WO2015108096A1 - Sealing film for solar cell, and solar cell using same - Google Patents

Sealing film for solar cell, and solar cell using same Download PDF

Info

Publication number
WO2015108096A1
WO2015108096A1 PCT/JP2015/050881 JP2015050881W WO2015108096A1 WO 2015108096 A1 WO2015108096 A1 WO 2015108096A1 JP 2015050881 W JP2015050881 W JP 2015050881W WO 2015108096 A1 WO2015108096 A1 WO 2015108096A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
sealing film
mass
inorganic fluorescent
meth
Prior art date
Application number
PCT/JP2015/050881
Other languages
French (fr)
Japanese (ja)
Inventor
央尚 片岡
琢 澤木
Original Assignee
株式会社ブリヂストン
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン, 日立化成株式会社 filed Critical 株式会社ブリヂストン
Priority to CN201580011186.3A priority Critical patent/CN106062131A/en
Priority to KR1020167021543A priority patent/KR20160143642A/en
Publication of WO2015108096A1 publication Critical patent/WO2015108096A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0481Encapsulation of modules characterised by the composition of the encapsulation material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films
    • C08L2203/162Applications used for films sealable films
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • C08L2203/204Applications use in electrical or conductive gadgets use in solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar cell sealing film containing an olefin (co) polymer, and in particular, by including a wavelength conversion material, it increases the light rays contributing to the power generation of the solar cell and can improve the power generation efficiency. Concerning the stop film.
  • a solar cell generally has a surface-side transparent protective member 11 made of a glass substrate or the like, a surface-side sealing film 13A, a solar cell 14 such as a silicon crystal power generation element, a back-side sealing film. 13B and the back side protection member (back cover) 12 are laminated in this order, and after deaeration under reduced pressure, the surface side sealing film 13A and the back side sealing film 13B are crosslinked and cured to be bonded by heating and pressurization. Manufactured by integrating.
  • any type of solar cell such as a silicon crystal power generation element
  • a material that converts light in the ultraviolet region into light having a wavelength in the visible region or near infrared region.
  • a material wavelength conversion material
  • the wavelength of ultraviolet light in the solar spectrum is converted to a wavelength that greatly contributes to power generation of the solar battery cell.
  • Patent Document 1 A method of emitting light (for example, Patent Document 1), a method of containing an organic fluorescent material (for example, a rare earth complex emitting fluorescence of 500 to 1000 nm) in a sealing material (sealing film) of a solar cell module (for example, patent Documents 2 and 3) have been proposed.
  • organic fluorescent material for example, a rare earth complex emitting fluorescence of 500 to 1000 nm
  • sealing film for example, patent Documents 2 and 3
  • Patent Documents 1 to 3 are greatly deteriorated by ultraviolet rays and heat, and when used for a solar cell used outdoors for a long time, the effect of wavelength conversion is reduced, and the power generation efficiency is reduced. There is a problem that the effect of improving the resistance is likely to decrease.
  • an object of the present invention is to provide a solar cell sealing film that can maintain the power generation efficiency improvement effect of the fluorescent material at a high level even when the solar cell is used for a long period of time. It is in.
  • an object of the present invention is to provide a solar cell that can maintain high power generation efficiency over a long period of time.
  • a solar cell encapsulating film comprising a resin material containing an olefin (co) polymer and a wavelength conversion material
  • the wavelength conversion material is represented by the following formula (I) or (II) Ba 1-a Mg 1-b Al 10 O 17 : Eu a , Mn b (I) (In the formula, a is from 0.05 to 0.25, and b is from 0.10 to 0.40.) Ba 1-c Mg 2-d Al 16 O 27: Eu c, Mn d (II) (In the formula, c is 0.05 or more and 0.25 or less, and d is 0.20 or more and 0.80 or less.) Including at least one inorganic fluorescent substance selected from the substances represented by: and a transparent material made of a (meth) acrylic resin, The content of the inorganic fluorescent material is 0.0001 to 0.005 parts by mass with respect to 100 parts by mass of the resin material.
  • the inorganic fluorescent substance represented by the above formula (I) or (II) is less susceptible to deterioration by ultraviolet rays or heat than conventional fluorescent substances, and can convert ultraviolet rays into the visible light wavelength region with sufficient emission intensity. It is. Furthermore, since the wavelength conversion material contains a transparent material made of (meth) acrylic resin, diffusion of light incident on the sealing film is suppressed, and sufficient transparency of the sealing film can be ensured.
  • Preferred embodiments of the present invention are as follows.
  • the transparent material made of the (meth) acrylic resin is transparent fine particles, and the inorganic fine particles are included in the transparent fine particles.
  • the transparent fine particles have an average particle size of 2 to 150 ⁇ m.
  • the inorganic fluorescent material is surface-treated with a silane coupling agent.
  • the content of the inorganic fluorescent substance in the wavelength conversion material is 0.5 to 1.5 mass% with respect to the mass of the wavelength conversion material.
  • the above object is achieved by a solar cell in which a solar cell element is sealed with the solar cell sealing film of the present invention.
  • the solar cell encapsulating film of the present invention comprises an inorganic fluorescent material that is not easily deteriorated by ultraviolet rays or heat and has a high wavelength conversion effect, and transparent fine particles made of (meth) acrylic resin that can ensure the transparency of the encapsulating film. Since the wavelength conversion material is included, the effect of improving the power generation efficiency can be maintained for a long time. Therefore, according to the present invention, it is possible to obtain a solar cell that maintains high power generation efficiency over a long period of time.
  • the solar cell sealing film of the present invention includes a resin material containing an olefin (co) polymer and a wavelength conversion material.
  • the wavelength conversion material includes a transparent material composed of at least one inorganic fluorescent substance and (meth) acrylic resin among substances represented by the following formula (I) or (II), and includes other components as necessary. Consists of.
  • Ba 1-c Mg 2-d Al 16 O 27 Eu c, Mn d (II) (In general formula (II), c is 0.05 or more and 0.25 or less, and d is 0.20 or more and 0.80 or less.)
  • the inorganic fluorescent material represented by the above general formula (I) or (II) is a green light emitting phosphor having an excitation wavelength band at 300 to 450 nm, a fluorescence wavelength of 515 nm, and an emission quantum efficiency of 86%. And high enough. When these inorganic fluorescent materials are irradiated with light from near-ultraviolet light to blue light, they are excited to emit light and undergo wavelength conversion.
  • the inorganic fluorescent substance in the present invention can exhibit further excellent fluorescence characteristics by making the amount of Eu and Mn within a specific range among BaMgAlO: Eu and Mn inorganic fluorescent substances.
  • a in general formula (I) is more preferably 0.10 or more and 0.20 or less, and b is more preferably 0.30 or more and 0.40 or less. preferable. If a or b is too low, sufficient effects on the emission luminance and excitation wavelength may not be obtained. If a or b is too high, the light luminance may decrease.
  • c in the general formula (II) is more preferably from 0.10 to 0.25, and d is more preferably from 0.50 to 0.70. If c or d is too low, it may not be possible to obtain a sufficient effect on the emission luminance and excitation wavelength, and if c or d is too high, the emission luminance may decrease.
  • the inorganic fluorescent substance can be manufactured by a normal manufacturing method used for manufacturing inorganic compounds.
  • an inorganic fluorescent material having a desired configuration can be manufactured by mixing compounds each containing an element constituting the inorganic fluorescent material at a predetermined ratio and then performing a baking treatment.
  • a compound containing each element an oxide, carbonate, nitrate etc. can be mentioned, for example.
  • a flux may be used as necessary.
  • the flux include AlF 3 and BaCl 2 .
  • one or more halogen elements such as F, Cl, Br, and I may be mixed in a small amount in the inorganic fluorescent material.
  • the inorganic fluorescent material represented by the general formula (I) or (II) if the content ratio of each atom is in the range of ⁇ 10 mol% to +10 mol% from the desired constituent ratio, Sufficient emission luminance can be obtained.
  • the conditions for the baking treatment may be, for example, 1200 to 1600 ° C. and 1 to 10 hours.
  • a baking process in a reducing atmosphere.
  • it is preferably performed in a nitrogen-hydrogen reducing atmosphere.
  • the hydrogen concentration in the nitrogen-hydrogen reducing atmosphere is not particularly limited, but can be, for example, 0.5 to 4% by mass.
  • the particle diameter of the inorganic fluorescent material represented by the general formula (I) or (II) is not particularly limited, but the volume average particle diameter is 0.1 ⁇ m to 10 ⁇ m from the viewpoint of light emission luminance, power generation efficiency, and incident light scattering. It is preferable that the thickness is 0.2 ⁇ m to 5 ⁇ m.
  • the particle diameter of the inorganic fluorescent material can be adjusted by pulverizing by a conventional method using a pulverizer such as a ball mill, a bead mill, or a jet mill.
  • the refractive index of the inorganic fluorescent material represented by the general formula (I) or (II) in the wavelength conversion material is not particularly limited, the external light entering from any angle into the solar cell is reduced in reflection loss and efficiently the solar cell.
  • the refractive index of the SiNx: H layer (also referred to as “cell antireflection film”) and Si layer of the solar cell is lower than the refractive index of the transparent material. High is preferred. That is, it is preferably 1.5 to 2.2.
  • the refractive index higher than that of the transparent material it is -2.1.
  • the inorganic fluorescent material is 0.0001 to 0.005 parts by mass, preferably 0.0005 to 0.003 parts by mass, particularly preferably 0.001 to 100 parts by mass of the resin material contained in the solar cell sealing film. It is preferably contained in the solar cell sealing film in an amount of ⁇ 0.002 parts by mass.
  • the wavelength conversion material in the present invention includes an inorganic fluorescent material and a transparent material made of a (meth) acrylic resin. It is preferable that the inorganic fluorescent substance is included in or supported by the transparent material.
  • transparent means that the transmittance of light having a wavelength of 400 to 800 nm at an optical path length of 1 cm is 90% or more.
  • the (meth) acrylic resin is obtained by polymerizing a vinyl monomer that can be a (meth) acrylic resin, that is, a vinyl compound containing a (meth) acrylic monomer, a (meth) acrylic oligomer, or the like by a usual method.
  • (meth) acryl means acrylic, methacryl or a mixture thereof
  • (meth) acrylic resin means acrylic resin, methacrylic resin
  • (meth) acrylic monomer means acrylic monomer, methacrylic monomer. means.
  • Examples of the (meth) acrylic monomer include (meth) acrylic acid and alkyl esters thereof, and other vinyl compounds that can be copolymerized with these may be used in combination. Can also be used in combination.
  • (meth) acrylic acid alkyl esters examples include (meth) acrylic acid unsubstituted, such as methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, etc.
  • Alkyl esters dicyclopentenyl (meth) acrylates, tetrahydrofurfuryl (meth) acrylates, benzyl (meth) acrylates, urethane (meth) acrylates (eg reaction of tolylene diisocyanate with 2-hydroxyethyl (meth) acrylates (Reaction product of trimethylhexamethylene diisocyanate, cyclohexanedimethanol and 2-hydroxyethyl (meth) acrylic acid ester, etc.), hydroxyl group, epoxy group, halogen group, etc. substituted on these alkyl groups (meth) acrylic acid substitution Alkyl ester, and the like.
  • vinyl compounds that can be copolymerized with (meth) acrylic acid and (meth) acrylic acid alkyl ester include acrylamide, acrylonitrile, diacetone acrylamide, styrene, vinyltoluene and the like. These vinyl compounds can be used alone or in combination of two or more.
  • the blending ratio is preferably 0.1 to 50% by mass, and more preferably 0.5 to 10% by mass with respect to the total mass of the vinyl compound.
  • the bifunctional or higher functional vinyl compound in the present invention is, for example, a compound obtained by reacting a polyhydric alcohol with an ⁇ , ⁇ -unsaturated carboxylic acid (for example, polyethylene glycol di (meth) acrylate (the number of ethylene groups is 2).
  • a polyhydric alcohol for example, polyethylene glycol di (meth) acrylate (the number of ethylene groups is 2).
  • compounds obtained by adding an ⁇ , ⁇ -unsaturated carboxylic acid to a polyvalent glycidyl group-containing compound for example, trimethylolpropane triglycidyl ether triacrylate, bisphenol A diglycidyl ether diacrylate, etc.
  • polyvalent carboxylic acid examples thereof include an esterified product of (for example, phthalic anhydride) and a substance having a hydroxyl group and an ethylenically unsaturated group (for example, ⁇ -hydroxyethyl (meth) acrylate).
  • the vinyl compound in the present invention can be appropriately selected according to the use of the wavelength conversion material to be formed, and at least one selected from alkyl acrylates and alkyl methacrylates is preferably used.
  • At least one (meth) acrylic monomer having a viscosity at 25 ° C. of 5 to 30 mPa ⁇ s, preferably 8 to 20 mPa ⁇ s, is 10% by mass or more based on the total mass of the vinyl compound, particularly It is preferable to contain 20 to 50% by mass. Thereby, the dispersibility of the inorganic fluorescent substance in a wavelength conversion material becomes favorable, and the outstanding wavelength conversion effect is exhibited.
  • the viscosity When the viscosity is 5 mPa ⁇ s or less, it is difficult to maintain a dispersed state in the liquid due to the difference in density between the monomer and the inorganic fluorescent material, and as a result, the amount of the inorganic fluorescent material contained in the transparent resin particles May decrease or it may be difficult to control the amount. Conversely, when the viscosity is 30 mPa ⁇ s or more, it may be difficult to control the particle size during suspension polymerization.
  • Examples of the (meth) acrylate monomer having a viscosity at 25 ° C. of 5 to 30 mPa ⁇ s (25 ° C.) include 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, 3-chloro-2-hydroxypropyl methacrylate, cyclohexyl methacrylate, Examples include dicyclopentenyl methacrylate, dicyclopentenyloxyethyl methacrylate, pentamethylpiperidyl methacrylate, ethylene glycol dimethacrylate, and dicyclopentenyl acrylate.
  • a plurality of vinyl compounds having a viscosity of 5 to 30 mPa ⁇ s may be used, and a vinyl compound having a viscosity of 5 to 30 mPa ⁇ s and a vinyl compound having a viscosity of less than 5 mPa ⁇ s are used in combination. May be.
  • the viscosity measured using a rotary viscometer is a value measured using a single cylindrical rotational viscometer or a conical plate rotational viscometer, and can be measured in a small amount. It is preferable to measure using a conical plate type rotational viscometer (cone plate type).
  • radical polymerization initiator In the present invention, it is preferable to use a radical polymerization initiator in order to polymerize the vinyl compound.
  • a radical polymerization initiator a commonly used radical polymerization initiator can be used without particular limitation.
  • a peroxide etc. are mentioned preferably.
  • organic peroxides or azo radical initiators that generate free radicals by heat are preferred.
  • organic peroxide examples include isobutyl peroxide, ⁇ , ⁇ ′bis (neodecanoylperoxy) diisopropylbenzene, cumylperoxyneodecanoate, di-n-propylperoxydicarbonate, di-s- Butyl peroxydicarbonate, 1,1,3,3-tetramethylbutyl neodecanoate, bis (4-tert-butylcyclohexyl) peroxydicarbonate, 1-cyclohexyl-1-methylethyl peroxyneodecanoate , Di-2-ethoxyethyl peroxydicarbonate, di (ethylhexylperoxy) dicarbonate, t-hexyl neodecanoate, dimethoxybutyl peroxydicarbonate, di (3-methyl-3-methoxybutylperoxy) di Carbonate, t-butylperoxyneo Canoate,
  • azo radical initiator examples include azobisisobutyronitrile (AIBN, also known as V-60), 2,2′-azobis (2-methylisobutyronitrile) (also known as V-59), 2,2 '-Azobis (2,4-dimethylvaleronitrile) (aka V-65), dimethyl-2,2'-azobis (isobutyrate) (aka V-601), 2,2'-azobis (4-methoxy-2, 4-dimethylvaleronitrile) (also known as V-70).
  • AIBN azobisisobutyronitrile
  • V-60 2,2′-azobis (2-methylisobutyronitrile)
  • V-65 2,2 '-Azobis (2,4-dimethylvaleronitrile)
  • V-601 dimethyl-2,2'-azobis (isobutyrate)
  • V-601 2,2'-azobis (4-methoxy-2, 4-dimethylvaleronitrile
  • the amount of the radical polymerization initiator used can be appropriately selected according to the type of the vinyl compound, the refractive index of the resin particles to be formed, and the like, and is used in a commonly used amount. Specifically, for example, it can be used at 0.01 to 2% by weight, preferably 0.1 to 1% by weight, based on the vinyl compound.
  • the transparent material made of the (meth) acrylic resin is preferably transparent fine particles, and the transparent fine particles preferably include or carry the inorganic fluorescent substance. From the viewpoint of dispersibility in the sealing film, the transparent fine particles are preferably spherical particles.
  • the inorganic fluorescent substance can be prepared by surface-treating it, dispersing it in a vinyl compound, and subjecting it to suspension polymerization.
  • a wavelength conversion material in which an inorganic fluorescent substance is included in transparent fine particles by preparing a mixture containing a surface-treated inorganic fluorescent substance and a vinyl compound, and polymerizing the vinyl compound using a radical polymerization initiator. can be configured.
  • a surface treatment agent may be added to the inorganic fluorescent material or vinyl compound, and the surface treatment of the inorganic fluorescent material may be performed during suspension polymerization.
  • examples of the method of supporting the inorganic fluorescent material on the transparent fine particles include a method of mixing the inorganic fluorescent material and the transparent fine particles together with a binder resin and drying.
  • the content of the inorganic fluorescent substance in the wavelength conversion material is preferably 0.5 to 1.5% by mass, and preferably 0.7 to 1.2% by mass with respect to the mass of the wavelength conversion material. Within this range, the wavelength conversion effect can be ensured at a high level without deteriorating the transparency of the sealing film.
  • the content of the wavelength conversion material in the solar cell sealing film is 0.01 to 0.5 parts by mass, preferably 0.05 to 0.3 parts by mass, particularly preferably 0. 1 to 0.2 parts by mass.
  • the average particle diameter of the transparent fine particles is preferably 2 to 150 ⁇ m, more preferably 10 to 120 ⁇ m, and more preferably 50 to 120 ⁇ m from the viewpoint of improving light utilization efficiency.
  • the average particle size of the transparent fine particles and the inorganic fluorescent material is measured using a laser diffraction method, and corresponds to the particle size when the volume integration is 50% in the volume distribution obtained from the particle size distribution curve.
  • the particle size distribution measurement using the laser diffraction method can be performed using a laser diffraction scattering particle size distribution measuring apparatus (for example, product name: LS13320, manufactured by Beckman Coulter).
  • the inorganic fluorescent material is preferably surface-modified with a surface treatment agent in order to improve dispersibility in a transparent material.
  • the surface modification treatment can be performed by treating (or coating) the inorganic fluorescent material with a surface treatment agent or the like.
  • the surface treatment agent is not particularly limited as long as the dispersibility of the inorganic phosphor in the polymer can be improved.
  • Silica tetraalkoxysilanes (tetraC1-4-alkoxysilane such as tetramethoxysilane or oligomers thereof), etc.
  • a surface treatment by a sol-gel method using] a coupling agent (titanium coupling agent, silane coupling agent, etc.), polyorganosiloxane and the like.
  • These surface treatment agents may be used alone or in combination of two or more.
  • silane coupling agents include halogen-containing silane coupling agents (such as 3-chloropropyltrimethoxysilane), epoxy group-containing silane coupling agents (such as 3-glycidyloxypropyltrimethoxysilane), and amino group-containing silane cups.
  • halogen-containing silane coupling agents such as 3-chloropropyltrimethoxysilane
  • epoxy group-containing silane coupling agents such as 3-glycidyloxypropyltrimethoxysilane
  • amino group-containing silane cups examples include amino group-containing silane cups.
  • Ring agents such as 2-aminoethyltrimethoxysilane, mercapto group-containing silane coupling agents (such as 3-mercaptopropyltrimethoxysilane), vinyl group-containing silane coupling agents (such as vinyltrimethoxysilane), (meth) acryloyl And group-containing silane coupling agents (2- (meth) acryloxyethyltrimethoxysilane, 3-methacryloxypropyltrimethoxysilane, etc.).
  • polydialkylsiloxanes for example, polydiC1-10-alkylsiloxanes such as polydimethylsiloxane (dimethicone), preferably polydiC1-4-alkylsiloxanes
  • polyalkylalkenylsiloxanes for example, polymethylsiloxane
  • a preferred surface treatment agent is a silane coupling agent, and a (meth) acryloyl group-containing silane coupling agent such as 3-methacryloxypropyltrimethoxysilane is particularly preferred.
  • the ratio of the surface treatment agent is preferably 0.01 to 70% by mass, more preferably 0.1 to 50% by mass, and more preferably 0.5 to 0.5% by mass with respect to the entire inorganic fluorescent material (surface-treated inorganic fluorescent material). 30 mass% is more preferable.
  • the resin material of the sealing film for solar cells contains an olefin (co) polymer as a main component.
  • the olefin (co) polymer means an ethylene / ⁇ -olefin copolymer (for example, an ethylene / ⁇ -olefin copolymer (m-LLDPE) polymerized using a metallocene catalyst), polyethylene (for example, Olefin polymers such as low density polyethylene (LDPE), linear low density polyethylene (LLDPE), etc.), polypropylene, polybutene, etc., and copolymers of olefins and polar monomers.
  • LDPE low density polyethylene
  • LLDPE linear low density polyethylene
  • olefin (co) polymer it means a copolymer and has adhesiveness required for a sealing film for solar cells.
  • the olefin (co) polymer one of these may be used, or two or more may be mixed and used.
  • olefin (co) polymer an ethylene / ⁇ -olefin copolymer (m-LLDPE) polymerized using a metallocene catalyst, low density polyethylene (LDPE), linear low density polyethylene (LLDPE) is used.
  • LDPE low density polyethylene
  • LLDPE linear low density polyethylene
  • an olefin (co) polymer can be formed using a metallocene catalyst because it is excellent in processability, can form a crosslinked structure with a crosslinking agent, and can form a solar cell sealing film with high adhesion.
  • a polymerized ethylene / ⁇ -olefin copolymer (m-LLDPE) and / or an ethylene-polar monomer copolymer is preferred.
  • m-LLDPE is composed mainly of ethylene-derived constitutional units and further an ⁇ -olefin having 3 to 12 carbon atoms, such as , One or more kinds derived from propylene, 1-butene, 1-hexene, 1-octene, 4-methylpentene-1, 4-methyl-hexene-1, 4,4-dimethyl-pentene-1, etc.
  • the ethylene / ⁇ -olefin copolymer examples include an ethylene / 1-butene copolymer, an ethylene / 1-octene copolymer, an ethylene-4-methyl-pentene-1 copolymer, an ethylene / butene / hexene copolymer. Center polymers, ethylene / propylene / octene terpolymers, ethylene / butene / octene terpolymers, and the like.
  • the content of ⁇ -olefin in the ethylene / ⁇ -olefin copolymer is preferably 5 to 40% by mass, more preferably 10 to 35% by mass, and still more preferably 15 to 30% by mass. If the ⁇ -olefin content is small, the solar cell sealing film may have insufficient flexibility and impact resistance, and if it is too much, the heat resistance may be low.
  • the metallocene catalyst for polymerizing m-LLPDE a known metallocene catalyst may be used, and there is no particular limitation.
  • the metallocene catalyst is generally a compound having a structure in which a transition metal such as titanium, zirconium or hafnium is sandwiched between unsaturated cyclic compounds containing a ⁇ -electron cyclopentadienyl group or a substituted cyclopentadienyl group. And a promoter such as an aluminum compound such as alkylaluminoxane, alkylaluminum, aluminum halide, and alkylaluminum halide.
  • Metallocene catalysts are characterized by a uniform active site (single site catalyst), and usually a polymer having a narrow molecular weight distribution and an approximately equal comonomer content of each molecule is obtained.
  • the density of m-LLDPE is not particularly limited, but is 0.860 to 0.930 g / cm 3 , particularly 0.860 to 0.900 g / cm 3. preferable.
  • the melt flow rate (MFR) of m-LLDPE is not particularly limited, but is preferably 1.0 g / 10 min or more, more preferably 1.0 to 50.0 g / 10 min. 3.0 to 30.0 g / 10 min is more preferable. In addition, MFR is measured on condition of 190 degreeC and load 21.18N.
  • m-LLDPE commercially available m-LLDPE may be used.
  • Harmolex series Kernel series manufactured by Nippon Polyethylene Co., Ltd., Evolution series manufactured by Prime Polymer Co., Ltd., Excellen GMH series, Excellen FX series manufactured by Sumitomo Chemical Co., Ltd. and the like can be mentioned.
  • Examples of the polar monomer of the ethylene-polar monomer copolymer include unsaturated carboxylic acid, its salt, its ester, its amide, vinyl ester, carbon monoxide and the like.
  • unsaturated carboxylic acids such as acrylic acid, methacrylic acid, fumaric acid, itaconic acid, monomethyl maleate, monoethyl maleate, maleic anhydride, itaconic anhydride, lithium of these unsaturated carboxylic acids, sodium, Salts of monovalent metals such as potassium, salts of polyvalent metals such as magnesium, calcium and zinc, methyl acrylate, ethyl acrylate, isopropyl acrylate, isobutyl acrylate, n-butyl acrylate, isooctyl acrylate, methacrylic acid
  • unsaturated carboxylic acid esters such as methyl, ethyl methacrylate, isobutyl methacrylate, and dimethyl maleate
  • vinyl esters such as vinyl acetate and vinyl propionate, carbon monoxide, sulfur dioxide, etc. be able to.
  • ethylene-polar monomer copolymer examples include ethylene-acrylic acid copolymers, ethylene-unsaturated carboxylic acid copolymers such as ethylene-methacrylic acid copolymers, and ethylene-unsaturated carboxylic acids.
  • Ionomers in which some or all of the carboxyl groups of the copolymer are neutralized with the above metals ethylene-methyl acrylate copolymers, ethylene-ethyl acrylate copolymers, ethylene-methyl methacrylate copolymers, ethylene- Isobutyl acrylate copolymer, ethylene-unsaturated carboxylic acid ester copolymer such as ethylene-n-butyl acrylate copolymer, ethylene-isobutyl acrylate-methacrylic acid copolymer, ethylene-n-butyl acrylate -Ethylene-unsaturated carboxylic acid ester-unsaturated carbo such as methacrylic acid copolymer
  • Typical examples include acid copolymers and ionomers in which some or all of the carboxyl groups have been neutralized with the above metals, ethylene-vinyl ester copolymers such as ethylene-vinyl acetate copolymers
  • the ethylene-polar monomer copolymer it is preferable to use a copolymer having a melt flow rate specified by JIS K7210 of 35 g / 10 min or less, particularly 3 to 6 g / 10 min.
  • a solar cell sealing film having excellent processability can be obtained.
  • the value of the melt flow rate (MFR) is measured based on the conditions of 190 ° C. and a load of 21.18 N according to JIS K7210.
  • ethylene-polar monomer copolymers examples include ethylene-vinyl acetate copolymer (EVA), ethylene-methyl methacrylate copolymer (EMMA), ethylene-ethyl methacrylate copolymer, and ethylene-methyl acrylate copolymer.
  • EVA ethylene-vinyl acetate copolymer
  • EMMA ethylene-methyl methacrylate copolymer
  • Ethylene-ethyl acrylate copolymer is preferable, and EVA and EMMA are particularly preferable.
  • the sealing film for solar cells which is extremely excellent in transparency can be formed.
  • the content of vinyl acetate in EVA is preferably 20 to 35% by mass, more preferably 22 to 32% by mass, and particularly preferably 24 to 30% by mass. If the vinyl acetate content is less than 20% by mass, the sealing film may not be sufficiently transparent. If it exceeds 35% by mass, carboxylic acid, alcohol, amine, etc. are generated, and the sealing film and the protective member. There is a risk that foaming is likely to occur at the interface.
  • the content of methyl methacrylate in EMMA is 20 to 30% by mass, preferably 22 to 28% by mass. Within this range, a highly transparent sealing film can be obtained, and a large amount of ultraviolet light can be converted into visible light and incident on the solar cell element.
  • resin such as polyvinyl acetal resin (for example, polyvinyl formal, polyvinyl butyral (PVB resin), modified PVB) is used as a resin material. You may mix.
  • the solar cell sealing film of the present invention preferably contains a crosslinking agent to form a crosslinked structure of an ethylene-polar monomer copolymer.
  • a crosslinking agent an organic peroxide or a photopolymerization initiator is preferably used.
  • an organic peroxide because a sealing film with improved temperature dependency of adhesive strength, moisture resistance, and penetration resistance can be obtained.
  • Any organic peroxide may be used as long as it decomposes at a temperature of 100 ° C. or higher and generates radicals.
  • the organic peroxide is generally selected in consideration of the film formation temperature, the adjustment conditions of the composition, the curing temperature, the heat resistance of the adherend, and the storage stability. In particular, those having a decomposition temperature of 70 hours or more with a half-life of 10 hours are preferred.
  • organic peroxide examples include, from the viewpoint of processing temperature and storage stability of the resin, for example, benzoyl peroxide curing agent, tert-hexyl peroxypivalate, tert-butyl peroxypivalate, 3, 5, 5- Trimethylhexanoyl peroxide, di-n-octanoyl peroxide, lauroyl peroxide, stearoyl peroxide, 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanoate, succinic acid peroxide, 2,5-dimethyl-2,5-di (tert-butylperoxy) hexane, 2,5-dimethyl-2,5-di (2-ethylhexanoylperoxy) hexane, 1-cyclohexyl-1-methylethyl Peroxy-2-ethylhexanoate, tert-hexylpa Oxy-2-ethylhexano
  • benzoyl peroxide-based curing agent any can be used as long as it decomposes at a temperature of 70 ° C. or higher to generate radicals, and those having a decomposition temperature of 50 hours or higher with a half-life of 10 hours are preferable, It can be appropriately selected in consideration of preparation conditions, film formation temperature, curing (bonding) temperature, heat resistance of the adherend, and storage stability.
  • Usable benzoyl peroxide curing agents include, for example, benzoyl peroxide, 2,5-dimethylhexyl-2,5-bisperoxybenzoate, p-chlorobenzoyl peroxide, m-toluoyl peroxide, 2, Examples include 4-dichlorobenzoyl peroxide and t-butyl peroxybenzoate.
  • the benzoyl peroxide curing agent may be used alone or in combination of two or more.
  • the organic peroxide 2,5-dimethyl-2,5-di (tert-butylperoxy) hexane or tert-butylperoxy-2-ethylhexyl monocarbonate is particularly preferable.
  • crosslinked favorably and has the outstanding transparency is obtained.
  • the content of the organic peroxide used in the solar cell sealing film is preferably 0.1 to 5 parts by mass, more preferably 0.2 to 3 parts by mass with respect to 100 parts by mass of the resin material. Is preferred. If the content of the organic peroxide is small, the crosslinking speed may be lowered during the crosslinking and curing, and if the content is large, the compatibility with the copolymer may be deteriorated.
  • photopolymerization initiator any known photopolymerization initiator can be used, but a photopolymerization initiator having good storage stability after blending is desirable.
  • photopolymerization initiators include 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1-hydroxycyclohexyl phenyl ketone, and 2-methyl-1- (4- (methylthio) phenyl).
  • Acetophenones such as -2-morpholinopropane-1, benzoins such as benzyldimethylketal, benzophenones such as benzophenone, 4-phenylbenzophenone and hydroxybenzophenone, thioxanthones such as isopropylthioxanthone and 2-4-diethylthioxanthone, As other special ones, methylphenylglyoxylate can be used. Particularly preferably, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-1- (4- (methylthio) phenyl) -2-morpholinopropane-1, Examples include benzophenone.
  • photopolymerization initiators may contain one or more known photopolymerization accelerators such as benzoic acid-based or tertiary amine-based compounds such as 4-dimethylaminobenzoic acid, if necessary. Can be mixed and used. Moreover, it can be used individually by 1 type of only a photoinitiator, or 2 or more types of mixture.
  • the content of the photopolymerization initiator is 0.1 to 5 parts by mass, preferably 0.2 to 3 parts by mass with respect to 100 parts by mass of the resin material.
  • the sealing film for solar cells of the present invention further contains a crosslinking aid.
  • the crosslinking aid can improve the gel fraction of the olefin (co) polymer and improve the adhesion and weather resistance of the solar cell sealing film.
  • the content of the crosslinking aid is usually 0.1 to 5 parts by weight, preferably 0.1 to 3 parts by weight, particularly preferably 0.3 to 2.0 parts by weight with respect to 100 parts by weight of the resin material. Is done. Thereby, the sealing film which the hardness after bridge
  • crosslinking aid compound having a radical polymerizable group as a functional group
  • examples of the crosslinking aid include trifunctional crosslinking aids such as triallyl cyanurate and triallyl isocyanurate, and (meth) acrylic esters (eg, NK ester) ) Monofunctional or bifunctional crosslinking aids.
  • trifunctional crosslinking aids such as triallyl cyanurate and triallyl isocyanurate, and (meth) acrylic esters (eg, NK ester) ) Monofunctional or bifunctional crosslinking aids.
  • triallyl cyanurate and triallyl isocyanurate are preferable, and triallyl isocyanurate is particularly preferable.
  • the solar cell sealing film of the present invention may further contain an adhesion improver.
  • an adhesion improver a silane coupling agent can be used. Thereby, it can be set as the sealing film for solar cells which has the further outstanding adhesive force.
  • the silane coupling agent include ⁇ -chloropropyltrimethoxysilane, vinyltriethoxysilane, vinyltris ( ⁇ -methoxyethoxy) silane, ⁇ -methacryloxypropyltrimethoxysilane, vinyltriacetoxysilane, and ⁇ -glycidoxypropyl.
  • the content of the silane coupling agent is 5 parts by mass or less, preferably 0.1 to 2 parts by mass with respect to 100 parts by mass of the resin material.
  • the sealing film for solar cells of the present invention improves or adjusts various physical properties of the film (optical properties such as mechanical strength and transparency, heat resistance, light resistance, crosslinking speed, etc.), especially improvement of mechanical strength. Therefore, if necessary, various additives such as a plasticizer, an acryloxy group-containing compound, a methacryloxy group-containing compound and / or an epoxy group-containing compound may further be included.
  • the solar cell sealing film of the present invention may be formed according to a known method.
  • the composition containing each of the above-described components can be produced by a method of obtaining a sheet-like material by molding by ordinary extrusion molding, calendar molding (calendering) or the like.
  • the thickness of the solar cell sealing film of the present invention is not particularly limited, but is 0.05 to 2 mm, preferably 0.3 to 0.8 mm.
  • the structure of the solar cell of the present invention is not particularly limited as long as it includes a structure in which the solar cell element is sealed by the solar cell sealing film of the present invention.
  • the structure etc. which sealed the cell for solar cells by interposing the sealing film for solar cells of this invention between the surface side transparent protection member and the back surface side protection member, and making it bridge-integrate are mentioned. .
  • the solar cell sealing film of the present invention is used in the solar cell of the present invention, the power generation efficiency of the solar cell element is improved by the wavelength conversion material, and the high power generation efficiency is maintained for a long time. It is a solar cell.
  • the side (light-receiving surface side) where the light of the solar cell is irradiated is referred to as “front surface side”, and the side opposite to the light-receiving surface of the solar cell is referred to as “back surface side”.
  • the front surface side transparent protective member 11 the front surface side sealing film 13A, the solar cell cell 14, the back surface side sealing.
  • the film 13B and the back surface side protection member 12 may be laminated, and the sealing film may be cross-linked and cured according to a conventional method such as heat and pressure.
  • a laminated body in which each member is laminated is heated by a vacuum laminator at a temperature of 135 to 180 ° C., further 140 to 180 ° C., particularly 155 to 180 ° C., a degassing time of 0.1 to 5 minutes, and a press pressure. What is necessary is just to heat-press in 0.1-1.5 kg / cm 2 and press time 5-15 minutes.
  • the solar cell 14 can be sealed by integrating the front surface side transparent protective member 11, the back surface side transparent member 12, and the solar cell 14.
  • the solar cell sealing film of the present invention can improve the power generation efficiency of the solar cell element by including the wavelength conversion material as described above, it is disposed on the light receiving surface side of the solar cell element in the solar cell. It is preferable to use as the sealing film 13A, that is, the sealing film 13A disposed between the surface-side transparent protective member 12 and the solar battery cell 14 in FIG.
  • the solar cell sealing film of the present invention is not limited to a solar cell using a single crystal or polycrystalline silicon crystal solar cell as shown in FIG. It can also be used for a sealing film of a thin film solar cell such as a solar cell and a copper indium selenide (CIS) solar cell.
  • the solar cell of the present invention is formed on a thin film solar cell element layer formed by a chemical vapor deposition method or the like on the surface of a surface side transparent protective member such as a glass substrate, a polyimide substrate, or a fluororesin transparent substrate.
  • the structure for laminating the battery sealing film and the back surface side protective member and adhering and integrating them On the solar cell element formed on the surface of the back surface side protective member, the structure for laminating the battery sealing film and the back surface side protective member and adhering and integrating them, the front surface side Laminated transparent protective member, bonded and integrated structure, or front side transparent protective member, front side sealing film, thin film solar cell element, back side sealing film, and back side protective member are laminated in this order, For example, a structure that is bonded and integrated.
  • the cell for solar cells and a thin film solar cell element are named generically, and are called a solar cell element.
  • the surface side transparent protective member 11 is usually a glass substrate such as silicate glass.
  • the thickness of the glass substrate is generally from 0.1 to 10 mm, and preferably from 0.3 to 5 mm.
  • the glass substrate may generally be chemically or thermally strengthened.
  • the back side protective member 12 is preferably a plastic film such as polyethylene terephthalate (PET) or polyamide. Further, a film obtained by laminating a fluorinated polyethylene film, particularly a fluorinated polyethylene film / Al / fluorinated polyethylene film in this order in consideration of heat resistance and wet heat resistance may be used.
  • PET polyethylene terephthalate
  • a film obtained by laminating a fluorinated polyethylene film, particularly a fluorinated polyethylene film / Al / fluorinated polyethylene film in this order in consideration of heat resistance and wet heat resistance may be used.
  • the sealing film for solar cells of this invention has the characteristics in the sealing film used for the surface side and / or back surface side of a solar cell (a thin film solar cell is included). Therefore, the members other than the sealing film such as the front surface side transparent protective member, the back surface side protective member, and the solar battery cell are not particularly limited as long as they have the same configuration as a conventionally known solar battery.
  • the obtained fired product was loosened to obtain a target Ba 0.85 Mg 0.65 Al 10 O 17 : Eu 0.15 , Mn 0.35 green light emitting fluorescent material.
  • the obtained inorganic fluorescent material had a volume average diameter of 1.4 ⁇ m and a refractive index of 1.77.
  • the obtained fired product was loosened to obtain a target Ba 0.82 Mg 1.42 Al 16 O 27 : Eu 0.18 , Mn 0.58 green light emitting fluorescent material.
  • the obtained inorganic fluorescent material had a volume average diameter of 1.4 ⁇ m and a refractive index of 1.77.
  • ⁇ Surface treatment of inorganic fluorescent material> Disperse 5 g of the inorganic fluorescent material obtained in Synthesis Example 1 in 50 g of toluene, and stir the silane coupling agent, trade name: SZ6030 (3-methacryloxypropyltrimethoxysilane) manufactured by Toray Dow Corning Co., Ltd. with stirring. 05 g was charged. After stirring at room temperature (25 ° C.) for 1 hour, it was filtered off, and the obtained solid content was heat-treated in an explosion-proof oven set at 110 ° C. for 1 hour, so that 5.05 g of the surface-treated inorganic fluorescent material was obtained. Obtained.
  • the inorganic fluorescent material obtained in Synthesis Example 2 was similarly subjected to surface treatment to obtain 5.05 g of the surface-treated inorganic fluorescent material.
  • Wavelength Conversion Material 1 g of the surface-treated inorganic fluorescent material obtained in Synthesis Example 1, 65 g of methyl methacrylate (viscosity 0.44 mPa ⁇ s at 25 ° C.), ethylene glycol dimethacrylate (at 25 ° C.) 5 g of viscosity 2.98 mPa ⁇ s), 30 g of dicyclopentenyl methacrylate (viscosity 10.80 mPa ⁇ s at 25 ° C.), 2,2′-azobis (2,4-dimethylvaleronitrile) as a thermal radical initiator 0.5 g each was weighed and placed in a 200 ml screw tube, and mixed for 1 hour at a rotation speed of 100 min ⁇ 1 using a mix rotor.
  • This suspension was subjected to a laser diffraction / scattering particle size distribution measuring apparatus (Beckman Coulter, trade name: LS13320) using a pump speed of 50%, a refractive index of inorganic phosphor-containing particles of 1.5, and a refractive index of water of 1.33. As a result, when the average particle diameter was measured, the volume average diameter was 104 ⁇ m.
  • the precipitate is filtered off, washed with ion-exchanged water, dried at 60 ° C., and polymer particles obtained by suspension polymerization (wavelength converting material (1) containing inorganic fluorescent substances in transparent fine particles made of (meth) acrylic resin). )
  • the content of the inorganic fluorescent substance in the wavelength conversion material (1) is 1% by mass with respect to the mass of the wavelength conversion material.
  • Wavelength Conversion Material (2) In the above (1), instead of the surface-treated inorganic fluorescent material 1g obtained in Synthesis Example 1, the surface-treated inorganic fluorescent material 1g obtained in Synthesis Example 2 was used. A wavelength conversion material was produced in the same manner as in (1) except that it was. The content of the inorganic fluorescent substance in the wavelength conversion material (2) is 1% by mass with respect to the mass of the wavelength conversion material.
  • Wavelength converting material (4) is (Sr n Ba n Ca n) (PO 4) Cl: an Eu 2+ n have not is included in the transparent particles inorganic fluorescent substance itself.
  • ⁇ Evaluation method> Preparation of cross-linked sample After sandwiching the solar cell sealing film between two pieces of white glass (thickness 3.2 mm), using a vacuum laminator and crimping at 90 ° C for 2 minutes in vacuum time and 8 minutes in press time, A sample was obtained by heating in an oven at 155 ° C. for 30 minutes to crosslink and cure the solar cell sealing film.
  • Fluorescence intensity The fluorescence intensity of the above sample was measured using a spectrophotometer (F-7000, manufactured by Hitachi High-Technologies Corporation). Measurement conditions: Photomultiplier voltage 400 V, excitation side slit 20 nm, fluorescence side slit 10 nm, scan speed 240 nm / min. The irradiation wavelength was 355 nm only for the wavelength conversion material (3), and the other wavelength conversion materials (1), (2) and (4) were 325 nm.
  • UV degradation With respect to the above sample, using an ultraviolet lamp (Super U ⁇ , manufactured by Iwasaki Electric Co., Ltd.), at a position of 235 mm from a light source that irradiates ultraviolet rays of 1000 W / cm 2 under a black panel temperature of 63 ° C. When placed facing each other and irradiated with ultraviolet rays, the time required to decrease to 30% with respect to the emission intensity of the sample before ultraviolet irradiation was measured.
  • Super U ⁇ manufactured by Iwasaki Electric Co., Ltd.
  • the solar cell output was measured under conditions of 1000 W / m 2 and 25 ° C. using a solar simulator manufactured by Mitsunaga Electric.
  • a solar cell module using the solar cell sealing film of Reference Example 1 was produced under the same conditions, and the short-circuit current value of this module was set to 100, and the solar cell output improvement effect of the examples and comparative examples was evaluated did.
  • the back side solar cell sealing film was added to 0.2 parts by mass of an ultraviolet absorber (2-hydroxy-4-n-octoxybenzophenone) in addition to the formulation of the solar cell sealing film of Reference Example 1 in Table 3.
  • the composition to which was added was prepared by calendar molding in the same manner as described above.
  • EVA vinyl acetate content 26% by mass (Ultrasen 634, manufactured by Tosoh Corporation)
  • m-LLDPE Density 0.880 g / cm 3 (Kernel KS340T, manufactured by Nippon Polyethylene)
  • Cross-linking agent t-butylperoxy-2-ethylhexyl monocarbonate
  • Cross-linking aid triallyl isocyanurate
  • Silane coupling agent ⁇ -methacryloxypropyltrimethoxysilane
  • P 2 S 3 wavelength converting material wavelength converting material (4) comprising :( Sr n Ba n Ca n) (PO

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Sealing Material Composition (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 To provide a solar cell sealing film, whereby enhancement of the efficiency of electric power generation by a phosphor can be maintained at a high level even when the solar cell is used for a long time. A solar cell sealing film, including a wavelength conversion material and a resin material which includes an olefin (co)polymer, the wavelength conversion material in solar cell sealing films (13A, 13B) including a transparent material comprising a (meth)acrylic resin, and at least one species of inorganic phosphor selected from substances represented by formula (I) or (II) ((I): Ba1-aMg1-bAl10O17:Eua,Mnb (In formula (I), a is 0.05 to 0.25, and b is 0.10 to 0.40.); (II): Ba1-cMg2-dAl16O27:Euc,Mnd (In formula (II), c is 0.05 to 0.25, and d is 0.20 to 0.80.), the content of the inorganic phosphor being 0.0001 to 0.005 parts by mass with respect to 100 parts by mass of the resin material.

Description

太陽電池用封止膜及びこれを用いた太陽電池Solar cell sealing film and solar cell using the same
 本発明は、オレフィン(共)重合体を含む太陽電池用封止膜に関し、特に波長変換材料を含むことにより、太陽電池の発電に寄与する光線を増加させ、発電効率を向上できる太陽電池用封止膜に関する。 TECHNICAL FIELD The present invention relates to a solar cell sealing film containing an olefin (co) polymer, and in particular, by including a wavelength conversion material, it increases the light rays contributing to the power generation of the solar cell and can improve the power generation efficiency. Concerning the stop film.
 近年、資源の有効利用や環境汚染の防止等の面から、太陽光を電気エネルギーに直接変換する太陽電池が広く使用され、更に、耐久性や発電効率等の点から開発が進められている。 In recent years, solar cells that directly convert sunlight into electrical energy have been widely used from the standpoints of effective use of resources and prevention of environmental pollution, and are being developed from the viewpoint of durability and power generation efficiency.
 太陽電池は、一般に、図1に示すように、ガラス基板等からなる表面側透明保護部材11、表面側封止膜13A、シリコン結晶系発電素子などの太陽電池用セル14、裏面側封止膜13B、及び裏面側保護部材(バックカバー)12をこの順で積層し、減圧下で脱気した後、加熱加圧して表面側封止膜13A及び裏面側封止膜13Bを架橋硬化させて接着一体化することにより製造される。 As shown in FIG. 1, a solar cell generally has a surface-side transparent protective member 11 made of a glass substrate or the like, a surface-side sealing film 13A, a solar cell 14 such as a silicon crystal power generation element, a back-side sealing film. 13B and the back side protection member (back cover) 12 are laminated in this order, and after deaeration under reduced pressure, the surface side sealing film 13A and the back side sealing film 13B are crosslinked and cured to be bonded by heating and pressurization. Manufactured by integrating.
 ところで、一般にシリコン結晶系発電素子等、何れのタイプの太陽電池セルであっても紫外領域の光線に対しては分光感度が低く、太陽光のエネルギーを有効に活用できていないという問題点が知られている。この問題点を解決するために、紫外領域の光線を可視領域又は近赤外領域の波長の光線に変換する材料(波長変換材料)を用いることにより、太陽電池セルの発電効率を向上させる技術が提案されている。具体的には、太陽電池セルの受光面側に、蛍光物質を含む層を設けることにより、太陽光スペクトルの内、紫外領域の光を波長変換し、太陽電池セルの発電に寄与の大きい波長の光を発光させる方法(例えば、特許文献1)、有機蛍光物質(例えば、500~1000nmの蛍光を発する希土類錯体)を太陽電池モジュールの封止材(封止膜)に含有させる手法(例えば、特許文献2、3)等が提案されている。 By the way, in general, any type of solar cell, such as a silicon crystal power generation element, has a problem that the spectral sensitivity is low for light in the ultraviolet region, and solar energy cannot be used effectively. It has been. In order to solve this problem, there is a technique for improving the power generation efficiency of solar cells by using a material (wavelength conversion material) that converts light in the ultraviolet region into light having a wavelength in the visible region or near infrared region. Proposed. Specifically, by providing a layer containing a fluorescent material on the light-receiving surface side of the solar battery cell, the wavelength of ultraviolet light in the solar spectrum is converted to a wavelength that greatly contributes to power generation of the solar battery cell. A method of emitting light (for example, Patent Document 1), a method of containing an organic fluorescent material (for example, a rare earth complex emitting fluorescence of 500 to 1000 nm) in a sealing material (sealing film) of a solar cell module (for example, patent Documents 2 and 3) have been proposed.
特開2003-243682号公報JP 2003-243682 A 特開2006-303033号公報JP 2006-303033 A 特開2011-210891号公報JP 2011-210891 A
 しかしながら、特許文献1~3に記載された有機蛍光物質は、紫外線や熱による劣化が大きく、屋外で長期間にわたって使用される太陽電池に使用する場合には波長変換する効果が低下し、発電効率を向上する効果が低下し易いという問題があった。この問題に対し、紫外線や熱による劣化が生じ難い無機蛍光物質を使用することが提案されているが、無機蛍光物質を用いた場合には太陽電池用封止膜の透明性が低下し易く、発電効率の向上効果が十分に得られないという問題があった。 However, the organic fluorescent materials described in Patent Documents 1 to 3 are greatly deteriorated by ultraviolet rays and heat, and when used for a solar cell used outdoors for a long time, the effect of wavelength conversion is reduced, and the power generation efficiency is reduced. There is a problem that the effect of improving the resistance is likely to decrease. For this problem, it has been proposed to use an inorganic fluorescent material that is unlikely to be deteriorated by ultraviolet rays or heat, but when an inorganic fluorescent material is used, the transparency of the solar cell sealing film is likely to decrease, There was a problem that the effect of improving power generation efficiency could not be obtained sufficiently.
 したがって、本発明の目的は、太陽電池を長期間に亘って使用した場合であっても、蛍光物質による発電効率向上効果を高い水準で維持することができる太陽電池用封止膜を提供することにある。 Accordingly, an object of the present invention is to provide a solar cell sealing film that can maintain the power generation efficiency improvement effect of the fluorescent material at a high level even when the solar cell is used for a long period of time. It is in.
 また、本発明の目的は、高い発電効率を長期に亘り維持することができる太陽電池を提供することにある。 Also, an object of the present invention is to provide a solar cell that can maintain high power generation efficiency over a long period of time.
 上記目的は、
 オレフィン(共)重合体を含む樹脂材料及び波長変換材料を含む太陽電池用封止膜であって、
 前記波長変換材料が、下記式(I)又は(II)
 Ba1-aMg1-bAl1017:Eu,Mn   (I)
 (式中、aは0.05以上0.25以下であり、bは0.10以上0.40以下である。)
 Ba1-cMg2-dAl1627:Eu,Mn   (II)
 (式中、cは0.05以上0.25以下であり、dは0.20以上0.80以下である。)
 で表される物質から選択される少なくとも1種の無機蛍光物質と(メタ)アクリル樹脂からなる透明材料とを含み、
 前記無機蛍光物質の含有量が、前記樹脂材料100質量部に対して0.0001~0.005質量部であることを特徴とする太陽電池用封止膜により達成される。
The above purpose is
A solar cell encapsulating film comprising a resin material containing an olefin (co) polymer and a wavelength conversion material,
The wavelength conversion material is represented by the following formula (I) or (II)
Ba 1-a Mg 1-b Al 10 O 17 : Eu a , Mn b (I)
(In the formula, a is from 0.05 to 0.25, and b is from 0.10 to 0.40.)
Ba 1-c Mg 2-d Al 16 O 27: Eu c, Mn d (II)
(In the formula, c is 0.05 or more and 0.25 or less, and d is 0.20 or more and 0.80 or less.)
Including at least one inorganic fluorescent substance selected from the substances represented by: and a transparent material made of a (meth) acrylic resin,
The content of the inorganic fluorescent material is 0.0001 to 0.005 parts by mass with respect to 100 parts by mass of the resin material.
 上記式(I)又は(II)で表される無機蛍光物質は従来の蛍光物質と比較して紫外線や熱による劣化が生じにくく、且つ十分な発光強度で紫外線を可視光の波長領域に変換可能である。さらに、波長変換材料は(メタ)アクリル樹脂からなる透明材料を含んでいるので、封止膜に入射した光の拡散が抑制され、封止膜の十分な透明性を確保することができる。 The inorganic fluorescent substance represented by the above formula (I) or (II) is less susceptible to deterioration by ultraviolet rays or heat than conventional fluorescent substances, and can convert ultraviolet rays into the visible light wavelength region with sufficient emission intensity. It is. Furthermore, since the wavelength conversion material contains a transparent material made of (meth) acrylic resin, diffusion of light incident on the sealing film is suppressed, and sufficient transparency of the sealing film can be ensured.
 本発明の好適態様は以下の通りである。
 (1)前記(メタ)アクリル樹脂からなる透明材料は透明微粒子であり、該透明微粒子に前記無機蛍光物質が包含されている。
 (2)前記透明微粒子の平均粒子径が2~150μmである。
 (3)前記無機蛍光物質がシランカップリング剤により表面処理されている。
 (4)前記波長変換材料における前記無機蛍光物質の含有量が、前記波長変換材料の質量に対して0.5~1.5質量%である。
Preferred embodiments of the present invention are as follows.
(1) The transparent material made of the (meth) acrylic resin is transparent fine particles, and the inorganic fine particles are included in the transparent fine particles.
(2) The transparent fine particles have an average particle size of 2 to 150 μm.
(3) The inorganic fluorescent material is surface-treated with a silane coupling agent.
(4) The content of the inorganic fluorescent substance in the wavelength conversion material is 0.5 to 1.5 mass% with respect to the mass of the wavelength conversion material.
 また、上記目的は、本発明の太陽電池用封止膜により太陽電池素子を封止してなる太陽電池により達成される。 Also, the above object is achieved by a solar cell in which a solar cell element is sealed with the solar cell sealing film of the present invention.
 本発明の太陽電池封止膜は、紫外線や熱等による劣化が生じ難く且つ波長変換効果の高い無機蛍光物質と、封止膜の透明性を確保できる(メタ)アクリル樹脂からなる透明微粒子とを含む波長変換材料を含んでいるので、発電効率を向上させる効果を長期間維持可能である。したがって、本発明によれば、高い発電効率が長期に亘り維持される太陽電池を得ることができる。 The solar cell encapsulating film of the present invention comprises an inorganic fluorescent material that is not easily deteriorated by ultraviolet rays or heat and has a high wavelength conversion effect, and transparent fine particles made of (meth) acrylic resin that can ensure the transparency of the encapsulating film. Since the wavelength conversion material is included, the effect of improving the power generation efficiency can be maintained for a long time. Therefore, according to the present invention, it is possible to obtain a solar cell that maintains high power generation efficiency over a long period of time.
一般的な太陽電池の構造を示す概略断面図である。It is a schematic sectional drawing which shows the structure of a general solar cell.
 上述したように本発明の太陽電池用封止膜は、オレフィン(共)重合体を含む樹脂材料及び波長変換材料を含む。波長変換材料は、下記式(I)又は(II)で表される物質のうち少なくとも1種の無機蛍光物質及び(メタ)アクリル樹脂からなる透明材料を含み、必要に応じてその他の成分を含んで構成される。 As described above, the solar cell sealing film of the present invention includes a resin material containing an olefin (co) polymer and a wavelength conversion material. The wavelength conversion material includes a transparent material composed of at least one inorganic fluorescent substance and (meth) acrylic resin among substances represented by the following formula (I) or (II), and includes other components as necessary. Consists of.
 Ba1-aMg1-bAl1017:Eu,Mn   (I)
 (一般式(I)中、aは0.05以上0.25以下であり、bは0.10以上0.40以下である。)
Ba 1-a Mg 1-b Al 10 O 17 : Eu a , Mn b (I)
(In general formula (I), a is 0.05 or more and 0.25 or less, and b is 0.10 or more and 0.40 or less.)
 Ba1-cMg2-dAl1627:Eu,Mn   (II)
 (一般式(II)中、cは0.05以上0.25以下であり、dは0.20以上0.80以下である。)
Ba 1-c Mg 2-d Al 16 O 27: Eu c, Mn d (II)
(In general formula (II), c is 0.05 or more and 0.25 or less, and d is 0.20 or more and 0.80 or less.)
 [無機蛍光物質]
 上記一般式(I)又は(II)で表される無機蛍光物質は、緑色発光蛍光体であって、300~450nmに励起波長帯があり、蛍光波長は515nmであり、発光量子効率は86%と十分に高い。これらの無機蛍光物質に、近紫外光から青色光までの光が照射されると、励起して、発光を起こして波長変換が行われる。
[Inorganic fluorescent material]
The inorganic fluorescent material represented by the above general formula (I) or (II) is a green light emitting phosphor having an excitation wavelength band at 300 to 450 nm, a fluorescence wavelength of 515 nm, and an emission quantum efficiency of 86%. And high enough. When these inorganic fluorescent materials are irradiated with light from near-ultraviolet light to blue light, they are excited to emit light and undergo wavelength conversion.
 本発明における無機蛍光物質は、BaMgAlO:Eu,Mn系の無機蛍光物質の中でも、Eu,Mnの量を特定の範囲にすることで、さらに優れた蛍光特性を示すことができる。発光輝度、励起波長、量子効率の観点から、一般式(I)におけるaは0.10以上0.20以下であることがより好ましく、bは0.30以上0.40以下であることがより好ましい。a又はbが低すぎると発光輝度、励起波長に対する十分な効果を得ることができない恐れがあり、a又はbが高すぎると光輝度が低下する場合がある。また、一般式(II)におけるcは0.10以上0.25以下であることがより好ましく、dは0.50以上0.70以下であることがより好ましい。c又はdが低すぎると発光輝度、励起波長に対する十分な効果を得ることができない恐れがあり、c又はdが高すぎると発光輝度が低下する場合がある。 The inorganic fluorescent substance in the present invention can exhibit further excellent fluorescence characteristics by making the amount of Eu and Mn within a specific range among BaMgAlO: Eu and Mn inorganic fluorescent substances. From the viewpoint of emission luminance, excitation wavelength, and quantum efficiency, a in general formula (I) is more preferably 0.10 or more and 0.20 or less, and b is more preferably 0.30 or more and 0.40 or less. preferable. If a or b is too low, sufficient effects on the emission luminance and excitation wavelength may not be obtained. If a or b is too high, the light luminance may decrease. Further, c in the general formula (II) is more preferably from 0.10 to 0.25, and d is more preferably from 0.50 to 0.70. If c or d is too low, it may not be possible to obtain a sufficient effect on the emission luminance and excitation wavelength, and if c or d is too high, the emission luminance may decrease.
 上記無機蛍光物質は、無機化合物の製造に用いられる通常の製造方法で製造することができる。例えば、無機蛍光物質を構成する元素をそれぞれ含む化合物を、所定の割合で混合した後、焼成処理することで所望の構成を有する無機蛍光物質を製造することができる。それぞれの元素を含む化合物としては、例えば、酸化物、炭酸塩、硝酸塩等を挙げることができる。 The inorganic fluorescent substance can be manufactured by a normal manufacturing method used for manufacturing inorganic compounds. For example, an inorganic fluorescent material having a desired configuration can be manufactured by mixing compounds each containing an element constituting the inorganic fluorescent material at a predetermined ratio and then performing a baking treatment. As a compound containing each element, an oxide, carbonate, nitrate etc. can be mentioned, for example.
 また無機蛍光物質の製造においては、必要に応じてフラックスを用いてもよい。フラックスとしては例えば、AlF、BaCl等を挙げることができる。無機蛍光物質の製造にフラックスを用いた場合には、F、Cl、Br、I等のハロゲン元素が一種あるいは複数種、無機蛍光物質中に少量混じることがある。 In the production of the inorganic fluorescent material, a flux may be used as necessary. Examples of the flux include AlF 3 and BaCl 2 . When flux is used in the production of the inorganic fluorescent material, one or more halogen elements such as F, Cl, Br, and I may be mixed in a small amount in the inorganic fluorescent material.
 また、一般式(I)又は(II)で表される無機蛍光物質の製造においては、それぞれの原子の含有比率が、所望の構成比率から-10モル%~+10モル%の範囲であれば、十分な発光輝度が得られる。 Further, in the production of the inorganic fluorescent material represented by the general formula (I) or (II), if the content ratio of each atom is in the range of −10 mol% to +10 mol% from the desired constituent ratio, Sufficient emission luminance can be obtained.
 焼成処理の条件としては、例えば1200~1600℃で、1~10時間とすることができる。また焼成処理は還元雰囲気下で行うことが好ましい。例えば、窒素-水素還元雰囲気下で行うことが好ましい。窒素-水素還元雰囲気下の水素濃度は特に制限されないが、例えば、0.5~4質量%とすることができる。 The conditions for the baking treatment may be, for example, 1200 to 1600 ° C. and 1 to 10 hours. Moreover, it is preferable to perform a baking process in a reducing atmosphere. For example, it is preferably performed in a nitrogen-hydrogen reducing atmosphere. The hydrogen concentration in the nitrogen-hydrogen reducing atmosphere is not particularly limited, but can be, for example, 0.5 to 4% by mass.
 一般式(I)又は(II)で表される無機蛍光物質の粒子径は特に制限されないが、発光輝度と発電効率、入射光の散乱の観点から、体積平均粒子径が0.1μm~10μmであることが好ましく、0.2μm~5μmであることがより好ましい。無機蛍光物質の粒子径は、ボールミル、ビーズミル、ジェットミルなどの粉砕機を用いて、常法により粉砕処理することで調整することができる。 The particle diameter of the inorganic fluorescent material represented by the general formula (I) or (II) is not particularly limited, but the volume average particle diameter is 0.1 μm to 10 μm from the viewpoint of light emission luminance, power generation efficiency, and incident light scattering. It is preferable that the thickness is 0.2 μm to 5 μm. The particle diameter of the inorganic fluorescent material can be adjusted by pulverizing by a conventional method using a pulverizer such as a ball mill, a bead mill, or a jet mill.
 波長変換材料における一般式(I)又は(II)で表される無機蛍光物質の屈折率は特に制限されないが、太陽電池用セルへのあらゆる角度から入り込む外部光を反射損失少なく、効率良く太陽電池用セル内に導入するために、太陽電池用セルのSiNx:H層(「セル反射防止膜」ともいう)及びSi層等の屈折率よりも低くすることが好ましく、透明材料の屈折率よりも高いことが好ましい。すなわち、1.5~2.2であることが好ましい。また、入射した太陽光のうち、太陽電池用セルによって反射された光を拡散させ、効率よく太陽電池用セルに入射させるためには、透明材料より屈折率を高くすることが好ましく、1.6~2.1であることが好ましい。 Although the refractive index of the inorganic fluorescent material represented by the general formula (I) or (II) in the wavelength conversion material is not particularly limited, the external light entering from any angle into the solar cell is reduced in reflection loss and efficiently the solar cell. In order to be introduced into the cell, it is preferable that the refractive index of the SiNx: H layer (also referred to as “cell antireflection film”) and Si layer of the solar cell is lower than the refractive index of the transparent material. High is preferred. That is, it is preferably 1.5 to 2.2. Moreover, in order to diffuse the light reflected by the solar cell among the incident sunlight and make it efficiently enter the solar cell, it is preferable to make the refractive index higher than that of the transparent material. It is preferable that it is -2.1.
 無機蛍光物質は、太陽電池用封止膜に含まれる樹脂材料100質量部に対して0.0001~0.005質量部、好ましくは0.0005~0.003質量部、特に好ましくは0.001~0.002質量部の量で太陽電池用封止膜に含まれていることが好ましい。 The inorganic fluorescent material is 0.0001 to 0.005 parts by mass, preferably 0.0005 to 0.003 parts by mass, particularly preferably 0.001 to 100 parts by mass of the resin material contained in the solar cell sealing film. It is preferably contained in the solar cell sealing film in an amount of ˜0.002 parts by mass.
 [透明材料]
 上述したように、本発明における波長変換材料は無機蛍光物質と(メタ)アクリル樹脂からなる透明材料とを含む。無機蛍光物質は透明材料に包含されているか担持されていることが好ましい。本発明において、透明とは、光路長1cmにおける波長400~800nmの光の透過率が90%以上であることをいう。
[Transparent material]
As described above, the wavelength conversion material in the present invention includes an inorganic fluorescent material and a transparent material made of a (meth) acrylic resin. It is preferable that the inorganic fluorescent substance is included in or supported by the transparent material. In the present invention, “transparent” means that the transmittance of light having a wavelength of 400 to 800 nm at an optical path length of 1 cm is 90% or more.
 (メタ)アクリル樹脂は、(メタ)アクリル樹脂になり得るビニルモノマー、すなわち、(メタ)アクリルモノマーや(メタ)アクリルオリゴマー等を含むビニル化合物を通常の方法で重合することにより得られる。ここで、(メタ)アクリルとは、アクリル、メタクリル又はそれらの混合物を意味し、(メタ)アクリル樹脂とは、アクリル樹脂、メタクリル樹脂を、(メタ)アクリルモノマーとは、アクリルモノマー、メタクリルモノマーを意味する。 The (meth) acrylic resin is obtained by polymerizing a vinyl monomer that can be a (meth) acrylic resin, that is, a vinyl compound containing a (meth) acrylic monomer, a (meth) acrylic oligomer, or the like by a usual method. Here, (meth) acryl means acrylic, methacryl or a mixture thereof, (meth) acrylic resin means acrylic resin, methacrylic resin, and (meth) acrylic monomer means acrylic monomer, methacrylic monomer. means.
 (メタ)アクリルモノマーとしては、例えば、(メタ)アクリル酸、これらのアルキルエステルが挙げられ、またこれらと共重合し得るその他のビニル化合物を併用してもよく、1種単独でも、2種類以上を組み合わせて用いることもできる。 Examples of the (meth) acrylic monomer include (meth) acrylic acid and alkyl esters thereof, and other vinyl compounds that can be copolymerized with these may be used in combination. Can also be used in combination.
 (メタ)アクリル酸アルキルエステルとしては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸2-エチルヘキシル等の(メタ)アクリル酸無置換アルキルエステル、ジシクロペンテニル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、ベンジル(メタ)アクリレート、ウレタン(メタ)アクリレート(例えば、トリレンジイソシアネートと2-ヒドロキシエチル(メタ)アクリル酸エステルとの反応物、トリメチルヘキサメチレンジイソシアネートとシクロヘキサンジメタノールと2-ヒドロキシエチル(メタ)アクリル酸エステルとの反応物等)、これらのアルキル基に水酸基、エポキシ基、ハロゲン基等が置換した(メタ)アクリル酸置換アルキルエステル等が挙げられる。 Examples of (meth) acrylic acid alkyl esters include (meth) acrylic acid unsubstituted, such as methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, etc. Alkyl esters, dicyclopentenyl (meth) acrylates, tetrahydrofurfuryl (meth) acrylates, benzyl (meth) acrylates, urethane (meth) acrylates (eg reaction of tolylene diisocyanate with 2-hydroxyethyl (meth) acrylates (Reaction product of trimethylhexamethylene diisocyanate, cyclohexanedimethanol and 2-hydroxyethyl (meth) acrylic acid ester, etc.), hydroxyl group, epoxy group, halogen group, etc. substituted on these alkyl groups (meth) acrylic acid substitution Alkyl ester, and the like.
 また、(メタ)アクリル酸、(メタ)アクリル酸アルキルエステルと共重合し得るその他のビニル化合物としては、アクリルアミド、アクリロニトリル、ジアセトンアクリルアミド、スチレン、ビニルトルエン等が挙げられる。これらのビニル化合物は、1種単独でも、2種類以上を組み合わせて用いることもできる。 Also, other vinyl compounds that can be copolymerized with (meth) acrylic acid and (meth) acrylic acid alkyl ester include acrylamide, acrylonitrile, diacetone acrylamide, styrene, vinyltoluene and the like. These vinyl compounds can be used alone or in combination of two or more.
 本発明において、これらビニル化合物の一部は、2官能以上のビニル化合物を含むことが好ましい。その配合比は、ビニル化合物の全質量に対し、0.1~50質量%が好ましく、0.5~10質量%がより好ましい。 In the present invention, it is preferable that some of these vinyl compounds contain bifunctional or higher functional vinyl compounds. The blending ratio is preferably 0.1 to 50% by mass, and more preferably 0.5 to 10% by mass with respect to the total mass of the vinyl compound.
 本発明における2官能以上のビニル化合物とは、例えば、多価アルコールにα,β-不飽和カルボン酸を反応させて得られる化合物(例えば、ポリエチレングリコールジ(メタ)アクリレート(エチレン基の数が2~14のもの)、エチレングリコールジ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンエトキシトリ(メタ)アクリレート、トリメチロールプロパンプロポキシトリ(メタ)アクリレート、テトラメチロールメタントリ(メタ)アクリレート、テトラメチロールメタンテトラ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート(プロピレン基の数が2~14のもの)、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ビスフェノールAポリオキシエチレンジ(メタ)アクリレート、ビスフェノールAジオキシエチレンジ(メタ)アクリレート、ビスフェノールAトリオキシエチレンジ(メタ)アクリレート、ビスフェノールAデカオキシエチレンジ(メタ)アクリレート等)が挙げられる。 The bifunctional or higher functional vinyl compound in the present invention is, for example, a compound obtained by reacting a polyhydric alcohol with an α, β-unsaturated carboxylic acid (for example, polyethylene glycol di (meth) acrylate (the number of ethylene groups is 2). To 14), ethylene glycol di (meth) acrylate, trimethylolpropane di (meth) acrylate, trimethylolpropane tri (meth) acrylate, trimethylolpropane ethoxytri (meth) acrylate, trimethylolpropane propoxytri (meth) Acrylate, tetramethylol methane tri (meth) acrylate, tetramethylol methane tetra (meth) acrylate, polypropylene glycol di (meth) acrylate (having 2 to 14 propylene groups), dipentaerythritol pen (Meth) acrylate, dipentaerythritol hexa (meth) acrylate, bisphenol A polyoxyethylene di (meth) acrylate, bisphenol A dioxyethylene di (meth) acrylate, bisphenol A trioxyethylene di (meth) acrylate, bisphenol A Decaoxyethylene di (meth) acrylate and the like).
 また、多価グリシジル基含有化合物にα,β-不飽和カルボン酸を付加して得られる化合物(例えば、トリメチロールプロパントリグリシジルエーテルトリアクリレート、ビスフェノールAジグリシジルエーテルジアクリレート等)、多価カルボン酸(例えば、無水フタル酸)と水酸基及びエチレン性不飽和基を有する物質(例えば、β-ヒドロキシエチル(メタ)アクリレート)とのエステル化物等も挙げられる。 Further, compounds obtained by adding an α, β-unsaturated carboxylic acid to a polyvalent glycidyl group-containing compound (for example, trimethylolpropane triglycidyl ether triacrylate, bisphenol A diglycidyl ether diacrylate, etc.), polyvalent carboxylic acid Examples thereof include an esterified product of (for example, phthalic anhydride) and a substance having a hydroxyl group and an ethylenically unsaturated group (for example, β-hydroxyethyl (meth) acrylate).
 本発明におけるビニル化合物としては、形成される波長変換材料の用途に応じて適宜選択することができ、アクリル酸アルキルエステル及びメタクリル酸アルキルエステルから選ばれる少なくとも1種を用いることが好ましい。 The vinyl compound in the present invention can be appropriately selected according to the use of the wavelength conversion material to be formed, and at least one selected from alkyl acrylates and alkyl methacrylates is preferably used.
 さらに、本発明では、25℃における粘度が5~30mPa・s、好ましくは8~20mPa・sである少なくとも1種の(メタ)アクリルモノマーをビニル化合物全体の質量に対して10質量%以上、特に20~50質量%含むことが好ましい。これにより、波長変換材料における無機蛍光物質の分散性が良好となり、優れた波長変換効果が発揮される。粘度が5mPa・s以下のときには、モノマーと無機蛍光物質の密度の差により、液中に分散した状態を保つことが困難であり、結果的に、透明樹脂粒子中に封じ込められる無機蛍光物質の量が少なくなったり、量を制御しにくくなる場合がある。逆に粘度が30mPa・s以上のときには、懸濁重合の際に、粒子径を制御することが困難になる場合がある。 Further, in the present invention, at least one (meth) acrylic monomer having a viscosity at 25 ° C. of 5 to 30 mPa · s, preferably 8 to 20 mPa · s, is 10% by mass or more based on the total mass of the vinyl compound, particularly It is preferable to contain 20 to 50% by mass. Thereby, the dispersibility of the inorganic fluorescent substance in a wavelength conversion material becomes favorable, and the outstanding wavelength conversion effect is exhibited. When the viscosity is 5 mPa · s or less, it is difficult to maintain a dispersed state in the liquid due to the difference in density between the monomer and the inorganic fluorescent material, and as a result, the amount of the inorganic fluorescent material contained in the transparent resin particles May decrease or it may be difficult to control the amount. Conversely, when the viscosity is 30 mPa · s or more, it may be difficult to control the particle size during suspension polymerization.
 25℃における粘度が5~30mPa・s(25℃)である(メタ)アクリレートモノマーとしては、2-ヒドロキシエチルメタクリレート、2-ヒドリキシプロピルメタクリレート、3-クロロ-2-ヒドロキシプロピルメタクリレート、シクロヘキシルメタクリレート、ジシクロペンテニルメタクリレート、ジシクロペンテニルオキシエチルメタクリレート、ペンタメチルピペリジルメタクリレート、エチレングリコールジメタクリレート、ジシクロペンテニルアクリレート、等が挙げられる。 Examples of the (meth) acrylate monomer having a viscosity at 25 ° C. of 5 to 30 mPa · s (25 ° C.) include 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, 3-chloro-2-hydroxypropyl methacrylate, cyclohexyl methacrylate, Examples include dicyclopentenyl methacrylate, dicyclopentenyloxyethyl methacrylate, pentamethylpiperidyl methacrylate, ethylene glycol dimethacrylate, and dicyclopentenyl acrylate.
 ビニル化合物を複数用いる場合、粘度が5~30mPa・sのビニル化合物を複数種使用してもよく、粘度が5~30mPa・sのビニル化合物と粘度が5mPa・s未満のビニル化合物を組み合わせて使用してもよい。 When using a plurality of vinyl compounds, a plurality of vinyl compounds having a viscosity of 5 to 30 mPa · s may be used, and a vinyl compound having a viscosity of 5 to 30 mPa · s and a vinyl compound having a viscosity of less than 5 mPa · s are used in combination. May be.
 粘度の測定には、回転式粘度計(単一円筒型回転粘度計、円錐平板型回転粘度計、共軸二重円筒型回転粘度計)、毛細管式粘度計、落球式粘度計、カップ式粘度計などがあるが、本発明では、回転式粘度計を用いて測定した粘度で、単一円筒型回転粘度計又は円錐平板型回転粘度計を用いて測定した値であり、少量で測定できることから円錐平板型回転粘度計(コーンプレート型)を用いて測定することが好ましい。 For measurement of viscosity, rotary viscometer (single cylinder rotary viscometer, conical plate rotary viscometer, coaxial double cylindrical rotary viscometer), capillary viscometer, falling ball viscometer, cup viscometer In the present invention, the viscosity measured using a rotary viscometer is a value measured using a single cylindrical rotational viscometer or a conical plate rotational viscometer, and can be measured in a small amount. It is preferable to measure using a conical plate type rotational viscometer (cone plate type).
 [ラジカル重合開始剤]
 本発明においては、ビニル化合物を重合させるためにラジカル重合開始剤を用いることが好ましい。ラジカル重合開始剤としては、特に制限なく通常用いられるラジカル重合開始剤を用いることができる。例えば、過酸化物等が好ましく挙げられる。具体的には、熱により遊離ラジカルを発生させる有機過酸化物やアゾ系ラジカル開始剤が好ましい。
[Radical polymerization initiator]
In the present invention, it is preferable to use a radical polymerization initiator in order to polymerize the vinyl compound. As the radical polymerization initiator, a commonly used radical polymerization initiator can be used without particular limitation. For example, a peroxide etc. are mentioned preferably. Specifically, organic peroxides or azo radical initiators that generate free radicals by heat are preferred.
 有機過酸化物としては、例えば、イソブチルパーオキサイド、α,α´ビス(ネオデカノイルパーオキシ)ジイソプロピルベンゼン、クミルパーオキシネオデカノエート、ジ-n-プロピルパーオキシジカーボネート、ジ-s-ブチルパーオキシジカーボネート、1,1,3,3-テトラメチルブチルネオデカノエート、ビス(4-t-ブチルシクロヘキシル)パーオキシジカーボネート、1-シクロヘキシル-1-メチルエチルパーオキシネオデカノエート、ジ-2-エトキシエチルパーオキシジカーボネート、ジ(エチルヘキシルパーオキシ)ジカーボネート、t-ヘキシルネオデカノエート、ジメトキシブチルパーオキシジカーボネート、ジ(3-メチル-3-メトキシブチルパーオキシ)ジカーボネート、t-ブチルパーオキシネオデカノエート、t-ヘキシルパーオキシピバレート、3,5,5-トリメチルヘキサノイルパーオキサイド、オクタノイルパーオキサイド、ラウロイルパーオキサイド、ステアロイルパーオキサイド、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノエート、サクニックパーオキサイド、2,5-ジメチル-2,5-ジ(2-エチルヘキサノイル)ヘキサン、1-シクロヘキシル-1-メチルエチルパーオキシ-2-エチルヘキサノエート、t-ヘキシルパーオキシ-2-エチルヘキサノエート、4-メチルベンゾイルパーオキサイド、t-ブチルパーオキシ-2-エチルヘキサノエート、m-トルオノイルベンゾイルパーオキサイド、ベンゾイルパーオキサイド、t-ブチルパーオキシイソブチレート、1,1-ビス(t-ブチルパーオキシ)2-メチルシクロヘキサン、1,1-ビス(t-ヘキシルパーオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(t-ヘキシルパーオキシ)シクロヘキサン、1,1-ビス(t-ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(t-ブチルパーオキシ)シクロヘキサノン、2,2-ビス(4,4-ジブチルパーオキシシクロヘキシル)プロパン、1,1-ビス(t-ブチルパーオキシ)シクロドデカン、t-ヘキシルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシマレイン酸、t-ブチルパーオキシ-3,5,5-トリメチルヘキサノエート、t-ブチルパーオキシラウレート、2,5-ジメチル-2,5-ジ(m-トルオイルパーオキシ)ヘキサン、t-ブチルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシ-2-エチルヘキシルモノカーボネート、t-ヘキシルパーオキシベンゾエート、2,5-ジメチル-2,5-ジ(ベンゾイルパーオキシ)ヘキサン、t-ブチルパーオキシアセテート、2,2-ビス(t-ブチルパーオキシ)ブタン、t-ブチルパーオキシベンゾエート、n-ブチル-4,4-ビス(t-ブチルパーオキシ)バレレート、ジ-t-ブチルパーオキシイソフタレート、α,α´ビス(t-ブチルパーオキシ)ジイソプロピルベンゼン、ジクミルパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、t-ブチルクミルパーオキサイド、ジ-t-ブチルパーオキシ、p-メンタンハイドロパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキシン、ジイソプロピルベンゼンハイドロパーオキサイド、t-ブチルトリメチルシリルパーオキサイド、1,1,3,3-テトラメチルブチルハイドロパーオキサイド、クメンハイドロパーオキサイド、t-ヘキシルハイドロパーオキサイド、t-ブチルハイドロパーオキサイド、2,3-ジメチル-2,3-ジフェニルブタン等を使用することができる。 Examples of the organic peroxide include isobutyl peroxide, α, α′bis (neodecanoylperoxy) diisopropylbenzene, cumylperoxyneodecanoate, di-n-propylperoxydicarbonate, di-s- Butyl peroxydicarbonate, 1,1,3,3-tetramethylbutyl neodecanoate, bis (4-tert-butylcyclohexyl) peroxydicarbonate, 1-cyclohexyl-1-methylethyl peroxyneodecanoate , Di-2-ethoxyethyl peroxydicarbonate, di (ethylhexylperoxy) dicarbonate, t-hexyl neodecanoate, dimethoxybutyl peroxydicarbonate, di (3-methyl-3-methoxybutylperoxy) di Carbonate, t-butylperoxyneo Canoate, t-hexylperoxypivalate, 3,5,5-trimethylhexanoyl peroxide, octanoyl peroxide, lauroyl peroxide, stearoyl peroxide, 1,1,3,3-tetramethylbutylperoxy-2 -Ethylhexanoate, succinic peroxide, 2,5-dimethyl-2,5-di (2-ethylhexanoyl) hexane, 1-cyclohexyl-1-methylethylperoxy-2-ethylhexanoate, t -Hexylperoxy-2-ethylhexanoate, 4-methylbenzoyl peroxide, t-butylperoxy-2-ethylhexanoate, m-toluonoylbenzoyl peroxide, benzoyl peroxide, t-butylperoxyiso Butyrate, 1,1-bis t-butylperoxy) 2-methylcyclohexane, 1,1-bis (t-hexylperoxy) -3,3,5-trimethylcyclohexane, 1,1-bis (t-hexylperoxy) cyclohexane, 1,1 -Bis (t-butylperoxy) -3,3,5-trimethylcyclohexane, 1,1-bis (t-butylperoxy) cyclohexanone, 2,2-bis (4,4-dibutylperoxycyclohexyl) propane, 1,1-bis (t-butylperoxy) cyclododecane, t-hexylperoxyisopropyl monocarbonate, t-butylperoxymaleic acid, t-butylperoxy-3,5,5-trimethylhexanoate, t -Butyl peroxylaurate, 2,5-dimethyl-2,5-di (m-toluoyl peroxy) hexa , T-butylperoxyisopropyl monocarbonate, t-butylperoxy-2-ethylhexyl monocarbonate, t-hexylperoxybenzoate, 2,5-dimethyl-2,5-di (benzoylperoxy) hexane, t- Butyl peroxyacetate, 2,2-bis (t-butylperoxy) butane, t-butylperoxybenzoate, n-butyl-4,4-bis (t-butylperoxy) valerate, di-t-butylper Oxyisophthalate, α, α'bis (t-butylperoxy) diisopropylbenzene, dicumyl peroxide, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane, t-butylcumyl peroxide , Di-t-butylperoxy, p-menthane hydroperoxide, 2,5- Methyl-2,5-di (t-butylperoxy) hexyne, diisopropylbenzene hydroperoxide, t-butyltrimethylsilyl peroxide, 1,1,3,3-tetramethylbutyl hydroperoxide, cumene hydroperoxide, t -Hexyl hydroperoxide, t-butyl hydroperoxide, 2,3-dimethyl-2,3-diphenylbutane and the like can be used.
 アゾ系ラジカル開始剤としては、例えば、アゾビスイソブチロニトリル(AIBN、別名V-60)、2,2´-アゾビス(2-メチルイソブチロニトリル)(別名V-59)、2,2´-アゾビス(2,4-ジメチルバレロニトリル)(別名V-65)、ジメチル-2,2´-アゾビス(イソブチレート)(別名V-601)、2,2´-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)(別名V-70)等が挙げられる。 Examples of the azo radical initiator include azobisisobutyronitrile (AIBN, also known as V-60), 2,2′-azobis (2-methylisobutyronitrile) (also known as V-59), 2,2 '-Azobis (2,4-dimethylvaleronitrile) (aka V-65), dimethyl-2,2'-azobis (isobutyrate) (aka V-601), 2,2'-azobis (4-methoxy-2, 4-dimethylvaleronitrile) (also known as V-70).
 ラジカル重合開始剤の使用量は、前記ビニル化合物の種類や形成される樹脂粒子の屈折率等に応じて適宜選択することができ、通常用いられる使用量で使用される。具体的には例えば、ビニル化合物に対して0.01~2質量%で使用することができ、0.1~1質量%で使用することが好ましい。 The amount of the radical polymerization initiator used can be appropriately selected according to the type of the vinyl compound, the refractive index of the resin particles to be formed, and the like, and is used in a commonly used amount. Specifically, for example, it can be used at 0.01 to 2% by weight, preferably 0.1 to 1% by weight, based on the vinyl compound.
 本発明において、上記(メタ)アクリル樹脂からなる透明材料は透明微粒子であることが好ましく、この透明微粒子に上記無機蛍光物質が包含されているか担持されていることが好ましい。封止膜中における分散性の観点から透明微粒子は球状の粒子であることが好ましい。 In the present invention, the transparent material made of the (meth) acrylic resin is preferably transparent fine particles, and the transparent fine particles preferably include or carry the inorganic fluorescent substance. From the viewpoint of dispersibility in the sealing film, the transparent fine particles are preferably spherical particles.
 無機蛍光物質を透明微粒子に包含させ、波長変換材料にする方法としては、例えば、無機蛍光物質を表面処理し、ビニル化合物中に分散させ、これを懸濁重合することにより調製することができる。具体的には、表面処理をした無機蛍光物質とビニル化合物を含む混合物を調製し、ラジカル重合開始剤を用いてビニル化合物を重合することで、無機蛍光物質が透明微粒子に包含された波長変換材料を構成することができる。表面処理をした無機蛍光物質の代わりに無機蛍光物質、ビニル化合物中に表面処理剤を添加し縣濁重合中に無機蛍光物質の表面処理をしてもよい。 As a method for incorporating an inorganic fluorescent substance into transparent fine particles to obtain a wavelength conversion material, for example, the inorganic fluorescent substance can be prepared by surface-treating it, dispersing it in a vinyl compound, and subjecting it to suspension polymerization. Specifically, a wavelength conversion material in which an inorganic fluorescent substance is included in transparent fine particles by preparing a mixture containing a surface-treated inorganic fluorescent substance and a vinyl compound, and polymerizing the vinyl compound using a radical polymerization initiator. Can be configured. Instead of the surface-treated inorganic fluorescent material, a surface treatment agent may be added to the inorganic fluorescent material or vinyl compound, and the surface treatment of the inorganic fluorescent material may be performed during suspension polymerization.
 また、無機蛍光物質を透明微粒子に担持させる方法としては、例えば、無機蛍光物質と透明微粒子をバインダー樹脂とともに混合し、乾燥させる方法等が挙げられる。 Further, examples of the method of supporting the inorganic fluorescent material on the transparent fine particles include a method of mixing the inorganic fluorescent material and the transparent fine particles together with a binder resin and drying.
 波長変換材料における無機蛍光物質の含有量は、波長変換材料の質量に対して0.5~1.5質量%が好ましく、0.7~1.2質量%が好ましい。この範囲であれば、封止膜の透明性を低下させることなく、波長変換効果を高い水準で確保することができる。 The content of the inorganic fluorescent substance in the wavelength conversion material is preferably 0.5 to 1.5% by mass, and preferably 0.7 to 1.2% by mass with respect to the mass of the wavelength conversion material. Within this range, the wavelength conversion effect can be ensured at a high level without deteriorating the transparency of the sealing film.
 太陽電池用封止膜における波長変換材料の含有量は、樹脂材料100質量部に対して0.01~0.5質量部、好ましくは0.05~0.3質量部、特に好ましくは0.1~0.2質量部である。 The content of the wavelength conversion material in the solar cell sealing film is 0.01 to 0.5 parts by mass, preferably 0.05 to 0.3 parts by mass, particularly preferably 0. 1 to 0.2 parts by mass.
 透明微粒子の平均粒子径は、光利用効率向上の観点から2~150μmであることが好ましく、10~120μm、特に50~120μmであることがより好ましい。本発明において透明微粒子及び無機蛍光物質の平均粒子径は、レーザー回折法を用いて測定され、粒度径分布曲線から得られる体積分布において、体積積算が50%のときの粒子径に対応する。レーザー回折法を用いた粒度分布測定は、レーザー回折散乱粒度分布測定装置(例えば、Beckman Coulter社製、商品名:LS13320)を用いて行うことができる。 The average particle diameter of the transparent fine particles is preferably 2 to 150 μm, more preferably 10 to 120 μm, and more preferably 50 to 120 μm from the viewpoint of improving light utilization efficiency. In the present invention, the average particle size of the transparent fine particles and the inorganic fluorescent material is measured using a laser diffraction method, and corresponds to the particle size when the volume integration is 50% in the volume distribution obtained from the particle size distribution curve. The particle size distribution measurement using the laser diffraction method can be performed using a laser diffraction scattering particle size distribution measuring apparatus (for example, product name: LS13320, manufactured by Beckman Coulter).
 [表面処理剤]
 本発明において、無機蛍光物質は透明材料への分散性を向上させるため、表面処理剤により表面改質処理されていることが好ましい。表面改質処理は、表面処理剤等で無機蛍光物質を処理(又は被覆処理)することにより行うことができる。表面処理剤としては、無機蛍光体のポリマーへの分散性を向上させられれば、特に制限はなく、シリカ[テトラアルコキシシラン類(テトラメトキシシラン等のテトラC1-4-アルコキシシラン又はそのオリゴマー)等を用いたゾルゲル法による表面処理を含む]、カップリング剤(チタンカップリング剤、シランカップリング剤等)、ポリオルガノシロキサン等が挙げられる。これらの表面処理剤は単独で又は2種以上組み合わせてもよい。
[Surface treatment agent]
In the present invention, the inorganic fluorescent material is preferably surface-modified with a surface treatment agent in order to improve dispersibility in a transparent material. The surface modification treatment can be performed by treating (or coating) the inorganic fluorescent material with a surface treatment agent or the like. The surface treatment agent is not particularly limited as long as the dispersibility of the inorganic phosphor in the polymer can be improved. Silica [tetraalkoxysilanes (tetraC1-4-alkoxysilane such as tetramethoxysilane or oligomers thereof), etc. A surface treatment by a sol-gel method using], a coupling agent (titanium coupling agent, silane coupling agent, etc.), polyorganosiloxane and the like. These surface treatment agents may be used alone or in combination of two or more.
 シランカップリング剤としては、例えば、ハロゲン含有シランカップリング剤(3-クロロプロピルトリメトキシシラン等)、エポキシ基含有シランカップリング剤(3-グリシジルオキシプロピルトリメトキシシラン等)、アミノ基含有シランカップリング剤(2-アミノエチルトリメトキシシラン等)、メルカプト基含有シランカップリング剤(3-メルカプトプロピルトリメトキシシラン等)、ビニル基含有シランカップリング剤(ビニルトリメトキシシラン等)、(メタ)アクリロイル基含有シランカップリング剤(2-(メタ)アクリロキシエチルトリメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン等)等が挙げられる。 Examples of silane coupling agents include halogen-containing silane coupling agents (such as 3-chloropropyltrimethoxysilane), epoxy group-containing silane coupling agents (such as 3-glycidyloxypropyltrimethoxysilane), and amino group-containing silane cups. Ring agents (such as 2-aminoethyltrimethoxysilane), mercapto group-containing silane coupling agents (such as 3-mercaptopropyltrimethoxysilane), vinyl group-containing silane coupling agents (such as vinyltrimethoxysilane), (meth) acryloyl And group-containing silane coupling agents (2- (meth) acryloxyethyltrimethoxysilane, 3-methacryloxypropyltrimethoxysilane, etc.).
 ポリオルガノシロキサンとしては、例えば、ポリジアルキルシロキサン(例えば、ポリジメチルシロキサン(ジメチコン)等のポリジC1-10-アルキルシロキサン、好ましくはポリジC1-4-アルキルシロキサン)、ポリアルキルアルケニルシロキサン(例えば、ポリメチルビニルシロキサン等のポリC1-10-アルキルC2-10-アルケニルシロキサン)、ポリアルキルアリールシロキサン(例えば、ポリメチルフェニルシロキサン等のポリC1-10-アルキルC6-20-アリールシロキサン、好ましくはポリC1 - 4 アルキルC6-10-アリールシロキサン)、ポリジアリールシロキサン(例えば、ポリジフェニルシロキサン等のポリジC6-20-アリールシロキサン)、ポリアルキルハイドロジェンシロキサン(例えば、ポリメチルハイドロジェンシロキサン等のポリC1-10-アルキルハイドロジェンシロキサン)、オルガノシロキサン共重合体(例えば、ジメチルシロキサン-メチルビニルシロキサン共重合体、ジメチルシロキサン-メチルフェニルシロキサン共重合体、ジメチルシロキサン-メチルビニルシロキサン-メチルフェニルシロキサン共重合体、ジメチルシロキサン-メチルハイドロジェンシロキサン共重合体(ジメチコン/メチコンコポリマー)等)、変性ポリオルガノシロキサン[前記ポリオルガノシロキサンに対応する変性ポリオルガノシロキサン、例えば、ヒドロキシル変性ポリオルガノシロキサン(例えば、末端シラノールポリジメチルシロキサン、末端シラノールポリメチルフェニルシロキサン、末端ヒドロキシプロピルポリジメチルシロキサン、ポリジメチルヒドロキシアルキレンオキシドメチルシロキサン等)、アミノ変性ポリオルガノシロキサン(例えば、末端ジメチルアミノポリジメチルシロキサン、末端アミノプロピルポリジメチルシロキサン等)、カルボキシ変性ポリオルガノシロキサン(例えば、末端カルボキシプロピルポリジメチルシロキサン等)]等が挙げられる。 Examples of the polyorganosiloxane include polydialkylsiloxanes (for example, polydiC1-10-alkylsiloxanes such as polydimethylsiloxane (dimethicone), preferably polydiC1-4-alkylsiloxanes), polyalkylalkenylsiloxanes (for example, polymethylsiloxane). Poly C1-10-alkyl C2-10-alkenyl siloxanes such as vinyl siloxane), polyalkylaryl siloxanes (eg poly C1-10-alkyl C6-20-aryl siloxanes such as polymethylphenylsiloxane, preferably poly C1-4 Alkyl C6-10-aryl siloxane), polydiaryl siloxane (for example, polydiC6-20-aryl siloxane such as polydiphenylsiloxane), polyalkylhydrogensiloxa (For example, poly C1-10-alkyl hydrogen siloxane such as polymethyl hydrogen siloxane), organosiloxane copolymers (for example, dimethylsiloxane-methylvinylsiloxane copolymer, dimethylsiloxane-methylphenylsiloxane copolymer, dimethyl Siloxane-methylvinylsiloxane-methylphenylsiloxane copolymer, dimethylsiloxane-methylhydrogensiloxane copolymer (dimethicone / methicone copolymer, etc.), modified polyorganosiloxane [modified polyorganosiloxane corresponding to the polyorganosiloxane, eg Hydroxyl-modified polyorganosiloxanes (eg, terminal silanol polydimethylsiloxane, terminal silanol polymethylphenylsiloxane, terminal hydroxy Pill polydimethylsiloxane, polydimethylhydroxyalkylene oxide methylsiloxane, etc.), amino-modified polyorganosiloxane (eg, terminal dimethylaminopolydimethylsiloxane, terminal aminopropylpolydimethylsiloxane, etc.), carboxy-modified polyorganosiloxane (eg, terminal carboxypropyl) Polydimethylsiloxane etc.)] and the like.
 好ましい表面処理剤はシランカップリング剤であり、特に3-メタクリロキシプロピルトリメトキシシラン等の(メタ)アクリロイル基含有シランカップリング剤が好ましい。なお、表面処理剤の割合は、無機蛍光物質(表面処理された無機蛍光物質)全体に対して0.01~70質量%が好ましく、0.1~50質量%がより好ましく、0.5~30質量%がさらに好ましい。 A preferred surface treatment agent is a silane coupling agent, and a (meth) acryloyl group-containing silane coupling agent such as 3-methacryloxypropyltrimethoxysilane is particularly preferred. The ratio of the surface treatment agent is preferably 0.01 to 70% by mass, more preferably 0.1 to 50% by mass, and more preferably 0.5 to 0.5% by mass with respect to the entire inorganic fluorescent material (surface-treated inorganic fluorescent material). 30 mass% is more preferable.
 [樹脂材料]
 本発明において、太陽電池用封止膜の樹脂材料は、オレフィン(共)重合体を主成分として含む。ここで、オレフィン(共)重合体とは、エチレン・α-オレフィン共重合体(例えば、メタロセン触媒を用いて重合されたエチレン・α-オレフィン共重合体(m-LLDPE)等)、ポリエチレン(例えば、低密度ポリエチレン(LDPE)、直鎖状低密度ポリエチレン(LLDPE)等)、ポリプロピレン、ポリブテン等のオレフィンの重合体又は共重合体、及びエチレン-極性モノマー共重合体等のオレフィンと極性モノマーとの共重合体を意味し、太陽電池用封止膜に要求される接着性等を有するものとする。オレフィン(共)重合体として、これらの1種を用いても良く、2種以上を混合して用いても良い。本発明において、オレフィン(共)重合体としては、メタロセン触媒を用いて重合されたエチレン・α-オレフィン共重合体(m-LLDPE)、低密度ポリエチレン(LDPE)、直鎖状低密度ポリエチレン(LLDPE)、ポリプロピレン、ポリブテン及びエチレン-極性モノマー共重合体からなる群から選択される少なくとも1種以上の重合体であることが好ましい。特に、加工性に優れ、架橋剤による架橋構造を形成することができ、接着性が高い太陽電池用封止膜を形成することができることから、オレフィン(共)重合体が、メタロセン触媒を用いて重合されたエチレン・α-オレフィン共重合体(m-LLDPE)及び/又はエチレン-極性モノマー共重合体であることが好ましい。
[Resin material]
In this invention, the resin material of the sealing film for solar cells contains an olefin (co) polymer as a main component. Here, the olefin (co) polymer means an ethylene / α-olefin copolymer (for example, an ethylene / α-olefin copolymer (m-LLDPE) polymerized using a metallocene catalyst), polyethylene (for example, Olefin polymers such as low density polyethylene (LDPE), linear low density polyethylene (LLDPE), etc.), polypropylene, polybutene, etc., and copolymers of olefins and polar monomers. It means a copolymer and has adhesiveness required for a sealing film for solar cells. As the olefin (co) polymer, one of these may be used, or two or more may be mixed and used. In the present invention, as the olefin (co) polymer, an ethylene / α-olefin copolymer (m-LLDPE) polymerized using a metallocene catalyst, low density polyethylene (LDPE), linear low density polyethylene (LLDPE) is used. ), At least one polymer selected from the group consisting of polypropylene, polybutene, and ethylene-polar monomer copolymer. In particular, an olefin (co) polymer can be formed using a metallocene catalyst because it is excellent in processability, can form a crosslinked structure with a crosslinking agent, and can form a solar cell sealing film with high adhesion. A polymerized ethylene / α-olefin copolymer (m-LLDPE) and / or an ethylene-polar monomer copolymer is preferred.
 (メタロセン触媒を用いて重合されたエチレン・α-オレフィン共重合体(m-LLDPE))m-LLDPEは、エチレン由来の構成単位を主成分とし、更に炭素数3~12のα-オレフィン、例えば、プロピレン、1-ブテン、1-へキセン、1-オクテン、4-メチルペンテン-1、4-メチル-へキセン-1、4,4-ジメチル-ペンテン-1等由来の1種又は複数種の構成単位を有するエチレン・α-オレフィン共重合体(ターポリマー等も含む)である。エチレン・α-オレフィン共重合体の具体例としては、エチレン・1-ブテン共重合体、エチレン・1-オクテン共重合体、エチレン・4-メチル-ペンテン-1共重合体、エチレン・ブテン・ヘキセンターポリマー、エチレン・プロピレン・オクテンターポリマー、エチレン・ブテン・オクテンターポリマー等が挙げられる。エチレン・α-オレフィン共重合体におけるα-オレフィンの含有量は、5~40質量%が好ましく、10~35質量%がより好ましく、15~30質量%が更に好ましい。α-オレフィンの含有量が少ないと太陽電池用封止膜の柔軟性や耐衝撃性が十分でない場合があり、多過ぎると耐熱性が低い場合がある。 (Ethylene / α-olefin copolymer polymerized using metallocene catalyst (m-LLDPE)) m-LLDPE is composed mainly of ethylene-derived constitutional units and further an α-olefin having 3 to 12 carbon atoms, such as , One or more kinds derived from propylene, 1-butene, 1-hexene, 1-octene, 4-methylpentene-1, 4-methyl-hexene-1, 4,4-dimethyl-pentene-1, etc. An ethylene / α-olefin copolymer having a structural unit (including a terpolymer). Specific examples of the ethylene / α-olefin copolymer include an ethylene / 1-butene copolymer, an ethylene / 1-octene copolymer, an ethylene-4-methyl-pentene-1 copolymer, an ethylene / butene / hexene copolymer. Center polymers, ethylene / propylene / octene terpolymers, ethylene / butene / octene terpolymers, and the like. The content of α-olefin in the ethylene / α-olefin copolymer is preferably 5 to 40% by mass, more preferably 10 to 35% by mass, and still more preferably 15 to 30% by mass. If the α-olefin content is small, the solar cell sealing film may have insufficient flexibility and impact resistance, and if it is too much, the heat resistance may be low.
 m-LLPDEを重合するメタロセン触媒としては、公知のメタロセン触媒を用いれば良く、特に制限はない。メタロセン触媒は、一般に、チタン、ジルコニウム、ハフニウム等の遷移金属をπ電子系のシクロペンタジエニル基又は置換シクロペンタジエニル基等を含有する不飽和環状化合物で挟んだ構造の化合物であるメタロセン化合物と、アルキルアルミノキサン、アルキルアルミニウム、アルミニウムハライド、アルキルアルミニウムルハライド等のアルミニウム化合物等の助触媒とを組合せたものである。メタロセン触媒は、活性点が均一であるという特徴があり(シングルサイト触媒)、通常、分子量分布が狭く、各分子のコモノマー含有量がほぼ等しい重合体が得られる。 As the metallocene catalyst for polymerizing m-LLPDE, a known metallocene catalyst may be used, and there is no particular limitation. The metallocene catalyst is generally a compound having a structure in which a transition metal such as titanium, zirconium or hafnium is sandwiched between unsaturated cyclic compounds containing a π-electron cyclopentadienyl group or a substituted cyclopentadienyl group. And a promoter such as an aluminum compound such as alkylaluminoxane, alkylaluminum, aluminum halide, and alkylaluminum halide. Metallocene catalysts are characterized by a uniform active site (single site catalyst), and usually a polymer having a narrow molecular weight distribution and an approximately equal comonomer content of each molecule is obtained.
 本発明において、m-LLDPEの密度(JIS K 7112に準ずる。以下同じ)は、特に制限はないが、0.860~0.930g/cm、特に0.860~0.900g/cmが好ましい。また、m-LLDPEのメルトフローレート(MFR)(JIS-K7210に準ずる)は、特に制限はないが、1.0g/10分以上が好ましく、1.0~50.0g/10分がより好ましく、3.0~30.0g/10分が更に好ましい。なお、MFRは、190℃、荷重21.18Nの条件で測定されたものである。 In the present invention, the density of m-LLDPE (according to JIS K 7112; the same applies hereinafter) is not particularly limited, but is 0.860 to 0.930 g / cm 3 , particularly 0.860 to 0.900 g / cm 3. preferable. The melt flow rate (MFR) of m-LLDPE (according to JIS-K7210) is not particularly limited, but is preferably 1.0 g / 10 min or more, more preferably 1.0 to 50.0 g / 10 min. 3.0 to 30.0 g / 10 min is more preferable. In addition, MFR is measured on condition of 190 degreeC and load 21.18N.
 本発明において、m-LLDPEは市販のものを使用することもできる。例えば、日本ポリエチレン社製のハーモレックスシリーズ、カーネルシリーズ、プライムポリマー社製のエボリューシリーズ、住友化学社製のエクセレンGMHシリーズ、エクセレンFXシリーズ等が挙げられる。 In the present invention, commercially available m-LLDPE may be used. For example, Harmolex series, Kernel series manufactured by Nippon Polyethylene Co., Ltd., Evolution series manufactured by Prime Polymer Co., Ltd., Excellen GMH series, Excellen FX series manufactured by Sumitomo Chemical Co., Ltd. and the like can be mentioned.
 (エチレン-極性モノマー共重合体)
エチレン-極性モノマー共重合体の極性モノマーは、不飽和カルボン酸、その塩、そのエステル、そのアミド、ビニルエステル、一酸化炭素等を例示することができる。より具体的には、アクリル酸、メタクリル酸、フマル酸、イタコン酸、マレイン酸モノメチル、マレイン酸モノエチル、無水マレイン酸、無水イタコン酸等の不飽和カルボン酸、これら不飽和カルボン酸のリチウム、ナトリウム、カリウムなどの1価金属の塩やマグネシウム、カルシウム、亜鉛などの多価金属の塩、アクリル酸メチル、アクリル酸エチル、アクリル酸イソプロピル、アクリル酸イソブチル、アクリル酸n-ブチル、アクリル酸イソオクチル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸イソブチル、マレイン酸ジメチル等の不飽和カルボン酸エステル、酢酸ビニル、プロピオン酸ビニルのようなビニルエステル、一酸化炭素、二酸化硫黄などの一種又は二種以上などを例示することができる。
(Ethylene-polar monomer copolymer)
Examples of the polar monomer of the ethylene-polar monomer copolymer include unsaturated carboxylic acid, its salt, its ester, its amide, vinyl ester, carbon monoxide and the like. More specifically, unsaturated carboxylic acids such as acrylic acid, methacrylic acid, fumaric acid, itaconic acid, monomethyl maleate, monoethyl maleate, maleic anhydride, itaconic anhydride, lithium of these unsaturated carboxylic acids, sodium, Salts of monovalent metals such as potassium, salts of polyvalent metals such as magnesium, calcium and zinc, methyl acrylate, ethyl acrylate, isopropyl acrylate, isobutyl acrylate, n-butyl acrylate, isooctyl acrylate, methacrylic acid Examples include unsaturated carboxylic acid esters such as methyl, ethyl methacrylate, isobutyl methacrylate, and dimethyl maleate, vinyl esters such as vinyl acetate and vinyl propionate, carbon monoxide, sulfur dioxide, etc. be able to.
 エチレン-極性モノマー共重合体として、より具体的には、エチレン-アクリル酸共重合体、エチレン-メタクリル酸共重合体のようなエチレン-不飽和カルボン酸共重合体、前記エチレン-不飽和カルボン酸共重合体のカルボキシル基の一部又は全部が上記金属で中和されたアイオノマー、エチレン-アクリル酸メチル共重合体、エチレン-アクリル酸エチル共重合体、エチレン-メタクリル酸メチル共重合体、エチレン-アクリル酸イソブチル共重合体、エチレン-アクリル酸n-ブチル共重合体のようなエチレン-不飽和カルボン酸エステル共重合体、エチレン-アクリル酸イソブチル-メタクリル酸共重合体、エチレン-アクリル酸n-ブチル-メタクリル酸共重合体のようなエチレン-不飽和カルボン酸エステル-不飽和カルボン酸共重合体及びそのカルボキシル基の一部又は全部が上記金属で中和されたアイオノマー、エチレン-酢酸ビニル共重合体のようなエチレン-ビニルエステル共重合体等を代表例として例示することができる。 More specific examples of the ethylene-polar monomer copolymer include ethylene-acrylic acid copolymers, ethylene-unsaturated carboxylic acid copolymers such as ethylene-methacrylic acid copolymers, and ethylene-unsaturated carboxylic acids. Ionomers in which some or all of the carboxyl groups of the copolymer are neutralized with the above metals, ethylene-methyl acrylate copolymers, ethylene-ethyl acrylate copolymers, ethylene-methyl methacrylate copolymers, ethylene- Isobutyl acrylate copolymer, ethylene-unsaturated carboxylic acid ester copolymer such as ethylene-n-butyl acrylate copolymer, ethylene-isobutyl acrylate-methacrylic acid copolymer, ethylene-n-butyl acrylate -Ethylene-unsaturated carboxylic acid ester-unsaturated carbo such as methacrylic acid copolymer Typical examples include acid copolymers and ionomers in which some or all of the carboxyl groups have been neutralized with the above metals, ethylene-vinyl ester copolymers such as ethylene-vinyl acetate copolymers, and the like. .
 エチレン-極性モノマー共重合体としては、JIS K7210で規定されるメルトフローレートが、35g/10分以下、特に3~6g/10分のものを使用するのが好ましい。このようなメルトフローレートを有するエチレン-極性モノマー共重合体を用いることで、加工性に優れた太陽電池用封止膜とすることができる。なお、本発明において、メルトフローレート(MFR)の値は、JIS K7210に従い、190℃、荷重21.18Nの条件に基づいて測定されたものである。 As the ethylene-polar monomer copolymer, it is preferable to use a copolymer having a melt flow rate specified by JIS K7210 of 35 g / 10 min or less, particularly 3 to 6 g / 10 min. By using an ethylene-polar monomer copolymer having such a melt flow rate, a solar cell sealing film having excellent processability can be obtained. In the present invention, the value of the melt flow rate (MFR) is measured based on the conditions of 190 ° C. and a load of 21.18 N according to JIS K7210.
 エチレン-極性モノマー共重合体としては、エチレン-酢酸ビニル共重合体(EVA)、エチレン-メタクリル酸メチル共重合体(EMMA)、エチレン-メタクリル酸エチル共重合体、エチレン-アクリル酸メチル共重合体、エチレン-アクリル酸エチル共重合体が好ましく、特にEVA及びEMMAが好ましい。これにより、極めて透明性に優れる太陽電池用封止膜を形成することができる。 Examples of ethylene-polar monomer copolymers include ethylene-vinyl acetate copolymer (EVA), ethylene-methyl methacrylate copolymer (EMMA), ethylene-ethyl methacrylate copolymer, and ethylene-methyl acrylate copolymer. Ethylene-ethyl acrylate copolymer is preferable, and EVA and EMMA are particularly preferable. Thereby, the sealing film for solar cells which is extremely excellent in transparency can be formed.
 樹脂材料としてEVAを使用する場合、EVAにおける酢酸ビニルの含有率は、20~35質量%、さらに22~32質量%、特に24~30質量%とするのが好ましい。酢酸ビニルの含有量が20質量%未満であると、封止膜の透明性が充分でない恐れがあり、35質量%を超えると、カルボン酸、アルコール、アミン等が発生し封止膜と保護部材との界面で発泡が生じ易くなる恐れがある。 When EVA is used as the resin material, the content of vinyl acetate in EVA is preferably 20 to 35% by mass, more preferably 22 to 32% by mass, and particularly preferably 24 to 30% by mass. If the vinyl acetate content is less than 20% by mass, the sealing film may not be sufficiently transparent. If it exceeds 35% by mass, carboxylic acid, alcohol, amine, etc. are generated, and the sealing film and the protective member. There is a risk that foaming is likely to occur at the interface.
 樹脂材料としてEMMAを使用する場合、EMMAにおけるメタクリル酸メチルの含有率は20~30質量%、好ましくは22~28質量%である。この範囲であれば透明性の高い封止膜が得られ、多くの紫外線を可視光に変換させて太陽電池素子に入射させることができる。 When EMMA is used as the resin material, the content of methyl methacrylate in EMMA is 20 to 30% by mass, preferably 22 to 28% by mass. Within this range, a highly transparent sealing film can be obtained, and a large amount of ultraviolet light can be converted into visible light and incident on the solar cell element.
 なお、本発明において、樹脂材料には、上述のオレフィン(共)重合体に加えて副次的にポリビニルアセタール系樹脂(例えば、ポリビニルホルマール、ポリビニルブチラール(PVB樹脂)、変性PVB)等の樹脂を配合しても良い。 In addition, in this invention, in addition to the above-mentioned olefin (co) polymer, resin such as polyvinyl acetal resin (for example, polyvinyl formal, polyvinyl butyral (PVB resin), modified PVB) is used as a resin material. You may mix.
 [架橋剤]
 本発明の太陽電池用封止膜には、架橋剤を含有させ、エチレン-極性モノマー共重合体の架橋構造を形成することが好ましい。架橋剤は、有機過酸化物又は光重合開始剤を用いることが好ましい。なかでも、接着力、耐湿性、耐貫通性の温度依存性が改善された封止膜が得られることから、有機過酸化物を用いるのが好ましい。
[Crosslinking agent]
The solar cell sealing film of the present invention preferably contains a crosslinking agent to form a crosslinked structure of an ethylene-polar monomer copolymer. As the crosslinking agent, an organic peroxide or a photopolymerization initiator is preferably used. Among these, it is preferable to use an organic peroxide because a sealing film with improved temperature dependency of adhesive strength, moisture resistance, and penetration resistance can be obtained.
 有機過酸化物としては、100℃以上の温度で分解してラジカルを発生するものであれば、どのようなものでも使用することができる。有機過酸化物は、一般に、成膜温度、組成物の調整条件、硬化温度、被着体の耐熱性、貯蔵安定性を考慮して選択される。特に、半減期10時間の分解温度が70℃以上のものが好ましい。 Any organic peroxide may be used as long as it decomposes at a temperature of 100 ° C. or higher and generates radicals. The organic peroxide is generally selected in consideration of the film formation temperature, the adjustment conditions of the composition, the curing temperature, the heat resistance of the adherend, and the storage stability. In particular, those having a decomposition temperature of 70 hours or more with a half-life of 10 hours are preferred.
 前記有機過酸化物としては、樹脂の加工温度・貯蔵安定性の観点から例えば、ベンゾイルパーオキサイド系硬化剤、tert-ヘキシルパーオキシピバレート、tert-ブチルパーオキシピバレート、3,5,5-トリメチルヘキサノイルパーオキサイド、ジ-n-オクタノイルパーオキサイド、ラウロイルパーオキサイド、ステアロイルパーオキサイド、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノエート、スクシニックアシドパーオキサイド、2,5-ジメチル-2,5-ジ(tert-ブチルパーオキシ)ヘキサン、2,5-ジメチル-2,5-ジ(2-エチルヘキサノイルパーオキシ)ヘキサン、1-シクロヘキシル-1-メチルエチルパーオキシ-2-エチルヘキサノエート、tert-ヘキシルパーオキシ-2-エチルヘキサノエート、4-メチルベンゾイルパーオキサイド、tert-ブチルパーオキシ-2-エチルヘキサノエート、m-トルオイル+ベンゾイルパーオキサイド、ベンゾイルパーオキサイド、1,1-ビス(tert-ブチルパーオキシ)-2-メチルシクロヘキサネート、1,1-ビス(tert-ヘキシルパーオキシ)-3,3,5-トリメチルシクロヘキサネート、1,1-ビス(tert-ヘキシルパーオキシ)シクロヘキサネート、1,1-ビス(tert-ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(tert-ブチルパーオキシ)シクロヘキサン、1,1-ビス(tert-ヘキシルパーオキシ)-3,3,5-トリメチルシクロヘキサン、2,2-ビス(4,4-ジ-tert-ブチルパーオキシシクロヘキシル)プロパン、1,1-ビス(tert-ブチルパーオキシ)シクロドデカン、tert-ヘキシルパーオキシイソプロピルモノカーボネート、tert-ブチルパーオキシマレイックアシド、tert-ブチルパーオキシ-3,3,5-トリメチルヘキサン、tert-ブチルパーオキシラウレート、2,5-ジメチル-2,5-ジ(メチルベンゾイルパーオキシ)ヘキサン、tert-ブチルパーオキシイソプロピルモノカーボネート、tert-ブチルパーオキシ-2-エチルヘキシルモノカーボネート、tert-ヘキシルパーオキシベンゾエート、2,5-ジ-メチル-2,5-ジ(ベンゾイルパーオキシ)ヘキサン、等が挙げられる。 Examples of the organic peroxide include, from the viewpoint of processing temperature and storage stability of the resin, for example, benzoyl peroxide curing agent, tert-hexyl peroxypivalate, tert-butyl peroxypivalate, 3, 5, 5- Trimethylhexanoyl peroxide, di-n-octanoyl peroxide, lauroyl peroxide, stearoyl peroxide, 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanoate, succinic acid peroxide, 2,5-dimethyl-2,5-di (tert-butylperoxy) hexane, 2,5-dimethyl-2,5-di (2-ethylhexanoylperoxy) hexane, 1-cyclohexyl-1-methylethyl Peroxy-2-ethylhexanoate, tert-hexylpa Oxy-2-ethylhexanoate, 4-methylbenzoyl peroxide, tert-butylperoxy-2-ethylhexanoate, m-toluoyl + benzoyl peroxide, benzoyl peroxide, 1,1-bis (tert-butyl Peroxy) -2-methylcyclohexanate, 1,1-bis (tert-hexylperoxy) -3,3,5-trimethylcyclohexanate, 1,1-bis (tert-hexylperoxy) cyclohexanate 1,1-bis (tert-butylperoxy) -3,3,5-trimethylcyclohexane, 1,1-bis (tert-butylperoxy) cyclohexane, 1,1-bis (tert-hexylperoxy)- 3,3,5-trimethylcyclohexane, 2,2-bis (4,4- -Tert-butylperoxycyclohexyl) propane, 1,1-bis (tert-butylperoxy) cyclododecane, tert-hexylperoxyisopropyl monocarbonate, tert-butylperoxymaleic acid, tert-butylperoxy-3 , 3,5-trimethylhexane, tert-butylperoxylaurate, 2,5-dimethyl-2,5-di (methylbenzoylperoxy) hexane, tert-butylperoxyisopropylmonocarbonate, tert-butylperoxy- Examples include 2-ethylhexyl monocarbonate, tert-hexyl peroxybenzoate, 2,5-di-methyl-2,5-di (benzoylperoxy) hexane, and the like.
 ベンゾイルパーオキサイド系硬化剤としては、70℃以上の温度で分解してラジカルを発生するものであればいずれも使用可能であるが、半減期10時間の分解温度が50℃以上のものが好ましく、調製条件、成膜温度、硬化(貼り合わせ)温度、被着体の耐熱性、貯蔵安定性を考慮して適宜選択できる。使用可能なベンゾイルパーオキサイド系硬化剤としては、例えば、ベンゾイルパーオキサイド、2,5-ジメチルヘキシル-2,5-ビスパーオキシベンゾエート、p-クロロベンゾイルパーオキサイド、m-トルオイルパーオキサイド、2,4-ジクロロベンゾイルパーオキサイド、t-ブチルパーオキシベンゾエート等が挙げられる。ベンゾイルパーオキサイド系硬化剤は1種でも2種以上を組み合わせて使用してもよい。 As the benzoyl peroxide-based curing agent, any can be used as long as it decomposes at a temperature of 70 ° C. or higher to generate radicals, and those having a decomposition temperature of 50 hours or higher with a half-life of 10 hours are preferable, It can be appropriately selected in consideration of preparation conditions, film formation temperature, curing (bonding) temperature, heat resistance of the adherend, and storage stability. Usable benzoyl peroxide curing agents include, for example, benzoyl peroxide, 2,5-dimethylhexyl-2,5-bisperoxybenzoate, p-chlorobenzoyl peroxide, m-toluoyl peroxide, 2, Examples include 4-dichlorobenzoyl peroxide and t-butyl peroxybenzoate. The benzoyl peroxide curing agent may be used alone or in combination of two or more.
 有機過酸化物として、特に、2,5-ジメチル-2,5-ジ(tert-ブチルパーオキシ)ヘキサン、又はtert-ブチルパーオキシ-2-エチルヘキシルモノカーボネートが好ましい。これにより、良好に架橋され、優れた透明性を有する太陽電池用封止膜が得られる。 As the organic peroxide, 2,5-dimethyl-2,5-di (tert-butylperoxy) hexane or tert-butylperoxy-2-ethylhexyl monocarbonate is particularly preferable. Thereby, the sealing film for solar cells which is bridge | crosslinked favorably and has the outstanding transparency is obtained.
 太陽電池用封止膜に使用する有機過酸化物の含有量は、樹脂材料100質量部に対して、好ましくは0.1~5質量部、より好ましくは0.2~3質量部であることが好ましい。有機過酸化物の含有量は、少ないと架橋硬化時において架橋速度が低下する場合があり、多くなると共重合体との相溶性が悪くなる恐れがある。 The content of the organic peroxide used in the solar cell sealing film is preferably 0.1 to 5 parts by mass, more preferably 0.2 to 3 parts by mass with respect to 100 parts by mass of the resin material. Is preferred. If the content of the organic peroxide is small, the crosslinking speed may be lowered during the crosslinking and curing, and if the content is large, the compatibility with the copolymer may be deteriorated.
 また、光重合開始剤としては、公知のどのような光重合開始剤でも使用することができるが、配合後の貯蔵安定性の良いものが望ましい。このような光重合開始剤としては、例えば、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-ヒドロキシシクロヘキシルフェニルケトン、2-メチル-1-(4-(メチルチオ)フェニル)-2-モルホリノプロパン-1などのアセトフェノン系、ベンジルジメチルケタ-ルなどのベンゾイン系、ベンゾフェノン、4-フェニルベンゾフェノン、ヒドロキシベンゾフェノンなどのベンゾフェノン系、イソプロピルチオキサントン、2-4-ジエチルチオキサントンなどのチオキサントン系、その他特殊なものとしては、メチルフェニルグリオキシレ-トなどが使用できる。特に好ましくは、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-ヒドロキシシクロヘキシルフェニルケトン、2-メチル-1-(4-(メチルチオ)フェニル)-2-モルホリノプロパン-1、ベンゾフェノン等が挙げられる。これら光重合開始剤は、必要に応じて、4-ジメチルアミノ安息香酸のごとき安息香酸系又は、第3級アミン系などの公知慣用の光重合促進剤の1種または2種以上を任意の割合で混合して使用することができる。また、光重合開始剤のみの1種単独または2種以上の混合で使用することができる。 As the photopolymerization initiator, any known photopolymerization initiator can be used, but a photopolymerization initiator having good storage stability after blending is desirable. Examples of such photopolymerization initiators include 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1-hydroxycyclohexyl phenyl ketone, and 2-methyl-1- (4- (methylthio) phenyl). Acetophenones such as -2-morpholinopropane-1, benzoins such as benzyldimethylketal, benzophenones such as benzophenone, 4-phenylbenzophenone and hydroxybenzophenone, thioxanthones such as isopropylthioxanthone and 2-4-diethylthioxanthone, As other special ones, methylphenylglyoxylate can be used. Particularly preferably, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-1- (4- (methylthio) phenyl) -2-morpholinopropane-1, Examples include benzophenone. These photopolymerization initiators may contain one or more known photopolymerization accelerators such as benzoic acid-based or tertiary amine-based compounds such as 4-dimethylaminobenzoic acid, if necessary. Can be mixed and used. Moreover, it can be used individually by 1 type of only a photoinitiator, or 2 or more types of mixture.
 前記光重合開始剤の含有量は、樹脂材料100質量部に対して0.1~5質量部、好ましくは0.2~3質量部である。 The content of the photopolymerization initiator is 0.1 to 5 parts by mass, preferably 0.2 to 3 parts by mass with respect to 100 parts by mass of the resin material.
 [架橋助剤]
 本発明の太陽電池用封止膜は、さらに架橋助剤を含んでいることが好ましい。架橋助剤は、オレフィン(共)重合体のゲル分率を向上させ、太陽電池用封止膜の接着性、耐候性を向上させることができる。
[Crosslinking aid]
It is preferable that the sealing film for solar cells of the present invention further contains a crosslinking aid. The crosslinking aid can improve the gel fraction of the olefin (co) polymer and improve the adhesion and weather resistance of the solar cell sealing film.
 架橋助剤の含有量は、樹脂材料100質量部に対して、通常0.1~5質量部、好ましくは0.1~3質量部、特に好ましくは0.3~2.0質量部で使用される。これにより、更に架橋後の硬度が向上した封止膜が得られる。 The content of the crosslinking aid is usually 0.1 to 5 parts by weight, preferably 0.1 to 3 parts by weight, particularly preferably 0.3 to 2.0 parts by weight with respect to 100 parts by weight of the resin material. Is done. Thereby, the sealing film which the hardness after bridge | crosslinking improved further is obtained.
 前記架橋助剤(官能基としてラジカル重合性基を有する化合物)としては、トリアリルシアヌレート、トリアリルイソシアヌレート等の3官能の架橋助剤の他、(メタ)アクリルエステル(例、NKエステル等)の単官能又は2官能の架橋助剤等を挙げることができる。なかでも、トリアリルシアヌレートおよびトリアリルイソシアヌレートが好ましく、特にトリアリルイソシアヌレートが好ましい。 Examples of the crosslinking aid (compound having a radical polymerizable group as a functional group) include trifunctional crosslinking aids such as triallyl cyanurate and triallyl isocyanurate, and (meth) acrylic esters (eg, NK ester) ) Monofunctional or bifunctional crosslinking aids. Of these, triallyl cyanurate and triallyl isocyanurate are preferable, and triallyl isocyanurate is particularly preferable.
 [接着性向上剤]
 本発明の太陽電池用封止膜においては、更に、接着向上剤を含んでいても良い。接着向上剤としては、シランカップリング剤を用いることができる。これにより、更に優れた接着力を有する太陽電池用封止膜とすることができる。前記シランカップリング剤としては、γ-クロロプロピルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(β-メトキシエトキシ)シラン、γ-メタクリロキシプロピルトリメトキシシラン、ビニルトリアセトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、ビニルトリクロロシラン、γ-メルカプトプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルトリメトキシシランを挙げることができる。これらシランカップリング剤は、単独で使用しても、又は2種以上組み合わせて使用しても良い。なかでも、γ-メタクリロキシプロピルトリメトキシシランが特に好ましく挙げられる。
[Adhesion improver]
The solar cell sealing film of the present invention may further contain an adhesion improver. As the adhesion improver, a silane coupling agent can be used. Thereby, it can be set as the sealing film for solar cells which has the further outstanding adhesive force. Examples of the silane coupling agent include γ-chloropropyltrimethoxysilane, vinyltriethoxysilane, vinyltris (β-methoxyethoxy) silane, γ-methacryloxypropyltrimethoxysilane, vinyltriacetoxysilane, and γ-glycidoxypropyl. Trimethoxysilane, γ-glycidoxypropyltriethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, vinyltrichlorosilane, γ-mercaptopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, N Mention may be made of -β- (aminoethyl) -γ-aminopropyltrimethoxysilane. These silane coupling agents may be used alone or in combination of two or more. Of these, γ-methacryloxypropyltrimethoxysilane is particularly preferred.
 本発明の太陽電池用封止膜におけるシランカップリング剤の含有量は、樹脂材料100質量部に対して5質量部以下、好ましくは0.1~2質量部であることが好ましい。 In the solar cell sealing film of the present invention, the content of the silane coupling agent is 5 parts by mass or less, preferably 0.1 to 2 parts by mass with respect to 100 parts by mass of the resin material.
 [その他]
 本発明の太陽電池用封止膜は、膜の種々の物性(機械的強度、透明性等の光学的特性、耐熱性、耐光性、架橋速度等)の改良あるいは調整、特に機械的強度の改良のため、必要に応じて、可塑剤、アクリロキシ基含有化合物、メタクリロキシ基含有化合物及び/又はエポキシ基含有化合物などの各種添加剤をさらに含んでいてもよい。
[Others]
The sealing film for solar cells of the present invention improves or adjusts various physical properties of the film (optical properties such as mechanical strength and transparency, heat resistance, light resistance, crosslinking speed, etc.), especially improvement of mechanical strength. Therefore, if necessary, various additives such as a plasticizer, an acryloxy group-containing compound, a methacryloxy group-containing compound and / or an epoxy group-containing compound may further be included.
 本発明の太陽電池用封止膜を形成するには、公知の方法に準じて行えばよい。例えば、上述した各成分を含む組成物を、通常の押出成形、又はカレンダ成形(カレンダリング)等により成形してシート状物を得る方法により製造することができる。本発明の太陽電池用封止膜の厚さは特に制限されないが、0.05~2mm、好ましくは0.3~0.8mmである。 The solar cell sealing film of the present invention may be formed according to a known method. For example, the composition containing each of the above-described components can be produced by a method of obtaining a sheet-like material by molding by ordinary extrusion molding, calendar molding (calendering) or the like. The thickness of the solar cell sealing film of the present invention is not particularly limited, but is 0.05 to 2 mm, preferably 0.3 to 0.8 mm.
 本発明の太陽電池の構造は、本発明の太陽電池用封止膜により太陽電池素子が封止されてなる構造を含んでいれば特に制限されない。例えば、表面側透明保護部材と裏面側保護部材との間に、本発明の太陽電池用封止膜を介在させて架橋一体化させることにより太陽電池用セルを封止させた構造などが挙げられる。 The structure of the solar cell of the present invention is not particularly limited as long as it includes a structure in which the solar cell element is sealed by the solar cell sealing film of the present invention. For example, the structure etc. which sealed the cell for solar cells by interposing the sealing film for solar cells of this invention between the surface side transparent protection member and the back surface side protection member, and making it bridge-integrate are mentioned. .
 本発明の太陽電池は、本発明の太陽電池用封止膜が用いられているので、波長変換材料により太陽電池素子の発電効率が向上されており、高い発電効率が長期に亘り維持されている太陽電池である。 Since the solar cell sealing film of the present invention is used in the solar cell of the present invention, the power generation efficiency of the solar cell element is improved by the wavelength conversion material, and the high power generation efficiency is maintained for a long time. It is a solar cell.
 なお、本発明において、太陽電池用セルの光が照射される側(受光面側)を「表面側」と称し、太陽電池用セルの受光面とは反対面側を「裏面側」と称する。 In addition, in this invention, the side (light-receiving surface side) where the light of the solar cell is irradiated is referred to as “front surface side”, and the side opposite to the light-receiving surface of the solar cell is referred to as “back surface side”.
 前記太陽電池において、太陽電池用セルを十分に封止するには、例えば、図1に示すように表面側透明保護部材11、表面側封止膜13A、太陽電池用セル14、裏面側封止膜13B及び裏面側保護部材12を積層し、加熱加圧など常法に従って、封止膜を架橋硬化させればよい。 In the solar cell, in order to sufficiently seal the solar cell, for example, as shown in FIG. 1, the front surface side transparent protective member 11, the front surface side sealing film 13A, the solar cell cell 14, the back surface side sealing. The film 13B and the back surface side protection member 12 may be laminated, and the sealing film may be cross-linked and cured according to a conventional method such as heat and pressure.
 加熱加圧するには、例えば、各部材を積層した積層体を、真空ラミネータで温度135~180℃、さらに140~180℃、特に155~180℃、脱気時間0.1~5分、プレス圧力0.1~1.5kg/cm2、プレス時間5~15分で加熱圧着すればよい。 In order to heat and pressurize, for example, a laminated body in which each member is laminated is heated by a vacuum laminator at a temperature of 135 to 180 ° C., further 140 to 180 ° C., particularly 155 to 180 ° C., a degassing time of 0.1 to 5 minutes, and a press pressure. What is necessary is just to heat-press in 0.1-1.5 kg / cm 2 and press time 5-15 minutes.
 この加熱加圧時に、表面側封止膜13Aおよび裏面側封止膜13Bに含まれるオレフィン(共)重合体を架橋させることにより、表面側封止膜13Aおよび裏面側封止膜13Bを介して、表面側透明保護部材11、裏面側透明部材12、および太陽電池用セル14を一体化させて、太陽電池用セル14を封止することができる。 By crosslinking the olefin (co) polymer contained in the front side sealing film 13A and the back side sealing film 13B during this heating and pressurization, the front side sealing film 13A and the back side sealing film 13B are interposed. The solar cell 14 can be sealed by integrating the front surface side transparent protective member 11, the back surface side transparent member 12, and the solar cell 14.
 本発明の太陽電池用封止膜は、上述のように、波長変換材料を含むことで太陽電池素子の発電効率を向上させることができるので、太陽電池における太陽電池素子の受光面側に配置される封止膜、すなわち、図1における表面側透明保護部材12と太陽電池セル14との間に配置される封止膜13Aとして利用することが好ましい。 Since the solar cell sealing film of the present invention can improve the power generation efficiency of the solar cell element by including the wavelength conversion material as described above, it is disposed on the light receiving surface side of the solar cell element in the solar cell. It is preferable to use as the sealing film 13A, that is, the sealing film 13A disposed between the surface-side transparent protective member 12 and the solar battery cell 14 in FIG.
 なお、本発明の太陽電池用封止膜は、図1に示したような単結晶又は多結晶のシリコン結晶系の太陽電池用セルを用いた太陽電池だけでなく、薄膜シリコン系、薄膜アモルファスシリコン系太陽電池、セレン化銅インジウム(CIS)系太陽電池等の薄膜太陽電池の封止膜にも使用することもできる。この場合は、例えば、ガラス基板、ポリイミド基板、フッ素樹脂系透明基板等の表面側透明保護部材の表面上に化学気相蒸着法等により形成された薄膜太陽電池素子層上に、本発明の太陽電池用封止膜、裏面側保護部材を積層し、接着一体化させた構造、裏面側保護部材の表面上に形成された太陽電池素子上に、本発明の太陽電池用封止膜、表面側透明保護部材を積層し、接着一体化させた構造、又は表面側透明保護部材、表面側封止膜、薄膜太陽電池素子、裏面側封止膜、及び裏面側保護部材をこの順で積層し、接着一体化させた構造等が挙げられる。なお、本発明において、太陽電池用セルや薄膜太陽電池素子を総称して太陽電池素子という。 The solar cell sealing film of the present invention is not limited to a solar cell using a single crystal or polycrystalline silicon crystal solar cell as shown in FIG. It can also be used for a sealing film of a thin film solar cell such as a solar cell and a copper indium selenide (CIS) solar cell. In this case, for example, the solar cell of the present invention is formed on a thin film solar cell element layer formed by a chemical vapor deposition method or the like on the surface of a surface side transparent protective member such as a glass substrate, a polyimide substrate, or a fluororesin transparent substrate. On the solar cell element formed on the surface of the back surface side protective member, the structure for laminating the battery sealing film and the back surface side protective member and adhering and integrating them, the front surface side Laminated transparent protective member, bonded and integrated structure, or front side transparent protective member, front side sealing film, thin film solar cell element, back side sealing film, and back side protective member are laminated in this order, For example, a structure that is bonded and integrated. In addition, in this invention, the cell for solar cells and a thin film solar cell element are named generically, and are called a solar cell element.
 表面側透明保護部材11は、通常珪酸塩ガラスなどのガラス基板であるのがよい。ガラス基板の厚さは、0.1~10mmが一般的であり、0.3~5mmが好ましい。ガラス基板は、一般に、化学的に、或いは熱的に強化させたものであってもよい。 The surface side transparent protective member 11 is usually a glass substrate such as silicate glass. The thickness of the glass substrate is generally from 0.1 to 10 mm, and preferably from 0.3 to 5 mm. The glass substrate may generally be chemically or thermally strengthened.
 裏面側保護部材12は、ポリエチレンテレフタレート(PET)やポリアミドなどのプラスチックフィルムが好ましく用いられる。また、耐熱性、耐湿熱性を考慮してフッ化ポリエチレンフィルム、特にフッ化ポリエチレンフィルム/Al/フッ化ポリエチレンフィルムをこの順で積層させたフィルムでも良い。 The back side protective member 12 is preferably a plastic film such as polyethylene terephthalate (PET) or polyamide. Further, a film obtained by laminating a fluorinated polyethylene film, particularly a fluorinated polyethylene film / Al / fluorinated polyethylene film in this order in consideration of heat resistance and wet heat resistance may be used.
 なお、本発明の太陽電池用封止膜は、太陽電池(薄膜太陽電池を含む)の表面側及び/又は裏面側に用いられる封止膜に特徴を有する。したがって、表面側透明保護部材、裏面側保護部材、および太陽電池用セルなどの封止膜以外の部材については、従来公知の太陽電池と同様の構成を有していればよく、特に制限されない。 In addition, the sealing film for solar cells of this invention has the characteristics in the sealing film used for the surface side and / or back surface side of a solar cell (a thin film solar cell is included). Therefore, the members other than the sealing film such as the front surface side transparent protective member, the back surface side protective member, and the solar battery cell are not particularly limited as long as they have the same configuration as a conventionally known solar battery.
 以下、本発明を実施例により詳細に説明する。 Hereinafter, the present invention will be described in detail with reference to examples.
 <無機蛍光物質の合成>
 (合成例1)
 原料として、BaCO、MgCO、Al、Eu、およびMnCOを用いた。また、フラックスとしてAlFを用いた。Eu含有率が15mol%、Mn含有率が35mol%となるように、上記原料を秤量して、乳鉢にて乾式混合して混合物を得た。次いでアルミナルツボに混合物を充填して、管状炉にて1450℃、N-H還元雰囲気(H濃度2%)にて3時間、焼成を行った。得られた焼成物をほぐして、目的とするBa0.85Mg0.65Al1017:Eu0.15,Mn0.35緑色発光蛍光物質を得た。得られた無機蛍光物質の体積平均径は1.4μm、屈折率は1.77であった。
<Synthesis of inorganic fluorescent materials>
(Synthesis Example 1)
BaCO 3 , MgCO 3 , Al 2 O 3 , Eu 2 O 3 , and MnCO 3 were used as raw materials. In addition, using the AlF 3 as a flux. The raw materials were weighed so that the Eu content was 15 mol% and the Mn content was 35 mol%, and dry-mixed in a mortar to obtain a mixture. Next, the mixture was filled in an alumina crucible, and calcination was performed in a tube furnace at 1450 ° C. in an N 2 —H 2 reducing atmosphere (H 2 concentration 2%) for 3 hours. The obtained fired product was loosened to obtain a target Ba 0.85 Mg 0.65 Al 10 O 17 : Eu 0.15 , Mn 0.35 green light emitting fluorescent material. The obtained inorganic fluorescent material had a volume average diameter of 1.4 μm and a refractive index of 1.77.
 (合成例2)
 原料として、BaCO、MgCO、Al、Eu、およびMnCOを用いた。また、フラックスとしてAlFを用いた。Eu含有率が18mol%、Mn含有率が58mol%となるように、上記原料を秤量して、乳鉢にて乾式混合して混合物を得た。次いでアルミナルツボに混合物を充填して、管状炉にて1450℃、N-H還元雰囲気(H濃度2%)にて3時間、焼成を行った。得られた焼成物をほぐして、目的とするBa0.82Mg1.42Al1627:Eu0.18,Mn0.58緑色発光蛍光物質を得た。得られた無機蛍光物質の体積平均径は1.4μm、屈折率は1.77であった。
(Synthesis Example 2)
BaCO 3 , MgCO 3 , Al 2 O 3 , Eu 2 O 3 , and MnCO 3 were used as raw materials. In addition, using the AlF 3 as a flux. The raw materials were weighed so that the Eu content was 18 mol% and the Mn content was 58 mol%, and dry-mixed in a mortar to obtain a mixture. Next, the mixture was filled in an alumina crucible, and calcination was performed in a tube furnace at 1450 ° C. in an N 2 —H 2 reducing atmosphere (H 2 concentration 2%) for 3 hours. The obtained fired product was loosened to obtain a target Ba 0.82 Mg 1.42 Al 16 O 27 : Eu 0.18 , Mn 0.58 green light emitting fluorescent material. The obtained inorganic fluorescent material had a volume average diameter of 1.4 μm and a refractive index of 1.77.
 <無機蛍光物質の表面処理>
 合成例1で得られた無機蛍光物質5gをトルエン50gに分散させ、攪拌しながら東レ・ダウコーニング株式会社製シランカップリング剤、商品名:SZ6030(3-メタクリロキシプロピルトリメトキシシラン)を0.05g投入した。室温(25℃)にて1時間攪拌した後濾別し、得られた固形分を110℃に設定した防爆オーブンにて1時間加熱処理することで、表面処理された無機蛍光物質を5.05g得た。
<Surface treatment of inorganic fluorescent material>
Disperse 5 g of the inorganic fluorescent material obtained in Synthesis Example 1 in 50 g of toluene, and stir the silane coupling agent, trade name: SZ6030 (3-methacryloxypropyltrimethoxysilane) manufactured by Toray Dow Corning Co., Ltd. with stirring. 05 g was charged. After stirring at room temperature (25 ° C.) for 1 hour, it was filtered off, and the obtained solid content was heat-treated in an explosion-proof oven set at 110 ° C. for 1 hour, so that 5.05 g of the surface-treated inorganic fluorescent material was obtained. Obtained.
 合成例2で得られた無機蛍光物質も同様にして表面処理を行い、表面処理された無機蛍光物質5.05gを得た。 The inorganic fluorescent material obtained in Synthesis Example 2 was similarly subjected to surface treatment to obtain 5.05 g of the surface-treated inorganic fluorescent material.
 <波長変換材料の作製>
 1.波長変換材料(1)の作製
 合成例1で得られた表面処理された無機蛍光物質を1g、メタクリル酸メチル(25℃における粘度0.44mPa・s)を65g、エチレングリコールジメタクリレート(25℃における粘度2.98mPa・s)を5g、ジシクロペンテニルメタクリレート(25℃における粘度10.80mPa・s)を30g、熱ラジカル開始剤である2,2´-アゾビス(2,4-ジメチルバレロニトリル)を0.5g、それぞれ量り取って200mlスクリュー管に入れ、ミックスローターを用いて回転数100min-1で1時間混合した。冷却管を付けたセパラブルフラスコに、イオン交換水500g、界面活性剤としてポリビニルアルコール1.69質量%溶液59.1gを加え、攪拌した。これに、先に調製したメタクリル酸メチル、エチレングリコールジメタクリレート及びジシクロペンテニルメタクリレートの混合液を加え、これを攪拌翼回転数350min-1で攪拌しながら、50℃に加熱し、4時間反応させた。この懸濁液をレーザー回折散乱粒度分布測定装置(Beckman Coulter社製、商品名:LS13320)を用い、ポンプスピード50%、無機蛍光体含有粒子の屈折率1.5、水の屈折率1.33として、平均粒子径を測定したところ、体積平均径が104μmであった。沈殿物を濾別し、イオン交換水で洗浄し、60℃で乾燥させ、懸濁重合によるポリマー粒子((メタ)アクリル樹脂からなる透明微粒子に無機蛍光物質が包含された波長変換材料(1))を得た。波長変換材料(1)中の無機蛍光物質の含有量は波長変換材料の質量に対して1質量%である。
<Production of wavelength conversion material>
1. Production of Wavelength Conversion Material (1) 1 g of the surface-treated inorganic fluorescent material obtained in Synthesis Example 1, 65 g of methyl methacrylate (viscosity 0.44 mPa · s at 25 ° C.), ethylene glycol dimethacrylate (at 25 ° C.) 5 g of viscosity 2.98 mPa · s), 30 g of dicyclopentenyl methacrylate (viscosity 10.80 mPa · s at 25 ° C.), 2,2′-azobis (2,4-dimethylvaleronitrile) as a thermal radical initiator 0.5 g each was weighed and placed in a 200 ml screw tube, and mixed for 1 hour at a rotation speed of 100 min −1 using a mix rotor. To a separable flask equipped with a condenser, 500 g of ion exchange water and 59.1 g of a 1.69% by weight polyvinyl alcohol solution as a surfactant were added and stirred. To this was added the previously prepared mixed solution of methyl methacrylate, ethylene glycol dimethacrylate and dicyclopentenyl methacrylate, and this was heated to 50 ° C. while stirring at a stirring blade rotational speed of 350 min −1 to react for 4 hours. It was. This suspension was subjected to a laser diffraction / scattering particle size distribution measuring apparatus (Beckman Coulter, trade name: LS13320) using a pump speed of 50%, a refractive index of inorganic phosphor-containing particles of 1.5, and a refractive index of water of 1.33. As a result, when the average particle diameter was measured, the volume average diameter was 104 μm. The precipitate is filtered off, washed with ion-exchanged water, dried at 60 ° C., and polymer particles obtained by suspension polymerization (wavelength converting material (1) containing inorganic fluorescent substances in transparent fine particles made of (meth) acrylic resin). ) The content of the inorganic fluorescent substance in the wavelength conversion material (1) is 1% by mass with respect to the mass of the wavelength conversion material.
 2.波長変換材料(2)の作製
 上記(1)において、合成例1で得られた表面処理された無機蛍光物質1gの代わりに、合成例2で得られた表面処理された無機蛍光物質1gを用いたこと以外は、上記(1)と同様に波長変換材料を作製した。波長変換材料(2)中の無機蛍光物質の含有量は波長変換材料の質量に対して1質量%である。
2. Production of Wavelength Conversion Material (2) In the above (1), instead of the surface-treated inorganic fluorescent material 1g obtained in Synthesis Example 1, the surface-treated inorganic fluorescent material 1g obtained in Synthesis Example 2 was used. A wavelength conversion material was produced in the same manner as in (1) except that it was. The content of the inorganic fluorescent substance in the wavelength conversion material (2) is 1% by mass with respect to the mass of the wavelength conversion material.
 3.波長変換材料(3)の作製
 上記(1)において、合成例1で得られた表面処理された無機蛍光物質1gの代わりに、C6042EuFを0.1g用いたこと以外は、上記(1)と同様に波長変換材料を作製した。
3. Production of Wavelength Conversion Material (3) In the above (1), instead of 1 g of the surface-treated inorganic fluorescent material obtained in Synthesis Example 1, 0.1 g of C 60 H 42 EuF 9 O 8 P 2 S 3 was used. A wavelength conversion material was produced in the same manner as in (1) except that it was.
 4.波長変換材料(4)は(SrBaCa)(PO)Cl:Eu2+ を透明粒子に包含させていない無機蛍光物質そのものである。 4). Wavelength converting material (4) is (Sr n Ba n Ca n) (PO 4) Cl: an Eu 2+ n have not is included in the transparent particles inorganic fluorescent substance itself.
 <太陽電池用封止膜の作製>
 下記表1~4に示した配合で各材料をロールミルに供給し、70℃において混練して太陽電池用封止膜組成物を調製した。この太陽電池用封止膜組成物を、70℃においてカレンダ成形し、放冷後、太陽電池用封止膜(厚さ0.5mm)を作製した。
<Preparation of solar cell sealing film>
The materials shown in Tables 1 to 4 below were supplied to a roll mill and kneaded at 70 ° C. to prepare a solar cell sealing film composition. This solar cell sealing film composition was calendered at 70 ° C., allowed to cool, and then a solar cell sealing film (thickness 0.5 mm) was produced.
 <評価方法>
 ・架橋サンプルの作製
 上記太陽電池用封止膜を2枚の白板ガラス(厚さ3.2mm)で挟み、真空ラミネータを用いて90℃において真空時間2分、プレス時間8分で圧着した後、オーブン内で155℃において30分間加熱して、太陽電池用封止膜を架橋硬化させることによりサンプルを得た。
<Evaluation method>
-Preparation of cross-linked sample After sandwiching the solar cell sealing film between two pieces of white glass (thickness 3.2 mm), using a vacuum laminator and crimping at 90 ° C for 2 minutes in vacuum time and 8 minutes in press time, A sample was obtained by heating in an oven at 155 ° C. for 30 minutes to crosslink and cure the solar cell sealing film.
 (1)光線透過率
 上記サンプルの3箇所について、分光光度計(日立製作所製、∪-4100)を用いて400~1000nmのスペクトル測定を実施し、その平均値を光線透過率(%)とした。
(1) Light transmittance The spectrum measurement of 400 to 1000 nm was carried out using a spectrophotometer (manufactured by Hitachi, Ltd., ∪-4100) at the three locations of the sample, and the average value was defined as the light transmittance (%). .
 (2)ヘイズ(%)
 上記サンプルについて、JIS K 7105(2000年)に従って、ヘイズメーター(日本電色工業株式会社製 NDH 2000型)を用いてヘイズ値(%)を測定した。
(2) Haze (%)
About the said sample, haze value (%) was measured using the haze meter (Nippon Denshoku Industries Co., Ltd. NDH 2000 type | mold) according to JISK7105 (2000).
 (3)蛍光強度
 上記サンプルについて、分光光度計(日立ハイテクノロジーズ社製、F-7000)を用い、蛍光強度を測定した。測定条件:ホトマル電圧400V、励起側スリット20nm、蛍光側スリット10nm、スキャンスピード240nm/min。照射波長は、波長変換材料(3)のみ355nmとし、その他の波長変換材料(1)、(2)及び(4)は325nmとした。波長をX軸、発光量をY軸に表した関数f(x)の、発光ピークの開始波長から終了波長における曲線と関数f(x)上のX=XとXの2点を結ぶ直線により囲まれる領域の面積を算出し、蛍光強度とした。
(3) Fluorescence intensity The fluorescence intensity of the above sample was measured using a spectrophotometer (F-7000, manufactured by Hitachi High-Technologies Corporation). Measurement conditions: Photomultiplier voltage 400 V, excitation side slit 20 nm, fluorescence side slit 10 nm, scan speed 240 nm / min. The irradiation wavelength was 355 nm only for the wavelength conversion material (3), and the other wavelength conversion materials (1), (2) and (4) were 325 nm. Connecting the X-axis wavelength, the light emission amount functions shown in Y-axis f (x), the two points X = X 0 and X 1 on the curve and function f (x) at the end wavelengths from the start wavelength of emission peak The area of the region surrounded by the straight line was calculated and used as the fluorescence intensity.
 (4)UV劣化
 上記サンプルについて、紫外線ランプ(スーパーU∨、岩崎電気製)を用い、ブラックパネル温度63℃の条件下において、1000W/cmの紫外線の紫外線を照射する光源から235mmの位置に対向させて配置し、紫外線を照射した場合に、紫外線照射前の試料の発光強度に対して30%まで低下するのに要する時間を測定した。
(4) UV degradation With respect to the above sample, using an ultraviolet lamp (Super U∨, manufactured by Iwasaki Electric Co., Ltd.), at a position of 235 mm from a light source that irradiates ultraviolet rays of 1000 W / cm 2 under a black panel temperature of 63 ° C. When placed facing each other and irradiated with ultraviolet rays, the time required to decrease to 30% with respect to the emission intensity of the sample before ultraviolet irradiation was measured.
 (5)耐熱劣化
 上記サンプルを120℃環境下のオーブンに静置し、耐熱試験開始前の発光強度に対して30%まで低下するのに要する時間を測定した。
(5) Heat resistance deterioration The sample was placed in an oven at 120 ° C, and the time required to decrease to 30% of the emission intensity before the start of the heat resistance test was measured.
 (6)太陽電池出力
 白板ガラス(厚さ3.2mm)/上記太陽電池用封止膜/太陽電池用セル(GINTECH製6インチGIN156S)/裏面側太陽電池用封止膜/バックシート(裏面側保護部材、イソヴォルタ製TPT、350μm、Icosolar2442)をこの順で積層し、90℃に設定した真空ラミネータに投入し、真空時間2分、圧着時間8分の条件で圧着した後、155℃に設定したオーブンに入れ、30分間加熱し、太陽電池モジュールを作製した。
(6) Solar cell output White glass (thickness: 3.2 mm) / Solar cell sealing film / Solar cell (GINTECH 6-inch GIN156S) / Back side solar cell sealing film / Back sheet (Back side) Protective members, Isovolta TPT, 350 μm, Icosolar 2442) were laminated in this order, put into a vacuum laminator set at 90 ° C., and bonded under a vacuum time of 2 minutes and a pressure bonding time of 8 minutes, and then set at 155 ° C. It put into oven and heated for 30 minutes and produced the solar cell module.
 太陽電池出力は、三永電機製ソーラーシミュレータを用い、1000W/m、25℃条件下で測定を行った。太陽電池出力は、参考例1の太陽電池用封止膜を用いた太陽電池モジュールを同条件で作製し、このモジュールの短絡電流値を100として実施例、比較例の太陽電池出力向上効果を評価した。 The solar cell output was measured under conditions of 1000 W / m 2 and 25 ° C. using a solar simulator manufactured by Mitsunaga Electric. For solar cell output, a solar cell module using the solar cell sealing film of Reference Example 1 was produced under the same conditions, and the short-circuit current value of this module was set to 100, and the solar cell output improvement effect of the examples and comparative examples was evaluated did.
 なお、裏面側太陽電池用封止膜は、表3の参考例1の太陽電池用封止膜の配合に更に紫外線吸収剤(2-ヒドロキシ-4-n-オクトキシベンゾフェノン)0.2質量部を加えた組成物を上記と同様にカレンダ成形することにより作製した。 The back side solar cell sealing film was added to 0.2 parts by mass of an ultraviolet absorber (2-hydroxy-4-n-octoxybenzophenone) in addition to the formulation of the solar cell sealing film of Reference Example 1 in Table 3. The composition to which was added was prepared by calendar molding in the same manner as described above.
 結果を下記表に示す。 The results are shown in the table below.
 なお、各種材料の詳細は以下の通りである。
 EVA:酢酸ビニル含有量26質量%(ウルトラセン634、東ソー製)
 m-LLDPE:密度0.880g/cm(カーネルKS340T、日本ポリエチレン製)
 架橋剤:t-ブチルパーオキシ-2-エチルヘキシルモノカーボネート
 架橋助剤:トリアリルイソシアヌレート
 シランカップリング剤:γ-メタクリロキシプロピルトリメトキシシラン
 波長変換材料(1):Ba0.85Mg0.65Al1017:Eu0.15,Mn0.35を含む波長変換材料
 波長変換材料(2):Ba0.82Mg1.42Al1627:Eu0.18,Mn0.58を含む波長変換材料
 波長変換材料(3):C6042EuFを含む波長変換材料
 波長変換材料(4):(SrBaCa)(PO)Cl:Eu2+
The details of various materials are as follows.
EVA: vinyl acetate content 26% by mass (Ultrasen 634, manufactured by Tosoh Corporation)
m-LLDPE: Density 0.880 g / cm 3 (Kernel KS340T, manufactured by Nippon Polyethylene)
Cross-linking agent: t-butylperoxy-2-ethylhexyl monocarbonate Cross-linking aid: triallyl isocyanurate Silane coupling agent: γ-methacryloxypropyltrimethoxysilane Wavelength converting material (1): Ba 0.85 Mg 0.65 Wavelength conversion material containing Al 10 O 17 : Eu 0.15 , Mn 0.35 Wavelength conversion material (2): Ba 0.82 Mg 1.42 Al 16 O 27 : Eu 0.18 , containing Mn 0.58 wavelength converting material wavelength converting material (3): C 60 H 42 EuF 9 O 8 P 2 S 3 wavelength converting material wavelength converting material (4) comprising :( Sr n Ba n Ca n) (PO 4) Cl: Eu 2+ n
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003





Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 11       表面側透明保護部材
 12       裏面側保護部材
 13A      表面側封止膜
 13B      裏面側封止膜
 14       太陽電池用セル
DESCRIPTION OF SYMBOLS 11 Surface side transparent protective member 12 Back surface side protective member 13A Surface side sealing film 13B Back surface side sealing film 14 Cell for solar cells

Claims (6)

  1.  オレフィン(共)重合体を含む樹脂材料及び波長変換材料を含む太陽電池用封止膜であって、
     前記波長変換材料が、下記式(I)又は(II)
     Ba1-aMg1-bAl1017:Eu,Mn   (I)
    (式中、aは0.05以上0.25以下であり、bは0.10以上0.40以下である。)
     Ba1-cMg2-dAl1627:Eu,Mn   (II)
     (式中、cは0.05以上0.25以下であり、dは0.20以上0.80以下である。)
     で表される物質から選択される少なくとも1種の無機蛍光物質と(メタ)アクリル樹脂からなる透明材料とを含み、
     前記無機蛍光物質の含有量が、前記樹脂材料100質量部に対して0.0001~0.005質量部であることを特徴とする太陽電池用封止膜。
    A solar cell encapsulating film comprising a resin material containing an olefin (co) polymer and a wavelength conversion material,
    The wavelength conversion material is represented by the following formula (I) or (II)
    Ba 1-a Mg 1-b Al 10 O 17 : Eu a , Mn b (I)
    (In the formula, a is from 0.05 to 0.25, and b is from 0.10 to 0.40.)
    Ba 1-c Mg 2-d Al 16 O 27: Eu c, Mn d (II)
    (In the formula, c is 0.05 or more and 0.25 or less, and d is 0.20 or more and 0.80 or less.)
    Including at least one inorganic fluorescent substance selected from the substances represented by: and a transparent material made of a (meth) acrylic resin,
    The solar cell sealing film, wherein the content of the inorganic fluorescent material is 0.0001 to 0.005 parts by mass with respect to 100 parts by mass of the resin material.
  2.  前記(メタ)アクリル樹脂からなる透明材料は透明微粒子であり、
     該透明微粒子に前記無機蛍光物質が包含されていることを特徴とする請求項1に記載の太陽電池用封止膜。
    The transparent material made of the (meth) acrylic resin is transparent fine particles,
    The solar cell sealing film according to claim 1, wherein the transparent fine particles contain the inorganic fluorescent material.
  3.  前記透明微粒子の平均粒子径が2~150μmであることを特徴とする請求項2に記載の太陽電池用封止膜。 3. The solar cell sealing film according to claim 2, wherein the transparent fine particles have an average particle diameter of 2 to 150 μm.
  4.  前記無機蛍光物質がシランカップリング剤により表面処理されていることを特徴とする請求項1~3の何れか1項に記載の太陽電池用封止膜。 The solar cell sealing film according to any one of claims 1 to 3, wherein the inorganic fluorescent material is surface-treated with a silane coupling agent.
  5.  前記波長変換材料における前記無機蛍光物質の含有量が、前記波長変換材料の質量に対して0.5~1.5質量%であることを特徴とする請求項1~4の何れか1項に記載の太陽電池用封止膜。 The content of the inorganic fluorescent substance in the wavelength conversion material is 0.5 to 1.5 mass% with respect to the mass of the wavelength conversion material, according to any one of claims 1 to 4. The sealing film for solar cells as described.
  6.  請求項1~5の何れか1項に記載の太陽電池用封止膜により太陽電池素子を封止してなる太陽電池。 A solar cell obtained by sealing a solar cell element with the solar cell sealing film according to any one of claims 1 to 5.
PCT/JP2015/050881 2014-01-17 2015-01-15 Sealing film for solar cell, and solar cell using same WO2015108096A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580011186.3A CN106062131A (en) 2014-01-17 2015-01-15 Sealing film for solar cell, and solar cell using same
KR1020167021543A KR20160143642A (en) 2014-01-17 2015-01-15 Sealing film for solar cell, and solar cell using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-006516 2014-01-17
JP2014006516A JP2015135884A (en) 2014-01-17 2014-01-17 Solar battery-sealing film, and solar battery arranged by use thereof

Publications (1)

Publication Number Publication Date
WO2015108096A1 true WO2015108096A1 (en) 2015-07-23

Family

ID=53542982

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/050881 WO2015108096A1 (en) 2014-01-17 2015-01-15 Sealing film for solar cell, and solar cell using same

Country Status (4)

Country Link
JP (1) JP2015135884A (en)
KR (1) KR20160143642A (en)
CN (1) CN106062131A (en)
WO (1) WO2015108096A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018037914A1 (en) * 2016-08-24 2018-03-01 堺化学工業株式会社 Fluorescent substance and resin composition containing same
US10619094B2 (en) 2017-08-31 2020-04-14 Nichia Corporation Aluminate fluorescent material and light emitting device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015222028A1 (en) * 2015-11-09 2017-05-11 Tesa Se Cationically polymerizable polyacrylates containing alkoxysilane groups and their use
CN107681015B (en) * 2017-11-07 2024-04-16 苏州中来光伏新材股份有限公司 Preparation method of PVB (polyvinyl butyral) adhesive film and double-glass assembly packaged by PVB adhesive film
US12006460B2 (en) 2021-12-30 2024-06-11 Industrial Technology Research Institute Photoelectric conversion compound and photoelectric conversion composition including the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03106988A (en) * 1989-09-20 1991-05-07 Kasei Optonix Co Ltd Aluminate phosphor
JP2004501512A (en) * 2000-05-15 2004-01-15 ゼネラル・エレクトリック・カンパニイ White light emitting phosphor blend for LED elements
CN101168667A (en) * 2007-11-30 2008-04-30 彩虹集团电子股份有限公司 Method for preparing green phosphor
WO2012032880A1 (en) * 2010-09-10 2012-03-15 株式会社日立製作所 Wavelength-converting resin composition, sealing material for wavelength-conversion-type solar cell and process for production thereof, and solar cell module and process for production thereof
JP2012230968A (en) * 2011-04-25 2012-11-22 Hitachi Chem Co Ltd Sealing material sheet and solar battery module
WO2013141048A1 (en) * 2012-03-21 2013-09-26 日立化成株式会社 Inorganic phosphor-containing polymer particles, method for producing inorganic phosphor-containing polymer particles, and solar cell module
JP2013194160A (en) * 2012-03-21 2013-09-30 Hitachi Chemical Co Ltd Granular wavelength conversion material for solar cell
CN103509553A (en) * 2012-08-01 2014-01-15 佛山市南海区大沥朗达荧光材料有限公司 Rare earth and manganese co-activated manganese phosphate fluorescent powder and manufacturing method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6466135B1 (en) * 2000-05-15 2002-10-15 General Electric Company Phosphors for down converting ultraviolet light of LEDs to blue-green light
JP2003243682A (en) 2002-02-19 2003-08-29 Sumitomo Bakelite Co Ltd Solar cell
JP2006303033A (en) 2005-04-18 2006-11-02 National Institute Of Advanced Industrial & Technology Solar cell module
JPWO2009107535A1 (en) * 2008-02-25 2011-06-30 株式会社東芝 White LED lamp, backlight, light emitting device, display device, and illumination device
FR2928912B1 (en) * 2008-03-18 2014-09-05 Rhodia Operations BARIUM ALUMINATE AND SUBMICRONIC MAGNESIUM, PROCESS FOR THEIR PREPARATION AND USE AS A LUMINOPHORE.
JP2011210891A (en) 2010-03-29 2011-10-20 Hitachi Chem Co Ltd Wavelength-converting solar cell sealing sheet, and solar cell module
JP4862098B1 (en) * 2010-06-28 2012-01-25 株式会社東芝 LED bulb

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03106988A (en) * 1989-09-20 1991-05-07 Kasei Optonix Co Ltd Aluminate phosphor
JP2004501512A (en) * 2000-05-15 2004-01-15 ゼネラル・エレクトリック・カンパニイ White light emitting phosphor blend for LED elements
CN101168667A (en) * 2007-11-30 2008-04-30 彩虹集团电子股份有限公司 Method for preparing green phosphor
WO2012032880A1 (en) * 2010-09-10 2012-03-15 株式会社日立製作所 Wavelength-converting resin composition, sealing material for wavelength-conversion-type solar cell and process for production thereof, and solar cell module and process for production thereof
JP2012230968A (en) * 2011-04-25 2012-11-22 Hitachi Chem Co Ltd Sealing material sheet and solar battery module
WO2013141048A1 (en) * 2012-03-21 2013-09-26 日立化成株式会社 Inorganic phosphor-containing polymer particles, method for producing inorganic phosphor-containing polymer particles, and solar cell module
JP2013194160A (en) * 2012-03-21 2013-09-30 Hitachi Chemical Co Ltd Granular wavelength conversion material for solar cell
CN103509553A (en) * 2012-08-01 2014-01-15 佛山市南海区大沥朗达荧光材料有限公司 Rare earth and manganese co-activated manganese phosphate fluorescent powder and manufacturing method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018037914A1 (en) * 2016-08-24 2018-03-01 堺化学工業株式会社 Fluorescent substance and resin composition containing same
JPWO2018037914A1 (en) * 2016-08-24 2019-06-20 堺化学工業株式会社 Phosphor and resin composition containing the same
US10619094B2 (en) 2017-08-31 2020-04-14 Nichia Corporation Aluminate fluorescent material and light emitting device
US10829688B2 (en) 2017-08-31 2020-11-10 Nichia Corporation Aluminate fluorescent material and light emitting device

Also Published As

Publication number Publication date
JP2015135884A (en) 2015-07-27
CN106062131A (en) 2016-10-26
KR20160143642A (en) 2016-12-14

Similar Documents

Publication Publication Date Title
US20120266942A1 (en) Seal sheet and solar cell module
WO2014054720A1 (en) Sealing film for solar cells and solar cell using same
WO2015108096A1 (en) Sealing film for solar cell, and solar cell using same
JP2012004146A (en) Sealing film for solar cell and solar cell using the same
WO2016194606A1 (en) Sealing film for solar cells, and solar cell module
WO2013141048A1 (en) Inorganic phosphor-containing polymer particles, method for producing inorganic phosphor-containing polymer particles, and solar cell module
JP2016100505A (en) Sealant for solar battery, and solar battery module
WO2015046442A1 (en) Sealing film for solar cells, and solar cell using same
WO2015034060A1 (en) Solar cell sealing film, and solar cell using same
JP2015053368A (en) Wavelength conversion material for solar batteries, and solar battery module
WO2015194594A1 (en) Wavelength conversion material and solar cell sealing film containing same
WO2015194595A1 (en) Wavelength conversion material and solar cell sealing film containing same
WO2016140360A1 (en) Solar-cell sealing film and solar cell using same
JP2014209626A (en) Sealing film for solar cell and solar cell using the same
JP2013194160A (en) Granular wavelength conversion material for solar cell
JP2014197683A (en) Solar cell encapsulation film and solar cell using the same
WO2017094354A1 (en) Method for manufacturing solar cell sealing material and composition for manufacturing solar cell sealing material
WO2016067889A1 (en) Wavelength-conversion-type solar cell module
JP2014034588A (en) Polymer particle including inorganic phosphor for solar cell wavelength conversion, and production method thereof
WO2015194592A1 (en) Sealing film for solar cells and solar cell using same
JP5869211B2 (en) Solar cell sealing film and solar cell using the same
JP2017222752A (en) Composition for producing sealing material for solar battery, and sealing material for solar battery
JP2016004893A (en) Sealing film for solar battery and solar battery using the same
JP2016004895A (en) Sealing film for solar battery and solar battery
JP2014034587A (en) Polymer particle including inorganic phosphor for solar cell wavelength conversion, and production method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15737170

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167021543

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15737170

Country of ref document: EP

Kind code of ref document: A1