なると、光電変換効率が低下してしまう。たとえばヨウ化物イオンまたは三ヨウ化物イオンは300〜500nmに特性吸収をもつため、この部分の光の利用が制限される。   As described above, these redox electrolytes have a specific absorption wavelength band, and when this band overlaps with the absorption wavelength of the dye-sensitized semiconductor, the photoelectric conversion efficiency decreases. For example, iodide ion or triiodide ion has characteristic absorption at 300 to 500 nm, so that the use of light in this portion is limited.

本発明の好ましい態様では、こうした酸化還元系電解質の吸収波長の光を波長変換膜中の蛍光物質で予め吸収し、長波長側に波長変換し利用することが可能になる。たとえば、酸化還元系電解質としてヨウ化物イオンまたは三ヨウ化物イオンを使用する場合は、蛍光物質として希土類金属錯体、特にTb錯体またはEu錯体を用いることが好ましい。   In a preferred embodiment of the present invention, light having an absorption wavelength of such a redox electrolyte is previously absorbed by the fluorescent material in the wavelength conversion film, and can be used after wavelength conversion to the longer wavelength side. For example, when iodide ion or triiodide ion is used as the redox electrolyte, it is preferable to use a rare earth metal complex, particularly a Tb complex or Eu complex, as the fluorescent substance.

本発明の色素増感太陽電池は、波長変換膜を配設していない従来の色素増感太陽電池の光電変換効率を1%以上高くすることができる。   The dye-sensitized solar cell of the present invention can increase the photoelectric conversion efficiency of a conventional dye-sensitized solar cell not provided with a wavelength conversion film by 1% or more.

つぎに実施例をあげて本発明を具体的に説明するが、本発明はこれらの実施例のみに限定されるものではない。   EXAMPLES Next, the present invention will be specifically described with reference to examples. However, the present invention is not limited only to these examples.

まず、以下の実施例において使用する測定法を説明する。   First, measurement methods used in the following examples will be described.

(フッ素含有率の測定)
酸素フラスコ燃焼法により試料10mgを燃焼し、分解ガスを脱イオン水20mlに吸収させ、吸収液中のフッ素イオン濃度をフッ素選択電極法(フッ素イオンメータ。オリオン社製の901型)で測定することによって求める(質量%)。
(Measurement of fluorine content)
Burn 10 mg of sample by the oxygen flask combustion method, absorb the decomposition gas in 20 ml of deionized water, and measure the fluorine ion concentration in the absorption liquid by the fluorine selective electrode method (fluorine ion meter, model 901 manufactured by Orion). (Mass%).

(TG−DTA)
示差走査熱量計(SEIKO 社製、RTG220)を用いて、30℃から200℃までの温度範囲を10℃/分の条件で昇温−降温−昇温(2回目の昇温をセカンドランと呼ぶ)させて得られるセカンドランにおける吸熱曲線の中間点をTg(℃)とする。
(TG-DTA)
Using a differential scanning calorimeter (manufactured by SEIKO, RTG220), the temperature range from 30 ° C. to 200 ° C. under the condition of 10 ° C./min. Temperature rise / fall temperature-temperature rise (the second temperature rise is called a second run) ) Is the intermediate point of the endothermic curve in the second run obtained as Tg (° C.).

(波長変換膜の膜厚)
マイクロメーターを用いて計測した波長変換膜配設後の太陽電池全体の膜厚から、予め同様に測定した波長変換膜を配設する前の太陽電池の厚さを差し引いて算出する。
(Thickness of wavelength conversion film)
The thickness is calculated by subtracting the thickness of the solar cell before the wavelength conversion film measured in advance in the same manner from the film thickness of the entire solar cell after the wavelength conversion film is measured using the micrometer.

合成例1(Eu錯体、Eu(CF3COCHCOCF33・2((C653P=O)の調製)
酢酸ユーロピウム4水和物2.0g(5mmol)およびヘキサフルオロアセチルアセトン3.0g(20mmol)を水50mlに加え、室温で3日間攪拌した。沈殿した固体をろ過、水洗後、水/メタノール混合溶媒で再結晶し、錯体(Eu(CF3COCHCOCF33)を得た(収率60%)。得られた結晶はTG−DTA測定の結果から、2水和物であることが確認された。
Synthesis Example 1 (Eu Complex, Eu (CF 3 COCHCOCF 3 ) 3 · 2 (Preparation of (C 6 H 5 ) 3 P═O))
Europium acetate tetrahydrate (2.0 g, 5 mmol) and hexafluoroacetylacetone (3.0 g, 20 mmol) were added to water (50 ml), and the mixture was stirred at room temperature for 3 days. The precipitated solid was filtered, washed with water, and recrystallized with a water / methanol mixed solvent to obtain a complex (Eu (CF 3 COCHCOCF 3 ) 3 ) (yield 60%). From the result of TG-DTA measurement, the obtained crystal was confirmed to be dihydrate.

得られた錯体(Eu(CF3COCHCOCF33)1.0g、トリフェニルフォスフィンオキサイド0.5gをメタノールに溶解させ60℃で5時間撹拌した。沈澱した固体をろ過後、トルエン/シクロヘキサン混合溶媒から再結晶し、錯体(Eu(CF3COCHCOCF33・2((C653P=O)を得た(収率50%)。 1.0 g of the obtained complex (Eu (CF 3 COCHCOCF 3 ) 3 ) and 0.5 g of triphenylphosphine oxide were dissolved in methanol and stirred at 60 ° C. for 5 hours. The precipitated solid was filtered and recrystallized from a toluene / cyclohexane mixed solvent to obtain a complex (Eu (CF 3 COCHCOCF 3 ) 3 · 2 ((C 6 H 5 ) 3 P═O) (yield 50%). .

合成例2(バルク重合)
三つ口フラスコにモノマーとしてCH2=CFCOOCH2(CF24H(8FF)を2g、開始剤としてAIBNを入れ窒素置換した。反応温度を60℃にして、10時間撹拌させ塊状重合した。得られた透明な液体をアセトン5mlに溶解させ、ヘキサンに滴下して、再沈澱した。得られた非晶性含フッ素ポリマーは1.8gであった。この非晶性含フッ素ポリマーのフッ素含有率を表1に示す。
Synthesis example 2 (bulk polymerization)
In a three-necked flask, 2 g of CH 2 ═CFCOOCH 2 (CF 2 ) 4 H (8FF) as a monomer and AIBN as an initiator were substituted with nitrogen. The reaction temperature was set to 60 ° C., and the mixture was stirred for 10 hours for bulk polymerization. The obtained transparent liquid was dissolved in 5 ml of acetone, dropped into hexane and reprecipitated. The obtained amorphous fluorine-containing polymer was 1.8 g. Table 1 shows the fluorine content of this amorphous fluorine-containing polymer.

合成例3(バルク重合)
モノマーとしてCH2=CFCOOCH2CF2CF3(5FF)を用いた以外は合成例2と同様にして非晶性含フッ素ポリマーを得た。この非晶性含フッ素ポリマーのフッ素含有率を表1に示す。
Synthesis example 3 (bulk polymerization)
An amorphous fluorine-containing polymer was obtained in the same manner as in Synthesis Example 2 except that CH 2 ═CFCOOCH 2 CF 2 CF 3 (5FF) was used as the monomer. Table 1 shows the fluorine content of this amorphous fluorine-containing polymer.

合成例4(バルク重合)
モノマーとしてCH2=CFCOOCH(CF32H(HFIP―F)を用いた以外は合成例2と同様にして非晶性含フッ素ポリマーを得た。この非晶性含フッ素ポリマーのフッ素含有率を表1に示す。
Synthesis Example 4 (bulk polymerization)
An amorphous fluorine-containing polymer was obtained in the same manner as in Synthesis Example 2 except that CH 2 ═CFCOOCH (CF 3 ) 2 H (HFIP-F) was used as the monomer. Table 1 shows the fluorine content of this amorphous fluorine-containing polymer.

合成例5(バルク重合)
モノマーとしてCH2=CFCOOCH2CF3(3FF)を用いた以外は合成例2と同様にして比較用の非晶性含フッ素ポリマーを得た。この非晶性含フッ素ポリマーのフッ素含有率を表1に示す。
Synthesis Example 5 (bulk polymerization)
An amorphous fluoropolymer for comparison was obtained in the same manner as in Synthesis Example 2 except that CH 2 ═CFCOOCH 2 CF 3 (3FF) was used as the monomer. Table 1 shows the fluorine content of this amorphous fluorine-containing polymer.

比較合成例1
モノマーとしてメチルメタクリレート(MMA)を用いた以外は合成例2と同様にして比較用の非フッ素系ポリマー(PMMA)を得た。
Comparative Synthesis Example 1
A comparative non-fluorinated polymer (PMMA) was obtained in the same manner as in Synthesis Example 2 except that methyl methacrylate (MMA) was used as a monomer.

Figure 0004791743
Figure 0004791743

実施例1
(1)アノード電極の作製
透明導電膜を形成した透明基板として、市販のフッ素ドープSnO2ガラス(日本板硝子(株)製、導電層膜厚450nm)を用いた。
Example 1
(1) Production of anode electrode A commercially available fluorine-doped SnO 2 glass (manufactured by Nippon Sheet Glass Co., Ltd., conductive layer thickness 450 nm) was used as a transparent substrate on which a transparent conductive film was formed.

該フッ素ドープSnO2ガラスの上の透明導電膜に酸化チタンペーストを塗布し、自然乾燥後、500℃で30分電気炉で焼成を行った。酸化チタンペーストは、平均粒径15nmのTiO2ペースト(Solaronix社製)を用いた。1回の塗布、乾燥および焼成で、約2μm厚の酸化チタン多孔質膜が形成された。この操作を、複数回繰り返すことにより、約10μm厚とした。 A titanium oxide paste was applied to the transparent conductive film on the fluorine-doped SnO 2 glass, naturally dried, and then baked in an electric furnace at 500 ° C. for 30 minutes. As the titanium oxide paste, a TiO 2 paste (manufactured by Solaronix) having an average particle diameter of 15 nm was used. A single titanium oxide porous film having a thickness of about 2 μm was formed by one application, drying and baking. By repeating this operation a plurality of times, the thickness was about 10 μm.

酸化チタン多孔質膜をRu色素溶液に浸漬し、80℃で2時間還流を行い、酸化チタン多孔質膜にRu色素を担持させて、アノード電極を作製した。   The titanium oxide porous membrane was immersed in a Ru dye solution, and refluxed at 80 ° C. for 2 hours, whereby the Ru dye was supported on the titanium oxide porous membrane to produce an anode electrode.

Ru色素溶液は、エタノールに3×10-4mol/LのRu色素(Solaronix社製、Ruthenium535)を溶解させることにより調製した。 The Ru dye solution was prepared by dissolving 3 × 10 −4 mol / L of Ru dye (Solaronix, Ruthenium 535) in ethanol.

(2)カソード電極の作製
カソード電極は、アノード電極の作製で使用したものと同じフッ素ドープSnO2ガラスの上の透明導電膜の表面に、スパッタリング法で白金を付着させることにより作製した。
(2) Production of cathode electrode The cathode electrode was produced by depositing platinum by sputtering on the surface of the transparent conductive film on the same fluorine-doped SnO 2 glass used in the production of the anode electrode.

(3)色素増感太陽電池の作製
上記(1)および(2)で作製したカソード電極とアノード電極を対向させて電池構造を形成し、両電極間に酸化還元電解質を注入した。注入した酸化還元電解質はヨウ素系電解質であり、アセトニトリル(90容量%)と3−メチル−2−オキサゾリジノン(10容量%)との混合溶媒に、ヨウ素とヨウ化リチウムとを加えて調製した。
(3) Production of dye-sensitized solar cell A battery structure was formed by facing the cathode electrode and anode electrode produced in (1) and (2) above, and a redox electrolyte was injected between both electrodes. The injected redox electrolyte was an iodine-based electrolyte, and was prepared by adding iodine and lithium iodide to a mixed solvent of acetonitrile (90% by volume) and 3-methyl-2-oxazolidinone (10% by volume).

(4)波長変換膜用組成物の調製と波長変換膜の形成
メチルイソブチルケトン50mlに合成例2で得た含フッ素アクリレート重合体3gと合成例1で得たEu錯体30mgを加えて溶解させ、波長変換層用組成物を調製した。
(4) Preparation of wavelength conversion film composition and formation of wavelength conversion film 3 g of the fluorinated acrylate polymer obtained in Synthesis Example 2 and 30 mg of the Eu complex obtained in Synthesis Example 1 were dissolved in 50 ml of methyl isobutyl ketone, A composition for a wavelength conversion layer was prepared.

得られた波長変換膜用組成物を、上記の色素増感太陽電池のアノード電極側の透明導電膜の逆側、すなわち太陽光照射側にアプリケーターを用いて塗布し、波長変換膜を形成した。波長変換膜の膜厚は70μmであった。   The obtained composition for wavelength conversion film was applied to the opposite side of the transparent conductive film on the anode electrode side of the dye-sensitized solar cell, that is, on the sunlight irradiation side using an applicator to form a wavelength conversion film. The film thickness of the wavelength conversion film was 70 μm.

(5)光電変換率の測定
(4)で得られた太陽電池に対して、AM1.5のソーラーシュミレーターで1000W/m2の疑似太陽光を照射して、分光感度特性を評価し、光電変換効率を算出した。結果を表2に示す。
(5) Measurement of photoelectric conversion rate The solar cell obtained in (4) is irradiated with 1000 W / m 2 of artificial sunlight with a solar simulator of AM1.5, the spectral sensitivity characteristics are evaluated, and photoelectric conversion is performed. Efficiency was calculated. The results are shown in Table 2.

実施例2
波長変換膜に用いる重合体として、合成例3で得られた重合体を用いた以外は実施例1と同様にして波長変換膜を配設した色素増感太陽電池を作製し、疑似太陽光を照射して、分光感度特性を評価し、光電変換効率を算出した。結果を表2に示す。
Example 2
A dye-sensitized solar cell provided with a wavelength conversion film was prepared in the same manner as in Example 1 except that the polymer obtained in Synthesis Example 3 was used as the polymer for the wavelength conversion film, and simulated sunlight was emitted. Irradiated, spectral sensitivity characteristics were evaluated, and photoelectric conversion efficiency was calculated. The results are shown in Table 2.

実施例3
波長変換膜に用いる重合体として、合成例4で得られた重合体を用いた以外は実施例1と同様にして波長変換膜を配設した色素増感太陽電池を作製し、疑似太陽光を照射して、分光感度特性を評価し、光電変換効率を算出した。結果を表2に示す。
Example 3
A dye-sensitized solar cell provided with a wavelength conversion film was prepared in the same manner as in Example 1 except that the polymer obtained in Synthesis Example 4 was used as the polymer for the wavelength conversion film, and simulated sunlight was emitted. Irradiated, spectral sensitivity characteristics were evaluated, and photoelectric conversion efficiency was calculated. The results are shown in Table 2.

実施例4
波長変換膜に用いる重合体として、合成例5で得られた重合体を用いた以外は実施例1と同様にして波長変換膜を配設した色素増感太陽電池を作製し、疑似太陽光を照射して、分光感度特性を評価し、光電変換効率を算出した。結果を表2に示す。
Example 4
A dye-sensitized solar cell provided with a wavelength conversion film was prepared in the same manner as in Example 1 except that the polymer obtained in Synthesis Example 5 was used as the polymer used for the wavelength conversion film, and simulated sunlight was emitted. Irradiated, spectral sensitivity characteristics were evaluated, and photoelectric conversion efficiency was calculated. The results are shown in Table 2.

比較例1
波長変換膜を配設しなかった以外は実施例1と同様にして色素増感太陽電池を作製し、疑似太陽光を照射して、分光感度特性を評価し、光電変換効率を算出した。結果を表2に示す。
Comparative Example 1
A dye-sensitized solar cell was produced in the same manner as in Example 1 except that the wavelength conversion film was not provided, irradiated with pseudo-sunlight, evaluated for spectral sensitivity characteristics, and calculated photoelectric conversion efficiency. The results are shown in Table 2.

比較例2
波長変換膜を用いる重合体として、比較合成例1で得られた非フッ素重合体(PMMA)を用いた以外は実施例1と同様にして波長変換膜を配設した色素増感太陽電池を作製し、疑似太陽光を照射して、分光感度特性を評価し、光電変換効率を算出した。結果を表2に示す。
Comparative Example 2
A dye-sensitized solar cell provided with a wavelength conversion film was prepared in the same manner as in Example 1 except that the non-fluoropolymer (PMMA) obtained in Comparative Synthesis Example 1 was used as the polymer using the wavelength conversion film. Then, simulated sunlight was irradiated, the spectral sensitivity characteristics were evaluated, and the photoelectric conversion efficiency was calculated. The results are shown in Table 2.

Figure 0004791743
Figure 0004791743

本発明の色素増感太陽電池の基本構造を示す概略断面図である。It is a schematic sectional drawing which shows the basic structure of the dye-sensitized solar cell of this invention.

符号の説明Explanation of symbols

1 波長変換膜
2 透明基板
3 透明電極
4 色素増感半導体層
5 色素増感半導体層
6 電解液層
7 対抗電極
8 支持基板
9 太陽光
DESCRIPTION OF SYMBOLS 1 Wavelength conversion film 2 Transparent substrate 3 Transparent electrode 4 Dye sensitized semiconductor layer 5 Dye sensitized semiconductor layer 6 Electrolyte layer 7 Counter electrode 8 Support substrate 9 Sunlight

Claims (5)

太陽光中の短波長領域の光を色素増感半導体層により光電変換可能な500nm〜650nmの長波長領域の光に波長変換する蛍光物質(B)が分散している波長変換膜が、太陽光側の最外層として配設されており、
前記波長変換膜が、非晶性含フッ素ポリマー(A)をマトリックスポリマーとし、蛍光物質(B)が該マトリックスポリマー中に分散している膜であり、
非晶性含フッ素ポリマー(A)が、式(2):
Figure 0004791743
(式中、Rf 1 はエーテル結合を含んでいてもよい炭素数1〜40の含フッ素炭化水素基)の構造を含む含フッ素アクリル重合体であり、
蛍光物質(B)がTb錯体またはEu錯体であり、
波長変換膜中の蛍光物質(B)の量が波長変換膜の全質量の1質量%以上で30質量%以下であ
ことを特徴とする色素増感太陽電池。
A wavelength conversion film in which a fluorescent substance (B) that converts the wavelength of light in the short wavelength region of sunlight into light in the long wavelength region of 500 nm to 650 nm that can be photoelectrically converted by the dye-sensitized semiconductor layer is dispersed in sunlight. Is arranged as the outermost layer on the side,
Wherein the wavelength conversion film, the non-crystalline fluorine-containing polymer (A) as a matrix polymer, Ri film der fluorescent substance (B) is dispersed in the matrix polymer,
The amorphous fluorine-containing polymer (A) has the formula (2):
Figure 0004791743
(Wherein Rf 1 is a fluorine-containing acrylic polymer having a structure of a fluorine-containing hydrocarbon group having 1 to 40 carbon atoms which may contain an ether bond),
The fluorescent substance (B) is a Tb complex or Eu complex,
Fluorescent substances (B) a dye-sensitized solar cell amount and wherein 30 wt% or less der Rukoto at least 1% by mass of the total mass of the wavelength conversion film of in a wavelength conversion film.
前記色素増感太陽電池における酸化還元系電解質がヨウ化物イオン、三ヨウ化物イオンであり、かつ波長変換膜中に含まれる蛍光物質が希土類金属錯体からなることを特徴とする請求項1記載の色素増感太陽電池。 The dye according to claim 1, wherein the redox electrolyte in the dye-sensitized solar cell is iodide ion or triiodide ion, and the fluorescent substance contained in the wavelength conversion film is made of a rare earth metal complex. Sensitized solar cell. 前記非晶性含フッ素ポリマー(A)のフッ素含有率が40質量%以上である請求項1または2記載の色素増感太陽電池。 The dye-sensitized solar cell according to claim 1 or 2, wherein the amorphous fluorine-containing polymer (A) has a fluorine content of 40% by mass or more . 前記Tb錯体またはEu錯体が、吸収スペクトルの最大吸収ピーク波長を400nm以下の波長領域に有しており、かつ該最大吸収ピーク波長の吸光係数が1000以上である錯体である請求項1〜3のいずれか1項に記載の色素増感太陽電池。 The Tb complex or Eu complex is a complex having a maximum absorption peak wavelength of an absorption spectrum in a wavelength region of 400 nm or less and an extinction coefficient of the maximum absorption peak wavelength of 1000 or more . The dye-sensitized solar cell of any one of Claims 1 . 前記Tb錯体またはEu錯体が、β−ジケトン構造を有する配位子、β−ジスルフォニル構造を有する配位子、カルボニルイミド構造を有する配位子、またはスルホンイミド構造を有する配位子を有する錯体である請求項1〜4のいずれか1項に記載の色素増感太陽電池。The Tb complex or Eu complex is a complex having a ligand having a β-diketone structure, a ligand having a β-disulfonyl structure, a ligand having a carbonylimide structure, or a ligand having a sulfonimide structure. The dye-sensitized solar cell according to any one of claims 1 to 4.
JP2005089467A 2005-03-25 2005-03-25 Dye-sensitized solar cell Expired - Fee Related JP4791743B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005089467A JP4791743B2 (en) 2005-03-25 2005-03-25 Dye-sensitized solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005089467A JP4791743B2 (en) 2005-03-25 2005-03-25 Dye-sensitized solar cell

Publications (2)

Publication Number Publication Date
JP2006269373A JP2006269373A (en) 2006-10-05
JP4791743B2 true JP4791743B2 (en) 2011-10-12

Family

ID=37205089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005089467A Expired - Fee Related JP4791743B2 (en) 2005-03-25 2005-03-25 Dye-sensitized solar cell

Country Status (1)

Country Link
JP (1) JP4791743B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008311604A (en) 2007-02-06 2008-12-25 Hitachi Chem Co Ltd Solar cell module, and wavelength conversion condensing film for solar cell module
EP2355162A4 (en) * 2008-10-31 2012-08-22 Nissan Chemical Ind Ltd Compositions for forming wavelength-converting membranes for photovoltaic devices, wavelength-converting membranes for photovoltaic devices, and photovoltaic devices
US20120180865A1 (en) 2009-09-29 2012-07-19 Kaoru Okaniwa Fluorescent material for converting wavelengths, resin composition for converting wavelengths containing the fluorescent material, solar cell module produced using the fluorescent material or the resin composition, process for producing resin composition for converting wavelengths, and process for producing solar cell module
JP5538092B2 (en) * 2010-06-28 2014-07-02 日本ポリエチレン株式会社 Composition for solar cell encapsulant, encapsulant comprising the same, and solar cell module using the same
JP5542547B2 (en) * 2010-06-29 2014-07-09 日本ポリエチレン株式会社 Solar cell module, composition for solar cell sealing material, and solar cell sealing material comprising the same
KR20130102033A (en) * 2010-09-03 2013-09-16 가부시키가이샤 아데카 Color conversion filter
JP2014112643A (en) * 2012-10-03 2014-06-19 Bridgestone Corp Solar cell encapsulation film and solar cell using the same
CN104823286B (en) * 2012-10-03 2017-03-08 株式会社普利司通 Sealing films for solar cell and the solar cell using which
JP2014112642A (en) * 2012-10-03 2014-06-19 Bridgestone Corp Solar cell encapsulation film and solar cell using the same
CN105580143A (en) * 2013-09-26 2016-05-11 株式会社普利司通 Sealing film for solar cells, and solar cell using same
JP2015152783A (en) * 2014-02-14 2015-08-24 日本発條株式会社 Reflective sheet for condensation type solar battery device or solar power generation device and reflective member for condensation type solar battery device or solar power generation device
CN106536472B (en) * 2014-08-08 2019-01-01 优迈特株式会社 Poly- fluoroolefins carboxylic acid or the mixture of its salt and preparation method thereof
JP6116741B1 (en) * 2016-08-14 2017-04-19 錬司 平瀬 Photovoltaic generator
JP7123973B2 (en) * 2017-05-20 2022-08-23 ハネウェル・インターナショナル・インコーポレーテッド Dispersion of MILK and LUMILUX

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3698215B2 (en) * 1995-01-23 2005-09-21 勝泰 河野 Light receiving element
JPH10247739A (en) * 1997-03-04 1998-09-14 Toshiro Maruyama Solar cell with fluorescent material film formed on photodetecting surface thereof
JP2001185242A (en) * 1999-12-24 2001-07-06 Fuji Photo Film Co Ltd Photoelectric transducer element and photocell
JP4217013B2 (en) * 2001-11-13 2009-01-28 株式会社林原生物化学研究所 Absorbent composition
JP2004171815A (en) * 2002-11-18 2004-06-17 Fujikura Ltd Dye sensitized solar battery
JP2005255992A (en) * 2004-02-13 2005-09-22 Kochi Univ Ruthenium complex and its application
JP2006210229A (en) * 2005-01-31 2006-08-10 Nitto Denko Corp Dye-sensitized solar battery and manufacturing method of the same

Also Published As

Publication number Publication date
JP2006269373A (en) 2006-10-05

Similar Documents

Publication Publication Date Title
JP4791743B2 (en) Dye-sensitized solar cell
JP4103975B2 (en) Electrolyte, photoelectrochemical cell, and method for forming electrolyte layer
JP5947688B2 (en) Electrode composite and photoelectric device including the same
JP2007311336A (en) Semiconductor electrode containing phosphate and solar battery using the same
JP5649716B2 (en) Photoelectric element
WO2013121835A1 (en) Spirobifluorene derivative, dye for photoelectric conversion elements, semiconductor electrode using same, photoelectric conversion element, and photoelectrochemical cell
JP5122605B2 (en) Dye-sensitive solar cell dye and dye-sensitized solar cell manufactured using the same
JP5569091B2 (en) Porous semiconductor and dye-sensitized solar cell
WO2013099689A1 (en) Photoelectric element
KR101166515B1 (en) Photoelectrode for dye-sensitized solar cell, preparing method of the same, and dye-sensitized solar cell having the same
KR101068436B1 (en) Photochromic dye for dye-sensitized solar cell and dye-sensitized solar cell using them
KR101339704B1 (en) Polymer Electrolyte for Photo Sensitized Solar Cell, Photo Sensitized Solar Cell Comprising the Same, and the Preparation Thereof
JP2000191729A (en) Electrolyte, photoelectric converting element, photoelectrochemical cell or battery and polymer
JP2008041320A (en) Electrolyte composition for dye-sensitized solar cell
JP2000251532A (en) Electrolyte, photoelectric converting element and photoelectric chemical battery
JP2000100486A (en) Electrolyte and photoelectrochemical battery
JP2013191273A (en) Photoelectrode, manufacturing method thereof, and dye-sensitized solar cell using the same
KR101048172B1 (en) Organometallic dyes, photosensitive substrates comprising the same, and dye-sensitized solar cells
JP6445378B2 (en) Photoelectric conversion element
KR101132821B1 (en) Polymer electrolyte with long-term stability and dye-sensitized solar cell using the polymer electrolyte
KR101465454B1 (en) Photosensitizer for photovoltaic cell, and photovoltaic cell including same
JP5569090B2 (en) Dye for dye-sensitized solar cell and dye-sensitized solar cell
KR100861117B1 (en) Dye-sensitized solar cell and manufacturing method thereof using binder having hydroxy group and carboxyl group
WO2011125436A1 (en) Electrolyte composition and dye-sensitized solar cell
JP2006134827A (en) Electrode and dye-sensitized solar cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071116

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100610

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110628

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110722

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D05

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees