WO2010032395A1 - Rare earth complex nanocrystals and applications thereof - Google Patents

Rare earth complex nanocrystals and applications thereof Download PDF

Info

Publication number
WO2010032395A1
WO2010032395A1 PCT/JP2009/004411 JP2009004411W WO2010032395A1 WO 2010032395 A1 WO2010032395 A1 WO 2010032395A1 JP 2009004411 W JP2009004411 W JP 2009004411W WO 2010032395 A1 WO2010032395 A1 WO 2010032395A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
rare earth
thiophene
branched
heterocyclic ring
Prior art date
Application number
PCT/JP2009/004411
Other languages
French (fr)
Japanese (ja)
Inventor
長谷川靖哉
河合壯
中川哲也
Original Assignee
国立大学法人奈良先端科学技術大学院大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人奈良先端科学技術大学院大学 filed Critical 国立大学法人奈良先端科学技術大学院大学
Publication of WO2010032395A1 publication Critical patent/WO2010032395A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/50Organo-phosphines
    • C07F9/53Organo-phosphine oxides; Organo-phosphine thioxides
    • C07F9/5345Complexes or chelates of phosphine-oxides or thioxides with metallic compounds or metals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/50Organo-phosphines
    • C07F9/53Organo-phosphine oxides; Organo-phosphine thioxides
    • C07F9/5329Polyphosphine oxides or thioxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/351Metal complexes comprising lanthanides or actinides, e.g. comprising europium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/182Metal complexes of the rare earth metals, i.e. Sc, Y or lanthanide
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Definitions

  • the present invention relates to a rare earth complex having luminescent properties, and more particularly to a rare earth complex nanocrystal, a luminescent material and a light emitting device using the nanocrystal.
  • rare earth ions emit light in a wide wavelength range from ultraviolet to infrared. These luminescences are based on electronic transitions derived from f-orbitals that are not easily affected by external fields such as ligand fields. For this reason, the wavelength width of the emission band is very narrow compared to organic phosphors and the like, and in principle, the color purity is extremely useful. In addition, organic phosphors are inferior in stability to heat, light, and excitation. Moreover, since rare earth ions are non-toxic, they are easy to use industrially. Thus, since rare earth ions have excellent characteristics, rare earth complexes in which various ligands are coordinated with rare earth ions are used in various applications. Specifically, it is used for various applications such as luminescent ink and organic electroluminescence element.
  • Non-Patent Document 1 discloses that when the ligand coordinated to Eu (III) is variously changed, the emission characteristics of the complex change depending on the structure of the ligand. Furthermore, the present inventors have developed many rare earth complexes so far (see, for example, Patent Documents 1 to 4).
  • the luminous efficiency of the rare earth complexes used so far is 40-50% at most, and the excitation energy is not effectively utilized.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a light-emitting material having improved light emission efficiency and improved light emission efficiency of the rare earth complex.
  • the luminescent material according to the present invention has the general formulas (I) to (III)
  • the nanocrystals are more preferably dispersed or suspended.
  • Ln is a rare earth atom
  • R 1 to R 4 and R 6 may be the same as or different from each other, and the number of carbon atoms having a straight or branched chain
  • R 5 and R 7 may be the same or different from each other, and
  • the rare earth complex used in the present invention has the structure as described above, light energy for exciting the rare earth ions is difficult to be released as thermal energy, and as a result, the rare earth ions are sufficiently excited, Strong emission intensity is maintained.
  • the rare earth complex exists in a nanocrystalline state, it is not easily affected by the dispersion medium (for example, a polymer or the like), and exhibits strong light emission characteristics. Further, since the rare earth complex in a crystalline state is hardly affected by oxygen or water, it has high durability.
  • the crystal size is preferably 200 nm or less, and more preferably 100 nm or less because the visible light transmittance is very high.
  • the luminescent material according to the present invention includes a rare earth complex crystal represented by any one of the above-described general formulas (I) to (III) in order to emit light using excitation by ultraviolet light. It is characterized by that. Since the extinction coefficient in the ultraviolet light of the rare earth complex existing in the crystalline state is several orders of magnitude higher than the extinction coefficient in the visible light, high emission can be provided by emitting light using excitation by ultraviolet light. .
  • the ultraviolet light applied to the luminescent material according to the present invention is preferably 370 nm or less, and more preferably 200 to 365 nm.
  • the ink according to the present invention is characterized by containing the above-described luminescent material.
  • the ink according to the present invention may be used for offset printing or inkjet.
  • the pigment according to the present invention is characterized by containing the above-mentioned luminescent material.
  • Art objects to which the pigments according to the invention are applied are also within the scope of the invention.
  • the information identification medium according to the present invention is characterized by containing the above-mentioned luminescent material.
  • the information identification medium according to the present invention may be applied to an ID card.
  • the light emitting device includes a rare earth complex crystal represented by any one of the above general formulas (I) to (III), a light emitting material containing the crystal, and a light source capable of emitting light in the ultraviolet region. It is characterized by having. More preferably, the light-emitting device according to the present invention further includes a filter that blocks visible light to infrared light from the light source.
  • the crystal of the rare earth complex is preferably a nanocrystal, the crystal size is more preferably 200 nm or less, and further preferably 100 nm or less.
  • the light emitting device is a light source that emits visible light. It can provide much stronger light than those equipped with.
  • the method of emitting light of the rare earth complex according to the present invention is to irradiate the crystal of the rare earth complex represented by any one of the above general formulas (I) to (III) or a light emitting material containing the crystal with ultraviolet light. It includes the process of performing.
  • the present invention it is possible to obtain light emission with higher color purity and higher light emission intensity than inorganic light emitters. Accordingly, it is possible to provide a luminescent polymer and a luminescent ink with higher emission intensity, and an illumination device, a signal device, and a display device with higher emission intensity.
  • the present invention provides a luminescent material comprising nanocrystals of a rare earth complex.
  • the luminescent material according to the present invention is a composition containing dispersed nanocrystals of the rare earth complex described above.
  • the luminescent material according to the present invention is a composition containing suspended nanocrystals of the rare earth complex described above.
  • the rare earth complex mentioned above may be contained singly or in combination.
  • the content of the rare earth complex in the luminescent material according to the present embodiment is not particularly limited, and can be appropriately set according to the specific application and the type of the dispersion medium.
  • a specific ligand is coordinated to a rare earth ion.
  • the rare earth ion is not particularly limited as long as it is a rare earth metal ion, but is preferably a trivalent lanthanoid ion, and particularly Eu 3+ , Sm 3+ , Tb 3+ , Yb 3+ , Nd 3+ , Ce 3+ , Dy 3+. More preferably, Er 3+ , Pr 3+ or Tm 3+ .
  • the rare earth ions used in the present invention are more preferably Eu 3+ , Sm 3+ , Tb 3+ , Yb 3+ or Nd 3+ .
  • the luminescent material according to the present invention has the general formulas (I) to (III)
  • nanocrystal of the rare earth complex represented by either, It is preferable that the said nanocrystal is disperse
  • Ln in the general formulas (I) to (III) is a rare earth atom, and the rare earth atom is preferably Eu, Sm, Tb, Yb, Nd, Ce, Dy, Er, Pr, or Tm, and Eu, Sm More preferably, Tb, Yb or Nd.
  • R 1 to R 4 and R 6 may be the same as or different from each other, and may be a linear or branched alkyl group or alkenyl group. Or an alkynyl group, a cycloalkyl group, a cycloalkenyl group, an aryl group or a heteroaryl group, a heterocyclic ring (excluding thiophene), a halogen group, a hydroxyl group, a sulfonic acid group, a carbonyl group, a nitro group, a cyano group, or an amino group R 5 and R 7, which may be the same or different from each other, are a linear or branched alkylene group, arylene group, alkenyl group or alkynyl group, or cycloalkyl group, cycloalkenyl group An aryl or heteroaryl group, or oxygen, nitrogen or sulfur, or a heterocyclic ring (thioph)
  • the alkyl group preferably has 1 to 20 carbon atoms, and more preferably 1 to 8 carbon atoms.
  • the alkenyl group and alkynyl group preferably have 2 to 20 carbon atoms, and more preferably 2 to 8 carbon atoms.
  • the cycloalkyl group and cycloalkenyl group preferably have 3 to 20 carbon atoms, and more preferably 4 to 11 carbon atoms.
  • the aryl group preferably has 6 to 18 carbon atoms, more preferably 6 to 10 carbon atoms, and further preferably a phenyl group, a naphthyl group, a biphenyl group, an anthracenyl group, or a phenanthryl group.
  • the heteroaryl group preferably has 3 to 20 carbon atoms, and more preferably 4 to 11 carbon atoms.
  • the heterocyclic ring is preferably a 5-membered or 6-membered ring, a single ring or 2 to 6 condensed rings.
  • Examples of the 5-membered heterocyclic ring include furan, pyrrole, oxazole, isoxazole, thiazole, imidazole, and pyrazole.
  • Examples of the 6-membered heterocyclic ring include pyridine, pyran, triazine, and the like.
  • 6-membered condensed ring examples include benzofuran, coumarin, benzopyran, carbazole, xanthene, quinoline, dibenzofuran, and the like, but are not limited thereto as long as they do not have a thiophene structure.
  • the alkylene group preferably has 1 to 20 carbon atoms, and more preferably 1 to 8 carbon atoms.
  • the arylene group preferably has 6 to 18 carbon atoms, more preferably 6 to 10 carbon atoms, and still more preferably a phenylene group, a naphthylene group, a biphenylene group, an anthracenylene group, or a phenanthrylene group.
  • Examples of the C 1 -C 20 linear or branched group that does not contain a hydrogen atom include perhalogenated alkyl groups, alkenyl groups, alkynyl groups, cycloalkyl groups, cycloalkenyl groups, aromatic groups, Examples include, but are not limited to, a heteroaromatic group or an aralkyl group, and may be an ether, ester, or ketone in which one or more —O— or the like is interposed between any of these C—C bonds. .
  • one or more of the halogen atoms bonded to the aromatic ring of the perhalogenated aromatic group, the perhalogenated heteroaromatic group, or the perhalogenated aralkyl group is a substituent that does not contain a hydrogen atom (for example, cyano, nitro, Nitroso, C 1 -C 4 perhalogenated alkoxy, C 2 -C 5 perhalogenated alkoxycarbonyl, C 2 -C 20 perhalogenated alkylcarbonyloxy, etc.).
  • the group having a C 1 to C 20 straight or branched chain that does not contain a hydrogen atom is more preferably a perfluorinated alkyl group or a perfluorinated alkenyl group, and is preferably C 1 to C 4. More preferred is CF 3 .
  • the rare earth complex used in the present invention is:
  • the dispersion medium used for the luminescent material according to the present embodiment is not particularly limited, and a preferable medium can be appropriately selected depending on the application.
  • preferable media include resins, inorganic materials, and organic-inorganic hybrid materials.
  • the resin include polyimide resin, polyamide resin, polymethyl methacrylic resin, polyacrylate, polystyrene resin, polyethylene naphthalate resin, polyester resin, polyurethane, polycarbonate resin, epoxy resin, polyethylene terephthalate resin, and chloride.
  • Examples thereof include vinyl resins, vinylidene chloride resins, acrylonitrile butadiene styrene (ABS) resins, acrylonitrile styrene (AS) resins, cycloolefin resins, siloxane polymers, and halides or deuterides thereof. These resins may be used alone or in combination of two or more.
  • Examples of the inorganic material include glass prepared by a sol-gel method.
  • an additive for imparting a specific function may be further added to the luminescent material according to the present embodiment, depending on its application.
  • additives include additives such as antioxidants, inorganic fillers, stabilizers, antistatic agents, dyes, pigments, flame retardants, inorganic fillers, and elastomers for improving impact resistance. it can.
  • additives, such as a lubricant can also be added for the purpose of improving the workability of the luminescent material according to this embodiment.
  • a leveling agent may be added when casting the luminescent material which concerns on this embodiment, and shape
  • antioxidants examples include 2,6-di-t-butyl-4-methylphenol, 2,2′-dioxy-3,3′-di-t-butyl-5,5′-dimethylphenylmethane. Tetrakis [methylene-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate] methane, 1,1,3-tris (2-methyl-4-hydroxy-5-tert-butylphenyl) Butane, 1,3,5-trimethyl-2,4,6-tris (3,5-di-t-butyl-4-hydroxybenzyl-benzene, stearyl- ⁇ - (3,5-di-t-butyl-4 -Hydroxyphenyl) propionate, 2,2'-dioxy-3,3'-di-t-butyl-5,5'-diethylphenylmethane, 3,9-bis [1,1-dimethyl-2- [ ⁇ - (3-t-butyl-4- Hydroxy
  • examples of the inorganic filler include calcium carbonate, carbon fiber, and metal oxide.
  • leveling agent examples include a fluorine-based nonionic surfactant, a special acrylic resin leveling agent, and a silicone leveling agent.
  • the shape of the luminescent material according to the present embodiment is not particularly limited, and examples thereof include a plate shape, a powder shape, a granular shape, a granular shape, a paste shape, a liquid shape, and an emulsion shape. Since the luminous efficiency is improved by existing in a crystalline state, a plate shape, a powder shape, a granular shape, and a granular shape are preferable.
  • the method for producing the luminescent material according to the present embodiment is not particularly limited, and a suitable method may be selected as appropriate according to the composition, shape, application, and the like.
  • the luminescent material is a powder
  • the rare earth complex, the medium, and, if necessary, other additives as exemplified above are mixed in a twin screw extruder, Brabender, roll kneader, etc. It can be produced by a method of pelletizing using an extruder or a method of further pulverizing pellets by a pulverizer to form a powder.
  • the luminescent material according to the present invention may be in the form of a carrier carrying the above-mentioned rare earth complex nanocrystals on the surface.
  • a carrier carrying the above-mentioned rare earth complex nanocrystals on the surface.
  • One kind of the above-mentioned rare earth complex may be supported on such a support, or a plurality of kinds may be mixed and supported.
  • the amount of the rare earth complex supported on the luminescent material according to the present embodiment is not particularly limited, and can be appropriately set according to the specific application and the type of the carrier.
  • the manufacturing method of the luminescent material according to the present embodiment is not particularly limited.
  • it can be produced by casting a dispersion or suspension of a luminescent material on a carrier (polymer or substrate) and subjecting the resulting solution layer to removal treatment of the dispersion medium or the like.
  • the method for casting on a carrier is not particularly limited.
  • a coating film of the luminescent material according to the present embodiment can be manufactured by forming a coating film of the luminescent material according to the present embodiment on the surface of the carrier.
  • a conventionally known method for example, brush coating method, dip coating method, spray coating method, plate coating method, spinner coating method, bead coating method, curtain coating method
  • wet methods gravure printing methods, screen printing methods, offset printing methods, letterpress printing methods, and other film forming methods
  • the carrier used for the luminescent material according to the present embodiment is not particularly limited, and a preferable carrier can be appropriately selected according to the application.
  • Preferred carriers include the above-described resins, inorganic materials, organic-inorganic hybrid materials, and the like.
  • the present invention provides a light-emitting device including a rare-earth complex crystal or a light-emitting material containing the crystal, and a light source capable of emitting light in the ultraviolet region.
  • the rare earth complex used in the light emitting device according to the present invention is not particularly limited as long as it is described above.
  • the light source is not particularly limited as long as it is a light source capable of emitting light in the ultraviolet region.
  • short wavelength semiconductor lasers As the light source used in the present invention, a light source that irradiates only ultraviolet light is preferable.
  • the light emitting device according to the present invention includes a filter that blocks visible light to infrared light together with the various light sources described above. Only ultraviolet light can be supplied.
  • the present invention also provides a method for causing a rare earth complex to emit light.
  • the light-emitting method according to the present invention includes a step of irradiating ultraviolet light to a crystal of a rare earth complex or a light-emitting material containing the crystal. There is no particular limitation.
  • the rare earth complex used in the present invention has different emission characteristics depending on the type of organic ligand and rare earth ions constituting the complex. That is, each of the rare earth complexes used in the present invention has unique emission characteristics. Further, by changing the combination of the organic ligand and the rare earth ion, the light emission characteristics of the rare earth complex used in the present invention can be changed.
  • the luminescent material according to the present invention can be used as an information identification medium.
  • the present invention provides an information recording medium (for example, an ID card) for recording or storing information and signals.
  • An information recording medium according to the present invention is characterized by containing the above-described luminescent material.
  • the luminescent material according to the present invention can be used for an information identification medium such as an ID card.
  • the shape and form of the information identification medium according to the present invention are not particularly limited.
  • the information identification medium according to the present invention can be in the shape and form of, for example, a card, a film, a seal, an armband, etc., molded from a resin containing the luminescent material according to the present invention.
  • images, figures, and characters printed or printed using the ink containing the luminescent material according to the present invention can be used as the information identification medium.
  • the kind of rare earth complex contained in the information identification medium based on this invention may be one, it is preferable that it is multiple types.
  • the light emission pattern described above includes not only light emission from a rare earth complex composed of a single rare earth ion (eg, Eu 3+ ) but also light emission from a rare earth complex composed of other rare earth ions (eg, Sm 3+ , Tb 3+, etc.). It may be.
  • a new information recording medium can also be obtained by using a rare earth complex nanocrystal having a photochromic ligand. That is, a change in light emission characteristics (intensity, etc.) can also be used for identification. As a result, the discrimination power (security) of the information identification medium can be enhanced.
  • inks for printing or printing images, figures and characters, and pigments for producing artworks such as paintings are also within the scope of the present invention.
  • the present invention provides an ink or pigment.
  • the ink or pigment according to the present invention is characterized by containing the above-described luminescent material.
  • the ink according to the present invention may be used for offset printing or inkjet.
  • art objects coated with the pigment according to the present invention are also within the scope of the present invention.
  • Luminescence efficiency can be greatly improved by using rare earth complexes in a nanocrystalline state. Therefore, this invention can provide the luminescent ink and / or organic electroluminescent element which were far superior to the past.

Abstract

Provided are light-emitting materials containing rare earth complex nanocrystals. The nanocrystals of the rare earth complex are preferably dispersed or suspended, and light emission efficiency is improved by using the rare earth complex in the form of crystals, and in the form of nanocrystals, in particular. A high level of light emission can be obtained, even with extremely weak exciting light by exciting such light-emitting materials with ultraviolet light. Thus, the light emission efficiency of the rare earth complex can be improved, and light-emitting materials with excellent light emission efficiency can be developed.

Description

希土類錯体ナノ結晶およびその利用Rare earth complex nanocrystals and their use
 本発明は、発光特性を有する希土類錯体に関するものであり、より詳細には、希土類錯体ナノ結晶ならびに該ナノ結晶を用いた発光性材料および発光装置に関するものである。 The present invention relates to a rare earth complex having luminescent properties, and more particularly to a rare earth complex nanocrystal, a luminescent material and a light emitting device using the nanocrystal.
 希土類イオンには、紫外から赤外まで幅広い波長領域の発光を発するものがあることが知られている。これらの発光は、配位子場等の外界の影響を受けにくいf軌道に由来する電子遷移に基づくものである。そのため、発光帯の波長幅が有機蛍光体等に比べ非常に狭く、原理的に色純度が極めて有用性が高い。また、熱や光、励起に対する安定性において有機蛍光体に引けを取らない。また、希土類イオンは無毒であるため、産業上利用しやすい。このように、希土類イオンは優れた特性を有しているため、希土類イオンに様々な配位子を配位させた希土類錯体は様々な用途に用いられている。具体的には、発光性インクや有機エレクトロルミネッセンス素子など様々な用途に用いられている。 It is known that some rare earth ions emit light in a wide wavelength range from ultraviolet to infrared. These luminescences are based on electronic transitions derived from f-orbitals that are not easily affected by external fields such as ligand fields. For this reason, the wavelength width of the emission band is very narrow compared to organic phosphors and the like, and in principle, the color purity is extremely useful. In addition, organic phosphors are inferior in stability to heat, light, and excitation. Moreover, since rare earth ions are non-toxic, they are easy to use industrially. Thus, since rare earth ions have excellent characteristics, rare earth complexes in which various ligands are coordinated with rare earth ions are used in various applications. Specifically, it is used for various applications such as luminescent ink and organic electroluminescence element.
 また、このような優れた特性を有する希土類イオンをより幅広い分野に適用可能とするため、希土類イオンや希土類錯体について、様々な研究が行われている。例えば、最近、本発明者らは、希土類錯体における希土類イオンの発光強度が、希土類錯体に配位している配位子の種類によって変化することを明らかにしている(非特許文献1参照)。非特許文献1では、Eu(III)に配位させる配位子を様々に変化させると、その配位子の構造によって、該錯体の発光特性が変化することが開示されている。さらに、本発明者らは、これまでに多くの希土類錯体を開発している(例えば、特許文献1~4参照)。 In addition, in order to make it possible to apply rare earth ions having such excellent characteristics to a wider range of fields, various studies have been conducted on rare earth ions and rare earth complexes. For example, recently, the present inventors have clarified that the emission intensity of rare earth ions in a rare earth complex varies depending on the type of ligand coordinated to the rare earth complex (see Non-Patent Document 1). Non-Patent Document 1 discloses that when the ligand coordinated to Eu (III) is variously changed, the emission characteristics of the complex change depending on the structure of the ligand. Furthermore, the present inventors have developed many rare earth complexes so far (see, for example, Patent Documents 1 to 4).
国際公開WO98/40388(国際公開日:1998年9月17日)International Publication WO98 / 40388 (International Publication Date: September 17, 1998) 日本国公開特許公報「特開2000-63682号公報(公開日:平成12年2月29日)」Japanese Patent Publication “Japanese Patent Laid-Open No. 2000-63682 (Publication Date: February 29, 2000)” 日本国公開特許公報「特開2003-81986号(公開日:平成15年3月19日)」Japanese Patent Publication “Japanese Patent Application Laid-Open No. 2003-81986 (Publication Date: March 19, 2003)” 日本国公開特許公報「特開2008-31120号(公開日:平成20年2月14日)」Japanese Patent Publication “JP 2008-31120 A (publication date: February 14, 2008)”
 このように、希土類錯体を用いた種々の技術が開発されている。しかし、これまでに用いられている希土類錯体の発光効率はせいぜい40~50%であり、励起エネルギーが有効に利用されていない。 Thus, various technologies using rare earth complexes have been developed. However, the luminous efficiency of the rare earth complexes used so far is 40-50% at most, and the excitation energy is not effectively utilized.
 本発明は、上記の問題点に鑑みてなされたものであり、その目的は、希土類錯体の発光効率を改善するとともに、発光効率の優れた発光性材料を提供することにある。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a light-emitting material having improved light emission efficiency and improved light emission efficiency of the rare earth complex.
 本発明に係る発光性材料は、一般式(I)~(III) The luminescent material according to the present invention has the general formulas (I) to (III)
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
のいずれかにて表される希土類錯体のナノ結晶を含んでいることを特徴としている。本発明に係る発光性材料において、上記ナノ結晶が分散または懸濁していることがより好ましい。上記一般式(I)~(III)において、Lnは希土類原子であり、R~RおよびRは、互いに同一であっても異なってもよく、直鎖または分枝鎖を有する炭素数20個以下のアルキル基、アルケニル基またはアルキニル基、あるいは炭素数20個以下のシクロアルキル基、シクロアルケニル基、アリール基またはヘテロアリール基、あるいは複素環(チオフェンを除く。)、あるいはハロゲン基、水酸基、スルホン酸基、カルボニル基、ニトロ基、シアノ基またはアミノ基であり、RおよびRは、互いに同一であっても異なってもよく、直鎖または分枝鎖を有する炭素数20個以下のアルキレン基、アリーレン基、アルケニル基またはアルキニル基、あるいは炭素数20個以下のシクロアルキル基、シクロアルケニル基、アリール基またはヘテロアリール基、あるいは酸素、窒素または硫黄、あるいは複素環(チオフェンを除く。)であり、XおよびXは、互いに同一であっても異なってもよく、水素原子を含まない炭素数20個以下の直鎖または分枝鎖を有する基、あるいは複素環(チオフェンを除く。)であり、Yは、水素、重水素、ハロゲン基、水酸基、スルホン酸基、カルボニル基、ニトロ基、シアノ基またはアミノ基、あるいは直鎖または分枝鎖を有する炭素数20個以下のアルキル基またはアリール基、あるいは水素原子を含まない炭素数20個以下の直鎖または分枝鎖からなる基、あるいは複素環(チオフェンを除く。)であり、n=1または2であり、m=2、3または4である。
Figure JPOXMLDOC01-appb-C000003
It is characterized by containing the nanocrystal of the rare earth complex represented by either. In the luminescent material according to the present invention, the nanocrystals are more preferably dispersed or suspended. In the above general formulas (I) to (III), Ln is a rare earth atom, and R 1 to R 4 and R 6 may be the same as or different from each other, and the number of carbon atoms having a straight or branched chain An alkyl group of 20 or less, an alkenyl group or an alkynyl group, a cycloalkyl group of 20 or less carbon atoms, a cycloalkenyl group, an aryl group or a heteroaryl group, a heterocyclic ring (excluding thiophene), a halogen group, or a hydroxyl group A sulfonic acid group, a carbonyl group, a nitro group, a cyano group or an amino group, and R 5 and R 7 may be the same or different from each other, and have 20 or less carbon atoms having a straight or branched chain An alkylene group, an arylene group, an alkenyl group or an alkynyl group, a cycloalkyl group having 20 or less carbon atoms, a cycloalkenyl group, an An Lumpur or heteroaryl group or an oxygen, nitrogen or sulfur, or heterocyclic ring, (except thiophene.), X 1 and X 2, which may be the same or different from each other, it contains no hydrogen atoms A straight chain or branched chain group having 20 or less carbon atoms, or a heterocyclic ring (excluding thiophene), and Y is hydrogen, deuterium, halogen group, hydroxyl group, sulfonic acid group, carbonyl group, nitro group. , A cyano group or an amino group, a straight chain or branched chain alkyl group or aryl group having 20 or less carbon atoms, or a group consisting of a straight chain or branched chain having 20 or less carbon atoms that does not contain a hydrogen atom, Alternatively, it is a heterocyclic ring (excluding thiophene), n = 1 or 2, and m = 2, 3 or 4.
 本発明に用いられる希土類錯体は、上述したような構造を有していることにより、希土類イオンを励起するための光エネルギーが熱エネルギーとして放出されにくく、その結果、希土類イオンが十分に励起され、強い発光強度が維持される。しかも、希土類錯体がナノ結晶状態で存在しているので、分散媒(例えばポリマー等)の影響を受けにくく、強発光特性が示される。また、結晶状態の希土類錯体は酸素または水の影響を受けにくいので、耐久性が高い。 Since the rare earth complex used in the present invention has the structure as described above, light energy for exciting the rare earth ions is difficult to be released as thermal energy, and as a result, the rare earth ions are sufficiently excited, Strong emission intensity is maintained. In addition, since the rare earth complex exists in a nanocrystalline state, it is not easily affected by the dispersion medium (for example, a polymer or the like), and exhibits strong light emission characteristics. Further, since the rare earth complex in a crystalline state is hardly affected by oxygen or water, it has high durability.
 本発明に係る発光性材料において、結晶サイズは200nm以下であることが好ましく、100nm以下の場合には可視光透過率が非常に高くなるので、より好ましい。 In the luminescent material according to the present invention, the crystal size is preferably 200 nm or less, and more preferably 100 nm or less because the visible light transmittance is very high.
 さらに、本発明に係る発光性材料は、紫外光による励起を用いて発光させるために、上述した一般式(I)~(III)のいずれかにて表される希土類錯体の結晶を含んでいることを特徴としている。結晶状態で存在している希土類錯体の、紫外光における吸光係数は、可視光における吸光係数と比較して数オーダー高いので、紫外光による励起を用いて発光させることによって、高発光を提供し得る。本発明に係る発光性材料に適用される紫外光は、370nm以下であることが好ましく、200~365nmであることがより好ましい。 Furthermore, the luminescent material according to the present invention includes a rare earth complex crystal represented by any one of the above-described general formulas (I) to (III) in order to emit light using excitation by ultraviolet light. It is characterized by that. Since the extinction coefficient in the ultraviolet light of the rare earth complex existing in the crystalline state is several orders of magnitude higher than the extinction coefficient in the visible light, high emission can be provided by emitting light using excitation by ultraviolet light. . The ultraviolet light applied to the luminescent material according to the present invention is preferably 370 nm or less, and more preferably 200 to 365 nm.
 本発明に係るインクは上記の発光性材料を含有していることを特徴としている。本発明に係るインクは、オフセット印刷に用いられてもインクジェットに用いられてもよい。 The ink according to the present invention is characterized by containing the above-described luminescent material. The ink according to the present invention may be used for offset printing or inkjet.
 本発明に係る顔料は上記の発光性材料を含有していることを特徴としている。本発明に係る顔料が塗布されている美術品もまた、本発明の範囲内である。 The pigment according to the present invention is characterized by containing the above-mentioned luminescent material. Art objects to which the pigments according to the invention are applied are also within the scope of the invention.
 本発明に係る情報識別媒体は上記の発光性材料を含有していることを特徴としている。本発明に係る情報識別媒体は、IDカードに適用されてもよい。 The information identification medium according to the present invention is characterized by containing the above-mentioned luminescent material. The information identification medium according to the present invention may be applied to an ID card.
 本発明に係る発光装置は、上述した一般式(I)~(III)のいずれかにて表される希土類錯体の結晶または該結晶を含んでいる発光性材料、および紫外領域において発光可能な光源を備えていることを特徴としている。本発明に係る発光装置は、光源からの可視光~赤外光を遮断するフィルターをさらに備えていることがより好ましい。なお、本発明において、希土類錯体の結晶はナノ結晶であることが好ましく、その結晶サイズは200nm以下であることがより好ましく、100nm以下でることがさらに好ましい。 The light emitting device according to the present invention includes a rare earth complex crystal represented by any one of the above general formulas (I) to (III), a light emitting material containing the crystal, and a light source capable of emitting light in the ultraviolet region. It is characterized by having. More preferably, the light-emitting device according to the present invention further includes a filter that blocks visible light to infrared light from the light source. In the present invention, the crystal of the rare earth complex is preferably a nanocrystal, the crystal size is more preferably 200 nm or less, and further preferably 100 nm or less.
 上述したように、本発明に用いられる希土類錯体の結晶は、紫外光における吸光係数が、可視光における吸光係数と比較して数オーダー高いので、本発明に係る発光装置は、可視光を発する光源を備えているものと比べてはるかに強い光を提供し得る。 As described above, since the crystal of the rare earth complex used in the present invention has an absorption coefficient in ultraviolet light that is several orders of magnitude higher than that in visible light, the light emitting device according to the present invention is a light source that emits visible light. It can provide much stronger light than those equipped with.
 本発明に係る希土類錯体を発光させる方法は、上述した一般式(I)~(III)のいずれかにて表される希土類錯体の結晶または該結晶を含んでいる発光性材料に紫外光を照射する工程を包含することを特徴としている。 The method of emitting light of the rare earth complex according to the present invention is to irradiate the crystal of the rare earth complex represented by any one of the above general formulas (I) to (III) or a light emitting material containing the crystal with ultraviolet light. It includes the process of performing.
 本発明を用いれば、無機発光体よりも高い発光強度の、色純度の高い発光を得ることができる。これにより、より発光強度の高い発光性ポリマーおよび発光性インク、ならびにより発光強度の高い照明装置、信号装置および表示装置を提供することができる。 By using the present invention, it is possible to obtain light emission with higher color purity and higher light emission intensity than inorganic light emitters. Accordingly, it is possible to provide a luminescent polymer and a luminescent ink with higher emission intensity, and an illumination device, a signal device, and a display device with higher emission intensity.
本発明の一実施形態に用いられる希土類錯体ナノ結晶のXRDスペクトルを示す図である。It is a figure which shows the XRD spectrum of the rare earth complex nanocrystal used for one Embodiment of this invention.
 〔発光性材料〕
 本発明は、希土類錯体のナノ結晶を含んでいる発光性材料を提供する。一実施形態において、本発明に係る発光性材料は、上述した希土類錯体のナノ結晶を分散して含有する組成物である。他の実施形態において、本発明に係る発光性材料は、上述した希土類錯体のナノ結晶を懸濁して含有する組成物である。このような組成物には、上述した希土類錯体を1種類単独で含有させてもよいし、複数種混合して含有させてもよい。本実施形態に係る発光性材料における希土類錯体の含有量は、特に限定されず、具体的な用途や分散媒の種類に応じて適宜設定され得る。
[Luminescent material]
The present invention provides a luminescent material comprising nanocrystals of a rare earth complex. In one embodiment, the luminescent material according to the present invention is a composition containing dispersed nanocrystals of the rare earth complex described above. In another embodiment, the luminescent material according to the present invention is a composition containing suspended nanocrystals of the rare earth complex described above. In such a composition, the rare earth complex mentioned above may be contained singly or in combination. The content of the rare earth complex in the luminescent material according to the present embodiment is not particularly limited, and can be appropriately set according to the specific application and the type of the dispersion medium.
 本発明に用いられる希土類錯体は、希土類イオンに特定の配位子が配位している。希土類イオンとしては、希土類金属のイオンであれば特に限定されないが、3価のランタノイドイオンであることが好ましく、特に、Eu3+、Sm3+、Tb3+、Yb3+、Nd3+、Ce3+、Dy3+、Er3+、Pr3+またはTm3+であることがより好ましい。本発明において、希土類イオンを変更することにより、希土類錯体の励起波長や発光強度、発光波長を変更することができるが、従来採用されることのなかった紫外光による励起を用いて発光させるには、本発明に用いられる希土類イオンは、Eu3+、Sm3+、Tb3+、Yb3+またはNd3+であることがさらに好ましい。 In the rare earth complex used in the present invention, a specific ligand is coordinated to a rare earth ion. The rare earth ion is not particularly limited as long as it is a rare earth metal ion, but is preferably a trivalent lanthanoid ion, and particularly Eu 3+ , Sm 3+ , Tb 3+ , Yb 3+ , Nd 3+ , Ce 3+ , Dy 3+. More preferably, Er 3+ , Pr 3+ or Tm 3+ . In the present invention, by changing the rare earth ions, the excitation wavelength, emission intensity, and emission wavelength of the rare earth complex can be changed, but in order to emit light using excitation by ultraviolet light that has not been conventionally employed. The rare earth ions used in the present invention are more preferably Eu 3+ , Sm 3+ , Tb 3+ , Yb 3+ or Nd 3+ .
 本発明に係る発光性材料は、一般式(I)~(III) The luminescent material according to the present invention has the general formulas (I) to (III)
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
のいずれかにて表される希土類錯体のナノ結晶を含んでいることを特徴としており、上記ナノ結晶が分散または懸濁していることが好ましい。
Figure JPOXMLDOC01-appb-C000006
It is characterized by including the nanocrystal of the rare earth complex represented by either, It is preferable that the said nanocrystal is disperse | distributed or suspended.
 一般式(I)~(III)におけるLnは希土類原子であり、希土類原子としては、Eu、Sm、Tb、Yb、Nd、Ce、Dy、Er、PrまたはTmであることが好ましく、Eu、Sm、Tb、YbまたはNdであることがより好ましい。 Ln in the general formulas (I) to (III) is a rare earth atom, and the rare earth atom is preferably Eu, Sm, Tb, Yb, Nd, Ce, Dy, Er, Pr, or Tm, and Eu, Sm More preferably, Tb, Yb or Nd.
 一般式(I)~(III)に示される置換基として、R~RおよびRは、互いに同一であっても異なってもよく、直鎖または分枝鎖を有するアルキル基、アルケニル基またはアルキニル基、あるいはシクロアルキル基、シクロアルケニル基、アリール基またはヘテロアリール基、あるいは複素環(チオフェンを除く。)、あるいはハロゲン基、水酸基、スルホン酸基、カルボニル基、ニトロ基、シアノ基またはアミノ基であり、RおよびRは、互いに同一であっても異なってもよく、直鎖または分枝鎖を有するアルキレン基、アリーレン基、アルケニル基またはアルキニル基、あるいはシクロアルキル基、シクロアルケニル基、アリール基またはヘテロアリール基、あるいは酸素、窒素または硫黄、あるいは複素環(チオフェンを除く。)であり、XおよびXは、互いに同一であっても異なってもよく、水素原子を含まない直鎖または分枝鎖を有する基、あるいは複素環(チオフェンを除く。)であり、Yは、水素、重水素、ハロゲン基、水酸基、スルホン酸基、カルボニル基、ニトロ基、シアノ基またはアミノ基、あるいは直鎖または分枝鎖を有するアルキル基またはアリール基、あるいは水素原子を含まない直鎖または分枝鎖からなる基、あるいは複素環(チオフェンを除く。)である。 As substituents represented by the general formulas (I) to (III), R 1 to R 4 and R 6 may be the same as or different from each other, and may be a linear or branched alkyl group or alkenyl group. Or an alkynyl group, a cycloalkyl group, a cycloalkenyl group, an aryl group or a heteroaryl group, a heterocyclic ring (excluding thiophene), a halogen group, a hydroxyl group, a sulfonic acid group, a carbonyl group, a nitro group, a cyano group, or an amino group R 5 and R 7, which may be the same or different from each other, are a linear or branched alkylene group, arylene group, alkenyl group or alkynyl group, or cycloalkyl group, cycloalkenyl group An aryl or heteroaryl group, or oxygen, nitrogen or sulfur, or a heterocyclic ring (thiophene) Excluding.), And, X 1 and X 2, which may be the same or different from each other, group having straight or branched does not contain a hydrogen atom or a heterocycle (excluding thiophene.), Y represents hydrogen, deuterium, halogen group, hydroxyl group, sulfonic acid group, carbonyl group, nitro group, cyano group or amino group, or linear or branched alkyl group or aryl group, or hydrogen atom. It is a straight chain or branched chain group that does not contain, or a heterocyclic ring (excluding thiophene).
 上記アルキル基は、炭素数が1~20であることが好ましく、炭素数が1~8であることがより好ましい。上記アルケニル基およびアルキニル基は、炭素数が2~20であることが好ましく、炭素数が2~8であることがより好ましい。上記シクロアルキル基およびシクロアルケニル基は、炭素数が3~20であることが好ましく、炭素数が4~11であることがより好ましい。上記アリール基は、炭素数が6~18であることが好ましく、炭素数が6~10であることがより好ましく、フェニル基、ナフチル基、ビフェニル基、アントラセニル基、フェナントリル基がさらに好ましい。 The alkyl group preferably has 1 to 20 carbon atoms, and more preferably 1 to 8 carbon atoms. The alkenyl group and alkynyl group preferably have 2 to 20 carbon atoms, and more preferably 2 to 8 carbon atoms. The cycloalkyl group and cycloalkenyl group preferably have 3 to 20 carbon atoms, and more preferably 4 to 11 carbon atoms. The aryl group preferably has 6 to 18 carbon atoms, more preferably 6 to 10 carbon atoms, and further preferably a phenyl group, a naphthyl group, a biphenyl group, an anthracenyl group, or a phenanthryl group.
 上記ヘテロアリール基は、炭素数が3~20であることが好ましく、炭素数が4~11であることがより好ましい。複素環は5員環または6員環の、単環または2~6個の縮合環であることが好ましい。5員環の複素環としては、フラン、ピロール、オキサゾール、イソキサゾール、チアゾール、イミダゾール、ピラゾールなどが挙げられ、6員環の複素環としては、ピリジン、ピラン、トリアジンなどが挙げられ、5員環または6員環の縮合環としては、ベンゾフラン、クマリン、ベンゾピラン、カルバゾール、キサンテン、キノリン、ジベンゾフランなどが挙げられるが、チオフェン構造を有さない限りこれらに限定されない。 The heteroaryl group preferably has 3 to 20 carbon atoms, and more preferably 4 to 11 carbon atoms. The heterocyclic ring is preferably a 5-membered or 6-membered ring, a single ring or 2 to 6 condensed rings. Examples of the 5-membered heterocyclic ring include furan, pyrrole, oxazole, isoxazole, thiazole, imidazole, and pyrazole. Examples of the 6-membered heterocyclic ring include pyridine, pyran, triazine, and the like. Examples of the 6-membered condensed ring include benzofuran, coumarin, benzopyran, carbazole, xanthene, quinoline, dibenzofuran, and the like, but are not limited thereto as long as they do not have a thiophene structure.
 さらに、上記アルキレン基は、炭素数が1~20であることが好ましく、炭素数が1~8であることがより好ましい。上記アリーレン基は、炭素数が6~18であることが好ましく、炭素数が6~10であることがより好ましく、フェニレン基、ナフチレン基、ビフェニレン基、アントラセニレン基、フェナントリレン基がさらに好ましい。 Furthermore, the alkylene group preferably has 1 to 20 carbon atoms, and more preferably 1 to 8 carbon atoms. The arylene group preferably has 6 to 18 carbon atoms, more preferably 6 to 10 carbon atoms, and still more preferably a phenylene group, a naphthylene group, a biphenylene group, an anthracenylene group, or a phenanthrylene group.
 上記水素原子を含まないC~C20の直鎖または分枝鎖を有する基としては、パーハロゲン化されたアルキル基、アルケニル基、アルキニル基、シクロアルキル基、シクロアルケニル基、芳香族基、へテロ芳香族基またはアラルキル基などが挙げられるがこれらに限定されず、これらの任意のC-C結合間に-O-などが1個以上介在した、エーテル、エステルまたはケトンであってもよい。また、パーハロゲン化芳香族基、パーハロゲン化ヘテロ芳香族基、パーハロゲン化アラルキル基の芳香環に結合したハロゲン原子の1つ以上が、水素原子を含まない置換基(例えば、シアノ、ニトロ、ニトロソ、C~Cパーハロゲン化アルコキシ、C~Cパーハロゲン化アルコキシカルボニル、C~C20パーハロゲン化アルキルカルボニルオキシなど)で置換されていてもよい。上記水素原子を含まないC~C20の直鎖または分枝鎖を有する基は、パーフルオロ化アルキル基またはパーフルオロ化アルケニル基であることがより好ましく、C~Cであることがさらに好ましく、CFであることが最も好ましい。 Examples of the C 1 -C 20 linear or branched group that does not contain a hydrogen atom include perhalogenated alkyl groups, alkenyl groups, alkynyl groups, cycloalkyl groups, cycloalkenyl groups, aromatic groups, Examples include, but are not limited to, a heteroaromatic group or an aralkyl group, and may be an ether, ester, or ketone in which one or more —O— or the like is interposed between any of these C—C bonds. . In addition, one or more of the halogen atoms bonded to the aromatic ring of the perhalogenated aromatic group, the perhalogenated heteroaromatic group, or the perhalogenated aralkyl group is a substituent that does not contain a hydrogen atom (for example, cyano, nitro, Nitroso, C 1 -C 4 perhalogenated alkoxy, C 2 -C 5 perhalogenated alkoxycarbonyl, C 2 -C 20 perhalogenated alkylcarbonyloxy, etc.). The group having a C 1 to C 20 straight or branched chain that does not contain a hydrogen atom is more preferably a perfluorinated alkyl group or a perfluorinated alkenyl group, and is preferably C 1 to C 4. More preferred is CF 3 .
 上記Yは、水素、重水素またはハロゲンであることがより好ましく、水素であることが最も好ましい。また、n=1または2であり、m=2、3または4である。 Y is more preferably hydrogen, deuterium or halogen, and most preferably hydrogen. Further, n = 1 or 2, and m = 2, 3 or 4.
 なお、本明細書を読んだ当業者は、上記置換基が、1~3箇所のホスフィンオキシドを介した配位を妨げない範囲で適宜選択され得ることを容易に理解する。 It should be noted that those skilled in the art who read this specification will easily understand that the above substituents can be appropriately selected within a range that does not interfere with coordination through 1 to 3 phosphine oxides.
 一実施形態において、本発明に用いられる希土類錯体は、 In one embodiment, the rare earth complex used in the present invention is:
Figure JPOXMLDOC01-appb-C000007
または
Figure JPOXMLDOC01-appb-C000007
Or
Figure JPOXMLDOC01-appb-C000008
であり得る。
Figure JPOXMLDOC01-appb-C000008
It can be.
 なお、本実施形態に係る発光性材料に用いられる分散媒は、特に限定されるものではなく、用途に応じて、好ましい媒体が適宜選択され得る。好ましい媒体としては、例えば、樹脂、無機材料、有機-無機ハイブリッド材料等が挙げられる。樹脂としては、ポリイミド系樹脂、ポリアミド系樹脂、ポリメチルメタクリル系樹脂、ポリアクリレート、ポリスチレン系樹脂、ポリエチレンナフタレート系樹脂、ポリエステル系樹脂、ポリウレタン、ポリカーボネート系樹脂、エポキシ樹脂、ポリエチレンテレフタレート系樹脂、塩化ビニル系樹脂、塩化ビニリデン系樹脂、アクリロニトリルブタジエンスチレン(ABS)系樹脂、アクリロニトリルスチレン(AS)系樹脂、シクロオレフィン系樹脂、シロキサンポリマー、およびこれらのハロゲン化物もしくは重水素化物が挙げられる。これらの樹脂は単独で用いられてもよいし、2種以上の複数を混合して用いられてもよい。また、無機材料としては、ゾル-ゲル法により作製されるガラスなどが挙げられる。 In addition, the dispersion medium used for the luminescent material according to the present embodiment is not particularly limited, and a preferable medium can be appropriately selected depending on the application. Examples of preferable media include resins, inorganic materials, and organic-inorganic hybrid materials. Examples of the resin include polyimide resin, polyamide resin, polymethyl methacrylic resin, polyacrylate, polystyrene resin, polyethylene naphthalate resin, polyester resin, polyurethane, polycarbonate resin, epoxy resin, polyethylene terephthalate resin, and chloride. Examples thereof include vinyl resins, vinylidene chloride resins, acrylonitrile butadiene styrene (ABS) resins, acrylonitrile styrene (AS) resins, cycloolefin resins, siloxane polymers, and halides or deuterides thereof. These resins may be used alone or in combination of two or more. Examples of the inorganic material include glass prepared by a sol-gel method.
 さらに、本実施形態に係る発光性材料には、その用途などに応じて、特定の機能を付与するための添加剤をさらに添加してもよい。このような添加剤としては、例えば、酸化防止剤、無機充填剤、安定剤、帯電防止剤、染料、顔料、難燃剤、無機充填剤、耐衝撃性改良用エラストマーなどの添加剤を挙げることができる。また、本実施形態に係る発光性材料の加工性を向上させる目的で、滑剤などの添加剤を添加することもできる。さらに、本実施形態に係る発光性材料を流延してキャストフィルムを成形する場合には、レベリング剤が添加されてもよい。 Furthermore, an additive for imparting a specific function may be further added to the luminescent material according to the present embodiment, depending on its application. Examples of such additives include additives such as antioxidants, inorganic fillers, stabilizers, antistatic agents, dyes, pigments, flame retardants, inorganic fillers, and elastomers for improving impact resistance. it can. Moreover, additives, such as a lubricant, can also be added for the purpose of improving the workability of the luminescent material according to this embodiment. Furthermore, a leveling agent may be added when casting the luminescent material which concerns on this embodiment, and shape | molding a cast film.
 上記酸化防止剤としては、例えば、2,6-ジ-t-ブチル-4-メチルフェノール、2,2’-ジオキシ-3,3’-ジ-t-ブチル-5,5’-ジメチルフェニルメタン、テトラキス[メチレン-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]メタン、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-t-ブチルフェニル)ブタン、1,3,5ートリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル-ベンゼン、ステアリル-β-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、2,2’-ジオキシ-3,3’-ジ-t-ブチル-5,5’-ジエチルフェニルメタン、3,9-ビス[1,1-ジメチル-2-[β-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ]エチル]、2,4,8,10-テトラオキスピロ[5,5]ウンデカン、トリス(2,4-ジ-t-ブチルフェニル)ホスファイト、サイクリックネオペンタンテトライルビス(2,4-ジ-t-ブチルフェニル)ホスファイト、サイクリックネオペンタンテトライルビス(2,6-ジ-t-ブチル-4-メチルフェニル)ホスファイト、2,2-メチレンビス(4,6-ジ-t-ブチルフェニル)オクチルホスファイトなどが挙げられる。 Examples of the antioxidant include 2,6-di-t-butyl-4-methylphenol, 2,2′-dioxy-3,3′-di-t-butyl-5,5′-dimethylphenylmethane. Tetrakis [methylene-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate] methane, 1,1,3-tris (2-methyl-4-hydroxy-5-tert-butylphenyl) Butane, 1,3,5-trimethyl-2,4,6-tris (3,5-di-t-butyl-4-hydroxybenzyl-benzene, stearyl-β- (3,5-di-t-butyl-4 -Hydroxyphenyl) propionate, 2,2'-dioxy-3,3'-di-t-butyl-5,5'-diethylphenylmethane, 3,9-bis [1,1-dimethyl-2- [β- (3-t-butyl-4- Hydroxy-5-methylphenyl) propionyloxy] ethyl], 2,4,8,10-tetraoxospiro [5,5] undecane, tris (2,4-di-t-butylphenyl) phosphite, cyclic neo Pentanetetraylbis (2,4-di-t-butylphenyl) phosphite, cyclic neopentanetetraylbis (2,6-di-t-butyl-4-methylphenyl) phosphite, 2,2-methylenebis And (4,6-di-t-butylphenyl) octyl phosphite.
 上記無機充填剤としては、例えば炭酸カルシウム、カーボンファイバー、金属酸化物などが挙げられる。 Examples of the inorganic filler include calcium carbonate, carbon fiber, and metal oxide.
 上記レベリング剤としては、例えばフッ素系ノニオン界面活性剤、特殊アクリル樹脂系レベリング剤、シリコーン系レベリング剤などが挙げられる。 Examples of the leveling agent include a fluorine-based nonionic surfactant, a special acrylic resin leveling agent, and a silicone leveling agent.
 本実施形態に係る発光性材料の形状は、特に限定されるものでなく、例えば、板状、粉状、粒状、顆粒状、ペースト状、液状、乳液状などの形状を挙げることができるが、結晶状態で存在することによって発光効率が改善されることから、板状、粉状、粒状、顆粒状が好ましい。 The shape of the luminescent material according to the present embodiment is not particularly limited, and examples thereof include a plate shape, a powder shape, a granular shape, a granular shape, a paste shape, a liquid shape, and an emulsion shape. Since the luminous efficiency is improved by existing in a crystalline state, a plate shape, a powder shape, a granular shape, and a granular shape are preferable.
 本実施形態に係る発光性材料の製造方法は、特に限定されるものではなく、その組成や、その形状、用途などに応じて、適宜、好適な方法を選択すればよい。例えば、発光性材料が粉末である場合、上記希土類錯体、上記媒体、および必要に応じて上記例示したようなその他の添加物を、二軸押出機、ブラベンダー、ロール混練機などで混合し、押出機を用いてペレット化する方法またはさらにペレットを粉砕機により粉砕し粉末状とする方法により製造することができる。 The method for producing the luminescent material according to the present embodiment is not particularly limited, and a suitable method may be selected as appropriate according to the composition, shape, application, and the like. For example, when the luminescent material is a powder, the rare earth complex, the medium, and, if necessary, other additives as exemplified above are mixed in a twin screw extruder, Brabender, roll kneader, etc. It can be produced by a method of pelletizing using an extruder or a method of further pulverizing pellets by a pulverizer to form a powder.
 他の実施形態において、本発明に係る発光性材料は、上述した希土類錯体のナノ結晶を表面上に担持している担体の形態であり得る。このような担体上に、上述した希土類錯体を1種類単独で担持させてもよいし、複数種混合して担持させてもよい。本実施形態に係る発光性材料に担持されている希土類錯体の量は、特に限定されず、具体的な用途や担体の種類に応じて適宜設定され得る。 In another embodiment, the luminescent material according to the present invention may be in the form of a carrier carrying the above-mentioned rare earth complex nanocrystals on the surface. One kind of the above-mentioned rare earth complex may be supported on such a support, or a plurality of kinds may be mixed and supported. The amount of the rare earth complex supported on the luminescent material according to the present embodiment is not particularly limited, and can be appropriately set according to the specific application and the type of the carrier.
 本実施形態に係る発光性材料の製造方法は、特に限定されるものではない。例えば、発光性材料の分散液または懸濁液を、担体(ポリマーまたは基板)上に流延し、得られた溶液層に対して分散媒等の除去処理を行うことによって製造することができる。担体上に流延する方法は特に限定されない。 The manufacturing method of the luminescent material according to the present embodiment is not particularly limited. For example, it can be produced by casting a dispersion or suspension of a luminescent material on a carrier (polymer or substrate) and subjecting the resulting solution layer to removal treatment of the dispersion medium or the like. The method for casting on a carrier is not particularly limited.
 また、担体の表面に、本実施形態に係る発光性材料の塗膜を形成することによって、製造することもできる。担体の表面に発光性材料の塗膜を形成するには、従来公知の方法(例えば、刷毛塗り法、浸漬塗布法、スプレーコーティング法、プレートコーティング法、スピナーコーティング法、ビードコーティング法、カーテンコーティング法などの湿式法、グラビア印刷法、スクリーン印刷法、オフセット印刷法、凸版印刷法などの製膜法)が採用され得る。 Also, it can be manufactured by forming a coating film of the luminescent material according to the present embodiment on the surface of the carrier. In order to form a coating film of a luminescent material on the surface of a carrier, a conventionally known method (for example, brush coating method, dip coating method, spray coating method, plate coating method, spinner coating method, bead coating method, curtain coating method) And other wet methods, gravure printing methods, screen printing methods, offset printing methods, letterpress printing methods, and other film forming methods) may be employed.
 なお、本実施形態に係る発光性材料に用いられる担体は、特に限定されるものではなく、用途に応じて、好ましい担体が適宜選択され得る。好ましい担体としては、上述した樹脂、無機材料、有機-無機ハイブリッド材料等が挙げられる。 In addition, the carrier used for the luminescent material according to the present embodiment is not particularly limited, and a preferable carrier can be appropriately selected according to the application. Preferred carriers include the above-described resins, inorganic materials, organic-inorganic hybrid materials, and the like.
 〔発光装置および発光方法〕
 本発明は、希土類錯体の結晶または該結晶を含んでいる発光性材料、および紫外領域において発光可能な光源を備えている発光装置を提供する。本発明に係る発光装置に用いられる希土類錯体は、上述したものであれば特に限定されない。
[Light emitting device and light emitting method]
The present invention provides a light-emitting device including a rare-earth complex crystal or a light-emitting material containing the crystal, and a light source capable of emitting light in the ultraviolet region. The rare earth complex used in the light emitting device according to the present invention is not particularly limited as long as it is described above.
 本発明に係る発光装置において、光源としては、紫外領域において発光可能な光源であれば特に限定されず、例えば、重水素ランプ、タングステンランプ、紫外線LED、キセノンランプ、水銀ランプ、ブラックライト、ハロゲンランプ、短波長半導体レーザなどが挙げられる。本発明に用いられる光源としては、紫外光のみを照射する光源が好ましいが、上述した種々の光源とともに可視光~赤外光を遮断するフィルターを備えていることにより、本発明に係る発光装置は紫外光のみを供給することができる。 In the light emitting device according to the present invention, the light source is not particularly limited as long as it is a light source capable of emitting light in the ultraviolet region. For example, a deuterium lamp, a tungsten lamp, an ultraviolet LED, a xenon lamp, a mercury lamp, a black light, a halogen lamp. And short wavelength semiconductor lasers. As the light source used in the present invention, a light source that irradiates only ultraviolet light is preferable. However, the light emitting device according to the present invention includes a filter that blocks visible light to infrared light together with the various light sources described above. Only ultraviolet light can be supplied.
 本発明はまた、希土類錯体を発光させる方法を提供する。本発明に係る発光方法は、希土類錯体の結晶または該結晶を含んでいる発光性材料に紫外光を照射する工程を包含することを特徴としており、用いられる希土類錯体は、上述したものであれば特に限定されない。 The present invention also provides a method for causing a rare earth complex to emit light. The light-emitting method according to the present invention includes a step of irradiating ultraviolet light to a crystal of a rare earth complex or a light-emitting material containing the crystal. There is no particular limitation.
 〔発光性材料のさらなる利用〕
 本発明に用いられる希土類錯体は、それを構成する有機配位子および希土類イオンの種類により、発光特性が異なる。すなわち、本発明に用いられる希土類錯体は、それぞれ固有の発光特性を有している。また、有機配位子および希土類イオンの組合せを変更することにより、本発明に用いられる希土類錯体の、発光特性を変化させることができる。
[Further use of luminescent materials]
The rare earth complex used in the present invention has different emission characteristics depending on the type of organic ligand and rare earth ions constituting the complex. That is, each of the rare earth complexes used in the present invention has unique emission characteristics. Further, by changing the combination of the organic ligand and the rare earth ion, the light emission characteristics of the rare earth complex used in the present invention can be changed.
 種々の発光特性に基づいて、暗号を生成することができる。また、このような暗号は、該希土類錯体の発光特性に基づいて、解読し得る。このように、本発明に係る発光性材料は、情報識別媒体に利用可能である。 • Encryption can be generated based on various emission characteristics. Moreover, such a code | symbol can be deciphered based on the light emission characteristic of this rare earth complex. Thus, the luminescent material according to the present invention can be used as an information identification medium.
 すなわち、本発明は、情報や信号を記録または記憶させるための情報記録媒体(例えば、IDカード)を提供する。本発明に係る情報記録媒体は、上述した発光性材料を含有していることを特徴としている。本発明に用いられる希土類錯体の、発光特性を利用することによって、本発明に係る発光性材料は、IDカードのような情報識別媒体に利用することができる。 That is, the present invention provides an information recording medium (for example, an ID card) for recording or storing information and signals. An information recording medium according to the present invention is characterized by containing the above-described luminescent material. By utilizing the light emission characteristics of the rare earth complex used in the present invention, the luminescent material according to the present invention can be used for an information identification medium such as an ID card.
 本発明に係る情報識別媒体の形状や形態は特に限定されない。具体的には、本発明に係る情報識別媒体は、例えば、本発明に係る発光性材料を含有した樹脂を成型したカード、フィルム、シール、腕章等の形状、形態であり得る。また、本発明に係る発光性材料を含有させたインクを用いて印刷または印字した画像、図形、文字を上記情報識別媒体として用いることができる。 The shape and form of the information identification medium according to the present invention are not particularly limited. Specifically, the information identification medium according to the present invention can be in the shape and form of, for example, a card, a film, a seal, an armband, etc., molded from a resin containing the luminescent material according to the present invention. In addition, images, figures, and characters printed or printed using the ink containing the luminescent material according to the present invention can be used as the information identification medium.
 なお、本発明に係る情報識別媒体に含まれている希土類錯体の種類は、1種類であってもよいが、複数種であることが好ましい。例えば、前述の発光パターンには単一の希土類イオン(例えばEu3+)からなる希土類錯体からの発光だけでなく他の希土類イオン(例えばSm3+、Tb3+など)からなる希土類錯体からの発光が含まれていてもよい。また、フォトクロミック配位子を有する希土類錯体ナノ結晶を用いることによって新しい情報記録媒体とすることもできる。すなわち、発光特性(強度等)の変化も識別に利用することができる。これらにより、情報識別媒体の識別力(セキュリティ)をより高度にすることができる。 In addition, although the kind of rare earth complex contained in the information identification medium based on this invention may be one, it is preferable that it is multiple types. For example, the light emission pattern described above includes not only light emission from a rare earth complex composed of a single rare earth ion (eg, Eu 3+ ) but also light emission from a rare earth complex composed of other rare earth ions (eg, Sm 3+ , Tb 3+, etc.). It may be. A new information recording medium can also be obtained by using a rare earth complex nanocrystal having a photochromic ligand. That is, a change in light emission characteristics (intensity, etc.) can also be used for identification. As a result, the discrimination power (security) of the information identification medium can be enhanced.
 情報識別媒体への適用に限定されることなく、画像、図形および文字を印刷または印字するためのインクや、絵画などの美術品を生成するための顔料もまた、本発明の範囲内であることを、本明細書を読んだ当業者は容易に理解する。すなわち、本発明は、インクまたは顔料を提供する。本発明に係るインクまたは顔料は、上述した発光性材料を含有していることを特徴としている。本発明に係るインクは、オフセット印刷用であってもインクジェット用であってもよい。また、本発明に係る顔料が塗布された美術品もまた本発明の範囲内である。 Without being limited to application to an information identification medium, inks for printing or printing images, figures and characters, and pigments for producing artworks such as paintings are also within the scope of the present invention. Are easily understood by those skilled in the art who have read this specification. That is, the present invention provides an ink or pigment. The ink or pigment according to the present invention is characterized by containing the above-described luminescent material. The ink according to the present invention may be used for offset printing or inkjet. In addition, art objects coated with the pigment according to the present invention are also within the scope of the present invention.
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention.
 また、本明細書中に記載された学術文献および特許文献の全てが、本明細書中において参考として援用される。 In addition, all the academic literatures and patent literatures described in this specification are incorporated herein by reference.
 〔錯体1(Eu(hfa)(HO))の合成〕
 スターラーチップを入れたエルレンマイヤーフラスコ(50mL)に酢酸ユーロピウム(白色結晶1g)を入れ、10mLのイオン交換水を添加して酢酸ユーロピウムを完全に溶解した。この溶液に、ヘキサフルオロアセチルアセトン(透明液体2g)を、パスツールピペットを用いて滴下した。白濁した溶液を室温で1時間攪拌した。攪拌後、濾過にて回収した粉体を水で数回洗浄した。この粉体(Eu(hfa)(HO)錯体)が赤色発光することを、UV照射にて確認した。また、酢酸ユーロピウムの代わりに酢酸テルビウムを用いて、緑色発光するTb(hfa)錯体を得た。
[Synthesis of Complex 1 (Eu (hfa) 3 (H 2 O) 2 )]
Europium acetate (1 g of white crystals) was placed in an Erlenmeyer flask (50 mL) containing a stirrer chip, and 10 mL of ion-exchanged water was added to completely dissolve europium acetate. To this solution, hexafluoroacetylacetone (transparent liquid 2 g) was added dropwise using a Pasteur pipette. The cloudy solution was stirred at room temperature for 1 hour. After stirring, the powder recovered by filtration was washed several times with water. It was confirmed by UV irradiation that this powder (Eu (hfa) 3 (H 2 O) 2 complex) emitted red light. In addition, terbium acetate was used instead of europium acetate to obtain a Tb (hfa) 3 complex emitting green light.
Figure JPOXMLDOC01-appb-C000009
 〔錯体2(Eu(hfa)(TPPO))の合成〕
 200mLのナス型フラスコ中にて、1.5g(2mmol)の錯体1をメタノール(100mL)に溶解した。0.8g(3mmol)のトリフェニルホスフィンオキシド(TPPO)をメタノール(10mL)に溶解し、ナス型フラスコ内の溶液に添加した。ナス型フラスコに冷却管を取り付けて、メタノールでの還流を80℃で行った。反応の終了後に、フラスコ内のメタノールをエバポレータにて除去した。ヘキサンを加えて粉体析出を行った後に乾燥させた。
Figure JPOXMLDOC01-appb-C000009
[Synthesis of Complex 2 (Eu (hfa) 3 (TPPO) 2 )]
In a 200 mL eggplant-shaped flask, 1.5 g (2 mmol) of Complex 1 was dissolved in methanol (100 mL). 0.8 g (3 mmol) of triphenylphosphine oxide (TPPO) was dissolved in methanol (10 mL) and added to the solution in the eggplant type flask. A cooling tube was attached to the eggplant-shaped flask, and reflux with methanol was performed at 80 ° C. After completion of the reaction, methanol in the flask was removed with an evaporator. Hexane was added and powder precipitation was performed, followed by drying.
Figure JPOXMLDOC01-appb-C000010
 〔BIPHEPOの合成〕
 0.5gの2,2’-ビス(フェニルホスフィノ)ビフェニル(BIPHEP;東京化成工業(株))をジクロロメタン(30mL)に溶解し、氷冷下にて30%過酸化水素水を少量滴下した。3時間攪拌した後、水およびジクロロメタンにて抽出し、取り出したジクロロメタン相を水で洗浄した。洗浄後、ジクロロメタン相を硫酸マグネシウムで乾燥して水を除去した。次いで、濾紙にて濾過し、回収した濾液からエバポレータにてジクロロメタンを留去した。得られた固体にヘキサンを添加して再沈殿させ、再度エバポレータにてジクロロメタンを留去した。得られた固体を真空ラインにて3時間乾燥し、水/エタノールで再結晶させてBIPHEPO(1,1’-ビフェニル-2,2’-ジイルビス(ジフェニルホスフィンオキシド))を得た。
Figure JPOXMLDOC01-appb-C000010
[Synthesis of BIPHEPO]
0.5 g of 2,2′-bis (phenylphosphino) biphenyl (BIPHEP; Tokyo Chemical Industry Co., Ltd.) was dissolved in dichloromethane (30 mL), and a small amount of 30% aqueous hydrogen peroxide was added dropwise under ice cooling. . After stirring for 3 hours, the mixture was extracted with water and dichloromethane, and the extracted dichloromethane phase was washed with water. After washing, the dichloromethane phase was dried over magnesium sulfate to remove water. Subsequently, it filtered with the filter paper and the dichloromethane was distilled off from the collect | recovered filtrate with the evaporator. Hexane was added to the obtained solid for reprecipitation, and dichloromethane was again distilled off with an evaporator. The obtained solid was dried on a vacuum line for 3 hours and recrystallized with water / ethanol to obtain BIPHEPO (1,1′-biphenyl-2,2′-diylbis (diphenylphosphine oxide)).
Figure JPOXMLDOC01-appb-C000011
 〔錯体3(Eu(hfa)(BIPHEPO))の合成〕
 200mLのナス型フラスコ中にて、1.5g(2mmol)の錯体1をメタノール(100mL)に溶解した。0.8g(3mmol)のBIPHEPOをメタノール(10mL)に溶解し、ナス型フラスコ内の溶液に添加した。ナス型フラスコに冷却管を取り付けて、メタノールでの還流を80℃で行った。反応の終了後に、フラスコ内のメタノールをエバポレータにて除去した。ヘキサンを加えて粉体析出を行った後に乾燥させた。
Figure JPOXMLDOC01-appb-C000011
[Synthesis of Complex 3 (Eu (hfa) 3 (BIPHEPO))]
In a 200 mL eggplant-shaped flask, 1.5 g (2 mmol) of Complex 1 was dissolved in methanol (100 mL). 0.8 g (3 mmol) of BIPHEPO was dissolved in methanol (10 mL) and added to the solution in the eggplant type flask. A cooling tube was attached to the eggplant-shaped flask, and reflux with methanol was performed at 80 ° C. After completion of the reaction, methanol in the flask was removed with an evaporator. Hexane was added and powder precipitation was performed, followed by drying.
Figure JPOXMLDOC01-appb-C000012
 〔希土類錯体ナノ結晶の評価〕
 合成した錯体を少量のメタノールに溶解し、この溶液を水に滴下した。得られた粉体を室温下でバキューム(0.1torr)して乾燥させた。錯体1~3のシェラー式による結晶子サイズは、それぞれ20nm、34nmおよび34nmであった(それぞれ、24.1°、17.06°および10.68°のシグナルで測定)。錯体2のXRDスペクトルを図1に示す。さらに、これらの錯体の特性を、積分球(浜松ホトニクス)を用いた絶対発光量子効率測定にて、以下の項目について評価した。
〔1〕粉体状態と溶液状態との量子効率を比較し、粉体(ナノ結晶)の効果を確認した。具体的には、室温下での350nmの光励起による発光量子収率を、粉体状の希土類錯体と、アセトン中0.1mMに溶解した希土類錯体とにおいて比較した。錯体1の発光量子収率は、溶液状態で37%であり、粉体状態で15%であった。しかし、錯体2および錯体3については、溶液状態で59%であった発光量子収率が、粉体状態で94%に改善された。粉体(ナノ結晶)では、分子振動による無放射失活が抑制されたと考えられる。
〔2〕粉体状態での励起波長依存性を確認した。具体的には、室温下での310~360nmの光励起による発光量子収率を調べた。その結果、量子効率の励起波長依存性はないことがわかった。
〔3〕粉体形状の違いによる測定結果の差異がないかを確認した。具体的には、粉体を、ペレット型または山盛り型にて測定に供した。その結果、粉体形状の違いによる測定結果の差異はなかった。また、2mgまたは20mgの粉体を用いて測定したが、量の違いによる測定結果の差異はなかった。また、様々なサンプルを測定し、全てのサンプルにおいてナノ結晶効果が見られることを確認した。
Figure JPOXMLDOC01-appb-C000012
[Evaluation of rare earth complex nanocrystals]
The synthesized complex was dissolved in a small amount of methanol, and this solution was added dropwise to water. The obtained powder was vacuum dried at room temperature (0.1 torr) and dried. The crystallite sizes according to the Scherrer equation of complexes 1 to 3 were 20 nm, 34 nm and 34 nm, respectively (measured with signals of 24.1 °, 17.06 ° and 10.68 °, respectively). The XRD spectrum of Complex 2 is shown in FIG. Furthermore, the characteristics of these complexes were evaluated for the following items by measuring absolute luminescence quantum efficiency using an integrating sphere (Hamamatsu Photonics).
[1] The quantum efficiency between the powder state and the solution state was compared, and the effect of the powder (nanocrystal) was confirmed. Specifically, the emission quantum yield by photoexcitation at 350 nm at room temperature was compared between a powdered rare earth complex and a rare earth complex dissolved in 0.1 mM in acetone. The emission quantum yield of Complex 1 was 37% in the solution state and 15% in the powder state. However, for complex 2 and complex 3, the emission quantum yield of 59% in the solution state was improved to 94% in the powder state. In the powder (nanocrystal), it is considered that non-radiative deactivation due to molecular vibration was suppressed.
[2] The excitation wavelength dependence in the powder state was confirmed. Specifically, the quantum yield of light emission by photoexcitation at 310 to 360 nm at room temperature was examined. As a result, it was found that the quantum efficiency was not dependent on the excitation wavelength.
[3] It was confirmed whether there was a difference in measurement results due to a difference in powder shape. Specifically, the powder was subjected to measurement in a pellet type or a pile type. As a result, there was no difference in measurement results due to differences in powder shape. Moreover, although it measured using 2 mg or 20 mg powder, there was no difference in the measurement result by the difference in quantity. Various samples were measured, and it was confirmed that the nanocrystal effect was observed in all samples.
 結果を以下の表に示す。 The results are shown in the table below.
Figure JPOXMLDOC01-appb-T000001
 以上のことより、粉体の量子効率が正常に評価できていること、および量子効率が錯体構造に依存することが確認された。
Figure JPOXMLDOC01-appb-T000001
From the above, it was confirmed that the quantum efficiency of the powder can be normally evaluated and that the quantum efficiency depends on the complex structure.
 希土類錯体をナノ結晶状態で用いることにより、発光効率を大いに改善し得る。そのため、本発明は、従来よりもはるかに優れた発光性インクおよび/または有機エレクトロルミネッセンス素子を提供し得る。 Luminescence efficiency can be greatly improved by using rare earth complexes in a nanocrystalline state. Therefore, this invention can provide the luminescent ink and / or organic electroluminescent element which were far superior to the past.

Claims (16)

  1.  一般式(I)~(III)
    Figure JPOXMLDOC01-appb-C000013
    Figure JPOXMLDOC01-appb-C000014
    Figure JPOXMLDOC01-appb-C000015
    (式中、Lnは希土類原子であり、R~RおよびRは、互いに同一であっても異なってもよく、直鎖または分枝鎖を有するC~C20のアルキル基、C~C20のアルケニル基またはC~C20のアルキニル基、あるいはC~C20のシクロアルキル基、C~C20のシクロアルケニル基、C~C20のアリール基、C~C20のヘテロアリール基、または複素環(チオフェンを除く。)、あるいはハロゲン基、水酸基、スルホン酸基、カルボニル基、ニトロ基、シアノ基またはアミノ基であり、RおよびRは、互いに同一であっても異なってもよく、C~C20の直鎖または分枝鎖を有するアルキレン基、アリーレン基、アルケニル基、アルキニル基、シクロアルキル基、シクロアルケニル基、アリール基またはヘテロアリール基、あるいは酸素、窒素または硫黄、あるいは複素環(チオフェンを除く。)であり、XおよびXは、互いに同一であっても異なってもよく、水素原子を含まないC~C20の直鎖または分枝鎖を有する基、あるいは複素環(チオフェンを除く。)であり、Yは、水素、重水素、ハロゲン基、水酸基、スルホン酸基、カルボニル基、ニトロ基、シアノ基またはアミノ基、あるいはC~C20の直鎖または分枝鎖を有するアルキル基またはアリール基、あるいは水素原子を含まないC~C20の直鎖または分枝鎖からなる基、あるいは複素環(チオフェンを除く。)であり、n=1または2であり、m=2、3または4である。)
    のいずれかにて表される希土類錯体のナノ結晶を含んでいる、発光性材料。
    Formulas (I) to (III)
    Figure JPOXMLDOC01-appb-C000013
    Figure JPOXMLDOC01-appb-C000014
    Figure JPOXMLDOC01-appb-C000015
    (In the formula, Ln is a rare earth atom, and R 1 to R 4 and R 6 may be the same or different from each other, and are a linear or branched C 1 to C 20 alkyl group, C alkenyl group or C 2 ~ alkynyl groups to C 20 of 2 ~ C 20 or C 3 cycloalkyl group ~ C 20, C 3 cycloalkenyl group ~ C 20, aryl group of C 6 ~ C 20,, C 3 ~ A C 20 heteroaryl group or a heterocyclic ring (excluding thiophene), or a halogen group, a hydroxyl group, a sulfonic acid group, a carbonyl group, a nitro group, a cyano group or an amino group, and R 5 and R 7 are the same as each other or different even an alkylene group, an arylene group having a straight-chain or branched C 1 ~ C 20, alkenyl group, alkynyl group, cycloalkyl group, cycloalkenyl Group, an aryl group or a heteroaryl group or an oxygen, nitrogen or sulfur, or heterocyclic ring, (except thiophene.), X 1 and X 2, which may be the same or different from each other, include a hydrogen atom Or a group having a straight chain or branched chain of C 1 to C 20 or a heterocyclic ring (excluding thiophene), and Y is hydrogen, deuterium, halogen group, hydroxyl group, sulfonic acid group, carbonyl group, nitro group A group consisting of a C 1 -C 20 straight chain or branched chain containing no hydrogen atom, a group, a cyano group or an amino group, or a C 1 -C 20 straight chain or branched alkyl group or aryl group Or a heterocyclic ring (excluding thiophene), n = 1 or 2, and m = 2, 3 or 4.
    A luminescent material comprising a nanocrystal of a rare earth complex represented by any one of:
  2.  上記ナノ結晶が分散または懸濁している、請求項1に記載の発光性材料。 The luminescent material according to claim 1, wherein the nanocrystal is dispersed or suspended.
  3.  結晶サイズが200nm以下である、請求項1または2に記載の発光性材料。 The luminescent material according to claim 1 or 2, wherein the crystal size is 200 nm or less.
  4.  一般式(I)~(III)
    Figure JPOXMLDOC01-appb-C000016
    Figure JPOXMLDOC01-appb-C000017
    Figure JPOXMLDOC01-appb-C000018
    (式中、Lnは希土類原子であり、R~RおよびRは、互いに同一であっても異なってもよく、直鎖または分枝鎖を有するC~C20のアルキル基、C~C20のアルケニル基またはC~C20のアルキニル基、あるいはC~C20のシクロアルキル基、C~C20のシクロアルケニル基、C~C20のアリール基、C~C20のヘテロアリール基、または複素環(チオフェンを除く。)、あるいはハロゲン基、水酸基、スルホン酸基、カルボニル基、ニトロ基、シアノ基またはアミノ基であり、RおよびRは、互いに同一であっても異なってもよく、C~C20の直鎖または分枝鎖を有するアルキレン基、アリーレン基、アルケニル基、アルキニル基、シクロアルキル基、シクロアルケニル基、アリール基またはヘテロアリール基、あるいは酸素、窒素または硫黄、あるいは複素環(チオフェンを除く。)であり、XおよびXは、互いに同一であっても異なってもよく、水素原子を含まないC~C20の直鎖または分枝鎖を有する基、あるいは複素環(チオフェンを除く。)であり、Yは、水素、重水素、ハロゲン基、水酸基、スルホン酸基、カルボニル基、ニトロ基、シアノ基またはアミノ基、あるいはC~C20の直鎖または分枝鎖を有するアルキル基またはアリール基、あるいは水素原子を含まないC~C20の直鎖または分枝鎖からなる基、あるいは複素環(チオフェンを除く。)であり、n=1または2であり、m=2、3または4である。)
    のいずれかにて表される希土類錯体の結晶を含んでいる、紫外光による励起を用いて発光させるための発光性材料。
    Formulas (I) to (III)
    Figure JPOXMLDOC01-appb-C000016
    Figure JPOXMLDOC01-appb-C000017
    Figure JPOXMLDOC01-appb-C000018
    (In the formula, Ln is a rare earth atom, and R 1 to R 4 and R 6 may be the same or different from each other, and are a linear or branched C 1 to C 20 alkyl group, C alkenyl group or C 2 ~ alkynyl groups to C 20 of 2 ~ C 20 or C 3 cycloalkyl group ~ C 20, C 3 cycloalkenyl group ~ C 20, aryl group of C 6 ~ C 20,, C 3 ~ A C 20 heteroaryl group or a heterocyclic ring (excluding thiophene), or a halogen group, a hydroxyl group, a sulfonic acid group, a carbonyl group, a nitro group, a cyano group or an amino group, and R 5 and R 7 are the same as each other or different even an alkylene group, an arylene group having a straight-chain or branched C 1 ~ C 20, alkenyl group, alkynyl group, cycloalkyl group, cycloalkenyl Group, an aryl group or a heteroaryl group or an oxygen, nitrogen or sulfur, or heterocyclic ring, (except thiophene.), X 1 and X 2, which may be the same or different from each other, include a hydrogen atom Or a group having a straight chain or branched chain of C 1 to C 20 or a heterocyclic ring (excluding thiophene), and Y is hydrogen, deuterium, halogen group, hydroxyl group, sulfonic acid group, carbonyl group, nitro group A group consisting of a C 1 -C 20 straight chain or branched chain containing no hydrogen atom, a group, a cyano group or an amino group, or a C 1 -C 20 straight chain or branched alkyl group or aryl group Or a heterocyclic ring (excluding thiophene), n = 1 or 2, and m = 2, 3 or 4.
    A luminescent material for emitting light using excitation by ultraviolet light, comprising a rare earth complex crystal represented by any one of the above.
  5.  励起光の波長範囲が200~370nmである、請求項4に記載の発光性材料。 The luminescent material according to claim 4, wherein the wavelength range of the excitation light is 200 to 370 nm.
  6.  結晶サイズが200nm以下である、請求項4または5に記載の発光性材料。 The luminescent material according to claim 4 or 5, wherein the crystal size is 200 nm or less.
  7.  請求項4~6のいずれか1項に記載の発光性材料を含有している、インク。 An ink containing the luminescent material according to any one of claims 4 to 6.
  8.  オフセット印刷用である、請求項7に記載のインク。 The ink according to claim 7, which is for offset printing.
  9.  インクジェット用である、請求項7に記載のインク。 The ink according to claim 7, which is for inkjet.
  10.  請求項4~6のいずれか1項に記載の発光性材料を含有している、顔料。 A pigment containing the luminescent material according to any one of claims 4 to 6.
  11.  請求項10に記載の顔料が塗布されている、美術品。 Art work to which the pigment according to claim 10 is applied.
  12.  請求項4~6のいずれか1項に記載の発光性材料を含有している、情報識別媒体。 An information identification medium containing the luminescent material according to any one of claims 4 to 6.
  13.  IDカードである、請求項12に記載の情報識別媒体。 The information identification medium according to claim 12, which is an ID card.
  14.  一般式(I)~(III)
    Figure JPOXMLDOC01-appb-C000019
    Figure JPOXMLDOC01-appb-C000020
    Figure JPOXMLDOC01-appb-C000021
    (式中、Lnは希土類原子であり、R~RおよびRは、互いに同一であっても異なってもよく、直鎖または分枝鎖を有するC~C20のアルキル基、C~C20のアルケニル基またはC~C20のアルキニル基、あるいはC~C20のシクロアルキル基、C~C20のシクロアルケニル基、C~C20のアリール基、C~C20のヘテロアリール基、または複素環(チオフェンを除く。)、あるいはハロゲン基、水酸基、スルホン酸基、カルボニル基、ニトロ基、シアノ基またはアミノ基であり、RおよびRは、互いに同一であっても異なってもよく、C~C20の直鎖または分枝鎖を有するアルキレン基、アリーレン基、アルケニル基、アルキニル基、シクロアルキル基、シクロアルケニル基、アリール基またはヘテロアリール基、あるいは酸素、窒素または硫黄、あるいは複素環(チオフェンを除く。)であり、XおよびXは、互いに同一であっても異なってもよく、水素原子を含まないC~C20の直鎖または分枝鎖を有する基、あるいは複素環(チオフェンを除く。)であり、Yは、水素、重水素、ハロゲン基、水酸基、スルホン酸基、カルボニル基、ニトロ基、シアノ基またはアミノ基、あるいはC~C20の直鎖または分枝鎖を有するアルキル基またはアリール基、あるいは水素原子を含まないC~C20の直鎖または分枝鎖からなる基、あるいは複素環(チオフェンを除く。)であり、n=1または2であり、m=2、3または4である。)
    のいずれかにて表される希土類錯体の結晶または該結晶を含んでいる発光性材料、および紫外領域において発光可能な光源を備えている、発光装置。
    Formulas (I) to (III)
    Figure JPOXMLDOC01-appb-C000019
    Figure JPOXMLDOC01-appb-C000020
    Figure JPOXMLDOC01-appb-C000021
    (In the formula, Ln is a rare earth atom, and R 1 to R 4 and R 6 may be the same or different from each other, and are a linear or branched C 1 to C 20 alkyl group, C alkenyl group or C 2 ~ alkynyl groups to C 20 of 2 ~ C 20 or C 3 cycloalkyl group ~ C 20, C 3 cycloalkenyl group ~ C 20, aryl group of C 6 ~ C 20,, C 3 ~ A C 20 heteroaryl group or a heterocyclic ring (excluding thiophene), or a halogen group, a hydroxyl group, a sulfonic acid group, a carbonyl group, a nitro group, a cyano group or an amino group, and R 5 and R 7 are the same as each other or different even an alkylene group, an arylene group having a straight-chain or branched C 1 ~ C 20, alkenyl group, alkynyl group, cycloalkyl group, cycloalkenyl Group, an aryl group or a heteroaryl group or an oxygen, nitrogen or sulfur, or heterocyclic ring, (except thiophene.), X 1 and X 2, which may be the same or different from each other, include a hydrogen atom Or a group having a straight chain or branched chain of C 1 to C 20 or a heterocyclic ring (excluding thiophene), and Y is hydrogen, deuterium, halogen group, hydroxyl group, sulfonic acid group, carbonyl group, nitro group A group consisting of a C 1 -C 20 straight chain or branched chain containing no hydrogen atom, a group, a cyano group or an amino group, or a C 1 -C 20 straight chain or branched alkyl group or aryl group Or a heterocyclic ring (excluding thiophene), n = 1 or 2, and m = 2, 3 or 4.
    A light emitting device comprising: a rare earth complex crystal represented by any one of the above or a luminescent material containing the crystal; and a light source capable of emitting light in an ultraviolet region.
  15.  可視光~赤外光を遮断するフィルターをさらに備えている、請求項14に記載の発光装置。 The light-emitting device according to claim 14, further comprising a filter that blocks visible light to infrared light.
  16.  一般式(I)~(III)
    Figure JPOXMLDOC01-appb-C000022
    Figure JPOXMLDOC01-appb-C000023
    Figure JPOXMLDOC01-appb-C000024
    (式中、Lnは希土類原子であり、R~RおよびRは、互いに同一であっても異なってもよく、直鎖または分枝鎖を有するC~C20のアルキル基、C~C20のアルケニル基またはC~C20のアルキニル基、あるいはC~C20のシクロアルキル基、C~C20のシクロアルケニル基、C~C20のアリール基、C~C20のヘテロアリール基、または複素環(チオフェンを除く。)、あるいはハロゲン基、水酸基、スルホン酸基、カルボニル基、ニトロ基、シアノ基またはアミノ基であり、RおよびRは、互いに同一であっても異なってもよく、C~C20の直鎖または分枝鎖を有するアルキレン基、アリーレン基、アルケニル基、アルキニル基、シクロアルキル基、シクロアルケニル基、アリール基またはヘテロアリール基、あるいは酸素、窒素または硫黄、あるいは複素環(チオフェンを除く。)であり、XおよびXは、互いに同一であっても異なってもよく、水素原子を含まないC~C20の直鎖または分枝鎖を有する基、あるいは複素環(チオフェンを除く。)であり、Yは、水素、重水素、ハロゲン基、水酸基、スルホン酸基、カルボニル基、ニトロ基、シアノ基またはアミノ基、あるいはC~C20の直鎖または分枝鎖を有するアルキル基またはアリール基、あるいは水素原子を含まないC~C20の直鎖または分枝鎖からなる基、あるいは複素環(チオフェンを除く。)であり、n=1または2であり、m=2、3または4である。)
    のいずれかにて表される希土類錯体の結晶または該結晶を含んでいる発光性材料に紫外光を照射する工程を包含する、希土類錯体を発光させる方法。
    Formulas (I) to (III)
    Figure JPOXMLDOC01-appb-C000022
    Figure JPOXMLDOC01-appb-C000023
    Figure JPOXMLDOC01-appb-C000024
    (In the formula, Ln is a rare earth atom, and R 1 to R 4 and R 6 may be the same or different from each other, and are a linear or branched C 1 to C 20 alkyl group, C alkenyl group or C 2 ~ alkynyl groups to C 20 of 2 ~ C 20 or C 3 cycloalkyl group ~ C 20, C 3 cycloalkenyl group ~ C 20, aryl group of C 6 ~ C 20,, C 3 ~ A C 20 heteroaryl group or a heterocyclic ring (excluding thiophene), or a halogen group, a hydroxyl group, a sulfonic acid group, a carbonyl group, a nitro group, a cyano group or an amino group, and R 5 and R 7 are the same as each other or different even an alkylene group, an arylene group having a straight-chain or branched C 1 ~ C 20, alkenyl group, alkynyl group, cycloalkyl group, cycloalkenyl Group, an aryl group or a heteroaryl group or an oxygen, nitrogen or sulfur, or heterocyclic ring, (except thiophene.), X 1 and X 2, which may be the same or different from each other, include a hydrogen atom Or a group having a straight chain or branched chain of C 1 to C 20 or a heterocyclic ring (excluding thiophene), and Y is hydrogen, deuterium, halogen group, hydroxyl group, sulfonic acid group, carbonyl group, nitro group A group consisting of a C 1 -C 20 straight chain or branched chain containing no hydrogen atom, a group, a cyano group or an amino group, or a C 1 -C 20 straight chain or branched alkyl group or aryl group Or a heterocyclic ring (excluding thiophene), n = 1 or 2, and m = 2, 3 or 4.
    A method of emitting light of a rare earth complex, comprising a step of irradiating a crystal of the rare earth complex represented by any one of the above or a luminescent material containing the crystal with ultraviolet light.
PCT/JP2009/004411 2008-09-19 2009-09-07 Rare earth complex nanocrystals and applications thereof WO2010032395A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008241703 2008-09-19
JP2008-241703 2008-09-19

Publications (1)

Publication Number Publication Date
WO2010032395A1 true WO2010032395A1 (en) 2010-03-25

Family

ID=42039247

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/004411 WO2010032395A1 (en) 2008-09-19 2009-09-07 Rare earth complex nanocrystals and applications thereof

Country Status (1)

Country Link
WO (1) WO2010032395A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011157279A (en) * 2010-01-29 2011-08-18 Toshiba Corp Rare earth complex, and fluorescent medium, light-emitting element, security medium and lighting device using the same
JP2012061794A (en) * 2010-09-17 2012-03-29 Toshiba Corp Information recording medium, authenticity determination method thereof, and authenticity determination system
JP2013121921A (en) * 2011-12-09 2013-06-20 Nara Institute Of Science & Technology Circularly-polarized emission rare earth complex
CN103728852A (en) * 2012-10-16 2014-04-16 富士施乐株式会社 Transparent electrostatic charge image developing toner, method of manufacturing the same, developer, toner cartridge, image forming method, and image forming apparatus
JP2014094983A (en) * 2012-11-07 2014-05-22 Laser System:Kk Luminescent composite material and luminescent nanocrystal
JP2014112643A (en) * 2012-10-03 2014-06-19 Bridgestone Corp Solar cell encapsulation film and solar cell using the same
JP2016044227A (en) * 2014-08-22 2016-04-04 パナソニック株式会社 Phosphor-containing cured product and method for producing the same
WO2018155557A1 (en) * 2017-02-27 2018-08-30 国立大学法人北海道大学 Rare earth complex and light emitting element
WO2019053963A1 (en) * 2017-09-15 2019-03-21 大日本印刷株式会社 Ink composition, printed matter, and authenticity determination method
WO2019053962A1 (en) * 2017-09-15 2019-03-21 大日本印刷株式会社 Ink composition and printed matter

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09255946A (en) * 1996-03-25 1997-09-30 Stanley Electric Co Ltd Ultramicroparticulate organic luminescent material and its production
JP2002080838A (en) * 2000-09-07 2002-03-22 Mitsubishi Chemicals Corp Aqueous suspension of organic fluorescent substance
JP2002088282A (en) * 2000-09-13 2002-03-27 Mitsubishi Chemicals Corp Fluorescent printing ink containing organic lanthanoid complex
JP2003081986A (en) * 2001-09-07 2003-03-19 Kansai Tlo Kk Rare earth complex, optically functional material using the same and emission device
JP2004262909A (en) * 2003-03-01 2004-09-24 Kansai Tlo Kk Highly light-emitting rare earth complex
JP2005015564A (en) * 2003-06-24 2005-01-20 Toshiba Corp Led element using rare earth complex and luminescent medium
JP2005082529A (en) * 2003-09-08 2005-03-31 Kansai Tlo Kk Strongly luminous rare earth complex
JP2005097240A (en) * 2003-08-26 2005-04-14 Dainippon Ink & Chem Inc New rare earth metal complex emitting circularly-polarized light
JP2008074638A (en) * 2006-09-19 2008-04-03 Toda Kogyo Corp Hybrid type organic ultrafine particle, method for producing the ultrafine particle, and dispersion composition of the ultrafine particle

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09255946A (en) * 1996-03-25 1997-09-30 Stanley Electric Co Ltd Ultramicroparticulate organic luminescent material and its production
JP2002080838A (en) * 2000-09-07 2002-03-22 Mitsubishi Chemicals Corp Aqueous suspension of organic fluorescent substance
JP2002088282A (en) * 2000-09-13 2002-03-27 Mitsubishi Chemicals Corp Fluorescent printing ink containing organic lanthanoid complex
JP2003081986A (en) * 2001-09-07 2003-03-19 Kansai Tlo Kk Rare earth complex, optically functional material using the same and emission device
JP2004262909A (en) * 2003-03-01 2004-09-24 Kansai Tlo Kk Highly light-emitting rare earth complex
JP2005015564A (en) * 2003-06-24 2005-01-20 Toshiba Corp Led element using rare earth complex and luminescent medium
JP2005097240A (en) * 2003-08-26 2005-04-14 Dainippon Ink & Chem Inc New rare earth metal complex emitting circularly-polarized light
JP2005082529A (en) * 2003-09-08 2005-03-31 Kansai Tlo Kk Strongly luminous rare earth complex
JP2008074638A (en) * 2006-09-19 2008-04-03 Toda Kogyo Corp Hybrid type organic ultrafine particle, method for producing the ultrafine particle, and dispersion composition of the ultrafine particle

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011157279A (en) * 2010-01-29 2011-08-18 Toshiba Corp Rare earth complex, and fluorescent medium, light-emitting element, security medium and lighting device using the same
JP2012061794A (en) * 2010-09-17 2012-03-29 Toshiba Corp Information recording medium, authenticity determination method thereof, and authenticity determination system
JP2013121921A (en) * 2011-12-09 2013-06-20 Nara Institute Of Science & Technology Circularly-polarized emission rare earth complex
JP2014112643A (en) * 2012-10-03 2014-06-19 Bridgestone Corp Solar cell encapsulation film and solar cell using the same
CN103728852A (en) * 2012-10-16 2014-04-16 富士施乐株式会社 Transparent electrostatic charge image developing toner, method of manufacturing the same, developer, toner cartridge, image forming method, and image forming apparatus
US20140106270A1 (en) * 2012-10-16 2014-04-17 Fuji Xerox Co., Ltd. Transparent electrostatic charge image developing toner, method of manufacturing the same, electrostatic charge image developer, toner cartridge, image forming method, and image forming apparatus
JP2014094983A (en) * 2012-11-07 2014-05-22 Laser System:Kk Luminescent composite material and luminescent nanocrystal
JP2016044227A (en) * 2014-08-22 2016-04-04 パナソニック株式会社 Phosphor-containing cured product and method for producing the same
WO2018155557A1 (en) * 2017-02-27 2018-08-30 国立大学法人北海道大学 Rare earth complex and light emitting element
CN110337441A (en) * 2017-02-27 2019-10-15 国立大学法人北海道大学 Rare-earth complex and light-emitting component
CN110337441B (en) * 2017-02-27 2022-09-06 国立大学法人北海道大学 Rare earth complex and light-emitting element
US11499093B2 (en) 2017-02-27 2022-11-15 National University Corporation Hokkaido University Rare earth complex and light emitting element
WO2019053963A1 (en) * 2017-09-15 2019-03-21 大日本印刷株式会社 Ink composition, printed matter, and authenticity determination method
WO2019053962A1 (en) * 2017-09-15 2019-03-21 大日本印刷株式会社 Ink composition and printed matter
JPWO2019053962A1 (en) * 2017-09-15 2020-10-15 大日本印刷株式会社 Ink composition and printed matter
JPWO2019053963A1 (en) * 2017-09-15 2020-10-15 大日本印刷株式会社 Ink composition, printed matter, and authenticity determination method
JP7081602B2 (en) 2017-09-15 2022-06-07 大日本印刷株式会社 Ink composition and printed matter
JP7081603B2 (en) 2017-09-15 2022-06-07 大日本印刷株式会社 Ink composition, printed matter, and authenticity determination method

Similar Documents

Publication Publication Date Title
WO2010032395A1 (en) Rare earth complex nanocrystals and applications thereof
She et al. Dynamic luminescence manipulation for rewritable and multi-level security printing
JP5737719B2 (en) Rare earth complexes and their use
Chai et al. Abnormal room temperature phosphorescence of purely organic boron-containing compounds: the relationship between the emissive behaviorand the molecular packing, and the potential related applications
JP4185032B2 (en) Fluorescent image formed product and fluorescent light emitting ink
CN111116649A (en) Organic phosphonium salt and regulation and control method and application of photophysical property thereof
JP4702887B2 (en) Luminescent rare earth nine-nuclear complex
JP5713360B2 (en) Circularly polarized light-emitting rare earth complex
JP2003026969A (en) Redly luminescent ink composition
Xu et al. Recent advances in room temperature phosphorescence materials: design strategies, internal mechanisms and intelligent optical applications
JP2009084267A (en) Rare earth complex and luminescent material using the same
CN110437133B (en) Long-life room-temperature phosphorescent material and preparation method and application thereof
KR102592738B1 (en) Novel mechanofluorochromic organic material and use thereof
WO2015002282A1 (en) Ligand, and rare earth complex
JP2008514617A5 (en)
Wang et al. Smart pH sensitive luminescent hydrogel based on Eu (III) β-diketonate complex and its enhanced photostability
JP5110484B2 (en) Rare earth complexes and their use
JP4817309B2 (en) A light emitting material comprising a tripod type metal complex and a resin composition containing the light emitting material.
JP4856334B2 (en) Organic light emitting compounds
JP5704723B2 (en) Metal complexes and their use
JP2014031348A (en) Rare earth luminescent complex and luminous material
JP2010215686A (en) Rare earth metal complex, method for producing the same, and rare earth metal complex composition using the same
JP7270909B2 (en) Bisphosphine oxide rare earth complex and optical functional material
WO2022009930A1 (en) Light-emitting material, light-emitting ink, light-emitting body, and light-emitting device
RU2790680C1 (en) Hidden marking method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09814241

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09814241

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP