JP2014112643A - Solar cell encapsulation film and solar cell using the same - Google Patents
Solar cell encapsulation film and solar cell using the same Download PDFInfo
- Publication number
- JP2014112643A JP2014112643A JP2013160077A JP2013160077A JP2014112643A JP 2014112643 A JP2014112643 A JP 2014112643A JP 2013160077 A JP2013160077 A JP 2013160077A JP 2013160077 A JP2013160077 A JP 2013160077A JP 2014112643 A JP2014112643 A JP 2014112643A
- Authority
- JP
- Japan
- Prior art keywords
- solar cell
- sealing film
- wavelength conversion
- ethylene
- conversion material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/52—PV systems with concentrators
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Photovoltaic Devices (AREA)
Abstract
Description
本発明は、オレフィン(共)重合体を含む太陽電池用封止膜に関し、特に波長変換材料を含むことにより、太陽電池の発電に寄与する光線を増加させ、発電効率を向上できる太陽電池用封止膜に関する。 TECHNICAL FIELD The present invention relates to a solar cell sealing film containing an olefin (co) polymer, and in particular, by including a wavelength conversion material, it increases the light rays contributing to the power generation of the solar cell and can improve the power generation efficiency. Concerning the stop film.
近年、資源の有効利用や環境汚染の防止等の面から、太陽光を電気エネルギーに直接変換する太陽電池が広く使用され、更に、耐久性や発電効率等の点から開発が進められている。 In recent years, solar cells that directly convert sunlight into electrical energy have been widely used from the viewpoint of effective use of resources and prevention of environmental pollution, and further development has been promoted in terms of durability and power generation efficiency.
太陽電池は、一般に、図1に示すように、ガラス基板等からなる表面側透明保護部材11、表面側封止膜13A、シリコン結晶系発電素子などの太陽電池用セル14、裏面側封止膜13B、及び裏面側保護部材(バックカバー)12をこの順で積層し、減圧下で脱気した後、加熱加圧して表面側封止膜13A及び裏面側封止膜13Bを架橋硬化させて接着一体化することにより製造される。 As shown in FIG. 1, a solar cell generally has a surface-side transparent protective member 11 made of a glass substrate or the like, a surface-side sealing film 13A, a solar cell 14 such as a silicon crystal power generation element, a back-side sealing film. 13B and the back side protection member (back cover) 12 are laminated in this order, and after deaeration under reduced pressure, the surface side sealing film 13A and the back side sealing film 13B are crosslinked and cured to be bonded by heating and pressurization. Manufactured by integrating.
ところで、一般にシリコン結晶系発電素子等、何れのタイプの太陽電池セルであっても紫外領域の光線に対しては分光感度が低く、太陽光のエネルギーを有効に活用できていないという問題点が知られている。この問題点を解決するために、紫外領域の光線を可視領域又は近赤外領域の波長の光線に変換する材料(波長変換材料)を用いることにより、太陽電池セルの発電効率を向上させる技術が提案されている。具体的には、太陽電池セルの受光面側に、蛍光物質を含む層を設けることにより、太陽光スペクトルの内、紫外領域の光を波長変換し、太陽電池セルの発電に寄与の大きい波長の光を発光させる方法(例えば、特許文献1)、蛍光物質(例えば、500〜1000nmの蛍光を発する希土類錯体)を太陽電池モジュールの封止材(封止膜)に含有させる手法(例えば、特許文献2、3)等が提案されている。 By the way, in general, any type of solar cell, such as a silicon crystal power generation element, has a problem that the spectral sensitivity is low for light in the ultraviolet region, and solar energy cannot be used effectively. It has been. In order to solve this problem, there is a technique for improving the power generation efficiency of solar cells by using a material (wavelength conversion material) that converts light in the ultraviolet region into light having a wavelength in the visible region or near infrared region. Proposed. Specifically, by providing a layer containing a fluorescent material on the light-receiving surface side of the solar battery cell, the wavelength of ultraviolet light in the solar spectrum is converted to a wavelength that greatly contributes to power generation of the solar battery cell. A method of emitting light (for example, Patent Document 1), a method of including a fluorescent material (for example, a rare earth complex emitting fluorescence of 500 to 1000 nm) in a sealing material (sealing film) of a solar cell module (for example, Patent Document) 2, 3) etc. are proposed.
しかしながら、本発明者が、これまで提案された技術における波長変換材料を上述のような太陽電池用封止膜に配合して検討したところ、これらの波長変換材料は紫外線による劣化が大きく、屋外で長期間にわたって使用される太陽電池に使用する場合には波長変換する効果が低下し、発電効率を向上する効果が低下し易いことが判った。 However, when the present inventor examined the wavelength conversion materials in the technologies proposed so far in the solar cell sealing film as described above, these wavelength conversion materials are greatly deteriorated by ultraviolet rays and are outdoors. It has been found that when used in a solar cell that is used for a long period of time, the effect of wavelength conversion is reduced, and the effect of improving power generation efficiency is likely to be reduced.
したがって、本発明の目的は、波長変換材料を含むことで太陽電池セルの発電効率を向上することができる太陽電池用封止膜であって、太陽電池を長期間にわたって使用した場合であっても、発電効率を向上する効果を十分に維持することができる太陽電池用封止膜を提供することにある。 Therefore, an object of the present invention is a solar cell sealing film that can improve the power generation efficiency of a solar battery cell by including a wavelength conversion material, even when the solar battery is used over a long period of time. An object of the present invention is to provide a solar cell sealing film that can sufficiently maintain the effect of improving power generation efficiency.
また、本発明の目的は、太陽電池用封止膜を用いて、高い発電効率を長期に亘り維持することができる太陽電池を提供することにある。 Moreover, the objective of this invention is providing the solar cell which can maintain high electric power generation efficiency over a long period of time using the sealing film for solar cells.
上記目的は、オレフィン(共)重合体(オレフィン重合体又は共重合体のことをいう)を含む樹脂材料、及び波長変換材料を含む太陽電池用封止膜であって、
波長変換材料が、下記式(I):
The above object is a solar cell sealing film including a resin material containing an olefin (co) polymer (referring to an olefin polymer or a copolymer), and a wavelength conversion material,
The wavelength conversion material has the following formula (I):
[式中、Rは、それぞれ独立して、水素原子、又は任意に置換されていてもよい炭素原子数1〜20の炭化水素基を表し、nは、1〜4の整数である。]
で表わされるユウロピウム錯体であることを特徴とする太陽電池用封止膜により達成される。
[Wherein, R independently represents a hydrogen atom or an optionally substituted hydrocarbon group having 1 to 20 carbon atoms, and n is an integer of 1 to 4. ]
It is achieved by a solar cell sealing film characterized by being a europium complex represented by the formula:
数多くの波長変換材料が検討された結果、上記ユウロピウム錯体の波長変換材料は、太陽電池用封止膜中において紫外線による劣化が極めて生じ難いことが判った。従って、上記波長変換材料を用いることで、屋外で長期間使用した場合であっても、太陽電池の発電効率を向上する効果が低下し難い太陽電池用封止膜とすることができる。 As a result of studying a large number of wavelength converting materials, it was found that the europium complex wavelength converting material is extremely unlikely to be deteriorated by ultraviolet rays in the solar cell sealing film. Therefore, by using the wavelength conversion material, it is possible to obtain a solar cell sealing film in which the effect of improving the power generation efficiency of the solar cell is unlikely to decrease even when used outdoors for a long period of time.
本発明に係る太陽電池用封止膜の好ましい態様は以下の通りである。 Preferred embodiments of the solar cell sealing film according to the present invention are as follows.
(1)前記式(I)において、Rが全て水素原子であり、nが1である。
(2)前記波長変換材料の含有量が、前記樹脂材料100質量部に対して0.000001〜1質量部である。波長変換効果が十分に得られるとともに、封止膜に必要な透明性も確保することができる。
(3)前記波長変換材料の含有量が、前記樹脂材料100質量部に対して0.0001〜0.01質量部である。
(4)前記オレフィン(共)重合体が、メタロセン触媒を用いて重合されたエチレン・α−オレフィン共重合体(m−LLDPE)、低密度ポリエチレン(LDPE)、直鎖状低密度ポリエチレン(LLDPE)、ポリプロピレン、ポリブテン及びエチレン−極性モノマー共重合体からなる群から選択される少なくとも1種以上の重合体である。
(5)前記オレフィン(共)重合体が、メタロセン触媒を用いて重合されたエチレン・α−オレフィン共重合体(m−LLDPE)及び/又はエチレン−極性モノマー共重合体である。加工性に優れ、架橋剤による架橋構造を形成することができ、接着性が高い封止膜とすることができる。
(6)前記エチレン−極性モノマー共重合体が、エチレン−酢酸ビニル共重合体又はエチレン−メタクリル酸メチル共重合体である。より透明性に優れ、柔軟性に優れた封止膜とすることができる。
(7)前記波長変換材料の励起波長に相当する325nmの光線を、太陽電池用封止膜に照射したときに得られる蛍光発光スペクトルにおける波長580〜640nmの発光ピーク面積を蛍光強度とし、1000W/cm2の照射強度を有する紫外線ランプから235mmの距離に、前記太陽電池用封止膜を配置し、温度63℃条件下で連続照射し、経時的に前記蛍光強度を測定したとき、前記太陽電池用封止膜の蛍光強度が、照射前の蛍光強度に対して30%に低下するまでに要する時間が、10時間以上である。
(1) In the formula (I), all R are hydrogen atoms and n is 1.
(2) Content of the said wavelength conversion material is 0.000001-1 mass part with respect to 100 mass parts of said resin materials. A sufficient wavelength conversion effect can be obtained, and the transparency necessary for the sealing film can be ensured.
(3) Content of the said wavelength conversion material is 0.0001-0.01 mass part with respect to 100 mass parts of said resin materials.
(4) The ethylene / α-olefin copolymer (m-LLDPE), low density polyethylene (LDPE), and linear low density polyethylene (LLDPE) polymerized using a metallocene catalyst. , Polypropylene, polybutene, and at least one polymer selected from the group consisting of ethylene-polar monomer copolymers.
(5) The olefin (co) polymer is an ethylene / α-olefin copolymer (m-LLDPE) and / or an ethylene-polar monomer copolymer polymerized using a metallocene catalyst. It is excellent in processability, can form a crosslinked structure with a crosslinking agent, and can be a sealing film with high adhesiveness.
(6) The ethylene-polar monomer copolymer is an ethylene-vinyl acetate copolymer or an ethylene-methyl methacrylate copolymer. It can be set as the sealing film which was more excellent in transparency and excellent in the softness | flexibility.
(7) An emission peak area of a wavelength of 580 to 640 nm in a fluorescence emission spectrum obtained when a solar cell sealing film is irradiated with a light beam of 325 nm corresponding to the excitation wavelength of the wavelength conversion material is defined as 1000 W / When the solar cell sealing film is disposed at a distance of 235 mm from an ultraviolet lamp having an irradiation intensity of cm 2, the irradiation is continuously performed at a temperature of 63 ° C., and the fluorescence intensity is measured over time. The time required for the fluorescence intensity of the sealing film to decrease to 30% of the fluorescence intensity before irradiation is 10 hours or more.
また、上記目的は、本発明の太陽電池用封止膜により太陽電池素子を封止してなることを特徴とする太陽電池によって達成される。本発明の太陽電池は、本発明の太陽電池用封止膜が用いられているので、波長変換材料により太陽電池素子の発電効率が向上されており、高い発電効率が長期に亘り維持される太陽電池であるといえる。 Moreover, the said objective is achieved by the solar cell characterized by sealing a solar cell element with the sealing film for solar cells of this invention. Since the solar cell sealing film of the present invention is used in the solar cell of the present invention, the power generation efficiency of the solar cell element is improved by the wavelength conversion material, and the solar in which high power generation efficiency is maintained over a long period of time. It can be said that it is a battery.
本発明の太陽電池封止膜は、発電効率を向上する効果を有する波長変換材料として特定のユウロピウム錯体を含んでいるので、紫外線等の影響により波長変換材料が劣化され難く、発電効率を向上する効果が長期間維持されている。従って、本発明の太陽電池は、高い発電効率が長期に亘り維持される太陽電池であるといえる。 Since the solar cell sealing film of the present invention contains a specific europium complex as a wavelength conversion material having an effect of improving the power generation efficiency, the wavelength conversion material is hardly deteriorated by the influence of ultraviolet rays or the like, and the power generation efficiency is improved. The effect is maintained for a long time. Therefore, it can be said that the solar cell of the present invention is a solar cell in which high power generation efficiency is maintained for a long time.
上述したように、本発明の太陽電池用封止膜は、波長変換材料として下記式(I) As described above, the solar cell sealing film of the present invention has the following formula (I) as a wavelength conversion material.
[式中、Rは、それぞれ独立して、水素原子、又は任意に置換されていてもよい炭素原子数1〜20の炭化水素基を表し、nは1〜4の整数、好ましくは1である。]
で表わされるユウロピウム錯体を含む。
[Wherein, each R independently represents a hydrogen atom or an optionally substituted hydrocarbon group having 1 to 20 carbon atoms, and n is an integer of 1 to 4, preferably 1. . ]
The europium complex represented by these is included.
上記式(I)で表わされるユウロピウム錯体は、他の波長変換材料と比較して、耐候性(特に耐紫外線性)に極めて優れているため、屋外に設置されて太陽光に長時間曝される太陽電池の封止膜に使用した場合であっても波長変換効果を高い水準で維持することができる。また、他の波長変換材料と比較して耐熱性にも優れているため、太陽電池が太陽光に曝されて高温となっても波長変換効果を維持することができる。 The europium complex represented by the above formula (I) is extremely excellent in weather resistance (particularly, UV resistance) as compared with other wavelength conversion materials, and is therefore installed outdoors and exposed to sunlight for a long time. Even when used as a sealing film for solar cells, the wavelength conversion effect can be maintained at a high level. Moreover, since it is excellent also in heat resistance compared with another wavelength conversion material, even if a solar cell is exposed to sunlight and becomes high temperature, the wavelength conversion effect can be maintained.
なお、360nm付近に吸収ピークを有する他の波長変換材料と比較して、式(I)のユウロピウム錯体は330nm付近に吸収ピークを有する。そのため、発電への寄与率がより低い波長の紫外線を可視光に変換可能であり、発電効率の向上により有効な効果を発揮する。また、太陽電池の裏面側保護部材や、製造時に太陽電池セルを所望の位置に配置するためのセル止めテープに使用されることが多いポリエステル(特にPET)材料は330nmの紫外線により特に劣化する傾向にあるため、式(I)のユウロピウム錯体を使用すれば、裏面側保護部材やセル止め用テープの劣化や黄変を軽減することができる。 Note that the europium complex of the formula (I) has an absorption peak near 330 nm as compared with other wavelength conversion materials having an absorption peak near 360 nm. Therefore, it is possible to convert ultraviolet light having a lower contribution rate to power generation into visible light, and exhibit an effective effect by improving power generation efficiency. In addition, polyester (particularly PET) materials often used for solar cell back surface protection members and cell stopper tapes for placing solar cells at desired positions during manufacturing tend to be particularly deteriorated by UV rays of 330 nm. Therefore, if the europium complex of the formula (I) is used, it is possible to reduce deterioration and yellowing of the back surface side protective member and the cell stopper tape.
上記式(I)において、Rの炭素原子数1〜20の炭化水素基は、脂肪族でも芳香族でもよく、不飽和結合やヘテロ原子を含んでいてもよく、直鎖状でも分枝を有していてもよい。例えば、アルキル基(メチル基、エチル基、プロピル基等)、アルケニル基(ビニル基、アリル基、ブテニル基等)、アルキニル基(エチニル基、プロピニル基、ブチニル基等)、シクロアルキル基、シクロアルケニル基、フェニル基、ナフチル基、ビフェニル基等が挙げられる。炭素原子数1〜20の炭化水素基は任意に置換されていてもよく、その置換基としては、ハロゲン原子、ヒドロキシル基、アミノ基、ニトロ基、スルホ基等が挙げられる。Rは水素原子であることが好ましい。 In the above formula (I), the hydrocarbon group having 1 to 20 carbon atoms of R may be aliphatic or aromatic, may contain an unsaturated bond or a heteroatom, and may be linear or branched. You may do it. For example, alkyl group (methyl group, ethyl group, propyl group etc.), alkenyl group (vinyl group, allyl group, butenyl group etc.), alkynyl group (ethynyl group, propynyl group, butynyl group etc.), cycloalkyl group, cycloalkenyl group Group, phenyl group, naphthyl group, biphenyl group and the like. The hydrocarbon group having 1 to 20 carbon atoms may be optionally substituted, and examples of the substituent include a halogen atom, a hydroxyl group, an amino group, a nitro group, and a sulfo group. R is preferably a hydrogen atom.
上記ユウロピウム錯体は、式(I)中のnが1であり、Rが全て水素原子であるEu(hfa)3(TPPO)2であることが、耐紫外線性に特に優れる点で好ましい。Eu(hfa)3(TPPO)2はトリフェニルホスフィンオキシドとヘキサフルオロアセチルアセトンの2種の配位子が中心元素である希土類金属のユウロピウムに配位しているユウロピウム錯体である。 The europium complex is preferably Eu (hfa) 3 (TPPO) 2 in which n in the formula (I) is 1 and all R are hydrogen atoms, from the viewpoint of particularly excellent ultraviolet resistance. Eu (hfa) 3 (TPPO) 2 is a europium complex in which two ligands of triphenylphosphine oxide and hexafluoroacetylacetone are coordinated to a rare earth metal europium which is a central element.
式(I)のユウロピウム錯体の含有量は、太陽電池用封止膜の樹脂材料100質量部に対して0.000001〜1質量部の範囲内で配合されることが好ましい。0.000001質量部を下回ると、十分な波長変換効果が得られないおそれがあり、特に0.00001質量部以上、更に0.0001質量部以上であることが好ましい。一方、1質量部を上回ると、太陽光を発電素子に十分に入射させるために必要な透明性を確保し難くなるおそれがあり、またコスト的にも不利となり易い。特に0.1質量部以下、更に0.01質量部以下であることが好ましい。 The content of the europium complex of the formula (I) is preferably blended in the range of 0.000001 to 1 part by mass with respect to 100 parts by mass of the resin material of the solar cell sealing film. When the amount is less than 0.000001 parts by mass, a sufficient wavelength conversion effect may not be obtained, and it is particularly preferably 0.00001 parts by mass or more, and more preferably 0.0001 parts by mass or more. On the other hand, when the amount exceeds 1 part by mass, it may be difficult to ensure the transparency necessary for allowing sunlight to sufficiently enter the power generation element, and the cost tends to be disadvantageous. In particular, it is preferably 0.1 parts by mass or less, more preferably 0.01 parts by mass or less.
[樹脂材料]
本発明において、太陽電池用封止膜の樹脂材料は、オレフィン(共)重合体を主成分として含む。ここで、オレフィン(共)重合体とは、エチレン・α−オレフィン共重合体(例えば、メタロセン触媒を用いて重合されたエチレン・α−オレフィン共重合体(m−LLDPE)等)、ポリエチレン(例えば、低密度ポリエチレン(LDPE)、直鎖状低密度ポリエチレン(LLDPE)等)、ポリプロピレン、ポリブテン等のオレフィンの重合体又は共重合体、及びエチレン−極性モノマー共重合体等のオレフィンと極性モノマーとの共重合体を意味し、太陽電池用封止膜に要求される接着性、透明性等を有するものとする。オレフィン(共)重合体として、これらの1種を用いても良く、2種以上を混合して用いても良い。本発明において、オレフィン(共)重合体としては、メタロセン触媒を用いて重合されたエチレン・α−オレフィン共重合体(m−LLDPE)、低密度ポリエチレン(LDPE)、直鎖状低密度ポリエチレン(LLDPE)、ポリプロピレン、ポリブテン及びエチレン−極性モノマー共重合体からなる群から選択される少なくとも1種以上の重合体であることが好ましい。特に、加工性に優れ、架橋剤による架橋構造を形成することができ、接着性が高い太陽電池用封止膜を形成することができることから、オレフィン(共)重合体が、メタロセン触媒を用いて重合されたエチレン・α−オレフィン共重合体(m−LLDPE)及び/又はエチレン−極性モノマー共重合体であることが好ましい。
[Resin material]
In this invention, the resin material of the sealing film for solar cells contains an olefin (co) polymer as a main component. Here, the olefin (co) polymer means an ethylene / α-olefin copolymer (for example, an ethylene / α-olefin copolymer (m-LLDPE) polymerized using a metallocene catalyst), polyethylene (for example, Olefin polymers such as low-density polyethylene (LDPE), linear low-density polyethylene (LLDPE), polypropylene, polybutene, and the like, and copolymers of olefins and polar monomers such as ethylene-polar monomer copolymers. It means a copolymer and has adhesiveness and transparency required for a sealing film for solar cells. As the olefin (co) polymer, one of these may be used, or two or more may be mixed and used. In the present invention, as the olefin (co) polymer, an ethylene / α-olefin copolymer (m-LLDPE) polymerized using a metallocene catalyst, a low density polyethylene (LDPE), a linear low density polyethylene (LLDPE). ), At least one polymer selected from the group consisting of polypropylene, polybutene and ethylene-polar monomer copolymers. In particular, an olefin (co) polymer can be formed using a metallocene catalyst because it is excellent in processability, can form a crosslinked structure with a crosslinking agent, and can form a solar cell sealing film with high adhesion. A polymerized ethylene / α-olefin copolymer (m-LLDPE) and / or an ethylene-polar monomer copolymer is preferred.
(メタロセン触媒を用いて重合されたエチレン・α−オレフィン共重合体(m−LLDPE))m−LLDPEは、エチレン由来の構成単位を主成分とし、更に炭素数3〜12のα−オレフィン、例えば、プロピレン、1−ブテン、1-へキセン、1−オクテン、4−メチルペンテン−1、4−メチル−へキセン−1、4,4−ジメチル−ペンテン−1等由来の1種又は複数種の構成単位を有するエチレン・α−オレフィン共重合体(ターポリマー等も含む)である。エチレン・α−オレフィン共重合体の具体例としては、エチレン・1−ブテン共重合体、エチレン・1−オクテン共重合体、エチレン・4−メチル−ペンテン−1共重合体、エチレン・ブテン・ヘキセンターポリマー、エチレン・プロピレン・オクテンターポリマー、エチレン・ブテン・オクテンターポリマー等が挙げられる。エチレン・α−オレフィン共重合体におけるα−オレフィンの含有量は、5〜40質量%が好ましく、10〜35質量%がより好ましく、15〜30質量%が更に好ましい。α−オレフィンの含有量が少ないと太陽電池用封止膜の柔軟性や耐衝撃性が十分でない場合があり、多過ぎると耐熱性が低い場合がある。 (Ethylene / α-olefin copolymer (m-LLDPE) polymerized using a metallocene catalyst) m-LLDPE is composed mainly of ethylene-derived structural units, and further an α-olefin having 3 to 12 carbon atoms, for example, , Propylene, 1-butene, 1-hexene, 1-octene, 4-methylpentene-1, 4-methyl-hexene-1, 4,4-dimethyl-pentene-1, etc. An ethylene / α-olefin copolymer (including a terpolymer) having a structural unit. Specific examples of the ethylene / α-olefin copolymer include an ethylene / 1-butene copolymer, an ethylene / 1-octene copolymer, an ethylene-4-methyl-pentene-1 copolymer, an ethylene / butene / hexene copolymer. Center polymers, ethylene / propylene / octene terpolymers, ethylene / butene / octene terpolymers, and the like. The content of the α-olefin in the ethylene / α-olefin copolymer is preferably 5 to 40% by mass, more preferably 10 to 35% by mass, and still more preferably 15 to 30% by mass. When the content of α-olefin is small, the flexibility and impact resistance of the solar cell sealing film may not be sufficient, and when it is too large, the heat resistance may be low.
m−LLPDEを重合するメタロセン触媒としては、公知のメタロセン触媒を用いれば良く、特に制限はない。メタロセン触媒は、一般に、チタン、ジルコニウム、ハフニウム等の遷移金属をπ電子系のシクロペンタジエニル基又は置換シクロペンタジエニル基等を含有する不飽和環状化合物で挟んだ構造の化合物であるメタロセン化合物と、アルキルアルミノキサン、アルキルアルミニウム、アルミニウムハライド、アルキルアルミニウムルハライド等のアルミニウム化合物等の助触媒とを組合せたものである。メタロセン触媒は、活性点が均一であるという特徴があり(シングルサイト触媒)、通常、分子量分布が狭く、各分子のコモノマー含有量がほぼ等しい重合体が得られる。 A known metallocene catalyst may be used as the metallocene catalyst for polymerizing m-LLPDE, and is not particularly limited. The metallocene catalyst is generally a compound having a structure in which a transition metal such as titanium, zirconium or hafnium is sandwiched between unsaturated cyclic compounds containing a π-electron cyclopentadienyl group or a substituted cyclopentadienyl group. And a promoter such as an aluminum compound such as alkylaluminoxane, alkylaluminum, aluminum halide, and alkylaluminum halide. Metallocene catalysts are characterized by a uniform active site (single site catalyst), and usually a polymer having a narrow molecular weight distribution and an approximately equal comonomer content of each molecule is obtained.
本発明において、m−LLDPEの密度(JIS K 7112に準ずる。以下同じ)は、特に制限はないが、0.860〜0.930g/cm3が好ましい。また、m−LLDPEのメルトフローレート(MFR)(JIS−K7210に準ずる)は、特に制限はないが、1.0g/10分以上が好ましく、1.0〜50.0g/10分がより好ましく、3.0〜30.0g/10分が更に好ましい。なお、MFRは、190℃、荷重21.18Nの条件で測定されたものである。 In the present invention, the density of m-LLDPE (according to JIS K 7112; the same applies hereinafter) is not particularly limited, but is preferably 0.860 to 0.930 g / cm 3 . The melt flow rate (MFR) of m-LLDPE (according to JIS-K7210) is not particularly limited, but is preferably 1.0 g / 10 min or more, more preferably 1.0 to 50.0 g / 10 min. 3.0 to 30.0 g / 10 min is more preferable. In addition, MFR is measured on condition of 190 degreeC and load 21.18N.
本発明において、m−LLDPEは市販のものを使用することもできる。例えば、日本ポリエチレン社製のハーモレックスシリーズ、カーネルシリーズ、プライムポリマー社製のエボリューシリーズ、住友化学社製のエクセレンGMHシリーズ、エクセレンFXシリーズ等が挙げられる。 In the present invention, commercially available m-LLDPE may be used. For example, Harmolex series, Kernel series manufactured by Nippon Polyethylene Co., Ltd., Evolution series manufactured by Prime Polymer Co., Ltd., Excellen GMH series, Excellen FX series manufactured by Sumitomo Chemical Co., Ltd. and the like can be mentioned.
(エチレン−極性モノマー共重合体)
エチレン−極性モノマー共重合体の極性モノマーは、不飽和カルボン酸、その塩、そのエステル、そのアミド、ビニルエステル、一酸化炭素等を例示することができる。より具体的には、アクリル酸、メタクリル酸、フマル酸、イタコン酸、マレイン酸モノメチル、マレイン酸モノエチル、無水マレイン酸、無水イタコン酸等の不飽和カルボン酸、これら不飽和カルボン酸のリチウム、ナトリウム、カリウムなどの1価金属の塩やマグネシウム、カルシウム、亜鉛などの多価金属の塩、アクリル酸メチル、アクリル酸エチル、アクリル酸イソプロピル、アクリル酸イソブチル、アクリル酸n−ブチル、アクリル酸イソオクチル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸イソブチル、マレイン酸ジメチル等の不飽和カルボン酸エステル、酢酸ビニル、プロピオン酸ビニルのようなビニルエステル、一酸化炭素、二酸化硫黄などの一種又は二種以上などを例示することができる。
(Ethylene-polar monomer copolymer)
Examples of the polar monomer of the ethylene-polar monomer copolymer include an unsaturated carboxylic acid, a salt thereof, an ester thereof, an amide thereof, a vinyl ester, and carbon monoxide. More specifically, unsaturated carboxylic acids such as acrylic acid, methacrylic acid, fumaric acid, itaconic acid, monomethyl maleate, monoethyl maleate, maleic anhydride, itaconic anhydride, lithium of these unsaturated carboxylic acids, sodium, Salts of monovalent metals such as potassium, salts of polyvalent metals such as magnesium, calcium and zinc, methyl acrylate, ethyl acrylate, isopropyl acrylate, isobutyl acrylate, n-butyl acrylate, isooctyl acrylate, methacrylic acid Examples include unsaturated carboxylic acid esters such as methyl, ethyl methacrylate, isobutyl methacrylate, and dimethyl maleate, vinyl esters such as vinyl acetate and vinyl propionate, carbon monoxide, sulfur dioxide, etc. be able to.
エチレン−極性モノマー共重合体として、より具体的には、エチレン−アクリル酸共重合体、エチレン−メタクリル酸共重合体のようなエチレン−不飽和カルボン酸共重合体、前記エチレン−不飽和カルボン酸共重合体のカルボキシル基の一部又は全部が上記金属で中和されたアイオノマー、エチレン−アクリル酸メチル共重合体、エチレン−アクリル酸エチル共重合体、エチレン−メタクリル酸メチル共重合体、エチレン−アクリル酸イソブチル共重合体、エチレン−アクリル酸n−ブチル共重合体のようなエチレン−不飽和カルボン酸エステル共重合体、エチレン−アクリル酸イソブチル−メタクリル酸共重合体、エチレン−アクリル酸n−ブチル−メタクリル酸共重合体のようなエチレン−不飽和カルボン酸エステル−不飽和カルボン酸共重合体及びそのカルボキシル基の一部又は全部が上記金属で中和されたアイオノマー、エチレン−酢酸ビニル共重合体のようなエチレン−ビニルエステル共重合体等を代表例として例示することができる。 More specifically, as the ethylene-polar monomer copolymer, ethylene-acrylic acid copolymer, ethylene-unsaturated carboxylic acid copolymer such as ethylene-methacrylic acid copolymer, the ethylene-unsaturated carboxylic acid Ionomer in which some or all of carboxyl groups of copolymer are neutralized with the above metal, ethylene-methyl acrylate copolymer, ethylene-ethyl acrylate copolymer, ethylene-methyl methacrylate copolymer, ethylene- Isobutyl acrylate copolymer, ethylene-unsaturated carboxylic acid ester copolymer such as ethylene-n-butyl acrylate copolymer, ethylene-isobutyl acrylate-methacrylic acid copolymer, ethylene-n-butyl acrylate -Ethylene-unsaturated carboxylic acid ester-unsaturated carboxylic acid such as methacrylic acid copolymer Some or all of the copolymer and its carboxyl group ionomer neutralized with the metal, ethylene - can be exemplified vinyl ester copolymer as a typical example - ethylene such as vinyl acetate copolymer.
エチレン−極性モノマー共重合体としては、JIS K7210で規定されるメルトフローレートが、35g/10分以下、特に3〜6g/10分のものを使用するのが好ましい。このようなメルトフローレートを有するエチレン−極性モノマー共重合体を用いることで、加工性に優れた太陽電池用封止膜とすることができる。なお、本発明において、メルトフローレート(MFR)の値は、JIS K7210に従い、190℃、荷重21.18Nの条件に基づいて測定されたものである。 As the ethylene-polar monomer copolymer, it is preferable to use a copolymer having a melt flow rate defined by JIS K7210 of 35 g / 10 min or less, particularly 3 to 6 g / 10 min. By using an ethylene-polar monomer copolymer having such a melt flow rate, a solar cell sealing film having excellent processability can be obtained. In the present invention, the value of the melt flow rate (MFR) is measured based on conditions of 190 ° C. and a load of 21.18 N according to JIS K7210.
エチレン−極性モノマー共重合体としては、エチレン−酢酸ビニル共重合体(EVA)、エチレン−メタクリル酸メチル共重合体(EMMA)、エチレン−メタクリル酸エチル共重合体、エチレン−アクリル酸メチル共重合体、エチレン−アクリル酸エチル共重合体が好ましく、特にEVA及びEMMAが好ましい。これにより、極めて透明性に優れる太陽電池用封止膜を形成することができる。 Examples of the ethylene-polar monomer copolymer include ethylene-vinyl acetate copolymer (EVA), ethylene-methyl methacrylate copolymer (EMMA), ethylene-ethyl methacrylate copolymer, and ethylene-methyl acrylate copolymer. , Ethylene-ethyl acrylate copolymer is preferable, and EVA and EMMA are particularly preferable. Thereby, the sealing film for solar cells which is extremely excellent in transparency can be formed.
樹脂材料としてEVAを使用する場合、EVAにおける酢酸ビニルの含有率は、20〜35質量%、さらに22〜32質量%、特に26〜32質量%とするのが好ましい。酢酸ビニルの含有量が20質量%未満であると、封止膜の透明性が充分でない恐れがあり、35質量%を超えると、カルボン酸、アルコール、アミン等が発生し封止膜と保護部材との界面で発泡が生じ易くなる恐れがある。 When EVA is used as the resin material, the content of vinyl acetate in EVA is preferably 20 to 35% by mass, more preferably 22 to 32% by mass, and particularly preferably 26 to 32% by mass. If the vinyl acetate content is less than 20% by mass, the sealing film may not be sufficiently transparent. If it exceeds 35% by mass, carboxylic acid, alcohol, amine, etc. are generated, and the sealing film and the protective member. There is a risk that foaming is likely to occur at the interface.
樹脂材料としてEMMAを使用する場合、EMMAにおけるメタクリル酸メチルの含有率は20〜30質量%、好ましくは22〜28質量%である。この範囲であれば透明性の高い封止膜が得られ、多くの紫外線を可視光に変換させて太陽電池素子に入射させることができる。 When using EMMA as the resin material, the content of methyl methacrylate in EMMA is 20 to 30% by mass, preferably 22 to 28% by mass. Within this range, a highly transparent sealing film can be obtained, and a large amount of ultraviolet light can be converted into visible light and incident on the solar cell element.
なお、本発明において、樹脂材料には、上述のオレフィン(共)重合体に加えて副次的にポリビニルアセタール系樹脂(例えば、ポリビニルホルマール、ポリビニルブチラール(PVB樹脂)、変性PVB)等の樹脂を配合しても良い。 In addition, in this invention, in addition to the above-mentioned olefin (co) polymer, resin such as polyvinyl acetal resin (for example, polyvinyl formal, polyvinyl butyral (PVB resin), modified PVB) is added to the resin material. You may mix.
[架橋剤]
本発明の太陽電池用封止膜には、架橋剤を含有させ、エチレン−極性モノマー共重合体の架橋構造を形成することが好ましい。架橋剤は、有機過酸化物又は光重合開始剤を用いることが好ましい。なかでも、接着力、耐湿性、耐貫通性の温度依存性が改善された封止膜が得られることから、有機過酸化物を用いるのが好ましい。
[Crosslinking agent]
The solar cell sealing film of the present invention preferably contains a crosslinking agent to form a crosslinked structure of an ethylene-polar monomer copolymer. As the crosslinking agent, an organic peroxide or a photopolymerization initiator is preferably used. Among these, it is preferable to use an organic peroxide because a sealing film with improved temperature dependency of adhesive strength, moisture resistance, and penetration resistance can be obtained.
有機過酸化物としては、100℃以上の温度で分解してラジカルを発生するものであれば、どのようなものでも使用することができる。有機過酸化物は、一般に、成膜温度、組成物の調整条件、硬化温度、被着体の耐熱性、貯蔵安定性を考慮して選択される。特に、半減期10時間の分解温度が70℃以上のものが好ましい。 Any organic peroxide can be used as long as it decomposes at a temperature of 100 ° C. or higher to generate radicals. The organic peroxide is generally selected in consideration of the film formation temperature, the adjustment conditions of the composition, the curing temperature, the heat resistance of the adherend, and the storage stability. In particular, the one having a decomposition temperature of 70 ° C. or more with a half-life of 10 hours is preferable.
前記有機過酸化物としては、樹脂の加工温度・貯蔵安定性の観点から例えば、ベンゾイルパーオキサイド系硬化剤、tert−ヘキシルパーオキシピバレート、tert−ブチルパーオキシピバレート、3,5,5−トリメチルヘキサノイルパーオキサイド、ジ−n−オクタノイルパーオキサイド、ラウロイルパーオキサイド、ステアロイルパーオキサイド、1,1,3,3−テトラメチルブチルパーオキシ−2−エチルヘキサノエート、スクシニックアシドパーオキサイド、2,5−ジメチル−2,5−ジ(tert−ブチルパーオキシ)ヘキサン、2,5−ジメチル−2,5−ジ(2−エチルヘキサノイルパーオキシ)ヘキサン、1−シクロヘキシル−1−メチルエチルパーオキシ−2−エチルヘキサノエート、tert−ヘキシルパーオキシ−2−エチルヘキサノエート、4−メチルベンゾイルパーオキサイド、tert−ブチルパーオキシ−2−エチルヘキサノエート、m−トルオイル+ベンゾイルパーオキサイド、ベンゾイルパーオキサイド、1,1−ビス(tert−ブチルパーオキシ)−2−メチルシクロヘキサネート、1,1−ビス(tert−ヘキシルパーオキシ)−3,3,5−トリメチルシクロヘキサネート、1,1−ビス(tert−ヘキシルパーオキシ)シクロヘキサネート、1,1−ビス(tert−ブチルパーオキシ)−3,3,5−トリメチルシクロヘキサン、1,1−ビス(tert−ブチルパーオキシ)シクロヘキサン、1,1−ビス(tert−ヘキシルパーオキシ)−3,3,5−トリメチルシクロヘキサン、2,2−ビス(4,4−ジ−tert−ブチルパーオキシシクロヘキシル)プロパン、1,1−ビス(tert−ブチルパーオキシ)シクロドデカン、tert−ヘキシルパーオキシイソプロピルモノカーボネート、tert−ブチルパーオキシマレイックアシド、tert−ブチルパーオキシ−3,3,5−トリメチルヘキサン、tert−ブチルパーオキシラウレート、2,5−ジメチル−2,5−ジ(メチルベンゾイルパーオキシ)ヘキサン、tert−ブチルパーオキシイソプロピルモノカーボネート、tert−ブチルパーオキシ−2−エチルヘキシルモノカーボネート、tert−ヘキシルパーオキシベンゾエート、2,5−ジ−メチル−2,5−ジ(ベンゾイルパーオキシ)ヘキサン、等が挙げられる。 Examples of the organic peroxide include, from the viewpoint of resin processing temperature and storage stability, for example, benzoyl peroxide curing agent, tert-hexyl peroxypivalate, tert-butyl peroxypivalate, 3, 5, 5- Trimethylhexanoyl peroxide, di-n-octanoyl peroxide, lauroyl peroxide, stearoyl peroxide, 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanoate, succinic acid peroxide, 2,5-dimethyl-2,5-di (tert-butylperoxy) hexane, 2,5-dimethyl-2,5-di (2-ethylhexanoylperoxy) hexane, 1-cyclohexyl-1-methylethyl Peroxy-2-ethylhexanoate, tert-hexyl par Xyl-2-ethylhexanoate, 4-methylbenzoyl peroxide, tert-butylperoxy-2-ethylhexanoate, m-toluoyl + benzoyl peroxide, benzoyl peroxide, 1,1-bis (tert-butyl Peroxy) -2-methylcyclohexanate, 1,1-bis (tert-hexylperoxy) -3,3,5-trimethylcyclohexanate, 1,1-bis (tert-hexylperoxy) cyclohexanate 1,1-bis (tert-butylperoxy) -3,3,5-trimethylcyclohexane, 1,1-bis (tert-butylperoxy) cyclohexane, 1,1-bis (tert-hexylperoxy)- 3,3,5-trimethylcyclohexane, 2,2-bis (4,4-di tert-butylperoxycyclohexyl) propane, 1,1-bis (tert-butylperoxy) cyclododecane, tert-hexylperoxyisopropyl monocarbonate, tert-butylperoxymaleic acid, tert-butylperoxy-3, 3,5-trimethylhexane, tert-butylperoxylaurate, 2,5-dimethyl-2,5-di (methylbenzoylperoxy) hexane, tert-butylperoxyisopropylmonocarbonate, tert-butylperoxy-2 -Ethylhexyl monocarbonate, tert-hexyl peroxybenzoate, 2,5-di-methyl-2,5-di (benzoylperoxy) hexane, and the like.
ベンゾイルパーオキサイド系硬化剤としては、70℃以上の温度で分解してラジカルを発生するものであればいずれも使用可能であるが、半減期10時間の分解温度が50℃以上のものが好ましく、調製条件、成膜温度、硬化(貼り合わせ)温度、被着体の耐熱性、貯蔵安定性を考慮して適宜選択できる。使用可能なベンゾイルパーオキサイド系硬化剤としては、例えば、ベンゾイルパーオキサイド、2,5−ジメチルヘキシル−2,5−ビスパーオキシベンゾエート、p−クロロベンゾイルパーオキサイド、m−トルオイルパーオキサイド、2,4−ジクロロベンゾイルパーオキサイド、t−ブチルパーオキシベンゾエート等が挙げられる。ベンゾイルパーオキサイド系硬化剤は1種でも2種以上を組み合わせて使用してもよい。 As the benzoyl peroxide-based curing agent, any can be used as long as it decomposes at a temperature of 70 ° C. or higher to generate radicals, and those having a decomposition temperature of 50 hours or higher with a half-life of 10 hours are preferable, It can be appropriately selected in consideration of preparation conditions, film formation temperature, curing (bonding) temperature, heat resistance of the adherend, and storage stability. Usable benzoyl peroxide curing agents include, for example, benzoyl peroxide, 2,5-dimethylhexyl-2,5-bisperoxybenzoate, p-chlorobenzoyl peroxide, m-toluoyl peroxide, 2, Examples include 4-dichlorobenzoyl peroxide and t-butyl peroxybenzoate. The benzoyl peroxide curing agent may be used alone or in combination of two or more.
有機過酸化物として、特に、2,5−ジメチル−2,5−ジ(tert−ブチルパーオキシ)ヘキサン、又はtert−ブチルパーオキシ−2−エチルヘキシルモノカーボネートが好ましい。これにより、良好に架橋され、優れた透明性を有する太陽電池用封止膜が得られる。 As the organic peroxide, 2,5-dimethyl-2,5-di (tert-butylperoxy) hexane or tert-butylperoxy-2-ethylhexyl monocarbonate is particularly preferable. Thereby, the sealing film for solar cells which is bridge | crosslinked favorably and has the outstanding transparency is obtained.
太陽電池用封止膜に使用する有機過酸化物の含有量は、樹脂材料100質量部に対して、好ましくは0.1〜5質量部、より好ましくは0.2〜3質量部であることが好ましい。有機過酸化物の含有量は、少ないと架橋硬化時において架橋速度が低下する場合があり、多くなると共重合体との相溶性が悪くなる恐れがある。 The content of the organic peroxide used for the solar cell sealing film is preferably 0.1 to 5 parts by mass, more preferably 0.2 to 3 parts by mass with respect to 100 parts by mass of the resin material. Is preferred. If the content of the organic peroxide is small, the crosslinking speed may be lowered during the crosslinking and curing, and if the content is large, the compatibility with the copolymer may be deteriorated.
また、光重合開始剤としては、公知のどのような光重合開始剤でも使用することができるが、配合後の貯蔵安定性の良いものが望ましい。このような光重合開始剤としては、例えば、2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オン、1−ヒドロキシシクロヘキシルフェニルケトン、2−メチル−1−(4−(メチルチオ)フェニル)−2−モルホリノプロパン−1などのアセトフェノン系、ベンジルジメチルケタ−ルなどのベンゾイン系、ベンゾフェノン、4−フェニルベンゾフェノン、ヒドロキシベンゾフェノンなどのベンゾフェノン系、イソプロピルチオキサントン、2−4−ジエチルチオキサントンなどのチオキサントン系、その他特殊なものとしては、メチルフェニルグリオキシレ−トなどが使用できる。特に好ましくは、2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オン、1−ヒドロキシシクロヘキシルフェニルケトン、2−メチル−1−(4−(メチルチオ)フェニル)−2−モルホリノプロパン−1、ベンゾフェノン等が挙げられる。これら光重合開始剤は、必要に応じて、4−ジメチルアミノ安息香酸のごとき安息香酸系又は、第3級アミン系などの公知慣用の光重合促進剤の1種または2種以上を任意の割合で混合して使用することができる。また、光重合開始剤のみの1種単独または2種以上の混合で使用することができる。 As the photopolymerization initiator, any known photopolymerization initiator can be used, but a photopolymerization initiator having good storage stability after blending is desirable. Examples of such a photopolymerization initiator include 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1-hydroxycyclohexyl phenyl ketone, and 2-methyl-1- (4- (methylthio) phenyl). Acetophenones such as -2-morpholinopropane-1, benzoins such as benzyldimethylketal, benzophenones such as benzophenone, 4-phenylbenzophenone and hydroxybenzophenone, thioxanthones such as isopropylthioxanthone and 2-4-diethylthioxanthone, As other special ones, methylphenylglyoxylate can be used. Particularly preferably, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-1- (4- (methylthio) phenyl) -2-morpholinopropane-1, Examples include benzophenone. These photopolymerization initiators may contain one or two or more kinds of known and commonly used photopolymerization accelerators such as benzoic acid-based or tertiary amine-based compounds such as 4-dimethylaminobenzoic acid as required. Can be mixed and used. Moreover, it can be used individually by 1 type of only a photoinitiator, or 2 or more types of mixture.
前記光重合開始剤の含有量は、樹脂材料100質量部に対して0.1〜5質量部、好ましくは0.2〜3質量部である。 Content of the said photoinitiator is 0.1-5 mass parts with respect to 100 mass parts of resin materials, Preferably it is 0.2-3 mass parts.
[架橋助剤]
本発明の太陽電池用封止膜は、さらに架橋助剤を含んでいることが好ましい。架橋助剤は、オレフィン(共)重合体のゲル分率を向上させ、太陽電池用封止膜の接着性、耐候性を向上させることができる。
[Crosslinking aid]
It is preferable that the sealing film for solar cells of the present invention further contains a crosslinking aid. The crosslinking aid can improve the gel fraction of the olefin (co) polymer and improve the adhesion and weather resistance of the solar cell sealing film.
架橋助剤の含有量は、樹脂材料100質量部に対して、通常0.1〜5質量部、好ましくは0.1〜3質量部、特に好ましくは0.5〜2.5質量部で使用される。これにより、更に架橋後の硬度が向上した封止膜が得られる。 The content of the crosslinking aid is usually 0.1 to 5 parts by mass, preferably 0.1 to 3 parts by mass, particularly preferably 0.5 to 2.5 parts by mass with respect to 100 parts by mass of the resin material. Is done. Thereby, the sealing film which the hardness after bridge | crosslinking improved further is obtained.
前記架橋助剤(官能基としてラジカル重合性基を有する化合物)としては、トリアリルシアヌレート、トリアリルイソシアヌレート等の3官能の架橋助剤の他、(メタ)アクリルエステル(例、NKエステル等)の単官能又は2官能の架橋助剤等を挙げることができる。なかでも、トリアリルシアヌレートおよびトリアリルイソシアヌレートが好ましく、特にトリアリルイソシアヌレートが好ましい。 Examples of the crosslinking aid (compound having a radical polymerizable group as a functional group) include trifunctional crosslinking aids such as triallyl cyanurate and triallyl isocyanurate, and (meth) acrylic esters (eg, NK ester) ) Monofunctional or bifunctional crosslinking aids. Of these, triallyl cyanurate and triallyl isocyanurate are preferable, and triallyl isocyanurate is particularly preferable.
[接着性向上剤]
本発明の太陽電池用封止膜においては、更に、接着向上剤を含んでいても良い。接着向上剤としては、シランカップリング剤を用いることができる。これにより、更に優れた接着力を有する太陽電池用封止膜とすることができる。前記シランカップリング剤としては、γ−クロロプロピルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(β−メトキシエトキシ)シラン、γ−メタクリロキシプロピルトリメトキシシラン、ビニルトリアセトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルトリエトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、ビニルトリクロロシラン、γ−メルカプトプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、N−β−(アミノエチル)−γ−アミノプロピルトリメトキシシランを挙げることができる。これらシランカップリング剤は、単独で使用しても、又は2種以上組み合わせて使用しても良い。なかでも、γ−メタクリロキシプロピルトリメトキシシランが特に好ましく挙げられる。
[Adhesion improver]
The solar cell sealing film of the present invention may further contain an adhesion improver. As the adhesion improver, a silane coupling agent can be used. Thereby, it can be set as the sealing film for solar cells which has the further outstanding adhesive force. Examples of the silane coupling agent include γ-chloropropyltrimethoxysilane, vinyltriethoxysilane, vinyltris (β-methoxyethoxy) silane, γ-methacryloxypropyltrimethoxysilane, vinyltriacetoxysilane, and γ-glycidoxypropyl. Trimethoxysilane, γ-glycidoxypropyltriethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, vinyltrichlorosilane, γ-mercaptopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, N Mention may be made of -β- (aminoethyl) -γ-aminopropyltrimethoxysilane. These silane coupling agents may be used alone or in combination of two or more. Of these, γ-methacryloxypropyltrimethoxysilane is particularly preferred.
本発明の太陽電池用封止膜におけるシランカップリング剤の含有量は、樹脂材料100質量部に対して5質量部以下、好ましくは0.1〜2質量部であることが好ましい。 The content of the silane coupling agent in the solar cell sealing film of the present invention is 5 parts by mass or less, preferably 0.1 to 2 parts by mass with respect to 100 parts by mass of the resin material.
[その他]
本発明の太陽電池用封止膜は、膜の種々の物性(機械的強度、透明性等の光学的特性、耐熱性、耐光性、架橋速度等)の改良あるいは調整、特に機械的強度の改良のため、必要に応じて、可塑剤、アクリロキシ基含有化合物、メタクリロキシ基含有化合物及び/又はエポキシ基含有化合物などの各種添加剤をさらに含んでいてもよい。
[Others]
The sealing film for solar cells of the present invention improves or adjusts various physical properties of the film (optical properties such as mechanical strength and transparency, heat resistance, light resistance, crosslinking speed, etc.), especially improvement of mechanical strength. Therefore, if necessary, various additives such as a plasticizer, an acryloxy group-containing compound, a methacryloxy group-containing compound and / or an epoxy group-containing compound may further be included.
[太陽電池用封止膜]
本発明の太陽電池用封止膜は、上述のように、波長変換材料を含むことで、発電効率を向上し、その発電効率を向上する効果が、太陽電池を長期にわたって使用した場合でも維持することができるものである。その評価として、例えば、波長変換材料(式(I)のユウロピウム錯体)の励起波長に相当する325nmの光線を、太陽電池用封止膜に照射したときに得られる蛍光発光スペクトルにおける波長580〜640nmの発光ピーク面積を蛍光強度とし、1000W/cm2の照射強度を有する紫外線ランプから235mmの距離に、前記太陽電池用封止膜を配置し、温度63℃条件下で連続照射し、経時的に前記蛍光強度を測定したとき、前記太陽電池用封止膜の蛍光強度が、照射前の蛍光強度に対して30%に低下するまでに要する時間が、10時間以上であることが好ましい。
[Seal film for solar cell]
As described above, the solar cell sealing film of the present invention includes the wavelength conversion material, thereby improving the power generation efficiency and maintaining the effect of improving the power generation efficiency even when the solar cell is used over a long period of time. It is something that can be done. As the evaluation, for example, the wavelength of 580 to 640 nm in the fluorescence emission spectrum obtained when the solar cell sealing film is irradiated with a light beam of 325 nm corresponding to the excitation wavelength of the wavelength conversion material (the europium complex of formula (I)). The solar cell sealing film is disposed at a distance of 235 mm from an ultraviolet lamp having an irradiation intensity of 1000 W / cm 2 with the emission peak area of When the fluorescence intensity is measured, the time required for the fluorescence intensity of the solar cell sealing film to decrease to 30% of the fluorescence intensity before irradiation is preferably 10 hours or more.
蛍光強度は、例えば、以下のように測定する。まず、0.46mmに調製した上記の太陽電池用封止膜を、厚さ3.2mmの白板ガラスで挟持し、90℃の真空ラミネータにて、脱気時間2分、プレス時間8分で圧着し、155℃のオーブン中で30分架橋することにより架橋サンプルを作製する。得られたサンプルを、蛍光分光光度計(例えば、F−7000(日立ハイテクノロジーズ社製))を用いて、励起波長(式(I)のユウロピウム錯体については325nm)の光線を照射し、各波長における発光量をプロットして蛍光発光スペクトルを得る。この蛍光発光スペクトルにおける発光ピーク面積(式(I)のユウロピウム錯体については580〜640nmの発光ピーク面積)を蛍光強度として算出する。蛍光発光量が分析装置によって異なる任意単位であるので、本発明において蛍光強度は相対的な比較に用いる数値である。 The fluorescence intensity is measured as follows, for example. First, the solar cell sealing film prepared to 0.46 mm is sandwiched between 3.2 mm thick white plate glass, and is bonded by a 90 ° C. vacuum laminator with a degassing time of 2 minutes and a pressing time of 8 minutes. A crosslinked sample is prepared by crosslinking in an oven at 155 ° C. for 30 minutes. The obtained sample was irradiated with light having an excitation wavelength (325 nm for the europium complex of formula (I)) using a fluorescence spectrophotometer (for example, F-7000 (manufactured by Hitachi High-Technologies Corporation)), and each wavelength A fluorescence emission spectrum is obtained by plotting the light emission amount at. The emission peak area in this fluorescence emission spectrum (emission peak area of 580 to 640 nm for the europium complex of formula (I)) is calculated as the fluorescence intensity. Since the amount of fluorescence emission is an arbitrary unit that varies depending on the analyzer, the fluorescence intensity is a numerical value used for relative comparison in the present invention.
そして、本発明の太陽電池用封止膜において、上述の紫外線による蛍光強度の安定性の評価は、例えば、以下のように試験することができる。上記のように作成した太陽電池用封止膜の架橋サンプルを、環境試験機(例えば、スーパーUV (岩崎電気社製))を用いて、ブラックパネル温度63℃、SUVランプ照射強度1000W/cm2、光源までの距離235mmで連続照射を行い、上記蛍光強度を経時的に測定する。照射前の蛍光強度を100%として、蛍光強度が30%に低下するまでの時間を測定し、10時間以上であれば、十分な紫外線耐性を示し、太陽電池を長期間にわたって使用した場合であっても、発電効率を向上する効果を十分に維持することができる太陽電池用封止膜であると判断できる。 And in the sealing film for solar cells of this invention, the above-mentioned evaluation of the stability of the fluorescence intensity by ultraviolet rays can be tested as follows, for example. Using the environmental tester (for example, Super UV (manufactured by Iwasaki Electric Co., Ltd.)), the black panel temperature of 63 ° C. and the SUV lamp irradiation intensity of 1000 W / cm 2 are used for the crosslinked sample of the solar cell sealing film prepared as described above. Then, continuous irradiation is performed at a distance of 235 mm to the light source, and the fluorescence intensity is measured over time. When the fluorescence intensity before irradiation is assumed to be 100%, the time until the fluorescence intensity decreases to 30% is measured, and if it is 10 hours or more, sufficient UV resistance is exhibited, and the solar cell is used for a long period of time. However, it can be determined that the solar cell sealing film can sufficiently maintain the effect of improving the power generation efficiency.
本発明の太陽電池用封止膜を形成するには、公知の方法に準じて行えばよい。例えば、上述した各成分を含む組成物を、通常の押出成形、又はカレンダ成形(カレンダリング)等により成形してシート状物を得る方法により製造することができる。本発明の太陽電池用封止膜の厚さは特に制限されないが、0.05〜2mmである。 What is necessary is just to perform according to a well-known method in order to form the sealing film for solar cells of this invention. For example, the composition containing each of the above-described components can be produced by a method of obtaining a sheet-like material by molding by ordinary extrusion molding, calendar molding (calendering) or the like. Although the thickness in particular of the sealing film for solar cells of this invention is not restrict | limited, It is 0.05-2 mm.
[太陽電池]
本発明の太陽電池の構造は、本発明の太陽電池用封止膜により太陽電池素子が封止されてなる構造を含んでいれば特に制限されない。例えば、表面側透明保護部材と裏面側保護部材との間に、本発明の太陽電池用封止膜を介在させて架橋一体化させることにより太陽電池用セルを封止させた構造などが挙げられる。
[Solar cell]
The structure of the solar cell of the present invention is not particularly limited as long as it includes a structure in which the solar cell element is sealed with the solar cell sealing film of the present invention. For example, the structure etc. which sealed the cell for solar cells by interposing the sealing film for solar cells of this invention between the surface side transparent protection member and the back surface side protection member, and making it bridge-integrate are mentioned. .
本発明の太陽電池は、本発明の太陽電池用封止膜が用いられているので、波長変換材料により太陽電池素子の発電効率が向上されており、高い発電効率が長期に亘り維持されている太陽電池である。 Since the solar cell sealing film of the present invention is used in the solar cell of the present invention, the power generation efficiency of the solar cell element is improved by the wavelength conversion material, and the high power generation efficiency is maintained for a long time. It is a solar cell.
なお、本発明において、太陽電池用セルの光が照射される側(受光面側)を「表面側」と称し、太陽電池用セルの受光面とは反対面側を「裏面側」と称する。 In addition, in this invention, the side (light-receiving surface side) where the light of the solar cell is irradiated is referred to as “front surface side”, and the surface opposite to the light-receiving surface of the solar cell is referred to as “back surface side”.
前記太陽電池において、太陽電池用セルを十分に封止するには、例えば、図1に示すように表面側透明保護部材11、表面側封止膜13A、太陽電池用セル14、裏面側封止膜13B及び裏面側保護部材12を積層し、加熱加圧など常法に従って、封止膜を架橋硬化させればよい。 In the solar cell, in order to sufficiently seal the solar cell, for example, as shown in FIG. 1, the front surface side transparent protective member 11, the front surface side sealing film 13A, the solar cell cell 14, the back surface side sealing. The film 13B and the back surface side protection member 12 may be laminated, and the sealing film may be cross-linked and cured according to a conventional method such as heat and pressure.
加熱加圧するには、例えば、各部材を積層した積層体を、真空ラミネータで温度135〜180℃、さらに140〜180℃、特に155〜180℃、脱気時間0.1〜5分、プレス圧力0.1〜1.5kg/cm2、プレス時間5〜15分で加熱圧着すればよい。 In order to heat and pressurize, for example, a laminated body in which each member is laminated is heated by a vacuum laminator at a temperature of 135 to 180 ° C., further 140 to 180 ° C., particularly 155 to 180 ° C., a degassing time of 0.1 to 5 minutes, a press pressure. What is necessary is just to heat-press in 0.1-1.5 kg / cm < 2 > and press time 5-15 minutes.
この加熱加圧時に、表面側封止膜13Aおよび裏面側封止膜13Bに含まれるオレフィン(共)重合体を架橋させることにより、表面側封止膜13Aおよび裏面側封止膜13Bを介して、表面側透明保護部材11、裏面側透明部材12、および太陽電池用セル14を一体化させて、太陽電池用セル14を封止することができる。 By crosslinking the olefin (co) polymer contained in the front side sealing film 13A and the back side sealing film 13B during this heating and pressurization, the front side sealing film 13A and the back side sealing film 13B are interposed. The solar cell 14 can be sealed by integrating the front surface side transparent protective member 11, the back surface side transparent member 12, and the solar cell 14.
本発明の太陽電池用封止膜は、上述のように、波長変換材料を含むことで太陽電池素子の発電効率を向上させることができるので、太陽電池における太陽電池素子の受光面側に配置される封止膜、すなわち、図1における表面側透明保護部材12と太陽電池セル14との間に配置される封止膜13Aとして利用することが好ましい。 Since the solar cell sealing film of the present invention can improve the power generation efficiency of the solar cell element by including the wavelength conversion material as described above, it is disposed on the light receiving surface side of the solar cell element in the solar cell. It is preferable to use as the sealing film 13A, that is, the sealing film 13A disposed between the surface-side transparent protective member 12 and the solar battery cell 14 in FIG.
なお、本発明の太陽電池用封止膜は、図1に示したような単結晶又は多結晶のシリコン結晶系の太陽電池用セルを用いた太陽電池だけでなく、薄膜シリコン系、薄膜アモルファスシリコン系太陽電池、セレン化銅インジウム(CIS)系太陽電池等の薄膜太陽電池の封止膜にも使用することもできる。この場合は、例えば、ガラス基板、ポリイミド基板、フッ素樹脂系透明基板等の表面側透明保護部材の表面上に化学気相蒸着法等により形成された薄膜太陽電池素子層上に、本発明の太陽電池用封止膜、裏面側保護部材を積層し、接着一体化させた構造、裏面側保護部材の表面上に形成された太陽電池素子上に、本発明の太陽電池用封止膜、表面側透明保護部材を積層し、接着一体化させた構造、又は表面側透明保護部材、表面側封止膜、薄膜太陽電池素子、裏面側封止膜、及び裏面側保護部材をこの順で積層し、接着一体化させた構造等が挙げられる。なお、本発明において、太陽電池用セルや薄膜太陽電池素子を総称して太陽電池素子という。 The solar cell sealing film of the present invention is not limited to a solar cell using a single crystal or polycrystalline silicon crystal solar cell as shown in FIG. It can also be used for a sealing film of a thin film solar cell such as a solar cell and a copper indium selenide (CIS) solar cell. In this case, for example, the solar cell of the present invention is formed on a thin film solar cell element layer formed by a chemical vapor deposition method or the like on the surface of a surface side transparent protective member such as a glass substrate, a polyimide substrate, or a fluororesin transparent substrate. On the solar cell element formed on the surface of the back surface side protective member, the structure for laminating the battery sealing film and the back surface side protective member and adhering and integrating them, the front surface side Laminated transparent protective member, bonded and integrated structure, or front side transparent protective member, front side sealing film, thin film solar cell element, back side sealing film, and back side protective member are laminated in this order, For example, a structure that is bonded and integrated. In addition, in this invention, the cell for solar cells and a thin film solar cell element are named generically, and are called a solar cell element.
表面側透明保護部材11は、通常珪酸塩ガラスなどのガラス基板であるのがよい。ガラス基板の厚さは、0.1〜10mmが一般的であり、0.3〜5mmが好ましい。ガラス基板は、一般に、化学的に、或いは熱的に強化させたものであってもよい。 The surface side transparent protective member 11 is usually a glass substrate such as silicate glass. As for the thickness of a glass substrate, 0.1-10 mm is common, and 0.3-5 mm is preferable. The glass substrate may generally be chemically or thermally strengthened.
裏面側保護部材12は、ポリエチレンテレフタレート(PET)やポリアミドなどのプラスチックフィルムが好ましく用いられる。また、耐熱性、耐湿熱性を考慮してフッ化ポリエチレンフィルム、特にフッ化ポリエチレンフィルム/Al/フッ化ポリエチレンフィルムをこの順で積層させたフィルムでも良い。 The back surface side protection member 12 is preferably a plastic film such as polyethylene terephthalate (PET) or polyamide. Further, a film obtained by laminating a fluorinated polyethylene film, particularly a fluorinated polyethylene film / Al / fluorinated polyethylene film in this order in consideration of heat resistance and wet heat resistance may be used.
なお、本発明の太陽電池用封止膜は、太陽電池(薄膜太陽電池を含む)の表面側及び/又は裏面側に用いられる封止膜に特徴を有する。したがって、表面側透明保護部材、裏面側保護部材、および太陽電池用セルなどの封止膜以外の部材については、従来公知の太陽電池と同様の構成を有していればよく、特に制限されない。 In addition, the sealing film for solar cells of this invention has the characteristics in the sealing film used for the surface side and / or back surface side of a solar cell (a thin film solar cell is included). Therefore, the members other than the sealing film such as the front surface side transparent protective member, the back surface side protective member, and the solar battery cell are not particularly limited as long as they have the same configuration as a conventionally known solar battery.
以下、本発明を実施例により詳細に説明する。 Hereinafter, the present invention will be described in detail with reference to examples.
(太陽電池用封止膜の調製)
下記表に示す配合で各材料をロールミルに供給し、70℃において混練して太陽電池用封止膜組成物を調製した。この太陽電池用封止膜組成物を、70℃においてカレンダ成形し、放冷後、太陽電池用封止膜(厚さ0.46mm)を作製した。
(Preparation of solar cell sealing film)
Each material was supplied to a roll mill with the formulation shown in the following table, and kneaded at 70 ° C. to prepare a solar cell sealing film composition. This solar cell sealing film composition was calendered at 70 ° C., allowed to cool, and then a solar cell sealing film (thickness 0.46 mm) was produced.
<評価方法>
(架橋サンプルの作製)
上記太陽電池用封止膜を2枚の白板ガラス(厚さ3.2mm)で挟み、得られた積層体を真空ラミネータを用いて90℃において脱気時間2分、プレス時間8分で圧着した後、155℃のオーブン中で30分間加熱して架橋硬化させることにより、サンプルを作製した。
<Evaluation method>
(Preparation of cross-linked sample)
The solar cell sealing film was sandwiched between two pieces of white glass (thickness: 3.2 mm), and the resulting laminate was pressure-bonded at 90 ° C. with a degassing time of 2 minutes and a pressing time of 8 minutes using a vacuum laminator. Then, the sample was produced by heating for 30 minutes in an oven at 155 ° C. to cure by crosslinking.
(1)光線透過率(%)
上記サンプルについて、分光光度計(日立製作所製、U−4100)を用いて400〜1000nmのスペクトル測定を実施し、その平均値を光線透過率(%)とした。
(2)ヘイズ(濁度)(%)
上記サンプルについて、JIS K 7105(2000年)に従って、ヘイズメーター(日本電色工業株式会社製 NDH 2000型)を用いてヘイズ値(%)を測定した。
(3)蛍光強度
上記サンプルについて、分光光度計(日立ハイテクノロジーズ社製、F−7000)を用いて蛍光強度を測定した。測定条件:ホトマル電圧400V、励起側スリット20nm、蛍光側スリット10nm、スキャンスピード240nm/min。照射波長は波長変換材料(1)の場合は325nm、波長変換材料(2)及び(3)の場合は355nm、(4)の場合は365nmとした。なお、各波長変換材料自体の励起ピーク波長は、上記各照射波長よりも短波長側に位置しているが、白板ガラスの光線透過率(白板ガラスでの吸収)が紫外線領域に存在しており、白板ガラスの吸収は短波長側にかけて強くなる傾向がある。したがって、短波長側の紫外線は強く吸収され、合わせガラス構造の試験では見かけ励起のピーク波長が長波長側にシフトすることから、各照射波長を上記のとおりとした。
(1) Light transmittance (%)
About the said sample, the spectrum measurement of 400-1000 nm was implemented using the spectrophotometer (the Hitachi Ltd. make, U-4100), and the average value was made into light transmittance (%).
(2) Haze (turbidity) (%)
About the said sample, haze value (%) was measured using the haze meter (Nippon Denshoku Industries Co., Ltd. NDH 2000 type | mold) according to JISK7105 (2000).
(3) Fluorescence intensity About the said sample, the fluorescence intensity was measured using the spectrophotometer (the Hitachi High-Technologies company make, F-7000). Measurement conditions: Photomultiplier voltage 400 V, excitation side slit 20 nm, fluorescence side slit 10 nm, scan speed 240 nm / min. The irradiation wavelength was 325 nm for the wavelength conversion material (1), 355 nm for the wavelength conversion materials (2) and (3), and 365 nm for (4). In addition, although the excitation peak wavelength of each wavelength conversion material itself is located on the shorter wavelength side than each of the above irradiation wavelengths, the light transmittance of white plate glass (absorption in white plate glass) exists in the ultraviolet region. The absorption of white glass tends to increase toward the short wavelength side. Accordingly, ultraviolet rays on the short wavelength side are strongly absorbed, and the peak wavelength of the apparent excitation shifts to the long wavelength side in the laminated glass structure test. Therefore, each irradiation wavelength was set as described above.
そして、波長をX軸、発光量をY軸に表した関数f(x)の、発光ピークの開始波長から終了波長における曲線と関数f(x)上のX=X0とX1の2点を結ぶ直線により囲まれる領域の面積を算出し、蛍光強度とした。
(4)UV劣化
上記サンプルについて、紫外線ランプ(スーパーUV、岩崎電気製)を用い、ブラックパネル温度63℃の条件下において、1000W/cm2の紫外線を照射する光源から235mmの位置に対向させて配置し、紫外線を照射した場合に、紫外線照射前の試料の発光強度に対して30%まで低下するのに要する時間(h)を測定した。
Then, a function f (x) representing the wavelength on the X-axis and the light emission amount on the Y-axis, the curve from the start wavelength to the end wavelength of the emission peak and two points X = X 0 and X 1 on the function f (x) The area of the region surrounded by the straight line connecting the two was calculated and used as the fluorescence intensity.
(4) UV degradation Using the ultraviolet lamp (Super UV, manufactured by Iwasaki Electric Co., Ltd.) for the above sample, facing a position of 235 mm from a light source that radiates 1000 W / cm 2 of ultraviolet light under conditions of a black panel temperature of 63 ° C. When it was placed and irradiated with ultraviolet rays, the time (h) required to decrease to 30% of the emission intensity of the sample before ultraviolet irradiation was measured.
結果を下記表に示す。 The results are shown in the table below.
<評価結果>
上記表に示されているように、波長変換材料として波長変換材料(1)(Eu(hfa)3(TPPO)2)を使用した場合には、他の波長変換材料を使用した場合と比較して紫外線による劣化度は小さく、波長変換効果が維持できていることが認められた。更に、Eu(hfa)3(TPPO)2の含有量が各樹脂材料(EVA、m−LLDPE、EMMA)100質量部に対して0.00001〜0.1質量部の場合、特に0.0001〜0.01質量部の場合には、蛍光強度も高く、発電効率の向上に特に有利であることが認められた。
<Evaluation results>
As shown in the above table, when the wavelength conversion material (1) (Eu (hfa) 3 (TPPO) 2 ) is used as the wavelength conversion material, it is compared with the case where another wavelength conversion material is used. It was confirmed that the deterioration degree due to ultraviolet rays was small and the wavelength conversion effect could be maintained. Furthermore, when the content of Eu (hfa) 3 (TPPO) 2 is 0.00001 to 0.1 parts by mass with respect to 100 parts by mass of each resin material (EVA, m-LLDPE, EMMA), particularly 0.0001 to In the case of 0.01 part by mass, the fluorescence intensity was high, and it was recognized that it was particularly advantageous for improving the power generation efficiency.
11 表面側透明保護部材
12 裏面側保護部材
13A 表面側封止膜
13B 裏面側封止膜
14 太陽電池用セル
DESCRIPTION OF SYMBOLS 11 Surface side transparent protective member 12 Back surface side protective member 13A Surface side sealing film 13B Back surface side sealing film 14 Cell for solar cells
[式中、Rは全て水素原子であり、nは1である。]
で表わされるユウロピウム錯体であることを特徴とする太陽電池用封止膜により達成される。
[Wherein, R is a hydrogen atom and n is 1 . ]
It is achieved by a solar cell sealing film characterized by being a europium complex represented by the formula:
(1)前記オレフィン(共)重合体が、エチレン−メタクリル酸メチル共重合体である。
(2)前記オレフィン(共)重合体が、メタロセン触媒を用いて重合されたエチレン・α−オレフィン共重合体(m−LLDPE)である請求項1に記載の太陽電池用封止膜。
(3)前記波長変換材料の励起波長に相当する325nmの光線を、太陽電池用封止膜に照射したときに得られる蛍光発光スペクトルにおける波長580〜640nmの発光ピーク面積を蛍光強度とし、1000W/cm2の照射強度を有する紫外線ランプから235mmの距離に、前記太陽電池用封止膜を配置し、温度63℃条件下で連続照射し、経時的に前記蛍光強度を測定したとき、前記太陽電池用封止膜の蛍光強度が、照射前の蛍光強度に対して30%に低下するまでに要する時間が、10時間以上である。
(1) The olefin (co) polymer is an ethylene-methyl methacrylate copolymer .
(2) The sealing film for solar cells according to
( 3 ) The emission peak area at a wavelength of 580 to 640 nm in a fluorescence emission spectrum obtained when a solar cell sealing film is irradiated with a light beam of 325 nm corresponding to the excitation wavelength of the wavelength conversion material is defined as 1000 W / When the solar cell sealing film is disposed at a distance of 235 mm from an ultraviolet lamp having an irradiation intensity of cm 2, the irradiation is continuously performed at a temperature of 63 ° C., and the fluorescence intensity is measured over time. The time required for the fluorescence intensity of the sealing film to decrease to 30% of the fluorescence intensity before irradiation is 10 hours or more.
[式中、Rは全て水素原子であり、nは1である。]
で表わされるユウロピウム錯体を含む。
[Wherein, R is a hydrogen atom and n is 1 . ]
The europium complex represented by these is included.
上記ユウロピウム錯体は、式(I)中のnが1であり、Rが全て水素原子であるEu(hfa)3(TPPO)2であり、耐紫外線性に特に優れる。Eu(hfa)3(TPPO)2はトリフェニルホスフィンオキシドとヘキサフルオロアセチルアセトンの2種の配位子が中心元素である希土類金属のユウロピウムに配位しているユウロピウム錯体である。
The europium complex is one of n in formula (I), R is
式(I)のユウロピウム錯体の含有量は、太陽電池用封止膜の樹脂材料100質量部に対して0.001〜0.1質量部の範囲内で配合される。一般に、0.000001質量部を下回ると、十分な波長変換効果が得られないおそれがあり、特に0.00001質量部以上、更に0.0001質量部以上であることが好ましい。一方、1質量部を上回ると、太陽光を発電素子に十分に入射させるために必要な透明性を確保し難くなるおそれがあり、またコスト的にも不利となり易い。特に0.1質量部以下、更に0.01質量部以下であることが好ましい。
The content of europium complexes of formula (I), Ru is blended in the range of 0.001 to 0.1 parts by weight with respect to the resin material 100 parts by weight of the sealing film for a solar cell. Generally, when the amount is less than 0.000001 parts by mass, a sufficient wavelength conversion effect may not be obtained, and it is particularly preferably 0.00001 parts by mass or more, and more preferably 0.0001 parts by mass or more. On the other hand, when the amount exceeds 1 part by mass, it may be difficult to ensure the transparency necessary for allowing sunlight to sufficiently enter the power generation element, and the cost tends to be disadvantageous. In particular, it is preferably 0.1 parts by mass or less, more preferably 0.01 parts by mass or less.
Claims (7)
波長変換材料が、下記式(I):
で表わされるユウロピウム錯体であることを特徴とする太陽電池用封止膜。 A resin material containing an olefin (co) polymer, and a solar cell sealing film containing a wavelength conversion material,
The wavelength conversion material has the following formula (I):
A solar cell sealing film characterized by being a europium complex represented by the formula:
1000W/cm2の照射強度を有する紫外線ランプから235mmの距離に、前記太陽電池用封止膜を配置し、温度63℃条件下で連続照射し、経時的に前記蛍光強度を測定したとき、前記太陽電池用封止膜の蛍光強度が、照射前の蛍光強度に対して30%に低下するまでに要する時間が、10時間以上である請求項1〜5のいずれか1項に記載の太陽電池用封止膜。 The fluorescence intensity is the emission peak area at a wavelength of 580 to 640 nm in the fluorescence emission spectrum obtained when the solar cell sealing film is irradiated with a light beam of 325 nm corresponding to the excitation wavelength of the wavelength conversion material,
When the solar cell sealing film is disposed at a distance of 235 mm from an ultraviolet lamp having an irradiation intensity of 1000 W / cm 2 , continuously irradiated at a temperature of 63 ° C., and the fluorescence intensity is measured over time, The time required for the fluorescence intensity of the sealing film for solar cells to fall to 30% with respect to the fluorescence intensity before irradiation is 10 hours or more, The solar cell of any one of Claims 1-5 Sealing film.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013160077A JP2014112643A (en) | 2012-10-03 | 2013-08-01 | Solar cell encapsulation film and solar cell using the same |
PCT/JP2013/076910 WO2014054720A1 (en) | 2012-10-03 | 2013-10-03 | Sealing film for solar cells and solar cell using same |
CN201380063052.7A CN104823286B (en) | 2012-10-03 | 2013-10-03 | Sealing films for solar cell and the solar cell using which |
US14/433,058 US20150280037A1 (en) | 2012-10-03 | 2013-10-03 | Solar cell sealing film and solar cell module using the same |
EP13844398.1A EP2905815A4 (en) | 2012-10-03 | 2013-10-03 | Sealing film for solar cells and solar cell using same |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012220952 | 2012-10-03 | ||
JP2012220952 | 2012-10-03 | ||
JP2013160077A JP2014112643A (en) | 2012-10-03 | 2013-08-01 | Solar cell encapsulation film and solar cell using the same |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014095295A Division JP2014197683A (en) | 2012-10-03 | 2014-05-02 | Solar cell encapsulation film and solar cell using the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2014112643A true JP2014112643A (en) | 2014-06-19 |
Family
ID=51169581
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013160077A Pending JP2014112643A (en) | 2012-10-03 | 2013-08-01 | Solar cell encapsulation film and solar cell using the same |
JP2014095295A Pending JP2014197683A (en) | 2012-10-03 | 2014-05-02 | Solar cell encapsulation film and solar cell using the same |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014095295A Pending JP2014197683A (en) | 2012-10-03 | 2014-05-02 | Solar cell encapsulation film and solar cell using the same |
Country Status (1)
Country | Link |
---|---|
JP (2) | JP2014112643A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6885405B2 (en) * | 2016-08-24 | 2021-06-16 | 堺化学工業株式会社 | Fluorescent material and resin composition containing it |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07202243A (en) * | 1993-12-28 | 1995-08-04 | Bridgestone Corp | Solar cell module |
JPH08148708A (en) * | 1994-11-15 | 1996-06-07 | Sekisui Chem Co Ltd | Sealing material for solar cell |
JP2003081986A (en) * | 2001-09-07 | 2003-03-19 | Kansai Tlo Kk | Rare earth complex, optically functional material using the same and emission device |
JP2004363342A (en) * | 2003-06-05 | 2004-12-24 | Nichia Chem Ind Ltd | Semiconductor light emitting device and its manufacturing method |
JP2006251589A (en) * | 2005-03-14 | 2006-09-21 | Nitto Denko Corp | Optical element, polarized plane light source using element, and display apparatus using light source |
JP2006269373A (en) * | 2005-03-25 | 2006-10-05 | Osaka Univ | Dye-sensitized solar cell |
JP2010039161A (en) * | 2008-08-05 | 2010-02-18 | Seiko Epson Corp | Ink for color filter, color filter set, color filter, image display, and electronic equipment |
WO2010032395A1 (en) * | 2008-09-19 | 2010-03-25 | 国立大学法人奈良先端科学技術大学院大学 | Rare earth complex nanocrystals and applications thereof |
WO2011040391A1 (en) * | 2009-09-29 | 2011-04-07 | 日立化成工業株式会社 | Fluorescent material for converting wavelengths, resin composition for converting wavelengths containing the fluorescent material, solar cell module produced using the fluorescent material or the resin composition, process for producing resin composition for converting wavelengths, and process for producing solar cell module |
JP2011192892A (en) * | 2010-03-16 | 2011-09-29 | Dainippon Printing Co Ltd | Thin-film solar cell |
JP2011219625A (en) * | 2010-04-09 | 2011-11-04 | Hitachi Chem Co Ltd | Spherical phosphor, sealing material for wavelength conversion solar battery, solar battery module, and method for manufacturing them |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3473605B2 (en) * | 2000-02-18 | 2003-12-08 | 株式会社ブリヂストン | Solar cell manufacturing method |
JP2008091772A (en) * | 2006-10-04 | 2008-04-17 | Bridgestone Corp | Sealing film for solar battery and solar battery using the same |
-
2013
- 2013-08-01 JP JP2013160077A patent/JP2014112643A/en active Pending
-
2014
- 2014-05-02 JP JP2014095295A patent/JP2014197683A/en active Pending
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07202243A (en) * | 1993-12-28 | 1995-08-04 | Bridgestone Corp | Solar cell module |
JPH08148708A (en) * | 1994-11-15 | 1996-06-07 | Sekisui Chem Co Ltd | Sealing material for solar cell |
JP2003081986A (en) * | 2001-09-07 | 2003-03-19 | Kansai Tlo Kk | Rare earth complex, optically functional material using the same and emission device |
JP2004363342A (en) * | 2003-06-05 | 2004-12-24 | Nichia Chem Ind Ltd | Semiconductor light emitting device and its manufacturing method |
JP2006251589A (en) * | 2005-03-14 | 2006-09-21 | Nitto Denko Corp | Optical element, polarized plane light source using element, and display apparatus using light source |
JP2006269373A (en) * | 2005-03-25 | 2006-10-05 | Osaka Univ | Dye-sensitized solar cell |
JP2010039161A (en) * | 2008-08-05 | 2010-02-18 | Seiko Epson Corp | Ink for color filter, color filter set, color filter, image display, and electronic equipment |
WO2010032395A1 (en) * | 2008-09-19 | 2010-03-25 | 国立大学法人奈良先端科学技術大学院大学 | Rare earth complex nanocrystals and applications thereof |
WO2011040391A1 (en) * | 2009-09-29 | 2011-04-07 | 日立化成工業株式会社 | Fluorescent material for converting wavelengths, resin composition for converting wavelengths containing the fluorescent material, solar cell module produced using the fluorescent material or the resin composition, process for producing resin composition for converting wavelengths, and process for producing solar cell module |
JP2011192892A (en) * | 2010-03-16 | 2011-09-29 | Dainippon Printing Co Ltd | Thin-film solar cell |
JP2011219625A (en) * | 2010-04-09 | 2011-11-04 | Hitachi Chem Co Ltd | Spherical phosphor, sealing material for wavelength conversion solar battery, solar battery module, and method for manufacturing them |
Also Published As
Publication number | Publication date |
---|---|
JP2014197683A (en) | 2014-10-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014054720A1 (en) | Sealing film for solar cells and solar cell using same | |
JP5572233B2 (en) | Solar cell sealing film and solar cell using the same | |
WO2014034406A1 (en) | Pair of sealing films for solar cell and method for manufacturing solar cell module using same | |
WO2016194606A1 (en) | Sealing film for solar cells, and solar cell module | |
JP2013008889A (en) | Sealing film for solar cell and solar cell using the same | |
JP5819159B2 (en) | Solar cell sealing film and solar cell using the same | |
WO2015108096A1 (en) | Sealing film for solar cell, and solar cell using same | |
WO2015034060A1 (en) | Solar cell sealing film, and solar cell using same | |
WO2015046442A1 (en) | Sealing film for solar cells, and solar cell using same | |
WO2016140360A1 (en) | Solar-cell sealing film and solar cell using same | |
WO2015194594A1 (en) | Wavelength conversion material and solar cell sealing film containing same | |
WO2015194595A1 (en) | Wavelength conversion material and solar cell sealing film containing same | |
JP2014209626A (en) | Sealing film for solar cell and solar cell using the same | |
JP2014197683A (en) | Solar cell encapsulation film and solar cell using the same | |
WO2017094354A1 (en) | Method for manufacturing solar cell sealing material and composition for manufacturing solar cell sealing material | |
JP2017222752A (en) | Composition for producing sealing material for solar battery, and sealing material for solar battery | |
JP5869211B2 (en) | Solar cell sealing film and solar cell using the same | |
JP2016213401A (en) | Composition for manufacturing sealant for solar batteries | |
JP2013155238A (en) | Composition for forming sealing film for solar cell | |
WO2015194592A1 (en) | Sealing film for solar cells and solar cell using same | |
JP2016004893A (en) | Sealing film for solar battery and solar battery using the same | |
JP2016004895A (en) | Sealing film for solar battery and solar battery | |
WO2016104175A1 (en) | Sealing film for solar cells and solar cell using same | |
JP2017222753A (en) | Composition for producing sealing material for solar battery, and sealing material for solar battery | |
JP2016219448A (en) | Composition for producing sealing material for solar cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140502 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20140626 |
|
RD13 | Notification of appointment of power of sub attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7433 Effective date: 20140710 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20140711 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20140905 |