JP3147167B2 - Zoom lens - Google Patents

Zoom lens

Info

Publication number
JP3147167B2
JP3147167B2 JP14984890A JP14984890A JP3147167B2 JP 3147167 B2 JP3147167 B2 JP 3147167B2 JP 14984890 A JP14984890 A JP 14984890A JP 14984890 A JP14984890 A JP 14984890A JP 3147167 B2 JP3147167 B2 JP 3147167B2
Authority
JP
Japan
Prior art keywords
lens
positive
group
negative
lenses
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14984890A
Other languages
Japanese (ja)
Other versions
JPH0443311A (en
Inventor
敦次郎 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optic Co Ltd filed Critical Olympus Optic Co Ltd
Priority to JP14984890A priority Critical patent/JP3147167B2/en
Priority to US07/712,980 priority patent/US5189558A/en
Publication of JPH0443311A publication Critical patent/JPH0443311A/en
Application granted granted Critical
Publication of JP3147167B2 publication Critical patent/JP3147167B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、主としてビデオカメラに用いられるズーム
レンズに関するものである。
The present invention relates to a zoom lens mainly used for a video camera.

[従来の技術] 近年、ビデオカメラの小型化、低価格化、高画質化が
急速に進んでいる。これに合わせてビデオカメラ用ズー
ムレンズに関しても小型化,低コスト化,高解像力が望
まれている。
[Related Art] In recent years, miniaturization, low cost, and high image quality of video cameras have been rapidly progressing. At the same time, miniaturization, cost reduction, and high resolution are also demanded for zoom lenses for video cameras.

従来、ビデオカメラ用の6倍以上の高変倍比をもつズ
ームレンズは、物体側から正,負,負,正の4群構成
で、第2群で変倍を行ない第3群が像位置の補正を行な
うものが最も多かった。しかし最近のこの第3群を省略
し又第4群を前群と後群に分けてそのうちのいずれかに
像位置の補正作用をもたせてレンズの枚数の削減とレン
ズ系の小型化を図ったものが考案されている。このよう
な従来例として特開昭62−206516号や特開平2−53017
号公報に記載されているもの等がある。
Conventionally, a zoom lens having a high zoom ratio of 6 times or more for a video camera has a four-group configuration of positive, negative, negative, and positive from the object side. In most cases, correction was performed. However, recently, the third lens group was omitted, and the fourth lens group was divided into a front lens group and a rear lens group, and one of them was provided with an image position correcting action to reduce the number of lenses and downsize the lens system. Things have been devised. As such conventional examples, JP-A-62-206516 and JP-A-2-53017.
And others described in Japanese Patent Application Publication No.

[発明が解決しようとする課題] 上記の従来例のうち、前者は変倍比が3程度と小さく
又第3群の構成枚数が多くて低コストが達成されていな
い。後者は各群の屈折力が小さくレンズ系の小型化が十
分ではない。
[Problems to be Solved by the Invention] Among the above conventional examples, the former has a small zoom ratio of about 3 and a large number of members of the third lens group, so that low cost has not been achieved. In the latter, the refractive power of each group is small, and the miniaturization of the lens system is not sufficient.

本発明は、変倍比が大きく小型で枚数が少なくかつ高
性能なズームレンズを提供することを目的とするもので
ある。
An object of the present invention is to provide a high-performance zoom lens having a large zoom ratio, a small number, a small number of lenses, and a high performance.

[課題を解決するための手段] 本発明のズームレンズは、物体側から順に、正の屈折
力を有し、ズーミング中固定である第1群と負の屈折力
を有しズーミング中に可動で変倍作用を有する第2群
と、正の屈折力を有しズーミング中固定である第3群
と、正の屈折力を有しズーミング中可動で主に像位置を
補正する作用を有する第4群とからなり、第3群が最も
物体側に物体側の面が凸面である正レンズと少なくとも
1枚の負レンズとを含む4枚以下のレンズで構成され、
又第4群が正の単レンズか又は2枚の正レンズで構成さ
れており、前記第4群のレンズ面のうち少なくとも1面
が光軸から離れるにしたがって屈折力が弱くなる非球面
であることを特徴としている。
Means for Solving the Problems A zoom lens according to the present invention has, in order from the object side, a first lens unit having a positive refractive power and fixed during zooming, and a movable first zoom lens having a negative refractive power and zooming. A second group having a zooming action, a third group having a positive refractive power and fixed during zooming, and a fourth group having a positive refractive power and movable during zooming and mainly correcting the image position. A third lens unit, wherein the third lens unit includes four or less lenses including a positive lens having a convex surface on the object side closest to the object side and at least one negative lens,
The fourth group is composed of a single positive lens or two positive lenses, and at least one of the lens surfaces of the fourth group is an aspheric surface whose refractive power becomes weaker as the distance from the optical axis increases. It is characterized by:

本発明のようなレンズ系の場合、小型化,低コスト化
や余分なスペースを省いてしかも発生する収差をスムー
ズに補正するために、効果の少ないレンズを極力排除し
て必要最小限のレンズ枚数にて構成することが望まし
い。そのためには主として結像作用を有している第3
群,第4群の構成に最も工夫を要する。
In the case of the lens system according to the present invention, in order to reduce the size, reduce the cost, and save the extra space, and to smoothly correct the generated aberration, the lens having the least effect is eliminated as much as possible to minimize the necessary number of lenses. It is desirable to configure with. For this purpose, the third, which mainly has an image forming action,
The arrangement of the group and the fourth group requires the most ingenuity.

色収差を良好に補正するためには、第3群,第4群中
に少なくとも1枚の負レンズを用いる必要がある。本発
明では前記のように第3群中に負レンズを配置して軸上
色収差と倍率色収差とを同時に補正している。更にこの
負レンズでは負の球面収差をも補正している。又レンズ
系の小型化するために、この第3群に十分な屈折力を与
えかつ第3群の主点を出来るだけ前におき、更に球面収
差の発生を小さく抑えるために第3群の最も物体側に物
体側の面が凸面である正レンズを配置しこれを含めた2
枚又は3枚の正レンズが必要である。そしてそれ以上の
レンズは効果に対しコスト高やレンズ系の長大化の方が
大であるため好ましくない。
In order to satisfactorily correct chromatic aberration, it is necessary to use at least one negative lens in the third and fourth units. In the present invention, the axial chromatic aberration and the lateral chromatic aberration are simultaneously corrected by disposing the negative lens in the third unit as described above. Further, the negative lens corrects negative spherical aberration. In order to reduce the size of the lens system, a sufficient refractive power should be given to the third lens unit, and the principal point of the third lens unit should be placed as far as possible. A positive lens having a convex surface on the object side is arranged on the object side,
One or three positive lenses are required. A lens larger than that is not preferable because the cost and the length of the lens system are larger than the effect.

尚後に示す実施例のように第3群中の正レンズの少な
くとも1面を非球面にして球面収差を補正するようにす
れば正レンズを1枚にすることも可能である。
Incidentally, if at least one surface of the positive lens in the third group is made aspherical so as to correct the spherical aberration as in the embodiment described later, it is possible to use only one positive lens.

上記の第3群の最も物体側の正レンズが次の条件を満
足することが望ましい。
It is desirable that the most object-side positive lens of the third group satisfies the following condition.

−1.2<(R1+R2)/(R1−R2)<−0.2 但しR1,R2は夫々第3群の最も物体側の正レンズの物
体側および像側の面の曲率半径でレンズ面が非球面の場
合は近軸曲率半径で計算する。
−1.2 <(R 1 + R 2 ) / (R 1 −R 2 ) <− 0.2 where R 1 and R 2 are the radii of curvature of the object-side and image-side surfaces of the positive lens closest to the object in the third group, respectively. When the lens surface is an aspherical surface, the calculation is performed using a paraxial radius of curvature.

上記条件の下限を越えると球面収差が補正できなくな
り、上限を越えるとレンズ系の小型化が達成できない。
If the lower limit of the above condition is exceeded, spherical aberration cannot be corrected, and if the upper limit is exceeded, downsizing of the lens system cannot be achieved.

又第3群中の全ての負レンズが全ての正レンズよりも
像側にある方が好ましい。その理由は、レンズ系の小型
化と、色収差の補正にとって好ましい。
Further, it is preferable that all the negative lenses in the third group are closer to the image side than all the positive lenses. The reason is preferable for miniaturization of the lens system and correction of chromatic aberration.

この第3群を正,正,負の3枚構成か、正,正,正,
負の4枚構成とすればレンズ枚数を減らすことができる
ので好ましい。
This third group is composed of three positive, positive, and negative lenses, or positive, positive, positive,
It is preferable to use a negative four-element configuration because the number of lenses can be reduced.

更に、第3群の最も像側の2枚のレンズを物体側に強
い凸面を向けた正レンズと像側に強い凹面を向けた負レ
ンズとにて構成すれば、枚数削減が可能となる。
Furthermore, if the two lenses closest to the image side in the third group are composed of a positive lens with a strong convex surface facing the object side and a negative lens with a strong concave surface facing the image side, the number of lenses can be reduced.

前記のように3群を正,正,負又は正,正,正,負と
し、しかも最も像側の2枚のレンズを物体側に強い凸面
を向けた正レンズと像側に強い凹面を向けた負レンズと
にて構成すれば一層望ましい。
As described above, the three groups are positive, positive, negative or positive, positive, positive, negative, and the two lenses closest to the image side have a positive lens with a strong convex surface facing the object side and a strong concave surface with a strong concave surface facing the image side. It is more desirable to use a negative lens.

本発明のズームレンズは、前記のように第3群中の負
レンズによって軸上色収差、倍率色収差を同時に補正し
ているため、第4群は負レンズを省略して正レンズのみ
で構成するのが好ましい。本発明では、非点収差,コマ
収差,広角端で発生する負の歪曲収差を補正するために
第4群中の少なくとも1面を光軸からレンズ周辺に行く
にしたがって屈折力の減少する非球面にした。これによ
って最小限のレンズ枚数で諸収差を良好に補正しレンズ
系の小型化を達成した。
In the zoom lens of the present invention, since the axial chromatic aberration and the chromatic aberration of magnification are simultaneously corrected by the negative lenses in the third group as described above, the fourth group is constituted by only the positive lens without the negative lens. Is preferred. In the present invention, in order to correct astigmatism, coma, and negative distortion generated at the wide-angle end, at least one surface in the fourth lens unit has an aspheric surface whose refractive power decreases from the optical axis toward the lens periphery. I made it. This successfully corrected various aberrations with a minimum number of lenses, and achieved downsizing of the lens system.

尚本発明のズームレンズにおいて、第4群をフォーカ
シング群とすると、フォーカシングのために新たな可動
群を設ける必要がなく、更に第1群によるフォーカシン
グに比べて最近接撮影距離を短くすることが出来る。
In the zoom lens of the present invention, if the fourth group is a focusing group, it is not necessary to provide a new movable group for focusing, and the closest shooting distance can be shortened as compared with focusing by the first group. .

[実施例] 次に本発明のズームレンズの各実施例を示す。EXAMPLES Next, examples of the zoom lens according to the present invention will be described.

実施例1 f=8.76〜65.96,F/2.0〜F/2.6 2ω=50.2゜〜7.2゜ r1=51.4795 d1=1.0000 n1=1.80518 ν=25.43 r2=23.9639 d2=5.6000 n2=1.60311 ν=60.70 r3=−71.1147 d3=0.1500 r4=17.8414 d4=3.8000 n3=1.60311 ν=60.70 r5=33.3216 d5=D1(可変) r6=37.2001 d6=1.1026 n4=1.69680 ν=55.52 r7=7.3340 d7=2.0000 r8=−10.3299 d8=1.0000 n5=1.69680 ν=55.52 r9=9.5724 d9=2.0000 n6=1.80518 ν=25.43 r10=469.3178 d10=D2(可変) r11=∞(絞り) d11=1.5000 r12=7.9854(非球面) d12=3.5000 n7=1.69680 ν=55.52 r13=−37.1999 d13=1.8644 r14=42.6275 d14=1.2104 n8=1.80518 ν=25.43 r15=6.7517 d15=D3(可変) r16=10.1365(非球面) d16=3.3000 n9=1.56384 ν=60.69 r17=−33.5763 d17=D4(可変) r18=∞ d18=5.1000 n10=1.54771 ν10=62.83 r19=∞ d19=1.2100 r20=∞ d20=0.6000 n11=1.48749 ν11=70.20 r21=∞ 非球面係数 (第12面) E=−0.25435×10-3,F=−0.14404×10-5 G=−0.46594×10-7 (第16面) E=−0.22509×10-3,F=0.35300×10-5 G=−0.91309×10-7 f 8.76 24.04 65.96 D1 1.000 9.497 15.916 D2 15.916 7.420 1.000 D3 6.391 3.500 11.458 D4 7.067 9.958 2.000 実施例2 f=6.49〜48.90,F/1.4〜F/2.2 2ω=51.8゜〜7.4゜ r1=57.3585 d1=1.0000 n1=1.80518 ν=25.43 r2=23.7370 d2=5.6000 n2=1.60311 ν=60.70 r3=−71.5301 d3=0.1500 r4=17.1706 d4=3.8000 n3=1.60311 ν=60.70 r5=43.6355 d5=D1(可変) r6=1140.8303 d6=1.1026 n4=1.69680 ν=55.52 r7=6.8647 d7=2.0000 r8=−9.8125 d8=1.0000 n5=1.69680 ν=55.52 r9=8.1232 d9=2.6000 n6=1.80518 ν=25.43 r10=735.9093 d10=D2(可変) r11=∞(絞り) d11=1.5000 r12=13.4774 d12=3.4000 n7=1.60311 ν=60.70 r13=−65.0959 d13=0.3000 r14=16.4183 d14=2.5000 n8=1.60311 ν=60.70 r15=141.9059 d15=0.3000 r16=8.6800 d16=2.4000 n9=1.60311 ν=60.70 r17=17.8996 d17=0.7000 r18=−28.6777 d18=1.2104 n10=1.80518 ν10=25.43 r19=8.6110 d19=D3(可変) r20=8.9305(非球面) d20=3.3000 n11=1.56384 ν11=60.69 r21=−18.5051 d21=D4(可変) r22=∞ d22=5.1000 n12=1.54771 ν12=62.83 r23=∞ d23=1.2100 r24=∞ d24=0.6000 n13=1.48749 ν13=70.20 r25=∞ 非球面係数 E=−0.37686×10-3,F=−0.16869×10-5 G=0 f 6.49 17.82 48.90 D1 1.000 9.287 14.619 D2 14.619 6.332 1.000 D3 6.351 3.500 6.931 D4 2.580 5.431 2.000 実施例3 f=6.49〜48.90,F/1.5〜F/2.2 2ω=51.8゜〜7.4゜ r1=49.2800 d1=1.0000 n1=1.80518 ν=25.43 r2=23.1954 d2=5.2000 n2=1.60311 ν=60.70 r3=−104.9168 d3=0.1500 r4=18.4142 d4=3.7500 n3=1.60311 ν=60.70 r5=58.6398 d5=D1(可変) r6=60.7724 d6=1.1026 n4=1.69680 ν=55.52 r7=6.6301 d7=2.0000 r8=−9.8199 d8=1.0000 n5=1.69680 ν=55.52 r9=11.1626 d9=2.4000 n6=1.80518 ν=25.43 r10=−73.9440 d10=D2(可変) r11=∞(絞り) d11=1.5000 r12=8.9570 d12=4.2000 n7=1.69680 ν=55.52 r13=−97.9282 d13=0.8990 r14=−18.4246 d14=1.2000 n8=1.80518 ν=25.43 r15=9.9456 d15=0.5000 r16=16.4456 d16=2.4000 n9=1.69680 ν=55.52 r17=−31.7035 d17=D3(可変) r18=9.9286(非球面) d18=4.1000 n10=1.56384 ν10=60.69 r19=−29.2366 d19=D4(可変) r20=∞ d20=5.1000 n11=1.54771 ν11=62.83 r21=∞ d21=1.2100 r22=∞ d22=0.6000 n12=1.48749 ν12=70.20 r23=∞ 非球面係数 E=−0.22999×10-3,F=−0.97968×10-6 G=0 f 6.49 17.82 48.90 D1 1.300 9.552 14.895 D2 15.095 6.843 1.500 D3 3.764 2.500 7.591 D4 6.264 7.528 2.437 実施例4 f=6.49〜48.89,F/1.5〜F/2.1 2ω=51.8゜〜7.4゜ r1=61.1461 d1=1.0000 n1=1.80518 ν=25.43 r2=25.5792 d2=5.2000 n2=1.60311 ν=60.70 r3=−82.8557 d3=0.1500 r4=18.9721 d4=3.7500 n3=1.60311 ν=60.70 r5=50.8855 d5=D1(可変) r6=293.8083 d6=1.1026 n4=1.69680 ν=55.52 r7=7.3631 d7=2.0000 r8=−10.8606 d8=1.0000 n5=1.69680 ν=55.52 r9=9.0391 d9=2.4000 n6=1.80518 ν=25.43 r10=−479.7696 d10=D2(可変) r11=∞(絞り) d11=1.5000 r12=11.1400 d12=4.2000 n7=1.69680 ν=55.52 r13=−43.8310 d13=0.3000 r14=8.2915 d14=2.4000 n8=1.69680 ν=55.52 r15=19.0091 d15=0.6044 r16=−27.4999 d16=1.2104 n9=1.80518 ν=25.43 r17=7.3325 d17=D3(可変) r18=9.6114(非球面) d18=4.1000 n10=1.56384 ν10=60.69 r19=−15.3541 d19=D4(可変) r20=∞ d20=5.1000 n11=1.54771 ν11=62.83 r21=∞ d21=1.2100 r22=∞ d22=0.6000 n12=1.48749 ν12=70.20 r23=∞ 非球面係数 E=−0.39357×10-3,F=−0.40862×10-6 G=0 f 6.49 17.82 48.89 D1 1.300 10.119 16.488 D2 16.688 7.869 1.500 D3 4.934 2.472 6.157 D4 3.660 6.123 2.437 実施例5 f=6.49〜48.90,F/1.6〜F/2.2 2ω=51.8゜〜7.4゜ r1=62.6591 d1=1.0000 n1=1.80518 ν=25.43 r2=25.6867 d2=5.2000 n2=1.60311 ν=60.70 r3=−88.1045 d3=0.1500 r4=19.1934 d4=3.7500 n3=1.60311 ν=60.70 r5=58.7953 d5=D1(可変) r6=−157.6505 d6=1.1026 n4=1.69680 ν=55.52 r7=7.6914 d7=2.0000 r8=−13.7250 d8=1.0000 n5=1.69680 ν=55.52 r9=8.3911 d9=2.4000 n6=1.80518 ν=25.43 r10=204.9580 d10=D2(可変) r11=∞(絞り) d11=1.5000 r12=11.4645 d12=4.2000 n7=1.69680 ν=55.52 r13=−41.1109 d13=0.3000 r14=9.3876 d14=2.4000 n8=1.69680 ν=55.52 r15=28.3293 d15=0.4948 r16=−24.6734 d16=1.2104 n9=1.80518 ν=25.43 r17=8.4053 d17=D3(可変) r18=24.2967 d18=2.0000 n10=1.60311 ν10=60.70 r19=−36.3424 d19=0.1000 r20=10.7865(非球面) d20=2.0000 n11=1.60311 ν11=60.70 r21=70.0000 d21=D4(可変) r22=∞ d22=5.1000 n12=1.54771 ν12=62.83 r23=∞ d23=1.2100 r24=∞ d24=0.6000 n13=1.48749 ν13=70.20 r25=∞ 非球面係数 E=−0.17524×10-3,F=0.70866×10-5 G=−0.23328×10-6 f 6.49 17.82 48.90 D1 1.300 10.352 16.336 D2 16.536 7.483 1.500 D3 5.837 3.797 7.805 D4 3.467 5.507 1.500 ただしr1,r2,…はレンズ各面の曲率半径、d1,d2,…は
各レンズの肉厚および空気間隔、n1,n2,…は各レンズの
屈折率、ν12,…は各レンズのアッベ数である。
Example 1 f = 8.76 to 65.96, F / 2.0 to F / 2.6 2ω = 50.2 ゜ to 7.2 ゜ r 1 = 51.4795 d 1 = 1.0000 n 1 = 1.80518 ν 1 = 25.43 r 2 = 23.9639 d 2 = 5.6000 n 2 = 1.60311 ν 2 = 60.70 r 3 = -71.1147 d 3 = 0.1500 r 4 = 17.8414 d 4 = 3.8000 n 3 = 1.60311 ν 3 = 60.70 r 5 = 33.3216 d 5 = D 1 (variable) r 6 = 37.2001 d 6 = 1.1026 n 4 = 1.69680 ν 4 = 55.52 r 7 = 7.3340 d 7 = 2.0000 r 8 = -10.3299 d 8 = 1.0000 n 5 = 1.69680 ν 5 = 55.52 r 9 = 9.5724 d 9 = 2.0000 n 6 = 1.80518 ν 6 = 25.43 r 10 = 469.3178 d 10 = D 2 (variable) r 11 = ∞ (aperture) d 11 = 1.5000 r 12 = 7.9854 (aspheric surface) d 12 = 3.5000 n 7 = 1.69680 0 7 = 55.52 r 13 = -37.1999 d 13 = 1.8644 r 14 = 42.6275 d 14 = 1.2104 n 8 = 1.805518 v 8 = 25.43 r 15 = 6.7517 d 15 = D 3 (variable) r 16 = 10.1365 (aspherical surface) d 16 = 3.3000 n 9 = 1.56384 v 9 = 60.69 r 17 = -33.5763 d 17 = D 4 (variable) r 18 = ∞ d 18 = 5.1000 n 10 = 1.54771 ν 10 = 62 .83 r 19 = ∞ d 19 = 1.2100 r 20 = ∞ d 20 = 0.6000 n 11 = 1.48749 ν 11 = 70.20 r 21 = ∞ Aspheric coefficient (Twelfth surface) E = −0.25435 × 10 -3 , F = − 0.14404 × 10 −5 G = −0.46594 × 10 −7 (Sixteenth surface) E = −0.22509 × 10 −3 , F = 0.35300 × 10 −5 G = −0.91309 × 10 −7 f 8.76 24.04 65.96 D 1 1.000 9.497 15.916 D 2 15.916 7.420 1.000 D 3 6.391 3.500 11.458 D 4 7.067 9.958 2.000 example 2 f = 6.49~48.90, F / 1.4~F / 2.2 2ω = 51.8 ° ~7.4 ° r 1 = 57.3585 d 1 = 1.0000 n 1 = 1.80518 ν 1 = 25.43 r 2 = 23.7370 d 2 = 5.6000 n 2 = 1.60311 ν 2 = 60.70 r 3 = -71.5301 d 3 = 0.1500 r 4 = 17.1706 d 4 = 3.8000 n 3 = 1.60311 ν 3 = 60.70 r 5 = 43.6355 d 5 = D 1 (variable) r 6 = 1140.8303 d 6 = 1.1026 n 4 = 1.69680 ν 4 = 55.52 r 7 = 6.8647 d 7 = 2.0000 r 8 = −9.8125 d 8 = 1.0000 n 5 = 1.69680 ν 5 = 55.52 r 9 = 8.1232 d 9 = 2.6000 n 6 = 1.80518 ν 6 = 25.43 r 10 = 735.99093 d 10 = D 2 (variable) r 11 = ∞ (aperture) d 1 1 = 1.5000 r 12 = 13.4774 d 12 = 3.4000 n 7 = 1.60311 ν 7 = 60.70 r 13 = -65.0959 d 13 = 0.3000 r 14 = 16.4183 d 14 = 2.5000 n 8 = 1.60311 ν 8 = 60.70 r 15 = 141.9059 d 15 = 0.3000 r 16 = 8.6800 d 16 = 2.4000 n 9 = 1.60311 ν 9 = 60.70 r 17 = 17.8996 d 17 = 0.7000 r 18 = -28.6777 d 18 = 1.2104 n 10 = 1.80518 ν 10 = 25.43 r 19 = 8.6110 d 19 = D 3 (variable) r 20 = 8.9305 (aspherical surface) d 20 = 3.3000 n 11 = 1.56384 ν 11 = 60.69 r 21 = −18.5051 d 21 = D 4 (variable) r 22 = d 22 = 5.1000 n 12 = 1.54771 ν 12 = 62.83 r 23 = ∞ d 23 = 1.2100 r 24 = ∞ d 24 = 0.6000 n 13 = 1.48749 ν 13 = 70.20 r 25 = ∞ Aspherical coefficient E = −0.37686 × 10 -3 , F = −0.16869 × 10 -5 G = 0 f 6.49 17.82 48.90 D 1 1.000 9.287 14.619 D 2 14.619 6.332 1.000 D 3 6.351 3.500 6.931 D 4 2.580 5.431 2.000 Example 3 f = 6.49-48.90, F / 1.5-F / 2.2 2ω = 51.8 ゜- 7.4 ゜ r 1 = 49.2800 d 1 = 1.0000 n 1 = 1.80518 ν 1 = 25.43 r 2 = 23.1 954 d 2 = 5.2000 n 2 = 1.60311 ν 2 = 60.70 r 3 = -104.9168 d 3 = 0.1500 r 4 = 18.4142 d 4 = 3.7500 n 3 = 1.60311 ν 3 = 60.70 r 5 = 58.6398 d 5 = D 1 (variable) r 6 = 60.7724 d 6 = 1.1026 n 4 = 1.69680 ν 4 = 55.52 r 7 = 6.6301 d 7 = 2.0000 r 8 = −9.8199 d 8 = 1.0000 n 5 = 1.69680 ν 5 = 55.52 r 9 = 11.1626 d 9 = 2.4000 n 6 = 1.80518 ν 6 = 25.43 r 10 = -73.9440 d 10 = D 2 (variable) r 11 = ∞ (aperture) d 11 = 1.5000 r 12 = 8.9570 d 12 = 4.2000 n 7 = 1.69680 ν 7 = 55.52 r 13 = -97.9282 d 13 = 0.8990 r 14 = -18.4246 d 14 = 1.2000 n 8 = 1.80518 ν 8 = 25.43 r 15 = 9.9456 d 15 = 0.5000 r 16 = 16.4456 d 16 = 2.4000 n 9 = 1.69680 ν 9 = 55.52 r 17 = −31.7035 d 17 = D 3 (variable) r 18 = 9.9286 (aspherical surface) d 18 = 4.1000 n 10 = 1.56384 ν 10 = 60.69 r 19 = −29.2366 d 19 = D 4 (variable) r 20 = ∞d 20 = 5.1000 n 11 = 1.54771 ν 11 = 62.83 r 21 = ∞ d 21 = 1.2100 r 22 = ∞ d 22 = 0.600 0 n 12 = 1.48749 ν 12 = 70.20 r 23 = ∞ Aspherical surface coefficient E = −0.22999 × 10 -3 , F = −0.97968 × 10 -6 G = 0 f 6.49 17.82 48.90 D 1 1.300 9.552 14.895 D 2 15.095 6.843 1.500 D 3 3.764 2.500 7.591 D 4 6.264 7.528 2.437 Example 4 f = 6.49 to 48.89, F / 1.5 to F / 2.1 2ω = 51.8 ゜ to 7.4 ゜ r 1 = 61.1461 d 1 = 1.0000 n 1 = 1.80518 ν 1 = 25.43 r 2 = 25.5792 d 2 = 5.2000 n 2 = 1.60311 ν 2 = 60.70 r 3 = -82.8557 d 3 = 0.1500 r 4 = 18.9721 d 4 = 3.7500 n 3 = 1.60311 ν 3 = 60.70 r 5 = 50.8855 d 5 = D 1 ( Variable) r 6 = 293.8083 d 6 = 1.1026 n 4 = 1.69680 ν 4 = 55.52 r 7 = 7.3631 d 7 = 2.0000 r 8 = -10.8606 d 8 = 1.0000 n 5 = 1.69680 ν 5 = 55.52 r 9 = 9.0391 d 9 = 2.4000 n 6 = 1.80518 ν 6 = 25.43 r 10 = -479.7696 d 10 = D 2 ( variable) r 11 = ∞ (stop) d 11 = 1.5000 r 12 = 11.1400 d 12 = 4.2000 n 7 = 1.69680 ν 7 = 55.52 r 13 = -43.8310 d 13 = 0.3000 r 14 = 8.2915 d 14 = 2.4000 n 8 = 1.69680 ν 8 = 55. 52 r 15 = 19.0091 d 15 = 0.6044 r 16 = -27.4999 d 16 = 1.2104 n 9 = 1.80518 ν 9 = 25.43 r 17 = 7.3325 d 17 = D 3 (variable) r 18 = 9.6114 (aspherical surface) d 18 = 4.1000 n 10 = 1.56384 ν 10 = 60.69 r 19 = -15.3541 d 19 = D 4 (variable) r 20 = ∞ d 20 = 5.1000 n 11 = 1.54771 ν 11 = 62.83 r 21 = 21 d 21 = 1.2100 r 22 = ∞ d 22 = 0.6000 n 12 = 1.48749 ν 12 = 70.20 r 23 = ∞ aspherical coefficient E = -0.39357 × 10 -3, F = -0.40862 × 10 -6 G = 0 f 6.49 17.82 48.89 D 1 1.300 10.119 16.488 D 2 16.688 7.869 1.500 D 3 4.934 2.472 6.157 D 4 3.660 6.123 2.437 Example 5 f = 6.49 to 48.90, F / 1.6 to F / 2.2 2ω = 51.8 ゜ to 7.4 ゜ r 1 = 62.6591 d 1 = 1.0000 n 1 = 1.80518 ν 1 = 1 25.43 r 2 = 25.66867 d 2 = 5.2000 n 2 = 1.60311 ν 2 = 60.70 r 3 = −88.1045 d 3 = 0.1500 r 4 = 19.1934 d 4 = 3.7500 n 3 = 1.60311 ν 3 = 60.70 r 5 = 58.7953 d 5 = D 1 (variable) r 6 = -157.6505 d 6 = 1.1026 n 4 = 1.69680 ν 4 = 55.52 r 7 = 7.6914 d 7 = 2.000 r 8 = -13.7250 d 8 = 1.0000 n 5 = 1.69680 ν 5 = 55.52 r 9 = 8.3 911 d 9 = 2.4000 n 6 = 1.80518 ν 6 = 25.43 r 10 = 204.9580 d 10 = D 2 (variable) r 11 = ∞ (aperture) d 11 = 1.5000 r 12 = 11.4645 d 12 = 4.2000 n 7 = 1.69680 ν 7 = 55.52 r 13 = -41.1109 d 13 = 0.3000 r 14 = 9.3876 d 14 = 2.4000 n 8 = 1.69680 ν 8 = 55.52 r 15 = 28.3293 d 15 = 0.4948 r 16 = −24.6734 d 16 = 1.2104 n 9 = 1.80518 ν 9 = 25.43 r 17 = 8.40553 d 17 = D 3 (variable) r 18 = 24.2967 d 18 = 2.0000 n 10 = 1.60311 ν 10 = 60.70 r 19 = -36.3424 d 19 = 0.1000 r 20 = 10.7865 (aspheric surface) d 20 = 2.000 n 11 = 1.60311 ν 11 = 60.70 r 21 = 70.0000 d 21 = D 4 (variable) r 22 = ∞ d 22 = 5.1000 n 12 = 1.54771 ν 12 = 62.83 r 23 = ∞ d 23 = 1.2100 r 24 = ∞ d 24 = 0.6000 n 13 = 1.48749 ν 13 = 70.20 r 25 = ∞ aspherical coefficient E = -0.17524 × 10 -3, F = 0.70866 × 10 −5 G = −0.23328 × 10 −6 f 6.49 17.82 48.90 D 1 1.300 10.352 16.336 D 2 16.536 7.483 1.500 D 3 5.837 3.797 7.805 D 4 3.467 5.507 1.500 where r 1 , r 2 , ... is the radius of curvature of each lens surface, d 1 , d 2 ,… is the wall thickness and air space of each lens, n 1 , n 2 ,... Are the refractive indexes of the lenses, and v 1 , v 2 ,.

実施例1は第1図に示すレンズ構成で、第3群が正レ
ンズと負レンズ又は第4群が正の単レンズにて構成さ
れ、第4群の物体側の面(r16)が非球面である。又第
3群の最も物体側の面(r12)も非球面である。
Example 1 has a lens configuration shown in FIG. 1, in which the third group is composed of a positive lens and a negative lens, or the fourth group is composed of a single positive lens, and the object-side surface (r 16 ) of the fourth group is non-uniform. It is a spherical surface. The most object side surface (r 12 ) of the third lens unit is also aspheric.

この実施例1の広角端,中間焦点距離,望遠端におけ
る収差状況は、夫々第6図,第7図,第8図に示す通り
である。
The aberrations at the wide-angle end, the intermediate focal length, and the telephoto end of the first embodiment are as shown in FIGS. 6, 7, and 8, respectively.

実施例2は第2図に示す構成で、第3群が3枚の正レ
ンズと1枚の負レンズ、第4群が正の単レンズから構成
され、第4群の物体側の面(r20)が非球面である。
Example 2 has a configuration shown in FIG. 2, in which the third group is composed of three positive lenses and one negative lens, the fourth group is composed of a positive single lens, and the fourth group has an object-side surface (r 20 ) is an aspherical surface.

この実施例2の広角端,中間焦点距離,望遠端におけ
る収差状況は、夫々第9図,第10図,第11図に示す通り
である。
The aberrations at the wide-angle end, the intermediate focal length, and the telephoto end of the second embodiment are as shown in FIGS. 9, 10, and 11, respectively.

実施例3は第3図に示す構成で、第3群が正レンズ,
負レンズ,正レンズ、第4群が正の単レンズにて構成さ
れていて、第4群の物体側の面(r18)が非球面であ
る。
The third embodiment has a configuration shown in FIG.
The negative lens, the positive lens, and the fourth unit are formed of a positive single lens, and the object-side surface (r 18 ) of the fourth group is aspheric.

この実施例3の広角端,中間焦点距離,望遠端におけ
る収差状況は夫々第12図,第13図,第14図に示す通りで
ある。
The aberrations at the wide angle end, the intermediate focal length, and the telephoto end of the third embodiment are as shown in FIGS. 12, 13, and 14, respectively.

実施例4は、第4図に示す構成で、第3群が2枚の正
レンズと負レンズ、第4群が正の単レンズにて構成され
ていて、第4群の物体側(r18)が非球面である。
In the fourth embodiment, the third unit includes two positive lenses and a negative lens, the fourth unit includes a single positive lens, and the fourth unit includes the object side (r 18). ) Is an aspherical surface.

この実施例4の広角端,中間焦点距離,望遠端におけ
る収差状況は夫々第15図,第18図,第17図に示す通りで
ある。
The aberrations at the wide-angle end, the intermediate focal length, and the telephoto end of the fourth embodiment are as shown in FIGS. 15, 18, and 17, respectively.

実施例5は、第5図に示す構成で、第3群が2枚の正
レンズと負レンズ、第4群が2枚の正レンズにて構成さ
れていて、第4群の像側の正レンズの物体側の面
(r20)が非球面である。
The fifth embodiment has a configuration shown in FIG. 5, in which the third group is composed of two positive lenses and a negative lens, and the fourth group is composed of two positive lenses. The object-side surface (r 20 ) of the lens is aspheric.

この実施例5の広角端,中間焦点距離,望遠端におけ
る収差状況は夫々第18図,第19図,第20図に示す通りで
ある。
The aberrations of the fifth embodiment at the wide-angle end, at the intermediate focal length, and at the telephoto end are as shown in FIGS. 18, 19, and 20, respectively.

これら実施例中に用いられる非球面の形状は光軸方向
をx軸,光軸に垂直な方向をy軸とした時、次の式にて
表わされる。
The shape of the aspherical surface used in these embodiments is represented by the following equation when the optical axis direction is the x axis and the direction perpendicular to the optical axis is the y axis.

ただしrは基準球面の曲率半径、E,F,G,…は非球面係
数である。
Here, r is the radius of curvature of the reference spherical surface, and E, F, G,... Are aspherical surface coefficients.

[発明の効果] 本発明のズームレンズは、高変倍比,大口径比でかつ
レンズ枚数が少なく小型なレンズ系である。
[Effect of the Invention] The zoom lens of the present invention is a small lens system having a high zoom ratio, a large aperture ratio, and a small number of lenses.

【図面の簡単な説明】 第1図乃至第5図は夫々本発明のズームレンズの実施例
1乃至実施例5の断面図、第6図乃至第8図は実施例1
の収差曲線図、第9図乃至第11図は実施例2の収差曲線
図、第12図乃至第14図は実施例3の収差曲線図、第15図
乃至第17図は実施例4の収差曲線図、第18図乃至第20図
は実施例5の収差曲線図である。
BRIEF DESCRIPTION OF THE DRAWINGS FIGS. 1 to 5 are cross-sectional views of Embodiments 1 to 5 of a zoom lens according to the present invention, and FIGS. 6 to 8 are Embodiment 1 respectively.
9 to 11 are aberration curve diagrams of the second embodiment, FIGS. 12 to 14 are aberration curve diagrams of the third embodiment, and FIGS. 15 to 17 are aberration curves of the fourth embodiment. 18 to 20 are graphs showing aberration curves of the fifth embodiment.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】物体側から順に正の屈折力を有しズーミン
グ中固定の第1群と、負の屈折力を有しズーミング中可
動で変倍作用を有する第2群と、正の屈折力を有しズー
ミング中固定の第3群と、正の屈折力を有しズーミング
中可動で像位置を補正する作用を有する第4群よりな
り、前記第3群が最も物体側に物体側の面が凸面である
正レンズと少なくとも1枚の負レンズを含む4枚以下の
レンズで構成され、前記第4群が正の単レンズまたは2
枚の正レンズで構成され、前記第4群のレンズ面のうち
少なくとも1面が光軸から離れるにしたがって屈折力が
弱くなる非球面であり、前記第3群の最も物体側の正レ
ンズが次の条件を満足するズームレンズ。 −1.2<(R1+R2)/(R1−R2)<−0.2 但し、R1、R2は夫々前記第3群の最も物体側の正レンズ
の物体側および像側の面の曲率半径(レンズ面が非球面
の場合は近軸曲率半径で計算する)である。
1. A first group having a positive refractive power and fixed during zooming in order from the object side, a second group having a negative refractive power and movable during zooming and having a variable power, and a positive refractive power. A third group fixed during zooming and a fourth group having a positive refractive power and movable during zooming and having the function of correcting the image position, wherein the third group is closest to the object side and has a surface on the object side. Is composed of four or less lenses including a positive lens having a convex surface and at least one negative lens.
And at least one of the lens surfaces of the fourth group is an aspheric surface whose refracting power decreases as the distance from the optical axis increases. Zoom lens that satisfies the conditions of −1.2 <(R 1 + R 2 ) / (R 1 −R 2 ) <− 0.2 where R 1 and R 2 are the curvatures of the object-side and image-side surfaces of the most object-side positive lens of the third lens unit, respectively. Radius (when the lens surface is an aspheric surface, it is calculated by a paraxial radius of curvature).
【請求項2】前記第3群中の全ての負レンズが、全ての
正レンズよりも像側に配置された、正レンズ、正レン
ズ、負レンズの3枚構成か、正レンズ、正レンズ、正レ
ンズ、負レンズの4枚で構成されていてそのうちの最も
後側の2枚のレンズを物体側に強い凸面を向けた正レン
ズと像側に強い凹面を向けた負レンズにて構成した請求
項1のズームレンズ。
2. The method according to claim 1, wherein all of the negative lenses in the third group are arranged on the image side of all of the positive lenses, a positive lens, a positive lens, and a negative lens. The rearmost two of the four lenses, a positive lens and a negative lens, are composed of a positive lens with a strong convex surface facing the object side and a negative lens with a strong concave surface facing the image side. Item 1. The zoom lens according to item 1.
【請求項3】前記第4群がフォーカシング群としての機
能も有するように構成した請求項1又は請求項2のズー
ムレンズ。
3. The zoom lens according to claim 1, wherein said fourth unit has a function as a focusing unit.
JP14984890A 1990-06-11 1990-06-11 Zoom lens Expired - Fee Related JP3147167B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP14984890A JP3147167B2 (en) 1990-06-11 1990-06-11 Zoom lens
US07/712,980 US5189558A (en) 1990-06-11 1991-06-10 Vari-focal system having short total length

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14984890A JP3147167B2 (en) 1990-06-11 1990-06-11 Zoom lens

Publications (2)

Publication Number Publication Date
JPH0443311A JPH0443311A (en) 1992-02-13
JP3147167B2 true JP3147167B2 (en) 2001-03-19

Family

ID=15483975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14984890A Expired - Fee Related JP3147167B2 (en) 1990-06-11 1990-06-11 Zoom lens

Country Status (1)

Country Link
JP (1) JP3147167B2 (en)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2744336B2 (en) * 1990-07-20 1998-04-28 キヤノン株式会社 Rear focus zoom lens
JP2832075B2 (en) * 1990-07-20 1998-12-02 キヤノン株式会社 Rear focus zoom lens
JP3093513B2 (en) * 1993-04-26 2000-10-03 キヤノン株式会社 Rear focus zoom lens
US5612825A (en) * 1994-03-14 1997-03-18 Canon Kabushiki Kaisha Zoom lens
JPH08201695A (en) * 1995-01-31 1996-08-09 Canon Inc Rear focus type zoom lens
JP3478637B2 (en) * 1995-05-30 2003-12-15 キヤノン株式会社 Small zoom lens
EP0745878B1 (en) * 1995-05-30 2003-11-26 Canon Kabushiki Kaisha Zoom lens of rear focus type
US6226130B1 (en) 1996-04-09 2001-05-01 Canon Kabushiki Kaisha Zoom lens
JP3311584B2 (en) * 1996-04-10 2002-08-05 松下電器産業株式会社 Zoom lens
US5933283A (en) * 1996-04-15 1999-08-03 Canon Kabushiki Kaisha Zoom lens
US6084722A (en) * 1997-07-02 2000-07-04 Canon Kabushiki Kaisha Zoom lens of rear focus type and image pickup apparatus
US6185048B1 (en) * 1997-10-14 2001-02-06 Olympus Optical Co., Ltd. Zoom lens system
US6331917B1 (en) 1997-10-14 2001-12-18 Olympus Optical Co., Ltd. Zoom lens system
JP4235288B2 (en) 1998-09-09 2009-03-11 キヤノン株式会社 Rear focus zoom lens
US6344932B1 (en) 1999-01-19 2002-02-05 Canon Kabushiki Kaisha Zoom lens and optical apparatus having the same
JP3527130B2 (en) * 1999-04-05 2004-05-17 松下電器産業株式会社 Zoom lens and video camera using the same
JP4379957B2 (en) 1999-07-26 2009-12-09 キヤノン株式会社 Rear focus zoom lens and optical apparatus using the same
US6498687B1 (en) 1999-10-06 2002-12-24 Canon Kabushiki Kaisha Zoom lens and optical apparatus having the same
JP4245780B2 (en) 2000-06-12 2009-04-02 オリンパス株式会社 Zoom imaging optical system
US6606202B2 (en) 2000-09-26 2003-08-12 Canon Kabushiki Kaisha Zoom lens system and optical apparatus using the same
JP3619178B2 (en) 2001-09-28 2005-02-09 キヤノン株式会社 Zoom lens and optical apparatus having the same
JP2003255438A (en) 2002-02-28 2003-09-10 Canon Inc Zoom lens and optical equipment having the same
US7457046B2 (en) 2003-07-01 2008-11-25 Canon Kabushiki Kaisha Zoom lens system and image-taking apparatus
JP4551669B2 (en) 2004-02-26 2010-09-29 キヤノン株式会社 Zoom lens and imaging apparatus having the same
US7199941B2 (en) 2003-10-29 2007-04-03 Sony Corporation Zoom lens
JP4750458B2 (en) 2005-04-19 2011-08-17 キヤノン株式会社 Zoom lens and imaging apparatus having the same
JP5143532B2 (en) 2007-11-15 2013-02-13 富士フイルム株式会社 Zoom lens and imaging device
CN113474707A (en) 2019-02-27 2021-10-01 索尼集团公司 Variable focal length lens system and imaging apparatus

Also Published As

Publication number Publication date
JPH0443311A (en) 1992-02-13

Similar Documents

Publication Publication Date Title
JP3147167B2 (en) Zoom lens
JP2778232B2 (en) Wide-angle zoom lens
JP2628633B2 (en) Compact zoom lens
JP3541283B2 (en) Inner focus telephoto lens
JP2001033703A (en) Rear focus type zoom lens
JP3119403B2 (en) Small variable power lens
JP3264949B2 (en) Zoom lens with short overall length
JP4902179B2 (en) Zoom lens and imaging apparatus having the same
JP4847091B2 (en) Zoom lens and imaging apparatus having the same
JPH0642017B2 (en) Compact zoom lens
JP3302063B2 (en) Rear focus compact zoom lens
JP2808905B2 (en) Zoom lens
JP3160846B2 (en) Telephoto zoom lens
JP2862272B2 (en) Wide-angle zoom lens
JP3029148B2 (en) Rear focus zoom lens
JPH09218346A (en) Optical system
JPH05150160A (en) Zoom lens
JP3392881B2 (en) Zoom lens
JPH11101941A (en) Rear focus type zoom lens
JPH08110470A (en) Wide angle zoom lens
JP2003043357A (en) Zoom lens
JP4955875B2 (en) Zoom lens and optical apparatus having the same
JP2932603B2 (en) Zoom lens
JP4789349B2 (en) Zoom lens and optical apparatus having the same
JP3423508B2 (en) Rear focus zoom lens

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080112

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100112

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees