JP4789349B2 - Zoom lens and optical apparatus having the same - Google Patents

Zoom lens and optical apparatus having the same Download PDF

Info

Publication number
JP4789349B2
JP4789349B2 JP2001175881A JP2001175881A JP4789349B2 JP 4789349 B2 JP4789349 B2 JP 4789349B2 JP 2001175881 A JP2001175881 A JP 2001175881A JP 2001175881 A JP2001175881 A JP 2001175881A JP 4789349 B2 JP4789349 B2 JP 4789349B2
Authority
JP
Japan
Prior art keywords
lens
lens group
positive
negative
object side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001175881A
Other languages
Japanese (ja)
Other versions
JP2002365547A (en
JP2002365547A5 (en
Inventor
誠 三坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2001175881A priority Critical patent/JP4789349B2/en
Publication of JP2002365547A publication Critical patent/JP2002365547A/en
Publication of JP2002365547A5 publication Critical patent/JP2002365547A5/ja
Application granted granted Critical
Publication of JP4789349B2 publication Critical patent/JP4789349B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ズームレンズ及びそれを有する光学機器に関し、例えば一眼レフカメラ、スチルビデオカメラ、デジタルカメラ等に好適な、広角域を含みかつコンパクト、高変倍のズームレンズ及びそれを有する光学機器に関するものである。
【0002】
【従来の技術】
従来より、写真用カメラやビデオカメラそしてデジタルカメラ等の光学機器には高変倍比で広画角で、しかも全変倍範囲にわたり高コントラストで高い光学性能を有したズームレンズが要求されている。
【0003】
このうち一眼レフカメラ用のズームレンズに好適なズームタイプとして、物体側より順に、正・負・正・負・正の屈折力の5つのレンズ群で構成される、所謂5群ズームレンズが知られている。
【0004】
このズームタイプは変倍時の各レンズ群の移動量が比較的少ないので、高変倍のズームレンズに好適であり、またバックフォーカスを確保しやすいことから短焦点側の広角化にも有利である。
【0005】
前記ズームタイプのズームレンズが例えば特公昭58−33531号公報、特公昭61−51291号公報、特公昭61−51294号公報等にて開示されている。本出願人も同様のズームレンズを特開平5−119260号公報、特開平6−230285号公報、特開平8−179213号公報、特開平9−304697号公報等にて開示している。
【0006】
【発明が解決しようとする課題】
ズームレンズの変倍比を高変倍化すると変倍にともなう収差変動のうち特に色収差の変動が大となる。この色収差を抑制するためには各レンズ群のレンズ枚数を増加する必要があり、この結果レンズ構成が複雑化及び光学系の大型化を招く傾向がある。逆に光学系を無理に小型化しようとすれば色収差の変動が大きくなり光学性能を良好に維持できなくなる。
【0007】
この為、高変倍比で小型の高い光学性能を有するズームレンズを設計する際、各レンズの硝材選択は重要な作業となっている。複数のレンズ群を含むズームレンズにおいて、正の屈折力のレンズ群の場合は、そのなかに含まれる正レンズの材質に高屈折率かつ低分散のガラスを用い、負の屈折力のレンズ群の場合はそのなかに含まれる負レンズの材質に、高屈折率かつ低分散のガラスを用いると良い。しかしながら、高屈折率かつ低分散の硝材は種類が少なく、又加工が難しく無計画に多用してしまうと、製作が難しくなってくる。逆に、低屈折率の硝材ばかり選択してしまうと、高い光学性能を維持するために、各レンズ群の屈折力が弱くなってしまい、光学系全系が大型化したり、十分な変倍比を確保できなくなってしまう。
【0008】
例えば前述の5群ズームレンズにおいて、変倍に伴う各レンズ群の移動条件や各レンズ群のレンズ構成及びそれらのレンズの材質を適切に設定しないと諸収差、特に色収差の発生が増大し、全変倍範囲にわたり良好なる画質の映像を得るのが難しくなってくる。
【0009】
本発明は、主に変倍に伴う各レンズ群の移動条件や各レンズ群のレンズ構成及びそれらのレンズの材質等を適切に設定することにより広画角、高変倍比で全変倍範囲にわたり、しかも全画面にわたり高い光学性能を有するズームレンズ及びそれを有する光学機器の提供を目的とする。
【0010】
この他本発明は、光学系を構成する各レンズの硝材を適切に選択し、かつ各レンズ群の構成を適切にすることでレンズ系全体が、コンパクトでありながら、良好なる光学性能を有した広角域を含むズーム比3.5倍程度のズームレンズ及びそれを有する光学機器の提供を目的とする。
【0011】
【課題を解決するための手段】
請求項1の発明のズームレンズは、物体側より順に、正の屈折力の第1レンズ群と、負の屈折力の第2レンズ群と、正の屈折力の第3レンズ群と、負の屈折力の第4レンズ群と、正の屈折力の第5レンズ群より構成され、広角端に比べて望遠端において前記第1レンズ群と前記第2レンズ群の間隔が大きくなり、前記第2レンズ群と前記第3レンズ群の間隔が小さくなり、前記第3レンズ群と前記第4レンズ群の間隔が大きくなり、前記第4レンズ群と前記第5レンズ群が間隔が小さくなるようにレンズ群を移動させて変倍を行うズームレンズにおいて、
前記第1レンズ群は、物体側から順に、物体側に凸面を向けた負メニスカスレンズ1aと物体側に凸面を向けた正メニスカスレンズ1bで構成される接合レンズ1ab、物体側に凸面を向けた正メニスカスレンズ1cで構成され、
前記第3レンズ群は、物体側から順に、物体側に凸面を向けた負メニスカスレンズ3aと両レンズ面が凸面の正レンズ3bで構成される接合レンズ3ab、両レンズ面が凸面の正レンズ3cで構成され、
前記第1レンズ群の正レンズ1bの材質のアッベ数をν1b、前記第1レンズ群の正レンズ1bの材質の屈折率をN1b、
前記第3レンズ群の正レンズの材質の平均アッベ数をν3p、前記第3レンズ群の正レンズの材質の平均屈折率をN3p、第nレンズ群の焦点距離をfn、ズームレンズの広角端の焦点距離をfwとするとき、
50<ν3p<65
−0.001×ν3p+1.61<N3p<−0.006×ν3p+2.04
0.6<f3/fw<0.9
49<ν1b<62
−0.001×ν1b+1.62<N1b<−0.008×ν1b+2.13
2.4<f1/fw<2.9
の条件を満足することを特徴としている。
【0012】
請求項2の発明は請求項1の発明において前記第4レンズ群は物体側から順に正レンズ4a、負レンズ4bから成る接合レンズで構成されており、
第4レンズ群中の負レンズ4bの材質のアッベ数をν4b、
第4レンズ群中の負レンズ4bの材質の屈折率をN4b、
第4レンズ群中の正レンズ4aの材質のアッベ数をν4a、
とするとき
36<ν4b<61
−0.005×ν4b+1.90<N4b<−0.005×ν4b+2.03
12<ν4b−ν4a<34
1.0<|f4|/fw<1.6
の条件を満足することを特徴としている。
【0013】
請求項3の発明は請求項1又は2の発明において前記第2レンズ群は物体側から順に、物体側に凸面を向けた負メニスカスレンズ2a,負レンズ2b、正レンズ2c、負レンズ2dで構成され、
第2レンズ群中の負レンズ2dの材質のアッベ数をν2d
第2レンズ群中の負レンズ2dの材質の屈折率をN2d
とするとき
36<ν2d<59
−0.008×ν2d+2.11<N2d<−0.005×ν2d+2.03
0.4<|f2|/fw<0.6
の条件を満足することを特徴としている。
【0014】
請求項4の発明は、前記第5レンズ群は物体側から順に、物体側に比べ像面側に強い屈折力の凸面を向けた正レンズ5a、正レンズ5b、像面側に凸面を向けた負メニスカスレンズ5cで構成され、
第5レンズ群中の正レンズ5bの材質のアッベ数をν5b
第5レンズ群中の正レンズ5bの材質の屈折率をN5b
とするとき
36<ν5b<64
−0.001×ν5b+1.62<N5b<−0.006×ν5b+1.97
1.4<f5/fw<2.1
の条件を満足することを特徴としている。
【0015】
請求項5の発明の光学機器は、請求項1乃至4のいずれか1項のズームレンズを有していることを特徴としている。
【0017】
【発明の実施の形態】
図1(A)、(B)、(C)は数値実施例1の広角端、中間のズーム位置そして望遠端のレンズ断面図である。図2〜図4は本発明の数値実施例1の広角端、中間のズーム位置、望遠端の収差図である。
【0018】
図5は数値実施例2の広角端におけるレンズ断面図、図6〜図8は本発明の数値実施例2の広角端、中間のズーム位置、望遠端の収差図である。
【0019】
図9は数値実施例3の広角端におけるレンズ断面図、図10〜図12は本発明の数値実施例3の広角端、中間のズーム位置、望遠端の収差図である。
【0020】
レンズ断面図においてL1は正の第1レンズ群、L2は負の第2レンズ群、L3は正の第3レンズ群、L4は負の第4レンズ群、L5は正の第5レンズ群、SPは絞り、IPは像面である。広角端から望遠端への変倍の際、矢印の如く第1レンズ群L1は物体側へ移動し、第2レンズ群L2は第1レンズ群L1との間隔を大にしつつ物体側へ移動し、第3レンズ群L3は第2レンズ群L2との間隔を小にしつつ物体側へ移動し、第4レンズ群L4は第3レンズ群L3との間隔を大にしつつ物体側へ移動し、第5レンズ群L5は第4レンズ群L4との間隔を小にしつつ第3レンズ群L3と一体に物体側へ移動し、絞りSPは第3レンズ群L3と一体に物体側へ移動している。
【0021】
なお、本実施形態において無限遠物体から近距離物体へのフォーカシングは全体或いは単体及び複数のレンズ群を移動させて行ってもよいが、第2レンズ群で行えば、良好なる光学性能が得やすく、またレンズ群が比較的小さいことから、メカ機構が簡単になって良い。
【0022】
尚、第5レンズ群は第3レンズ群と一体的に移動しているが、独立に移動させても良い。また、絞りSPは第3レンズ群と一体的に移動させているが、独立に移動させても良い。
【0023】
本実施形態のズームレンズは第3レンズ群は物体側から順に、物体側に凸面を向けた負メニスカスレンズ3aと両レンズ面が凸面の正レンズ3bで構成される接合レンズ3ab、両レンズ面が凸面の正レンズ3cで構成され、
第3レンズ群中の正レンズの材質の平均アッベ数をν3p、
第3レンズ群中の正レンズの材質の平均屈折率をN3p、
第nレンズ群の焦点距離をfn、
ズームレンズの広角端の焦点距離をfw、
とするとき
50<ν3p<65 ・・・(1)
−0.001×ν3p+1.61<N3p<−0.006×ν3p+2.04
・・・(2)
0.6<f3/fw<0.9 ・・・(3)
の条件を満足することを特徴としている。
【0024】
以下、上記内容について説明する。
【0025】
一般にズームレンズを高変倍化すると、変倍に伴う収差変動が大きくなりやすくなる。このうちとりわけ色収差変動の抑制は、良好なる光学性能を満足するうえで重要である。本実施形態のズームレンズでは、第3レンズ群に物体側から順に、物体側に凸面を向けた負メニスカスレンズ3aと両レンズ面が凸面の正レンズ3bで構成される接合レンズを配置することで、特に変倍に伴う軸上収差の変動を補正しやすくしている。そして、その像面側に両レンズ面が凸面の正レンズ3cを配置することで変倍に必要な正の屈折力も確保しやすくしている。さらに、前記2つの正レンズの材質を適切な硝材とすることで、良好なる光学性能を達成している
条件式▲1▼は第3レンズ群の正レンズ(3bと3c)の材質の平均アッベ数を適切に設定するための条件であり、上限を越えると、燐酸クラウンや、フッケイクラウンといったレンズ製作が難しく高価な硝材となってしまい、下限を越えると、変倍に伴う軸上色収差の変動を補正することが困難となる。
【0026】
条件式▲2▼は第3レンズ群の正レンズ(3bと3c)の材質の平均屈折率とアッベ数を適切に設定する条件であり、上限を越えるとレンズ製作が難しく高価な高屈折率ランタン系硝材となってしまい、下限を越えると特に望遠側における球面収差の補正が困難となる。
【0027】
条件式▲3▼は上記条件(1)、(2)で設定された硝材を第3レンズ群の正レンズに使用した際の第3レンズ群の焦点距離を適切に設定するものであり、上限を越えると変倍比の確保が困難となり、下限を越えると望遠側における球面収差の補正が困難となったり、広角側でレトロタイプの屈折力配置をとりづらくなることなることから、広角側における像面湾曲の補正が困難となる。
【0028】
更に望ましくは条件式▲1▼▲2▼▲3▼を以下の数値範囲とすると良い。
【0029】
55<ν3p<62 …(1a)
−0.007×ν3p+2.01<N3p<−0.006×ν3p+1.98…(2a)
0.68<f3/fw<0.83 …(3a)
以上説明した構成をとることにより本実施形態ではコンパクトかつ良好なる光学性能を有した、半画角約37度の広角域を含みズーム比3.5倍程度ズームレンズを達成している。
【0030】
本発明に係るズームレンズは、以上の諸条件を満足することにより初期の目的を達成されるが、更に高変倍化を図る際の収差変動を良好に補正し、また画面全体にわたり高い光学性能を得るには次の諸条件のうち少なくとも1つを満足させるのが良い。
【0031】
(ア−1)前記第4レンズ群は物体側から順に正レンズ4a、負レンズ4bから成る接合レンズで構成されており、
第4レンズ群中の負レンズ4bの材質のアッベ数をν4b
第4レンズ群中の負レンズ4bの材質の屈折率をN4b
第4レンズ群中の正レンズ4aの材質のアッベ数をν4a
とするとき
36<ν4b<61 ・・・(4)
−0.005×ν4b+1.90<N4b<−0.005×ν4b+2.03
・・・(5)
12<ν4b−ν4a<34 ・・・(6)
1.0<|f4|/fw<1.6 ・・・(7)
の条件を満足することである。
【0032】
条件式(4)〜(7)は第4レンズ群を物体側から順に正レンズ4aと負レンズ4bから成る接合レンズで構成することで、コンパクト化と変倍に伴う軸上色収差の変動の補正がしやすくし、良好なる光学性能とローコスト化を達成する為のものである。
【0033】
条件式(4)は第4レンズ群の負レンズ4bの材質のアッベ数を適切に設定するための条件であり、この範囲に硝材を設定すれば、ローコスト化と変倍に伴う軸上色収差の変動を補正することがさらに容易となる。
【0034】
条件式(5)は第4レンズ群の負レンズ4bの材質の屈折率とアッベ数を適切に設定する条件であり、この範囲に硝材を設定すれば、ローコスト化と望遠側におけるオーバー方向の像面湾曲の補正がさらに容易となる。
【0035】
条件式(6)は第4レンズ群の正レンズ4aと負レンズ4bの材質のアッベ数を適切に設定するための条件であり、この範囲に硝材を設定すれば、変倍に伴う軸上色収差の変動を補正することがさらに容易となる。
【0036】
条件式(7)は上記条件で設定された硝材を第4レンズ群の正レンズ4aと負レンズ4bに使用した際の第4レンズ群の焦点距離を適切に設定するものであり、条件を満足すれば変倍比の確保と、中間のズーム領域における軸外光束の上光線のフレアー補正がさらに容易となる。
【0037】
さらに望ましくは条件式(4)、(5)、(6)、(7)を以下の数値範囲とすると良い。
【0038】
49<ν4b<59 …(4a)
−0.008×ν4b+2.11<N4b<−0.008×ν4b+2.15…(5a)
19<ν4b−ν4a<24 …(6a)
1.15<|f4|/fw<1.5 …(7a)
(ア−2)前記第2レンズ群は物体側から順に、物体側に凸面を向けたの負メニスカスレンズ2a,負レンズ2b、正レンズ2c、負レンズ2dで構成され、
第2レンズ群中の負レンズ2dの材質のアッベ数をν2d、
第2レンズ群中の負レンズ2dの材質の屈折率をN2d、
とするとき
36<ν2d<59 ・・・(8)
−0.008×ν2d+2.11<N2d<−0.005×ν2d+2.03
・・・(9)
0.4<|f2|/fw<0.6 ・・・(10)
の条件を満足することである。
【0039】
一般に、前玉径(第1レンズ群の有効径)を小型化するためには、絞りから物体側へ離れた位置に強い負の屈折力のレンズ群を配置すると良い。本条件は以上の理由を鑑みたものであり、第2レンズ群において絞りに近いレンズである負レンズ2dの硝材の屈折率を比較的低屈折率とし、かつ所定の条件を満足することで、良好なる光学性能を維持しつつローコスト化をおこない、さらに前玉径の大型化を抑制しやすくするものである。
【0040】
条件式(8)は第2レンズ群の負レンズ2dの材質のアッベ数を適切に設定するための条件であり、この範囲に硝材を設定すれば、変倍に伴う軸上色収差の変動を補正することがさらに容易となる。
【0041】
条件式(9)は第2レンズ群の負レンズ2dの材質の屈折率とアッベ数を適切に設定する条件であり、この範囲に硝材を設定すれば、ローコスト化と広角側におけるコマ収差を補正することがさらに容易となる。
【0042】
条件式(10)は上記条件で設定された硝材を第2レンズ群の負レンズ2dに使用した際の第2レンズ群の焦点距離を適切に設定するものであり、条件を満足すれば変倍比の確保と、特に広角側における負の歪曲収差の補正がさらに容易となる。
【0043】
さらに望ましくは条件式(8)、(9)、(10)を以下の数値範囲とすると良い。
【0044】
44<ν2d<56 …(8a)
−0.008×ν2d+2.13<N2d<−0.005×ν2d+2.03
…(9a)
0.45<|f2|/fw<0.55 …(10a)
(ア−3)前記第1レンズ群は物体側から順に、物体側に凸面を向けた負メニスカスレンズ1aと物体側に凸面を向けた正メニスカスレンズ1bで構成される接合レンズ1ab、物体側に凸面を向けた正メニスカスレンズ1cで構成され、第1レンズ群中の正レンズ1bの材質のアッベ数をν1b第1レンズ群中の正レンズ1bの材質の屈折率をN1bとするとき
49<ν1b<62 ・・・(11)
−0.001×ν1b+1.62<N1b<−0.008×ν1b+2.13
・・・(12)
2.4<f1/fw<2.9 ・・・(13)
の条件を満足することである。
【0045】
前玉径を小型化するためには、絞りから物体側へ離れた位置に強い負の屈折力のレンズ群を配置すると良いことは前述したが、第1レンズ群は正の屈折力のレンズ群であるので、絞りから物体側へ離れた位置のレンズを弱い正の屈折力とし、絞りに近いレンズを強い正の屈折力とすれば同様の効果が得られる。
【0046】
本条件は以上の理由を鑑みたものであり、第1レンズ群において比較的絞りにから物体側へ離れたレンズである負レンズ1bの硝材の屈折率を比較的低屈折率とし、かつ所定の条件を満足することで、良好なる光学性能を維持しつつローコスト化をおこない、さらに前玉径の大型化を抑制しやすくするものである。
【0047】
条件式(11)は第1レンズ群の正レンズ1bの材質のアッベ数を適切に設定するための条件であり、この範囲に硝材を設定すれば、変倍に伴う軸上色収差の変動を補正することがさらに容易となる。
条件式(12)は第1レンズ群の正レンズ1bの材質の屈折率とアッベ数を適切に設定する条件であり、この範囲に硝材を設定すれば、ローコスト化と望遠側における球面収差を補正することがさらに容易となる。
【0048】
条件式(13)は上記条件で設定された硝材を第1レンズ群の正レンズ1bに使用した際の第1レンズ群の焦点距離を適切に設定するものであり、条件を満足すれば望遠側におけるFナンバーの確保と球面収差の補正するがさらに容易となる。
【0049】
さらに望ましくは条件式(11)、(12)を以下の範囲とすると良い。
【0050】
55<ν1b<62 …(11a)
−0.007×ν1b+2.01<N1b<−0.006×ν1b+1.98
…(12a)
ア−4)前記第5レンズ群は物体側から順に、物体側に比べ像面側に強い屈折力の凸面を向けた正レンズ5a、正レンズ5b、像面側に凸面を向けた負メニスカスレンズ5cで構成され、
第5レンズ群中の正レンズ5bの材質のアッベ数をν5b
第5レンズ群中の正レンズ5bの材質の屈折率をN5b
とするとき
36<ν5b<64 ・・・(14)
−0.001×ν5b+1.62<N5b<−0.006×ν5b+1.97
・・・(15)
1.4<f5/fw<2.1 ・・・(16)
の条件を満足することである。
【0051】
一般に、後玉径を小型化するためには、絞りから像側へ離れた位置に強い負の屈折力のレンズ群を配置すると良い。本条件は以上の理由を鑑みたものであり、第5レンズ群の最も像側のレンズ5cを負レンズとし、第5レンズ群において像面に近い正レンズ5bの硝材の屈折率を比較的低屈折率とし、かつ所定の条件を満足することで、良好なる光学性能を維持しつつローコスト化をおこない、さらに後玉径の大型化を抑制しやすくするものである。さらに本条件では、最も物体側の正レンズ5aを物体側に比べて像面側に強い屈折力の凸面を向けたレンズ形状にすることで、広角側におけるコマ収差の補正を容易にしている。
【0052】
条件式(14)は、第5レンズ群の正レンズ5bの材質のアッベ数を適切に設定するための条件であり、この範囲に硝材を設定すれば、変倍に伴う倍率色収差の変動を補正することがさらに容易となる。
【0053】
条件式(15)は第5レンズ群の正レンズ5bの材質の屈折率とアッベ数を適切に設定する条件であり、この範囲に硝材を設定すれば、ローコスト化と広角側における歪曲収差を補正することがさらに容易となる。
【0054】
条件式(16)は上記条件で設定された硝材を第5レンズ群の正レンズ5bに使用した際の第5レンズ群の焦点距離を適切に設定するものであり、条件を満足すれば広角側におけるバックフォーカス確保と歪曲収差の補正がさらに容易となる。
【0055】
さらに望ましくは条件式(14)、(15)、(16)を以下の範囲とすると良い。
55<ν5b<62 …(14a)
−0.007×ν5b+2.01<N5b<−0.006×ν5b+1.98…(15a)
1.6<f5/fw<1.9 …(16a)
次に本発明のズームレンズを有する一眼レフ用のカメラ(光学機器)の実施形態を図17を用いて説明する。
【0056】
図17において10はカメラ本体、11は本発明のズームレンズ、12は撮像手段であり、フィルム、CCD等から成っている。13はファインダー系であり、被写体像が形成される焦点板15、像反転手段としてのペンタプリズム16、焦点板15上の被写体像を観察する為の接眼レンズ17を有している。14はクイックリターンミラーである。
【0057】
このように本発明のズームレンズをビデオカメラやデジタルスチルカメラ等の電子カメラやフィルムカメラに適用することにより、小型で高い光学性能を有する光学機器を実現している。
【0058】
次に本発明のズームレンズの数値実施例を示す。各数値実施例においてiは物体側からの光学面の順序を示し、Riは第i番目の光学面(第i面)の曲率半径、Diは第i面と第i+1面との間の間隔、niとνiはそれぞれd線に対する第i番目の光学部材の材質の屈折率、アッベ数を示す。またkを離心率、B、C、D、E・・・を非球面係数、光軸からの高さhの位置での光軸方向の変位を面頂点を基準にしてxとするとき、非球面形状は、
x=(h2/R)/[1+[1−(1+k)(h/R)2]1/2]+Bh4+Ch6+Dh8+Eh10・・・
で表示される。但しRは曲率半径である。又、各数値実施例における上述した条件式との対応を表1に示す。
【0059】
【外1】
【0060】
【外2】
【0061】
【外3】
【0062】
【外4】
【0063】
【表1】
【0064】
【発明の効果】
本発明によれば、主に変倍に伴う各レンズ群の移動条件や各レンズ群のレンズ構成及びそれらのレンズの材質等を適切に設定することにより広画角、高変倍比で全変倍範囲にわたり、しかも全画面にわたり高い光学性能を有するズームレンズ及びそれを有する光学機器を達成することができる。
【0065】
この他本発明によれば光学系を構成する各レンズの硝材を適切に選択し、かつ各レンズ群の構成を適切にすることでレンズ系全体が、コンパクトでありながら、良好なる光学性能を有した広角域を含むズーム比3.5倍程度のズームレンズ及びそれを有する光学機器を達成することができる。
【図面の簡単な説明】
【図1】 数値実施例1のレンズ断面図
【図2】 数値実施例1の広角端の収差図
【図3】 数値実施例1の中間のズーム位置の収差図
【図4】 数値実施例1の望遠端の収差図
【図5】 数値実施例2のレンズ断面図
【図6】 数値実施例2の広角端の収差図
【図7】 数値実施例2の中間のズーム位置の収差図
【図8】 数値実施例2の望遠端の収差図
【図9】 数値実施例3のレンズ断面図
【図10】 数値実施例3の広角端の収差図
【図11】 数値実施例3の中間のズーム位置の収差図
【図12】 数値実施例3の望遠端の収差図
【図13】 数値実施例4のレンズ断面図
【図14】 数値実施例4の広角端の収差図
【図15】 数値実施例4の中間のズーム位置の収差図
【図16】 数値実施例4の望遠端の収差図
【図17】 本発明の光学機器の要部概略図
【符号の説明】
L1 第1群
L2 第2群
L3 第3群
L4 第4群
L5 第5群
SP 絞り
IP 像面
d d線
g g線
ΔS サジタル像面
ΔM メリディオナル像面
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a zoom lens and an optical apparatus having the same, and more particularly to a zoom lens having a wide-angle range and a compact, high zoom ratio suitable for a single lens reflex camera, a still video camera, a digital camera, and the like, and an optical apparatus having the same. Is.
[0002]
[Prior art]
Conventionally, optical lenses such as a photographic camera, a video camera, and a digital camera have been required to have a zoom lens having a high zoom ratio and a wide angle of view, high contrast, and high optical performance over the entire zoom range. .
[0003]
Among these, a zoom type suitable for a zoom lens for a single-lens reflex camera is known as a so-called five-group zoom lens composed of five lens groups of positive, negative, positive, negative, and positive refractive power in order from the object side. It has been.
[0004]
This zoom type has a relatively small amount of movement of each lens group at the time of zooming, so it is suitable for a zoom lens with high zooming ratio, and it is easy to secure a back focus, which is also advantageous for widening the short focus side. is there.
[0005]
The zoom type zoom lens is disclosed in, for example, Japanese Patent Publication No. 58-33531, Japanese Patent Publication No. 61-51291, Japanese Patent Publication No. 61-51294, and the like. The present applicant also discloses a similar zoom lens in Japanese Patent Application Laid-Open No. 5-119260, Japanese Patent Application Laid-Open No. 6-230285, Japanese Patent Application Laid-Open No. 8-179213, Japanese Patent Application Laid-Open No. 9-304697, and the like.
[0006]
[Problems to be solved by the invention]
When the zooming ratio of the zoom lens is increased, the variation in chromatic aberration, in particular, among the variation in aberration due to zooming becomes large. In order to suppress this chromatic aberration, it is necessary to increase the number of lenses in each lens group. As a result, the lens configuration tends to be complicated and the size of the optical system increased. On the other hand, if the optical system is forcibly reduced in size, the variation in chromatic aberration increases, and the optical performance cannot be maintained satisfactorily.
[0007]
Therefore, when designing a small zoom lens having a high zoom ratio and high optical performance, the selection of the glass material for each lens is an important task. In a zoom lens including a plurality of lens groups, in the case of a lens group having a positive refractive power, a high refractive index and low dispersion glass is used as the material of the positive lens included therein, and the lens group having a negative refractive power is used. In such a case, it is preferable to use a high refractive index and low dispersion glass as the material of the negative lens contained therein. However, there are few types of glass materials having a high refractive index and low dispersion, and it is difficult to process and is difficult to manufacture if it is frequently used unplanned. Conversely, if only glass materials with a low refractive index are selected, the refractive power of each lens group will be weakened in order to maintain high optical performance, the entire optical system will be enlarged, and a sufficient zoom ratio will be achieved. Can not be secured.
[0008]
For example, in the above-mentioned 5-group zoom lens, if the movement conditions of each lens group accompanying zooming, the lens configuration of each lens group, and the material of these lenses are not set appropriately, the occurrence of various aberrations, particularly chromatic aberration, increases. It becomes difficult to obtain images with good image quality over the zoom range.
[0009]
The present invention mainly has a wide zoom range and a high zoom ratio with a wide zoom ratio by appropriately setting the movement conditions of each lens group accompanying zooming, the lens configuration of each lens group, and the materials of those lenses. Furthermore, an object of the present invention is to provide a zoom lens having high optical performance over the entire screen and an optical apparatus having the same.
[0010]
In addition to this, the present invention has a good optical performance while the entire lens system is compact by appropriately selecting the glass material of each lens constituting the optical system and making the configuration of each lens group appropriate. An object of the present invention is to provide a zoom lens including a wide-angle region and a zoom ratio of about 3.5 times and an optical apparatus having the same.
[0011]
[Means for Solving the Problems]
The zoom lens according to the first aspect of the invention includes, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a negative lens group. The second lens group having a refractive power and the fifth lens group having a positive refractive power have a larger distance between the first lens group and the second lens group at the telephoto end than at the wide-angle end. The lens so that the distance between the lens group and the third lens group is decreased, the distance between the third lens group and the fourth lens group is increased, and the distance between the fourth lens group and the fifth lens group is decreased. In a zoom lens that changes magnification by moving the group,
The first lens group includes, in order from the object side, a cemented lens 1ab including a negative meniscus lens 1a having a convex surface facing the object side and a positive meniscus lens 1b having a convex surface facing the object side, and a convex surface facing the object side. Consists of a positive meniscus lens 1c,
The third lens group includes, in order from the object side, a negative meniscus lens 3a having a convex surface facing the object side, a cemented lens 3ab composed of a positive lens 3b having convex both lens surfaces, and a positive lens 3c having convex both surfaces. Consisting of
The Abbe number of the material of the positive lens 1b of the first lens group is ν1b, the refractive index of the material of the positive lens 1b of the first lens group is N1b,
The average Abbe number of the positive lens material of the third lens group is ν3p, the average refractive index of the positive lens material of the third lens group is N3p, the focal length of the nth lens group is fn, and the wide angle end of the zoom lens is When the focal length is fw,
50 <ν3p <65
−0.001 × ν3p + 1.61 <N3p <−0.006 × ν3p + 2.04
0.6 <f3 / fw <0.9
49 <ν1b <62
−0.001 × ν1b + 1.62 <N1b <−0.008 × ν1b + 2.13
2.4 <f1 / fw <2.9
It is characterized by satisfying the following conditions.
[0012]
According to a second aspect of the invention, in the first aspect of the invention, the fourth lens group is composed of a cemented lens including a positive lens 4a and a negative lens 4b in order from the object side.
The Abbe number of the material of the negative lens 4b in the fourth lens group is ν4b,
The refractive index of the material of the negative lens 4b in the fourth lens group is N4b,
The Abbe number of the material of the positive lens 4a in the fourth lens group is ν4a,
When 36 <ν4b <61
−0.005 × ν4b + 1.90 <N4b <−0.005 × ν4b + 2.03
12 <ν4b−ν4a <34
1.0 <| f4 | / fw <1.6
It is characterized by satisfying the following conditions.
[0013]
According to a third aspect of the present invention, in the first or second aspect of the invention, the second lens group includes, in order from the object side, a negative meniscus lens 2a, a negative lens 2b, a positive lens 2c, and a negative lens 2d with a convex surface facing the object side. And
The Abbe number of the material of the negative lens 2d in the second lens group is ν2d
The refractive index of the material of the negative lens 2d in the second lens group is N2d.
When 36 <ν2d <59
−0.008 × ν2d + 2.11 <N2d <−0.005 × ν2d + 2.03
0.4 <| f2 | / fw <0.6
It is characterized by satisfying the following conditions.
[0014]
According to the invention of claim 4, the fifth lens group has, in order from the object side, a positive lens 5a, a positive lens 5b having a convex surface having a strong refractive power toward the image surface side as compared with the object side, and a convex surface toward the image surface side. A negative meniscus lens 5c;
The Abbe number of the material of the positive lens 5b in the fifth lens group is ν5b
The refractive index of the material of the positive lens 5b in the fifth lens group is N5b.
When 36 <ν5b <64
−0.001 × ν5b + 1.62 <N5b < −0.006 × ν5b + 1.97
1.4 <f5 / fw < 2.1
It is characterized by satisfying the following conditions.
[0015]
An optical apparatus according to a fifth aspect of the invention includes the zoom lens according to any one of the first to fourth aspects.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
1A, 1B, and 1C are lens cross-sectional views at the wide-angle end, the intermediate zoom position, and the telephoto end of Numerical Embodiment 1. FIG. 2 to 4 are aberration diagrams at the wide-angle end, the intermediate zoom position, and the telephoto end according to Numerical Example 1 of the present invention.
[0018]
FIG. 5 is a lens cross-sectional view at the wide-angle end of Numerical Example 2, and FIGS. 6 to 8 are aberration diagrams at the wide-angle end, intermediate zoom position, and telephoto end of Numerical Example 2 of the present invention.
[0019]
9 is a lens cross-sectional view at the wide-angle end of Numerical Example 3, and FIGS. 10 to 12 are aberration diagrams at the wide-angle end, the intermediate zoom position, and the telephoto end of Numerical Example 3 of the present invention.
[0020]
In the lens sectional view, L1 is a positive first lens group, L2 is a negative second lens group, L3 is a positive third lens group, L4 is a negative fourth lens group, L5 is a positive fifth lens group, SP Is an aperture, and IP is an image plane. During zooming from the wide-angle end to the telephoto end, the first lens unit L1 moves toward the object side as indicated by an arrow, and the second lens unit L2 moves toward the object side while increasing the distance from the first lens unit L1. The third lens unit L3 moves to the object side while reducing the distance from the second lens unit L2, and the fourth lens unit L4 moves to the object side while increasing the interval from the third lens unit L3. The fifth lens unit L5 moves toward the object side integrally with the third lens unit L3 while reducing the distance from the fourth lens unit L4, and the stop SP moves toward the object side integrally with the third lens unit L3.
[0021]
In this embodiment, focusing from an infinite object to a close object may be performed by moving the whole lens or a single lens group and a plurality of lens groups. However, if the second lens group is used, good optical performance can be easily obtained. In addition, since the lens group is relatively small, the mechanical mechanism may be simplified.
[0022]
The fifth lens group is moved integrally with the third lens group, but may be moved independently. The stop SP is moved integrally with the third lens group, but may be moved independently.
[0023]
In the zoom lens according to the present embodiment, the third lens group in order from the object side is a negative meniscus lens 3a having a convex surface facing the object side, a cemented lens 3ab composed of a positive lens 3b having convex both lens surfaces, and both lens surfaces are Consists of a convex positive lens 3c,
The average Abbe number of the material of the positive lens in the third lens group is ν3p,
The average refractive index of the positive lens material in the third lens group is N3p,
The focal length of the nth lens group is fn,
The focal length at the wide-angle end of the zoom lens is fw,
When 50 <ν3p <65 (1)
−0.001 × ν3p + 1.61 <N3p <−0.006 × ν3p + 2.04
... (2)
0.6 <f3 / fw <0.9 (3)
It is characterized by satisfying the following conditions.
[0024]
The above content will be described below.
[0025]
In general, when a zoom lens has a high zoom ratio, aberration fluctuations accompanying zooming tend to increase. Among these, suppression of chromatic aberration fluctuation is particularly important in satisfying good optical performance. In the zoom lens according to the present embodiment, a negative meniscus lens 3a having a convex surface facing the object side and a cemented lens composed of a positive lens 3b having convex surfaces are arranged in order from the object side in the third lens group. In particular, it is easy to correct the variation of the on-axis aberration caused by zooming. Further, by arranging the positive lens 3c having convex surfaces on both sides of the image surface, it is easy to ensure the positive refractive power necessary for zooming. Furthermore, conditional expression {circle around (1)} that achieves good optical performance by making the materials of the two positive lenses appropriate glass materials is the average Abbe of the materials of the positive lenses (3b and 3c) of the third lens group. It is a condition for setting the number appropriately, and if the upper limit is exceeded, it will be difficult to manufacture lenses such as phosphoric crown and fluoric crown, and if it exceeds the lower limit, axial chromatic aberration due to zooming will be It becomes difficult to correct the fluctuation.
[0026]
Conditional expression (2) is a condition for appropriately setting the average refractive index and Abbe number of the material of the positive lens (3b and 3c) in the third lens group. If the upper limit is exceeded, it is difficult to manufacture the lens and the expensive high refractive index lantern. If the lower limit is exceeded, it becomes difficult to correct spherical aberration particularly on the telephoto side.
[0027]
Conditional expression (3) appropriately sets the focal length of the third lens group when the glass material set in the above conditions (1) and (2) is used for the positive lens of the third lens group. If it exceeds, it will be difficult to secure a zoom ratio, and if it exceeds the lower limit, it will be difficult to correct spherical aberration on the telephoto side, or it will be difficult to arrange a retro-type refractive power arrangement on the wide angle side. Correction of curvature of field becomes difficult.
[0028]
More preferably, conditional expressions (1), (2), and (3) should be in the following numerical range.
[0029]
55 <ν3p <62 (1a)
−0.007 × ν3p + 2.01 <N3p <−0.006 × ν3p + 1.98 (2a)
0.68 <f3 / fw <0.83 (3a)
By adopting the configuration described above, this embodiment achieves a zoom lens having a compact and good optical performance, including a wide angle region with a half angle of view of about 37 degrees and a zoom ratio of about 3.5 times.
[0030]
The zoom lens according to the present invention achieves the initial purpose by satisfying the above-mentioned various conditions, but further corrects aberration fluctuations at the time of further zooming, and has high optical performance over the entire screen. In order to obtain the above, it is preferable to satisfy at least one of the following conditions.
[0031]
(A-1) The fourth lens group includes a cemented lens including a positive lens 4a and a negative lens 4b in order from the object side.
The Abbe number of the material of the negative lens 4b in the fourth lens group is ν4b
The refractive index of the material of the negative lens 4b in the fourth lens group is N4b.
The Abbe number of the material of the positive lens 4a in the fourth lens group is ν4a
36 <ν4b <61 (4)
−0.005 × ν4b + 1.90 <N4b <−0.005 × ν4b + 2.03
... (5)
12 <ν4b−ν4a <34 (6)
1.0 <| f4 | / fw <1.6 (7)
The above condition is satisfied.
[0032]
Conditional expressions (4) to (7) are composed of a cemented lens composed of a positive lens 4a and a negative lens 4b in order from the object side to correct the variation in axial chromatic aberration due to compactification and zooming. This is to make it easy to remove and to achieve good optical performance and low cost.
[0033]
Conditional expression (4) is a condition for appropriately setting the Abbe number of the material of the negative lens 4b of the fourth lens group. If a glass material is set within this range, the axial chromatic aberration due to the reduction in cost and the magnification change is achieved. It becomes easier to correct the fluctuation.
[0034]
Conditional expression (5) is a condition for appropriately setting the refractive index and Abbe number of the material of the negative lens 4b of the fourth lens group. If a glass material is set within this range, the cost is reduced and the image in the over direction on the telephoto side is set. Correction of surface curvature is further facilitated.
[0035]
Conditional expression (6) is a condition for appropriately setting the Abbe numbers of the materials of the positive lens 4a and the negative lens 4b of the fourth lens group. If a glass material is set within this range, the longitudinal chromatic aberration associated with zooming It is even easier to correct the fluctuations.
[0036]
Conditional expression (7) appropriately sets the focal length of the fourth lens group when the glass material set under the above conditions is used for the positive lens 4a and the negative lens 4b of the fourth lens group, and satisfies the condition. This makes it easier to secure the zoom ratio and to correct the flare of the upper ray of the off-axis light beam in the intermediate zoom region.
[0037]
More preferably, conditional expressions (4), (5), (6), and (7) should be in the following numerical ranges.
[0038]
49 <ν4b <59 (4a)
−0.008 × ν4b + 2.11 <N4b <−0.008 × ν4b + 2.15 (5a)
19 <ν4b−ν4a <24 (6a)
1.15 <| f4 | / fw <1.5 (7a)
(A-2) The second lens group includes, in order from the object side, a negative meniscus lens 2a, a negative lens 2b, a positive lens 2c, and a negative lens 2d having a convex surface directed toward the object side.
The Abbe number of the material of the negative lens 2d in the second lens group is ν2d,
The refractive index of the material of the negative lens 2d in the second lens group is N2d,
When 36 <ν2d <59 (8)
−0.008 × ν2d + 2.11 <N2d <−0.005 × ν2d + 2.03
... (9)
0.4 <| f2 | / fw <0.6 (10)
The above condition is satisfied.
[0039]
In general, in order to reduce the front lens diameter (effective diameter of the first lens group), it is preferable to dispose a lens group having a strong negative refractive power at a position away from the stop toward the object side. This condition is based on the above reasons, and by making the refractive index of the glass material of the negative lens 2d, which is a lens close to the stop in the second lens group, relatively low, and satisfying a predetermined condition, The cost is reduced while maintaining good optical performance, and the enlargement of the front lens diameter is easily suppressed.
[0040]
Conditional expression (8) is a condition for appropriately setting the Abbe number of the material of the negative lens 2d of the second lens group. If a glass material is set within this range, fluctuations in axial chromatic aberration due to zooming are corrected. It is even easier to do.
[0041]
Conditional expression (9) is a condition for appropriately setting the refractive index and the Abbe number of the material of the negative lens 2d of the second lens group. If a glass material is set within this range, low cost and coma aberration on the wide angle side are corrected. It is even easier to do.
[0042]
Conditional expression (10) is for appropriately setting the focal length of the second lens group when the glass material set under the above conditions is used for the negative lens 2d of the second lens group. It becomes easier to secure the ratio and correct negative distortion especially on the wide angle side.
[0043]
More preferably, conditional expressions (8), (9), and (10) should be in the following numerical ranges.
[0044]
44 <ν2d <56 (8a)
−0.008 × ν2d + 2.13 <N2d <−0.005 × ν2d + 2.03
... (9a)
0.45 <| f2 | / fw <0.55 (10a)
(A-3) The first lens group includes, in order from the object side, a cemented lens 1ab including a negative meniscus lens 1a having a convex surface facing the object side and a positive meniscus lens 1b having a convex surface facing the object side. When a positive meniscus lens 1c having a convex surface is formed, the Abbe number of the material of the positive lens 1b in the first lens group is ν1b, and the refractive index of the material of the positive lens 1b in the first lens group is N1b. 49 <ν1b <62 (11)
−0.001 × ν1b + 1.62 <N1b <−0.008 × ν1b + 2.13
(12)
2.4 <f1 / fw < 2.9 (13)
The above condition is satisfied.
[0045]
As described above, in order to reduce the front lens diameter, it is preferable to dispose a lens unit having a strong negative refractive power at a position away from the stop toward the object side. However, the first lens unit is a lens unit having a positive refractive power. Therefore, the same effect can be obtained if the lens located away from the aperture toward the object side has a weak positive refractive power and the lens close to the aperture has a strong positive refractive power.
[0046]
This condition is based on the above reasons. In the first lens group, the refractive index of the glass material of the negative lens 1b, which is a lens relatively far from the stop to the object side, is set to a relatively low refractive index, and a predetermined value is set. By satisfying the conditions, it is possible to reduce the cost while maintaining good optical performance, and to easily suppress the increase in the diameter of the front lens.
[0047]
Conditional expression (11) is a condition for appropriately setting the Abbe number of the material of the positive lens 1b of the first lens group. If a glass material is set within this range, the fluctuation of axial chromatic aberration due to zooming is corrected. It is even easier to do.
Conditional expression (12) is a condition for appropriately setting the refractive index and Abbe number of the material of the positive lens 1b of the first lens group. If a glass material is set within this range, low cost and spherical aberration on the telephoto side are corrected. It is even easier to do.
[0048]
Conditional expression (13) appropriately sets the focal length of the first lens group when the glass material set under the above conditions is used for the positive lens 1b of the first lens group. Securing the F number and correcting spherical aberration becomes easier.
[0049]
More preferably, conditional expressions (11) and (12 ) should be in the following ranges.
[0050]
55 <ν1b <62 (11a)
−0.007 × ν1b + 2.01 <N1b <−0.006 × ν1b + 1.98
... (12a )
( A-4) The fifth lens group includes, in order from the object side, a positive lens 5a and a positive lens 5b having a convex surface having a strong refractive power on the image surface side compared to the object side, and a negative meniscus having a convex surface on the image surface side. A lens 5c,
The Abbe number of the material of the positive lens 5b in the fifth lens group is ν5b
The refractive index of the material of the positive lens 5b in the fifth lens group is N5b.
36 <ν5b <64 (14)
−0.001 × ν5b + 1.62 <N5b <−0.006 × ν5b + 1.97
... (15)
1.4 <f5 / fw <2.1 (16)
The above condition is satisfied.
[0051]
In general, in order to reduce the rear lens diameter, a lens group having a strong negative refractive power is preferably disposed at a position away from the stop toward the image side. This condition is based on the above reasons. The lens 5c closest to the image side of the fifth lens group is a negative lens, and the refractive index of the glass material of the positive lens 5b close to the image plane in the fifth lens group is relatively low. By setting the refractive index and satisfying predetermined conditions, it is possible to reduce the cost while maintaining good optical performance, and to easily suppress the increase in the rear lens diameter. Further, under this condition, the positive lens 5a closest to the object side is formed into a lens shape with a convex surface having a strong refractive power directed to the image surface side as compared with the object side, thereby facilitating correction of coma aberration on the wide angle side.
[0052]
Conditional expression (14) is a condition for appropriately setting the Abbe number of the material of the positive lens 5b of the fifth lens group. If a glass material is set within this range, the change in the chromatic aberration of magnification due to zooming is corrected. It is even easier to do.
[0053]
Conditional expression (15) is a condition for appropriately setting the refractive index and the Abbe number of the material of the positive lens 5b of the fifth lens group. If a glass material is set within this range, the cost is reduced and distortion on the wide angle side is corrected. It is even easier to do.
[0054]
Conditional expression (16) is for appropriately setting the focal length of the fifth lens group when the glass material set under the above conditions is used for the positive lens 5b of the fifth lens group. This makes it easier to secure back focus and correct distortion.
[0055]
More preferably, conditional expressions (14), (15), and (16) should be in the following ranges.
55 <ν5b <62 (14a)
−0.007 × ν5b + 2.01 <N5b <−0.006 × ν5b + 1.98 (15a)
1.6 <f5 / fw <1.9 (16a)
Next, an embodiment of a single lens reflex camera (optical apparatus) having the zoom lens of the present invention will be described with reference to FIG.
[0056]
In FIG. 17, reference numeral 10 denotes a camera body, 11 denotes a zoom lens according to the present invention, and 12 denotes an image pickup means, which includes a film, a CCD, and the like. Reference numeral 13 denotes a viewfinder system, which includes a focusing screen 15 on which a subject image is formed, a pentaprism 16 as an image inverting means, and an eyepiece 17 for observing the subject image on the focusing screen 15. Reference numeral 14 denotes a quick return mirror.
[0057]
Thus, by applying the zoom lens of the present invention to an electronic camera or a film camera such as a video camera or a digital still camera, a small optical device having high optical performance is realized.
[0058]
Next, numerical examples of the zoom lens of the present invention will be shown. In each numerical example, i indicates the order of the optical surfaces from the object side, Ri is the radius of curvature of the i-th optical surface (i-th surface), Di is the distance between the i-th surface and the i + 1-th surface, ni and νi represent the refractive index and Abbe number of the material of the i-th optical member with respect to the d-line, respectively. Further, when k is an eccentricity, B, C, D, E... Are aspherical coefficients, and the displacement in the optical axis direction at the position of the height h from the optical axis is x with respect to the surface vertex, The spherical shape is
x = (h 2 / R) / [1+ [1- (1 + k) (h / R) 2 ] 1/2 ] + Bh 4 + Ch 6 + Dh 8 + Eh 10.
Is displayed. Where R is the radius of curvature. Table 1 shows the correspondence with the above-described conditional expressions in each numerical example.
[0059]
[Outside 1]
[0060]
[Outside 2]
[0061]
[Outside 3]
[0062]
[Outside 4]
[0063]
[Table 1]
[0064]
【The invention's effect】
According to the present invention, it is possible to change the entire zoom ratio with a wide angle of view and a high zoom ratio by appropriately setting the movement conditions of each lens group accompanying the zooming, the lens configuration of each lens group, and the material of those lenses. A zoom lens having high optical performance over a double range and over the entire screen and an optical apparatus having the zoom lens can be achieved.
[0065]
In addition, according to the present invention, by appropriately selecting the glass material of each lens constituting the optical system and appropriately configuring each lens group, the entire lens system is compact but has good optical performance. Thus, it is possible to achieve a zoom lens including a wide angle region and a zoom ratio of about 3.5 times and an optical apparatus having the same.
[Brief description of the drawings]
1 is a lens cross-sectional view of Numerical Example 1. FIG. 2 is an aberration diagram at the wide-angle end of Numerical Example 1. FIG. 3 is an aberration diagram at an intermediate zoom position of Numerical Example 1. FIG. FIG. 5 is a lens cross-sectional view of Numerical Example 2. FIG. 6 is an aberration diagram at the wide-angle end of Numerical Example 2. FIG. 7 is an aberration diagram at an intermediate zoom position of Numerical Example 2. 8] Aberration diagram at the telephoto end of Numerical Example 2 [FIG. 9] Lens cross-sectional view of Numerical Example 3 [FIG. 10] Aberration diagram at the wide-angle end of Numerical Example 3 [FIG. 11] Intermediate zoom of Numerical Example 3 Aberration diagram of position [FIG. 12] Aberration diagram at telephoto end of Numerical Example 3 [FIG. 13] Cross-sectional view of lens of Numerical Example 4 [FIG. 14] Aberration diagram at wide angle end of Numerical Example 4 [FIG. Aberration diagram at the intermediate zoom position in Example 4 [FIG. 16] Aberration diagram at the telephoto end in Numerical Example 4 [FIG. 17] Main parts of the optical apparatus of the present invention Schematic DESCRIPTION OF SYMBOLS
L1 1st group L2 2nd group L3 3rd group L4 4th group L5 5th group SP Aperture IP image plane d d line g g line ΔS sagittal image plane ΔM meridional image plane

Claims (5)

物体側より順に、正の屈折力の第1レンズ群と、負の屈折力の第2レンズ群と、正の屈折力の第3レンズ群と、負の屈折力の第4レンズ群と、正の屈折力の第5レンズ群より構成され、広角端に比べて望遠端において前記第1レンズ群と前記第2レンズ群の間隔が大きくなり、前記第2レンズ群と前記第3レンズ群の間隔が小さくなり、前記第3レンズ群と前記第4レンズ群の間隔が大きくなり、前記第4レンズ群と前記第5レンズ群の間隔が小さくなるようにレンズ群を移動させて変倍を行うズームレンズにおいて、
前記第1レンズ群は、物体側から順に、物体側に凸面を向けた負メニスカスレンズ1aと物体側に凸面を向けた正メニスカスレンズ1bで構成される接合レンズ1ab、物体側に凸面を向けた正メニスカスレンズ1cで構成され、
前記第3レンズ群は、物体側から順に、物体側に凸面を向けた負メニスカスレンズ3aと両レンズ面が凸面の正レンズ3bで構成される接合レンズ3ab、両レンズ面が凸面の正レンズ3cで構成され、
前記第1レンズ群の正レンズ1bの材質のアッベ数をν1b、前記第1レンズ群の正レンズ1bの材質の屈折率をN1b、
前記第3レンズ群の正レンズの材質の平均アッベ数をν3p、前記第3レンズ群の正レンズの材質の平均屈折率をN3p、第nレンズ群の焦点距離をfn、ズームレンズの広角端の焦点距離をfwとするとき、
50<ν3p<65
−0.001×ν3p+1.61<N3p<−0.006×ν3p+2.04
0.6<f3/fw<0.9
49<ν1b<62
−0.001×ν1b+1.62<N1b<−0.008×ν1b+2.13
2.4<f1/fw<2.9
の条件を満足することを特徴とするズームレンズ。
In order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, a fourth lens group having a negative refractive power, and a positive lens The distance between the first lens group and the second lens group is larger at the telephoto end than at the wide-angle end, and the distance between the second lens group and the third lens group. Zoom in which zooming is performed by moving the lens group so that the distance between the third lens group and the fourth lens group increases and the distance between the fourth lens group and the fifth lens group decreases. In the lens,
The first lens group includes, in order from the object side, a cemented lens 1ab including a negative meniscus lens 1a having a convex surface facing the object side and a positive meniscus lens 1b having a convex surface facing the object side, and a convex surface facing the object side. Consists of a positive meniscus lens 1c,
The third lens group includes, in order from the object side, a negative meniscus lens 3a having a convex surface facing the object side, a cemented lens 3ab composed of a positive lens 3b having convex both lens surfaces, and a positive lens 3c having convex both surfaces. Consists of
The Abbe number of the material of the positive lens 1b of the first lens group is ν1b, the refractive index of the material of the positive lens 1b of the first lens group is N1b,
The average Abbe number of the positive lens material of the third lens group is ν3p, the average refractive index of the positive lens material of the third lens group is N3p, the focal length of the nth lens group is fn, and the wide angle end of the zoom lens is When the focal length is fw,
50 <ν3p <65
−0.001 × ν3p + 1.61 <N3p <−0.006 × ν3p + 2.04
0.6 <f3 / fw <0.9
49 <ν1b <62
−0.001 × ν1b + 1.62 <N1b <−0.008 × ν1b + 2.13
2.4 <f1 / fw <2.9
A zoom lens that satisfies the following conditions.
前記第4レンズ群は、物体側から順に、正レンズ4a、負レンズ4bから成る接合レンズで構成されており、
前記第4レンズ群の負レンズ4bの材質のアッベ数をν4b、前記第4レンズ群の負レンズ4bの材質の屈折率をN4b、前記第4レンズ群の正レンズ4aの材質のアッベ数をν4aとするとき、
36<ν4b<61
−0.005×ν4b+1.90<N4b<−0.005×ν4b+2.03
12<ν4b−ν4a<34
1.0<|f4|/fw<1.6
の条件を満足することを特徴とする請求項1のズームレンズ。
The fourth lens group is composed of a cemented lens including a positive lens 4a and a negative lens 4b in order from the object side.
The Abbe number of the material of the negative lens 4b of the fourth lens group is ν4b, the refractive index of the material of the negative lens 4b of the fourth lens group is N4b, and the Abbe number of the material of the positive lens 4a of the fourth lens group is ν4a. And when
36 <ν4b <61
−0.005 × ν4b + 1.90 <N4b <−0.005 × ν4b + 2.03
12 <ν4b−ν4a <34
1.0 <| f4 | / fw <1.6
The zoom lens according to claim 1, wherein the following condition is satisfied.
前記第2レンズ群は、物体側から順に、物体側に凸面を向けた負メニスカスレンズ2a、負レンズ2b、正レンズ2c、負レンズ2dで構成され、
前記第2レンズ群の負レンズ2dの材質のアッベ数をν2d、前記第2レンズ群の負レンズ2dの材質の屈折率をN2dとするとき、
36<ν2d<59
−0.008×ν2d+2.11<N2d<−0.005×ν2d+2.03
0.4<|f2|/fw<0.6
の条件を満足することを特徴とする請求項1又は2のズームレンズ。
The second lens group includes, in order from the object side, a negative meniscus lens 2a, a negative lens 2b, a positive lens 2c, and a negative lens 2d having a convex surface facing the object side.
When the Abbe number of the material of the negative lens 2d of the second lens group is ν2d and the refractive index of the material of the negative lens 2d of the second lens group is N2d,
36 <ν2d <59
−0.008 × ν2d + 2.11 <N2d <−0.005 × ν2d + 2.03
0.4 <| f2 | / fw <0.6
The zoom lens according to claim 1, wherein the zoom lens satisfies the following condition.
前記第5レンズ群は、物体側から順に、物体側に比べて像面側に強い屈折力の凸面を向けた正レンズ5a、正レンズ5b、像面側に凸面を向けた負メニスカスレンズ5cで構成され、
前記第5レンズ群の正レンズ5bの材質のアッベ数をν5b、前記第5レンズ群の正レンズ5bの材質の屈折率をN5bとするとき、
36<ν5b<64
−0.001×ν5b+1.62<N5b<−0.006×ν5b+1.97
1.4<f5/fw<2.1
の条件を満足することを特徴とする請求項1乃至3のいずれか1項のズームレンズ。
The fifth lens group includes, in order from the object side, a positive lens 5a, a positive lens 5b, and a negative meniscus lens 5c with a convex surface facing the image surface side. Configured,
When the Abbe number of the material of the positive lens 5b of the fifth lens group is ν5b and the refractive index of the material of the positive lens 5b of the fifth lens group is N5b,
36 <ν5b <64
−0.001 × ν5b + 1.62 <N5b < −0.006 × ν5b + 1.97
1.4 <f5 / fw < 2.1
The zoom lens according to claim 1, wherein the zoom lens satisfies the following condition.
請求項1乃至4のいずれか1項のズームレンズを有することを特徴とする光学機器。An optical apparatus comprising the zoom lens according to claim 1 .
JP2001175881A 2001-06-11 2001-06-11 Zoom lens and optical apparatus having the same Expired - Fee Related JP4789349B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001175881A JP4789349B2 (en) 2001-06-11 2001-06-11 Zoom lens and optical apparatus having the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001175881A JP4789349B2 (en) 2001-06-11 2001-06-11 Zoom lens and optical apparatus having the same

Publications (3)

Publication Number Publication Date
JP2002365547A JP2002365547A (en) 2002-12-18
JP2002365547A5 JP2002365547A5 (en) 2008-07-03
JP4789349B2 true JP4789349B2 (en) 2011-10-12

Family

ID=19016944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001175881A Expired - Fee Related JP4789349B2 (en) 2001-06-11 2001-06-11 Zoom lens and optical apparatus having the same

Country Status (1)

Country Link
JP (1) JP4789349B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4865218B2 (en) 2004-12-28 2012-02-01 キヤノン株式会社 Zoom lens and imaging apparatus having the same
JP5159398B2 (en) 2008-04-07 2013-03-06 キヤノン株式会社 Zoom lens and imaging apparatus having the same
JP5510876B2 (en) * 2008-08-12 2014-06-04 株式会社ニコン Zoom lens and optical apparatus provided with the zoom lens
JP5550465B2 (en) * 2010-06-28 2014-07-16 キヤノン株式会社 Zoom lens and imaging apparatus having the same
JP5915261B2 (en) 2012-02-29 2016-05-11 株式会社ニコン Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method
JP6613735B2 (en) 2015-09-07 2019-12-04 リコーイメージング株式会社 Zoom lens system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3352263B2 (en) * 1994-12-21 2002-12-03 キヤノン株式会社 Zoom lens
JPH09304697A (en) * 1996-05-13 1997-11-28 Canon Inc Zoom lens

Also Published As

Publication number Publication date
JP2002365547A (en) 2002-12-18

Similar Documents

Publication Publication Date Title
JP4738823B2 (en) Zoom lens and imaging apparatus having the same
JP4976867B2 (en) Zoom lens and imaging apparatus having the same
JP3147167B2 (en) Zoom lens
JP4532916B2 (en) Zoom lens and imaging apparatus having the same
JP4289958B2 (en) Zoom lens and imaging apparatus having the same
US10495861B2 (en) Zoom lens and image pickup apparatus
JP2003241097A (en) High variable power ratio zoom lens
JPH08201695A (en) Rear focus type zoom lens
JP3536128B2 (en) Zoom lens with anti-vibration function
JP3826061B2 (en) Zoom lens and optical apparatus having the same
JP6164894B2 (en) Zoom lens and imaging apparatus having the same
JP2004061681A (en) Zoom lens and optical equipment with same
JPH05150160A (en) Zoom lens
JP4789349B2 (en) Zoom lens and optical apparatus having the same
JPH0727979A (en) Zoom lens
JP2011170371A (en) Zoom lens and imaging apparatus with the same
JP4672860B2 (en) Zoom lens and optical apparatus using the same
JP2009042527A (en) Zoom lens and imaging apparatus with the same
JP2003149552A (en) Zoom lens and optical equipment having the same
JP4379957B2 (en) Rear focus zoom lens and optical apparatus using the same
JP2004258516A (en) Zoom lens
JP4360086B2 (en) Zoom lens
JP5505770B2 (en) Zoom lens, optical equipment
JP2009192556A (en) Zoom lens, optical equipment equipped therewith and method of variable power
JP2002365550A (en) Zoom lens and optical equipment having the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080519

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110712

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110719

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees