JP3264949B2 - Zoom lens with short overall length - Google Patents

Zoom lens with short overall length

Info

Publication number
JP3264949B2
JP3264949B2 JP22169991A JP22169991A JP3264949B2 JP 3264949 B2 JP3264949 B2 JP 3264949B2 JP 22169991 A JP22169991 A JP 22169991A JP 22169991 A JP22169991 A JP 22169991A JP 3264949 B2 JP3264949 B2 JP 3264949B2
Authority
JP
Japan
Prior art keywords
lens
lens group
object side
group
positive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22169991A
Other languages
Japanese (ja)
Other versions
JPH0560974A (en
Inventor
三原伸一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optic Co Ltd filed Critical Olympus Optic Co Ltd
Priority to JP22169991A priority Critical patent/JP3264949B2/en
Publication of JPH0560974A publication Critical patent/JPH0560974A/en
Application granted granted Critical
Publication of JP3264949B2 publication Critical patent/JP3264949B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、4群構成でリアフォー
カスを用いた全長の短い大口径比高変倍比の変倍レンズ
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a variable-magnification lens having a large aperture ratio and a high zoom ratio, which has a short overall length and uses a rear focus in a four-group configuration.

【0002】[0002]

【従来の技術】最近のビデオカメラの小型軽量化、低コ
スト化の進展は著しく、カムコーダー市場は大幅に活性
化し、一般ユーザーに急速に普及しつつある。ビデオカ
メラは、主に、電気回路基板、アクチュエーター(メ
カ)系、そして、光学系からなっており、従来、特に電
気系を中心に小型、低コスト化が進められてきたが、こ
こ最近になって撮像光学系の大幅な小型化が急進展して
いる。撮像光学系の小型、低コスト化は、イメージャー
の小型化技術、回転対象非球面加工技術、TTL自動合
焦技術の進展を効果的に利用した新しいズーム(変倍)
タイプの開発によってなされつつあるのが現状である。
その新しいズームレンズの例として、特開昭62−24
213号、特開昭62−178917号、特開昭62−
215225号等があるが、小型、軽量化へのニーズは
際限なく、特に、全長や前玉径のさらなる小型化へのニ
ーズは高い。
2. Description of the Related Art In recent years, video cameras have been significantly reduced in size and weight and cost has been remarkably advanced, and the camcorder market has been greatly activated and is rapidly spreading to general users. A video camera mainly includes an electric circuit board, an actuator (mechanical) system, and an optical system. Conventionally, miniaturization and cost reduction have been promoted, especially in the electric system in recent years. Thus, the miniaturization of the imaging optical system has been rapidly progressing. The miniaturization and cost reduction of the imaging optical system is achieved by a new zoom (magnification) that makes effective use of the development of imager miniaturization technology, rotation target aspherical surface processing technology, and TTL automatic focusing technology.
It is currently being done by the development of types.
As an example of the new zoom lens, Japanese Patent Application Laid-Open No. 62-24 / 1987
No. 213, JP-A-62-178917, JP-A-62-278.
No. 215225, etc., but there is no limit to the need for reduction in size and weight, and in particular, the need for further reduction in the overall length and diameter of the front lens is high.

【0003】これら特開昭62−24213号、特開昭
62−178917号、特開昭62−215225号に
おいては、リアフォーカス方式やコンペンセーター群を
絞りよりも後ろの群に配置する方式が用いられている
が、この方式は、全長を短くしたり、前玉径を小さくす
るのに驚くべき潜在能力を秘めている。特に、特開昭6
2−178917号は、前記結像系に非球面を用いて構
成枚数を大幅に削減し、しかも、収差補正も充分に行え
ることを示している。しかし、この小型化への能力が殆
ど引き出されておらず、全長も前玉径も古典的レンズ構
成と大差ない。
In JP-A-62-2423, JP-A-62-178917, and JP-A-62-215225, a rear focus method or a method in which a compensator group is arranged in a group behind a stop is used. However, this method has the surprising potential of reducing the overall length and the diameter of the front lens. In particular, JP-A-6
Japanese Patent Application Laid-Open No. 2-178917 shows that the number of components can be greatly reduced by using an aspherical surface in the image forming system, and that aberration correction can be sufficiently performed. However, the ability to reduce the size is hardly exploited, and the overall length and the front lens diameter are not much different from the classic lens configuration.

【0004】[0004]

【発明が解決しようとする課題】すなわち、特開昭62
−178917号のものは、正の屈折力を有する第1
群、負の屈折力を有する第2群からなる変倍系と、非球
面を有する正の単レンズのみからなり常時固定の第3
群、少なくとも1枚の負レンズを有し全体として2枚な
いし3枚のレンズよりなり、変倍時及び被写体距離変化
等による焦点位置調節のために可動の第4群からなる結
像系とから構成されるものである。このように、コンペ
ンセータを兼ねたリアフォーカスや非球面を採用するこ
とにより、構成枚数を10枚以下に減らせ、それによっ
て余分なスペースを減らせるので、大幅に前玉径を小さ
くでき、かつ、全長も短くすることが可能となった。と
ころが、リアフォーカスにして第1群のパワーを強くし
やすくなったはずなのに、それがたいしてなされずじま
いで、第2群のパワーも緩いままとなっている。また、
第3群が単玉になったことが災いして、ここで充分に光
束を収斂させてほぼアフォーカルにして射出させること
ができず、第4群の焦点距離も長くせざるを得ず、バッ
クフォーカスを短くできないままとなっており、全長、
前玉径等が充分小型化されていない。
The problem to be solved by the present invention is as follows:
No. 178917 has a first positive refractive power.
A third lens, which is composed of only a variable power system consisting of a second group having a negative refractive power and a positive single lens having an aspheric surface, and which is always fixed;
A group, having at least one negative lens, consisting of two or three lenses as a whole, and an imaging system consisting of a movable fourth group for adjusting the focal position at the time of zooming and a change in subject distance, etc. It is composed. As described above, by adopting the rear focus and the aspherical surface also serving as a compensator, the number of components can be reduced to 10 or less, thereby reducing the extra space, so that the diameter of the front lens can be significantly reduced, and the overall length can be reduced. Can also be shortened. However, although the power of the first lens group should have been easily increased by rear focus, the power of the second lens group is still loose because it is hardly done. Also,
Since the third group became a single ball, it was difficult to converge the light flux enough to emit it almost afocal, and the fourth group had to increase the focal length, Back focus can not be shortened, total length,
The diameter of the front lens is not sufficiently reduced.

【0005】本発明は、以上の点に鑑みてなされたもの
で、その目的は、正の屈折力を有する第1群と負の屈折
力を有する第2群とよりなる変倍系と、正の屈折力を有
し常時固定の第3群と正の屈折力を有し変倍時及び焦点
位置調節のために可動の第4群とよりなる結像系とから
構成された変倍レンズの各群の適切な近軸配置の設定、
さらには、第3群、第4群のレンズ構成を工夫すること
により、レンズ構成枚数が10枚以下で、全長が極めて
短く、前玉径の小さい、小型軽量、また、低コストな大
口径比高変倍比の変倍レンズを提供することである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above points, and has as its object to provide a variable power system comprising a first lens unit having a positive refractive power and a second lens unit having a negative refractive power; Of a variable power lens composed of a third lens unit having a constant refractive power and a fourth lens unit having a positive refractive power and a movable fourth lens unit for adjusting the focal position and for adjusting the focal position. Setting of appropriate paraxial arrangement for each group,
Further, by devising the lens configuration of the third and fourth lens units, the number of lens elements is 10 or less, the total length is extremely short, the front lens diameter is small, the size is small and light, and the cost is large. An object of the present invention is to provide a zoom lens having a high zoom ratio.

【0006】[0006]

【課題を解決するための手段】本発明の全長の短い変倍
レンズは、前記目的を達成するために、物体側から順
に、正の屈折力を有する第1レンズ群、負の屈折力を有
し変倍時に可動の第2レンズ群の2つの群からなる変倍
系と、正の屈折力を有し常時固定の第3レンズ群、正の
屈折力を有し変倍時及び焦点調節のために可動の第4レ
ンズ群の2つの群からなる結像系とから構成され、第3
レンズ群は、物体側から順に、物体側の面が強い収斂性
を有し光軸から離れるに従って光軸近傍の曲率半径を有
する球面に対して物体側への偏倚量が単調増加するよう
な非球面で構成された正レンズと、像側に凹面を向けた
負メニスカスレンズとにて構成され、第4レンズ群は、
非球面を有する両凸レンズと負メニスカスレンズにて構
成されたレンズ系において、前記第3レンズ群と第4レ
ンズ群にて合成されている結像系の共役距離(コンジュ
ゲート)をさらに短くすることにより、全長を短くした
ことを特徴としており、そのために、以下の条件を満足
することを特徴とするものである。
In order to achieve the above object, a variable power lens having a short overall length according to the present invention has a first lens unit having a positive refractive power and a negative lens having a negative refractive power in order from the object side. A variable power system consisting of two groups of a second lens group movable at the time of zooming; a third lens group having a positive refractive power and always fixed; And an imaging system composed of two movable fourth lens groups.
The lens group has a non-uniformity such that, in order from the object side, the amount of deviation toward the object side monotonically increases with respect to a spherical surface having a strong convergence on the object side and a radius of curvature near the optical axis as the distance from the optical axis increases. The fourth lens group includes: a positive lens having a spherical surface; and a negative meniscus lens having a concave surface facing the image side.
In a lens system composed of a biconvex lens having an aspheric surface and a negative meniscus lens, the conjugate distance (conjugate) of the imaging system synthesized by the third lens unit and the fourth lens unit is further reduced. Thus, the overall length is shortened, and therefore, the following conditions are satisfied.

【0007】 (1) 0.45<f34S /(fW T 1/2 <0.9 (2) 0.18<β4T<0.36 (3) 0.5<r31/{(n31−1)(fW T 1/2 }<1.0 (4) 0.4<r34/{(n34−1)(fW T 1/2 }<0.8 (5) 0.24<DIII /(fW T 1/2 <0.5 ただし、fW 、fT はそれぞれ広角端、望遠端の全系の
焦点距離、f34S は全系の焦点距離が(fW T 1/2
で無限遠物点合焦時の第3レンズ群、第4レンズ群の合
成焦点距離、β4Tは望遠端で無限遠物点合焦時の第4レ
ンズ群の倍率、r31は第3レンズ群の最も物体側の面の
光軸近傍での曲率半径、r34は第3レンズ群の最も像側
の面の曲率半径、n31、n34はそれぞれ第3レンズ群の
正レンズと負レンズの媒質の屈折率、DIII は第3レン
ズ群の最も物体側の面の面頂から最も像側の面の面頂ま
での距離、である。
(1) 0.45 <f 34S / (f W f T ) 1/2 <0.9 (2) 0.18 <β 4T <0.36 (3) 0.5 <r 31 / { (N 31 -1) (f W f T ) 1/2 } <1.0 (4) 0.4 <r 34 / {(n 34 -1) (f W f T ) 1/2 } <0. 8 (5) 0.24 <D III / (f W f T ) 1/2 <0.5 where f W and f T are the focal lengths of the entire system at the wide angle end and the telephoto end, respectively, and f 34S is the entire system. Focal length of (f W f T ) 1/2
Is the combined focal length of the third and fourth lens groups when focusing on an object point at infinity, β 4T is the magnification of the fourth lens group when focusing on an object point at infinity at the telephoto end, and r 31 is the third lens. The radius of curvature of the surface closest to the object side of the group near the optical axis, r 34 is the radius of curvature of the surface closest to the image side of the third lens group, and n 31 and n 34 are the positive lens and the negative lens of the third lens group, respectively. refractive index of the medium, D III is the distance, up to the vertex of the surface closest to the image side from the vertex of the most object side surface of the third lens group.

【0008】[0008]

【作用】以下、本発明の各条件の意味と作用について説
明する。本発明の構成上のポイントは、第3レンズ群の
最も像側に、像側の面に強い発散性を有する負レンズを
配し、さらに、第3レンズ群の最も物体側の面に強い収
斂性を持たせるようにすることによって、フォーカシン
グ性能を悪化させることなく、前記第3レンズ群と第4
レンズ群にて合成されている結像系の共役距離(コンジ
ュゲート)を大幅に短縮し、変倍レンズ全長を短くした
点にある。
The meaning and operation of each condition of the present invention will be described below. The point of the configuration of the present invention is that a negative lens having a strong divergence on the image side surface is disposed closest to the image side of the third lens group, and further, a strong convergence is formed on the most object side surface of the third lens group. The third lens group and the fourth lens group can be used without deteriorating the focusing performance.
The point is that the conjugate distance (conjugate) of the imaging system synthesized by the lens groups is greatly reduced, and the overall length of the variable power lens is shortened.

【0009】リアーフォーカス方式を採用する場合、フ
ォーカシング時の収差変動を実用上問題とならないレベ
ルまで小さくするために、第3レンズ群からの射出光束
は略々アフォーカルにするのがよい。一方、第4レンズ
群の焦点距離が短い程、全体のバックフォーカス長は短
くなり、全長を短くすることができることになる。
In the case of employing the rear focus method, it is preferable that the light beam emitted from the third lens group be substantially afocal in order to reduce the fluctuation of aberration during focusing to a level that does not cause a practical problem. On the other hand, as the focal length of the fourth lens group becomes shorter, the overall back focus length becomes shorter, and the overall length can be shortened.

【0010】ここで、第1レンズ群から第3レンズ群ま
でにより形成されるアフォーカル部の倍率をβA 、第4
レンズ群の焦点距離をfIVとするとき、全系の焦点距離
fは、f=βA IVとなるが、fIVを小さくするにはβ
A を大きくすればよいことが判る。一方、βA は、第1
レンズ群の焦点距離をf1 、第2レンズ群の倍率を
βII、第3レンズ群の焦点距離をfIII とするとき、 βA =fI βII/fIII となる。ところで、fI とβIIはfI を小さくするとβ
IIが大きくなる傾向にあるので、βA を大きくするため
にfIII の値を小さくすることを考える。fIII を小さ
くすれば、第3レンズ群の主点をそれだけ前記変倍部に
よる像点に近くせざるを得ず、そのために、第2レンズ
群と第3レンズ群の機械的干渉が発生しやすくなる。そ
こで、第3レンズ群の主点がレンズのある位置よりも第
2レンズ群側に位置するように、第3レンズ群を構成す
ればよい。つまり、物体側(第2レンズ群側)から順
に、物体側の面が強い曲率の正レンズと像側の面が強い
曲率の負レンズの合計2枚(従来例は、正レンズ1枚の
みであったため、主点を第2群側に出すには限界があっ
た。その実施例のように、強い曲率の正メニスカスレン
ズとせざるを得ず、収差補正上好ましくなかった。)で
構成し、強いパワーとなる正レンズの物体側の面をレン
ズ周辺部へ行くに従って曲率が単調に減少するような非
球面にて構成することで、特に球面収差の発生を抑制す
ることができる。第4レンズ群も、前記のとおりパワー
が強くなり、特に軸外光線高が高いので、コマ収差発生
を抑制するために、物体側の面をレンズ周辺部へ行くに
従って曲率が単調に減少するような非球面にて構成した
正の単レンズとしている。なお、前記アフォーカルは厳
密でなくてもよく、フォーカシング時の収差変動が許容
できる範囲内でやや収斂光束とした方が、よりバックフ
ォーカスを短くでき、レンズ系全長を短くすることがで
きるので、fIII のみを規定するのではなく、第3レン
ズ群と第4レンズ群の合成焦点距離と第4群の倍率を条
件(1)、(2)のように規定するのが望ましい。
Here, the magnification of the afocal portion formed by the first to third lens groups is β A ,
When the focal length of the lens group and f IV, the focal length f of the entire system is a f = beta A f IV, to reduce the f IV beta
It turns out that A should be increased. On the other hand, β A
When the focal length of the lens unit f 1, the magnification of the second lens group beta II, the focal length of the third lens group and f III, the β A = f I β II / f III. By the way, f I and β II is The smaller the f I β
Since II tends to be large, consider reducing the value of f III to increase β A. If f III is reduced, the principal point of the third lens group must be closer to the image point by the zooming unit, and therefore, mechanical interference between the second lens group and the third lens group occurs. It will be easier. Therefore, the third lens group may be configured such that the principal point of the third lens group is located closer to the second lens group than the lens is located. In other words, in order from the object side (the second lens group side), a total of two lenses including a positive lens having a strong curvature on the object side and a negative lens having a strong curvature on the image side (the conventional example uses only one positive lens) Therefore, there was a limit in moving the principal point to the second lens unit side, and as in the embodiment, a positive meniscus lens having a strong curvature had to be used, which was not preferable in terms of aberration correction.) By forming the object-side surface of the positive lens, which has a strong power, with an aspheric surface whose curvature monotonously decreases toward the periphery of the lens, it is possible to particularly suppress the occurrence of spherical aberration. As described above, the fourth lens group also has a high power, and particularly has a high off-axis ray height. Therefore, in order to suppress the generation of coma, the curvature monotonously decreases as the surface on the object side moves toward the lens periphery. It is a positive single lens composed of an aspheric surface. Note that the afocal need not be strict, and a slightly convergent light flux within a range in which aberration variation during focusing is acceptable can further shorten the back focus and shorten the overall length of the lens system. It is desirable to define not only f III but also the combined focal length of the third lens unit and the fourth lens unit and the magnification of the fourth unit as in the conditions (1) and (2).

【0011】 (1) 0.45<f34S /(fW T 1/2 <0.9 (2) 0.18<β4T<0.36 ここで、条件(1)の下限を越えると、第2レンズ群と
第3レンズ群の機械的干渉が発生しやすく、好ましくな
く、その上限を越えると、全長が短くならず、本発明の
目的を達成し得ない。条件(2)の下限を越えると、バ
ックフォーカスを短くする上で有利ではなくなり、その
上限を越えると、第4レンズ群の焦点調節能力が低くな
り、多くの移動量のためにスペースを要し、小型化に反
すると同時に、変倍時、フォーカシング時の収差変動が
大きくなる。以上の理由で、条件(1)、(2)の上下
限を設定した。
(1) 0.45 <f 34S / (f W f T ) 1/2 <0.9 (2) 0.18 <β 4T <0.36 Here, the lower limit of the condition (1) is exceeded. In addition, mechanical interference between the second lens group and the third lens group easily occurs, which is not preferable. If the upper limit is exceeded, the overall length is not shortened, and the object of the present invention cannot be achieved. If the lower limit of the condition (2) is exceeded, it is not advantageous in shortening the back focus. If the upper limit of the condition (2) is exceeded, the focus adjustment ability of the fourth lens unit is reduced, and a space is required for a large amount of movement. In contrast to miniaturization, aberration fluctuations during zooming and focusing increase. For the above reasons, the upper and lower limits of the conditions (1) and (2) were set.

【0012】また、上記機能的干渉については、以下の
条件(3)〜(5)を満たすことで、発生し難くするこ
とができる。 (3) 0.5<r31/{(n31−1)(fW T 1/2 }<1.0 (4) 0.4<r34/{(n34−1)(fW T 1/2 }<0.8 (5) 0.24<DIII /(fW T 1/2 <0.5 ここで、条件(3)、(4)の下限を越えると、第3レ
ンズ群の主点のみがより一層第2レンズ群に近づき、第
3レンズ群の焦点距離を短くしても、第2レンズ群との
機械的干渉は発生し難いが、非球面を導入しても球面収
差の補正に限界が生じる。一方、それらの上限値を越え
ると、前記機能的干渉が発生しやすくなり、第3レンズ
群の焦点距離を長くせざるを得ない。ところで、第3レ
ンズ群の最も物体側の収斂面と最も像側の発散面の間隔
は大きい方が、r31、r34を小さくせずに第3レンズ群
の主点を第2レンズ群に近づけやすいので、好ましい
が、この間隔があまり大きいと、逆に、リレー部(第3
レンズ群と第4レンズ群の合成系)の全長が長くなり、
かえって本発明の目的にそぐわなくなる。条件(5)は
そのことを規定した条件である。
The above-mentioned functional interference can be made less likely to occur by satisfying the following conditions (3) to (5). (3) 0.5 <r 31 / {(n 31 -1) (f W f T) 1/2} <1.0 (4) 0.4 <r 34 / {(n 34 -1) (f W f T) 1/2} <0.8 (5) 0.24 <D III / (f W f T) 1/2 <0.5 where condition (3) exceeds the lower limit of (4) Even if only the principal point of the third lens group comes closer to the second lens group and the focal length of the third lens group is shortened, mechanical interference with the second lens group hardly occurs, but the aspherical surface Introduces a limit to the correction of spherical aberration. On the other hand, if the upper limit is exceeded, the functional interference is likely to occur, and the focal length of the third lens group must be increased. By the way, if the distance between the converging surface closest to the object side and the diverging surface closest to the image side in the third lens group is large, the principal point of the third lens group is changed to the second lens group without reducing r 31 and r 34. It is preferable because it is easy to approach, but if this interval is too large, on the contrary, the relay section (third
The total length of the lens system and the fourth lens group) becomes longer,
On the contrary, it does not meet the purpose of the present invention. Condition (5) is a condition that defines this.

【0013】さらに、リレー部の全長を短くするには、
第3レンズ群と第4レンズ群間の空気間隔を極力短くす
るのがよい。この空気間隔は、変倍や物点移動に伴う焦
点調節のために、第4レンズ群が動くスペースとして用
いられるものである。これを極力短くするには、第4レ
ンズ群の移動量を小さくするように各群のパワー配置を
するのが理想であるが、現実には、後述の変倍部の第2
レンズ群の倍率を多少大きい側に設定したりする関係
上、移動量は多少大きくなる。そこで、条件(6)を設
定する。 (6) 0.25<D34T /(fW T 1/2 <0.5 ここで、D34T は望遠端で無限遠物点合焦時の第3レン
ズ群と第4レンズ群間の軸上空気間隔である。
Further, in order to shorten the total length of the relay section,
It is preferable that the air gap between the third lens group and the fourth lens group be as short as possible. This air space is used as a space in which the fourth lens group moves for focal adjustment accompanying zooming and movement of an object point. In order to make this as short as possible, it is ideal to arrange the power of each group so as to reduce the amount of movement of the fourth lens group.
Since the magnification of the lens group is set to a slightly larger side, the movement amount is slightly larger. Therefore, condition (6) is set. (6) 0.25 <D 34T / (f W f T ) 1/2 <0.5 Here, D 34T is between the third lens unit and the fourth lens unit at the telephoto end when focused on an object point at infinity. Is the on-axis air spacing.

【0014】条件(6)の上限を越えると、全長が長く
なりやすく、その下限を越えると、第2レンズ群のパワ
ーを強くする必要が出てくる。
When the value exceeds the upper limit of the condition (6), the total length tends to be long. When the value exceeds the lower limit, it becomes necessary to increase the power of the second lens unit.

【0015】次に、第1レンズ群、第2レンズ群にて形
成される変倍部を短くすることを考える。これは、第1
レンズ群の径を小さくすることにも効果がある。変倍部
の全長は、第1レンズ群の総厚、第2レンズ群の総厚、
そして、第2レンズ群の移動スペースにより決まる。ま
ず、第2レンズ群の移動スペースを少なくすることを考
える。その方法として、(i)第2レンズ群の焦点距離
を短くする、(ii)第2レンズ群の倍率を大きくする、
ことがあげられる。効果としては、(ii)の方が大き
い。しかし、(ii)を実現するには、第1レンズ群のパ
ワーを強くしなくてはならないこと、第2レンズ群が等
倍を越えると第3レンズ群が減倍し始め、増倍効果を打
ち消すこと、第4レンズ群の軌跡が望遠側で急峻となる
ため第4レンズ群の移動スペースをフォーカシングも含
めて多く要するようになることの理由により、第2レン
ズ群の倍率をあまり高くすることもできない。したがっ
て、両者をバランスよく実施していくのがよい。そのた
め、条件(7)、(8)を満たすようにするのが望まし
い。
Next, it is considered to shorten the zooming portion formed by the first lens unit and the second lens unit. This is the first
It is also effective to reduce the diameter of the lens group. The total length of the zoom section is the total thickness of the first lens group, the total thickness of the second lens group,
Then, it is determined by the moving space of the second lens group. First, consider reducing the movement space of the second lens group. As the method, (i) shorten the focal length of the second lens group, (ii) increase the magnification of the second lens group,
There are things. The effect is larger in (ii). However, in order to realize (ii), the power of the first lens unit must be increased, and when the second lens unit exceeds the same magnification, the third lens unit starts to reduce the magnification, and the multiplication effect is reduced. To increase the magnification of the second lens group too much, because the trajectory of the fourth lens group becomes steeper on the telephoto side, so that the moving space of the fourth lens group is required including focusing. I can't do that either. Therefore, it is better to implement both in a well-balanced manner. Therefore, it is desirable to satisfy the conditions (7) and (8).

【0016】 (7) 0.25<|fII|/(fW T 1/2 <0.5 (8) 0.2<|βIIS |fW /(fW T 1/2 <0.4 ここで、fIIは第2レンズ群の焦点距離、βIIS は全系
の焦点距離fがf=(fW T 1/2 で無限遠物点合焦
時の第2レンズ群の倍率である。
(7) 0.25 <| f II | / (f W f T ) 1/2 <0.5 (8) 0.2 <| β IIS | f W / (f W f T ) 1 / 2 <0.4 where f II is the focal length of the second lens group, β IIS is the focal length of the entire system at f = (f W f T ) 1/2 and the focal length at infinity object point focusing. This is the magnification of the two lens groups.

【0017】次に、第1レンズ群、第2レンズ群の総厚
について考える。当然のことながら、これらを共に薄く
するのがよい。ところで、これらを薄くすると、単純に
全長が縮まるばかりではなく、第2レンズ群の移動スペ
ースを少なくした分と合わせて、入射瞳位置を浅くする
ことができ、前玉径の縮小化に寄与できる。そして、径
が小さくなった分、第1レンズ群のパワーを増大させた
り又は薄くすることも可能となる。以上のことから、条
件(9)、(10)を満たすのが望ましい。
Next, the total thickness of the first lens unit and the second lens unit will be considered. Of course, it is better to make them thin together. By the way, when these are made thinner, not only the overall length is reduced, but also the position of the entrance pupil can be made shallower in addition to the reduced moving space of the second lens group, which can contribute to the reduction of the front lens diameter. . In addition, the power of the first lens group can be increased or reduced as the diameter becomes smaller. From the above, it is desirable to satisfy the conditions (9) and (10).

【0018】 (9) 0.35<DI /(fW T 1/2 <0.7 (10)0.27<DII/(fW T 1/2 <0.54 ここで、DI は第1レンズ群の最も物体側の面の面頂か
ら最も像側の面の面頂までの距離、DIIは第2レンズ群
の最も物体側の面の面頂から最も像側の面の面頂までの
距離である。
(9) 0.35 <D I / (f W f T ) 1/2 <0.7 (10) 0.27 <D II / (f W f T ) 1/2 <0.54 Here Where D I is the distance from the vertex of the most object side surface of the first lens group to the vertex of the most image side surface, and D II is the distance from the vertex of the most object side surface of the second lens group to the most image surface. It is the distance to the top of the side surface.

【0019】以上の条件(7)の下限値を越えると、変
倍による収差変動が大きくなりやすく、その上限を越え
ると、第2レンズ群の移動量が大きくなりやすいか、又
は、第4レンズ群の移動スペースを多く要するようにな
り、好ましくない。条件(8)については、その下限値
を越えると、移動量の割に変倍効果が少なく、その上限
を越えると、第4レンズ群の移動スペースを多く要した
り、第1レンズ群のパワーが強くなりすぎ、望遠端の収
差が悪化しやすい。条件(9)、(10)については、
それらの下限値を越えると、正レンズの縁肉の確保が難
しいか又はパワーを弱めて全長を長くしてしまうことに
なり、それらの上限値を越えると、変倍部の全長が長く
なりやすいばかりでなく、第1レンズ群の径をも大きな
ってしまう。
Above the lower limit of the above condition (7), aberration fluctuation due to zooming tends to increase, and above the upper limit, the amount of movement of the second lens unit tends to increase, or This requires a large space for moving the group, which is not preferable. With respect to the condition (8), if the lower limit value is exceeded, the zooming effect is small for the moving amount, and if the upper limit value is exceeded, a large moving space of the fourth lens unit is required or the power of the first lens unit is required. Is too strong, and aberrations at the telephoto end are likely to be worse. For conditions (9) and (10),
Exceeding these lower limits will make it difficult to secure the rim of the positive lens or weakening the power and lengthening the overall length. Exceeding these upper limits will tend to increase the overall length of the zoom section. Not only does this increase the diameter of the first lens group.

【0020】[0020]

【実施例】次に、本発明のズームレンズの実施例1、2
について説明する。各実施例のレンズデータは後に示す
が、実施例1及び2のの広角端(W)、標準状態
(S)、望遠端(T)におけるレンズ断面をそれぞれ図
1、図2に示す。
Next, embodiments 1 and 2 of the zoom lens according to the present invention will be described.
Will be described. Although lens data of each embodiment will be described later, FIGS. 1 and 2 show lens cross sections of the first and second embodiments at the wide-angle end (W), the standard state (S), and the telephoto end (T), respectively.

【0021】第1レンズ群G1は、何れの実施例におい
ても、物体側より順に、物体側に凸面を向けた負メニス
カスレンズと両凸レンズとの貼り合わせレンズと、物体
側に凸面を向けた正メニスカスレンズの合計3枚からな
り、第2レンズ群G2は、実施例1は、物体側から順
に、物体側に凸面を向けた負メニスカスレンズと、両凹
レンズと物体側に凸面を向けた正メニスカスレンズとの
貼り合わせレンズの2群3枚よりなり、実施例2は、物
体側から順に、両凹レンズと、両凹レンズと物体側に凸
面を向けた正メニスカスレンズとの貼り合わせレンズの
2群3枚よりなり、第3レンズ群G3は、何れの実施例
も、物体側の面の方が強い曲率の両凸レンズと、物体側
に凸面を向けた負メニスカスレンズの2枚からなり、第
4レンズ群G4は、実施例1は、両凸レンズと負メニス
カスレンズの貼り合わせレンズからなり、実施例2は、
負メニスカスレンズと両凸レンズの貼り合わせレンズか
らなる。
In any of the embodiments, the first lens group G1 includes, in order from the object side, a cemented lens of a negative meniscus lens having a convex surface facing the object side and a biconvex lens, and a positive lens having a convex surface facing the object side. In the first embodiment, the second lens group G2 includes, in order from the object side, a negative meniscus lens having a convex surface facing the object side, and a bi-concave lens and a positive meniscus having a convex surface facing the object side. The second embodiment includes, in order from the object side, a biconcave lens and a cemented lens of a biconcave lens and a positive meniscus lens having a convex surface facing the object side. In each embodiment, the third lens group G3 is composed of a biconvex lens having a stronger curvature on the object side and a negative meniscus lens having a convex surface facing the object side. Group G4 is Example 1 consists of cemented lens of a double convex lens and a negative meniscus lens, Example 2,
It consists of a cemented lens of a negative meniscus lens and a biconvex lens.

【0022】非球面については、実施例1が、第3レン
ズ群G3の最も物体側の面と、第4レンズ群G4の最も
物体側の面の2面に用いており、実施例2においては、
第3レンズ群G3の最も物体側の面と、第4レンズ群G
4の最も像側の面の2面に用いている。また、各実施例
の第19面から第23面は、フィルター等の光学部材を
示す。
With respect to the aspherical surface, the first embodiment uses two surfaces, the most object side surface of the third lens group G3 and the most object side surface of the fourth lens group G4. ,
The most object side surface of the third lens group G3 and the fourth lens group G
4 is used for two of the most image-side surfaces. The nineteenth to twenty-third surfaces in each embodiment indicate optical members such as filters.

【0023】なお、以下において、記号は、上記の外、
fは全系の焦点距離、FNOはFナンバー、ωは半画角、
1 、r2 …は各レンズ面の曲率半径、d1 、d2 …は
各レンズ面間の間隔、nd1、nd2…は各レンズのd線の
屈折率、νd1、νd2…は各レンズのアッベ数であり、ま
た、非球面形状は、光軸方向をx、光軸に直交する方向
をyとした時、次の式で表される。 x=(y2/r)/[1+{1-P( y2/r2)}1/2 ]+A44 +A66 +A88 ただし、rは近軸曲率半径、Pは円錐係数、A4、A6、A8
は非球面係数である。
In the following, the symbols are the same as above,
f is the focal length of the entire system, F NO is the F number, ω is the half angle of view,
r 1, r 2 ... is the radius of curvature, d 1, d 2 ... the spacing between the lens surfaces, n d1, n d2 ... d-line refractive index of each lens of the lens surfaces, ν d1, ν d2 ... Is the Abbe number of each lens, and the aspherical shape is represented by the following equation, where x is the optical axis direction and y is the direction orthogonal to the optical axis. x = (y 2 / r) / [1+ {1-P (y 2 / r 2)} 1/2] + A 4 y 4 + A 6 y 6 + A 8 y 8 where, r is a paraxial radius of curvature, P Is the conic coefficient, A 4 , A 6 , A 8
Is an aspheric coefficient.

【0024】実施例1 f = 6.180〜16.963〜46.560 FNO= 1.43 〜 1.53 〜 2.09 ω =27.0 〜10.5 〜 3.9° r1 = 36.7641 d1 = 0.9000 nd1 =1.84666 νd1 =23.78 r2 = 21.6262 d2 = 5.2000 nd2 =1.56873 νd2 =63.16 r3 = -342.4667 d3 = 0.1500 r4 = 20.4358 d4 = 3.6000 nd3 =1.60311 νd3 =60.70 r5 = 89.9418 d5 =(可変) r6 = 627.3688 d6 = 0.8000 nd4 =1.77250 νd4 =49.66 r7 = 6.9069 d7 = 3.2000 r8 = -11.2525 d8 = 0.7000 nd5 =1.48749 νd5 =70.20 r9 = 9.6531 d9 = 2.3000 nd6 =1.84666 νd6 =23.78 r10= 40.7966 d10=(可変) r11= ∞ (絞り) d11= 1.4000 r12= 8.5945(非球面) d12= 5.6251 nd7 =1.67790 νd7 =55.33 r13= -54.1689 d13= 0.1500 r14= 20.7894 d14= 0.8000 nd8 =1.84666 νd8 =23.78 r15= 8.0407 d15=(可変) r16= 11.6746(非球面) d16= 3.8000 nd9 =1.67790 νd9 =55.33 r17= -12.5493 d17= 0.8000 nd10=1.84666 νd10=23.78 r18= -24.9166 d18=(可変) r19= ∞ d19= 1.6000 nd11=1.51633 νd11=64.15 r20= ∞ d20= 4.4000 nd12=1.54771 νd12=62.83 r21= ∞ d21= 1.8100 r22= ∞ d22= 0.6000 nd13=1.48749 νd13=70.20 r23= ∞ ズーム間隔 非球面係数 第12面 P = 1 A4 =-0.19862×10-3 A6 =-0.68296×10-6 A8 =-0.31665×10-7 第16面 P = 1 A4 =-0.10959×10-3 A6 =-0.25511×10-5 A8 = 0.32731×10-7[0024] Example 1 f = 6.180~16.963~46.560 F NO = 1.43 ~ 1.53 ~ 2.09 ω = 27.0 ~10.5 ~ 3.9 ° r 1 = 36.7641 d 1 = 0.9000 n d1 = 1.84666 ν d1 = 23.78 r 2 = 21.6262 d 2 = 5.2000 n d2 = 1.56873 ν d2 = 63.16 r 3 = -342.4667 d 3 = 0.1500 r 4 = 20.4358 d 4 = 3.6000 n d3 = 1.60311 ν d3 = 60.70 r 5 = 89.9418 d 5 = ( variable) r 6 = 627.3688 d 6 = 0.8000 n d4 = 1.77250 ν d4 = 49.66 r 7 = 6.9069 d 7 = 3.2000 r 8 = -11.2525 d 8 = 0.7000 n d5 = 1.48749 ν d5 = 70.20 r 9 = 9.6531 d 9 = 2.3000 n d6 = 1.84666 ν d6 = 23.78 r 10 = 40.7966 d 10 = ( variable) r 11 = ∞ (stop) d 11 = 1.4000 r 12 = 8.5945 ( aspherical) d 12 = 5.6251 n d7 = 1.67790 ν d7 = 55.33 r 13 = -54.1689 d 13 = 0.1500 r 14 = 20.7894 d 14 = 0.8000 n d8 = 1.84666 ν d8 = 23.78 r 15 = 8.0407 d 15 = ( variable) r 16 = 11.6746 (aspherical) d 16 = 3.8000 n d9 = 1.67790 ν d9 = 55.33 r 17 = -12.5493 d 17 = 0.8000 n d10 = 1.84666 ν d10 = 23.78 r 18 = -24.9166 d 18 = (Variable) r 19 = ∞ d 19 = 1.6000 n d11 = 1.51633 ν d11 = 64.15 r 20 = ∞ d 20 = 4.4000 n d12 = 1.54771 ν d12 = 62.83 r 21 = ∞ d 21 = 1.8100 r 22 = ∞ d 22 = 0.6000 n d13 = 1.48749 ν d13 = 70.20 r 23 = ∞ zoom interval Aspherical coefficients twelfth surface P = 1 A 4 = -0.19862 × 10 -3 A 6 = -0.68296 × 10 -6 A 8 = -0.31665 × 10 -7 16th surface P = 1 A 4 = -0.10959 × 10 - 3 A 6 = -0.25511 x 10 -5 A 8 = 0.32731 x 10 -7 .

【0025】実施例2 f = 6.180〜16.963〜46.560 FNO= 1.43 〜 1.53 〜 2.09 ω =27.0 〜10.5 〜 3.9° r1 = 34.0391 d1 = 0.9000 nd1 =1.84666 νd1 =23.78 r2 = 20.6946 d2 = 5.2000 nd2 =1.56873 νd2 =63.16 r3 =-2729.7316 d3 = 0.1500 r4 = 22.1731 d4 = 3.6000 nd3 =1.60311 νd3 =60.70 r5 = 115.8380 d5 =(可変) r6 = -757.7591 d6 = 0.8000 nd4 =1.77250 νd4 =49.66 r7 = 7.4251 d7 = 3.1000 r8 = -11.9281 d8 = 0.7000 nd5 =1.48749 νd5 =70.20 r9 = 9.7645 d9 = 2.2000 nd6 =1.84666 νd6 =23.78 r10= 33.7506 d10=(可変) r11= ∞ (絞り) d11= 1.4000 r12= 8.9543(非球面) d12= 4.9108 nd7 =1.67790 νd7 =55.33 r13= -295.3634 d13= 0.1500 r14= 19.8561 d14= 0.8000 nd8 =1.84666 νd8 =23.78 r15= 9.4738 d15=(可変) r16= 9.6299 d16= 0.8000 nd9 =1.84666 νd9 =23.78 r17= 6.4176 d17= 4.3000 nd10=1.67790 νd10=55.33 r18= -69.3842(非球面) d18=(可変) r19= ∞ d19= 1.6000 nd11=1.51633 νd11=64.15 r20= ∞ d20= 4.4000 nd12=1.54771 νd12=62.83 r21= ∞ d21= 1.8100 r22= ∞ d22= 0.6000 nd13=1.48749 νd13=70.20 r23= ∞ ズーム間隔 非球面係数 第12面 P = 1 A4 =-0.16512×10-3 A6 =-0.29135×10-6 A8 =-0.22075×10-7 第18面 P = 1 A4 = 0.24808×10-3 A6 = 0.36334×10-5 A8 =-0.45678×10-7[0025] Example 2 f = 6.180~16.963~46.560 F NO = 1.43 ~ 1.53 ~ 2.09 ω = 27.0 ~10.5 ~ 3.9 ° r 1 = 34.0391 d 1 = 0.9000 n d1 = 1.84666 ν d1 = 23.78 r 2 = 20.6946 d 2 = 5.2000 n d2 = 1.56873 ν d2 = 63.16 r 3 = -2729.7316 d 3 = 0.1500 r 4 = 22.1731 d 4 = 3.6000 n d3 = 1.60311 ν d3 = 60.70 r 5 = 115.8380 d 5 = ( variable) r 6 = - 757.7591 d 6 = 0.8000 n d4 = 1.77250 ν d4 = 49.66 r 7 = 7.4251 d 7 = 3.1000 r 8 = -11.9281 d 8 = 0.7000 n d5 = 1.48749 ν d5 = 70.20 r 9 = 9.7645 d 9 = 2.2000 n d6 = 1.84666 ν d6 = 23.78 r 10 = 33.7506 d 10 = (variable) r 11 = ∞ (aperture) d 11 = 1.4000 r 12 = 8.9543 (aspherical surface) d 12 = 4.9108 n d7 = 1.67790 ν d7 = 55.33 r 13 = -295.3634 d 13 = 0.1500 r 14 = 19.8561 d 14 = 0.8000 n d8 = 1.84666 ν d8 = 23.78 r 15 = 9.4738 d 15 = ( variable) r 16 = 9.6299 d 16 = 0.8000 n d9 = 1.84666 ν d9 = 23.78 r 17 = 6.4176 d 17 = 4.3000 n d10 = 1.67790 ν d10 = 55.33 r 18 = -69.384 2 (aspherical) d 18 = (Variable) r 19 = ∞ d 19 = 1.6000 n d11 = 1.51633 ν d11 = 64.15 r 20 = ∞ d 20 = 4.4000 n d12 = 1.54771 ν d12 = 62.83 r 21 = ∞ d 21 = 1.8100 r 22 = ∞ d 22 = 0.6000 n d13 = 1.48749 ν d13 = 70.20 r 23 = ∞ zoom interval Aspherical surface twelfth surface P = 1 A 4 = -0.16512 × 10 -3 A 6 = -0.29 135 × 10 -6 A 8 = -0.22075 × 10 -7 18th surface P = 1 A 4 = 0.24808 × 10 -3 A 6 = 0.36334 × 10 −5 A 8 = −0.445678 × 10 −7 .

【0026】以上の実施例1、2の広角端(W)、標準
状態(S)、望遠端(T)における球面収差、非点収
差、歪曲収差、倍率色収差、コマ収差(メリジオナル)
をそれぞれ図3、図4の収差図に示す。
In the first and second embodiments, spherical aberration, astigmatism, distortion, chromatic aberration of magnification, and coma (meridional) at the wide-angle end (W), the standard state (S), and the telephoto end (T).
Are shown in the aberration diagrams of FIGS. 3 and 4, respectively.

【0027】また、各実施例の前記した条件(1)〜
(10)の値を次の表に示す。
Further, the above-mentioned conditions (1) to
The value of (10) is shown in the following table.

【0028】[0028]

【発明の効果】以上説明したように、本発明の変倍レン
ズは、正の屈折力を有する第1レンズ群と負の屈折力を
有する第2レンズ群とよりなる変倍系と、正の屈折力を
有し常時固定の第3レンズ群と正の屈折力を有し変倍及
び焦点位置調節のために可動の第4レンズ群とよりなる
結像系とから構成された変倍レンズにおいて、その結像
系の近軸配置と実際のレンズ形状や配列等の構成に工夫
をしつつ、一部に非球面を導入することによって、全長
が極めて短く、かつ、収差の良好な変倍レンズを可能に
したものである。この変倍レンズは、構成枚数が10枚
で、変倍比は8倍、広角端のF値、画角はそれぞれ1.
4、54°でありながらも、全長はフィルター類挿入時
でも10.2fW 程度と極めて短いものである。
As described above, the variable power lens of the present invention includes a variable power system including the first lens group having a positive refractive power and the second lens group having a negative refractive power, and a positive lens. In a variable power lens composed of an imaging system including a third lens group that has a refractive power and is always fixed, and a fourth lens group that has a positive refractive power and is movable for adjusting magnification and focal position. , While devising the paraxial arrangement of the imaging system and the configuration of the actual lens shape and arrangement, etc., by introducing an aspherical surface in part, the overall length is extremely short, and a variable power lens with good aberration Is made possible. This variable magnification lens has 10 components, a magnification ratio of 8 times, an F value at the wide angle end, and an angle of view of 1.
Even though it is 4,54 °, overall length is extremely short and 10.2f W about even when filters is inserted.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1の広角端(W)、標準状態(S)、望
遠端(T)におけるレンズ断面図である。
FIG. 1 is a sectional view of a lens at a wide angle end (W), a standard state (S), and a telephoto end (T) according to a first embodiment.

【図2】実施例2の図1と同様なレンズ断面図である。FIG. 2 is a lens sectional view similar to FIG. 1 of Example 2.

【図3】実施例1の広角端(W)、標準状態(S)、望
遠端(T)における球面収差、非点収差、歪曲収差、倍
率色収差、コマ収差(メリジオナル)を示す収差図であ
る。
FIG. 3 is an aberration diagram showing spherical aberration, astigmatism, distortion, lateral chromatic aberration, and coma (meridional) at the wide-angle end (W), the standard state (S), and the telephoto end (T) in Example 1. .

【図4】実施例2の図3と同様な収差図である。FIG. 4 is an aberration diagram similar to FIG. 3 of the second embodiment.

【符号の説明】[Explanation of symbols]

G1…第1群 G2…第2群 G3…第3群 G4…第4群 G1 first group G2 second group G3 third group G4 fourth group

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 物体側から順に、正の屈折力を有する第
1レンズ群、負の屈折力を有し変倍時に可動の第2レン
ズ群の2つの群からなる変倍系と、正の屈折力を有し常
時固定の第3レンズ群、正の屈折力を有し変倍時及び焦
点調節のために可動の第4レンズ群の2つの群からなる
結像系とから構成され、第3レンズ群は、物体側から順
に、物体側の面が強い収斂性を有し光軸から離れるに従
って光軸近傍の曲率半径を有する球面に対して物体側へ
の偏倚量が単調増加するような非球面で構成された正レ
ンズと、像側に凹面を向けた負メニスカスレンズとにて
構成され、第4レンズ群は、非球面を有する両凸レンズ
と負メニスカスレンズにて構成されたレンズ系におい
て、以下の条件を満足することを特徴とする全長の短い
変倍レンズ: (1) 0.45<f34S /(fW T 1/2 <0.9 (2) 0.18<β4T<0.36 (3) 0.5<r31/{(n31−1)(fW T 1/2 }<1.0 (4) 0.4<r34/{(n34−1)(fW T 1/2 }<0.8 (5) 0.24<DIII /(fW T 1/2 <0.5 ただし、fW 、fT はそれぞれ広角端、望遠端の全系の
焦点距離、 f34S は全系の焦点距離が(fW T 1/2 で無限遠物
点合焦時の第3レンズ群、第4レンズ群の合成焦点距
離、 β4Tは望遠端で無限遠物点合焦時の第4レンズ群の倍
率、 r31は第3レンズ群の最も物体側の面の光軸近傍での曲
率半径、 r34は第3レンズ群の最も像側の面の曲率半径、 n31、n34はそれぞれ第3レンズ群の正レンズと負レン
ズの媒質の屈折率、 DIII は第3レンズ群の最も物体側の面の面頂から最も
像側の面の面頂までの距離、 である。
1. A zooming system comprising, in order from an object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power and movable during zooming, and a positive lens system. A third lens group having a refractive power and being fixed at all times, and an imaging system including a fourth lens group having a positive refractive power and movable for zooming and for focusing, and The three lens groups are arranged such that, in order from the object side, the surface on the object side has strong convergence and the amount of deviation toward the object side monotonically increases with respect to a spherical surface having a radius of curvature near the optical axis as the distance from the optical axis increases. The fourth lens group is composed of a positive lens composed of an aspheric surface and a negative meniscus lens having a concave surface facing the image side. The fourth lens group is a lens system composed of a biconvex lens having an aspheric surface and a negative meniscus lens. And a variable-power lens having a short overall length, satisfying the following conditions: (1) .45 <f 34S / (f W f T) 1/2 <0.9 (2) 0.18 <β 4T <0.36 (3) 0.5 <r 31 / {(n 31 -1) ( f W f T ) 1/2 } <1.0 (4) 0.4 <r 34 / {(n 34 −1) (f W f T ) 1/2 } <0.8 (5) 0.24 <D III / (f W f T) 1/2 <0.5 , however, f W, f T each wide angle end, the focal length of the entire system at the telephoto end, f 34S is the focal length of the entire system (f W f T ) 1/2 is the composite focal length of the third and fourth lens groups when focusing on an object point at infinity, β 4T is the magnification of the fourth lens group when focusing on an object point at infinity at the telephoto end, r 31 is the radius of curvature, r 34 is the radius of curvature, n 31, n 34 and the third lens group each most image side surface of the third lens group near the optical axis of the most object side surface of the third lens group of the positive lens and the negative lens refractive index of the medium, D III is the most object side surface of the third lens group Distance from the top to the vertex of the surface closest to the image side, a.
JP22169991A 1991-09-02 1991-09-02 Zoom lens with short overall length Expired - Fee Related JP3264949B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22169991A JP3264949B2 (en) 1991-09-02 1991-09-02 Zoom lens with short overall length

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22169991A JP3264949B2 (en) 1991-09-02 1991-09-02 Zoom lens with short overall length

Publications (2)

Publication Number Publication Date
JPH0560974A JPH0560974A (en) 1993-03-12
JP3264949B2 true JP3264949B2 (en) 2002-03-11

Family

ID=16770894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22169991A Expired - Fee Related JP3264949B2 (en) 1991-09-02 1991-09-02 Zoom lens with short overall length

Country Status (1)

Country Link
JP (1) JP3264949B2 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3093513B2 (en) * 1993-04-26 2000-10-03 キヤノン株式会社 Rear focus zoom lens
US6226130B1 (en) 1996-04-09 2001-05-01 Canon Kabushiki Kaisha Zoom lens
US5933283A (en) * 1996-04-15 1999-08-03 Canon Kabushiki Kaisha Zoom lens
US6473231B2 (en) 1997-03-18 2002-10-29 Canon Kabushiki Kaisha Variable magnification optical system having image stabilizing function
US6084722A (en) * 1997-07-02 2000-07-04 Canon Kabushiki Kaisha Zoom lens of rear focus type and image pickup apparatus
US6751028B1 (en) 1998-03-10 2004-06-15 Canon Kabushiki Kaisha Zoom lens and optical apparatus using the same
JP4235288B2 (en) * 1998-09-09 2009-03-11 キヤノン株式会社 Rear focus zoom lens
US6344932B1 (en) 1999-01-19 2002-02-05 Canon Kabushiki Kaisha Zoom lens and optical apparatus having the same
US6414800B1 (en) 1999-05-10 2002-07-02 Canon Kabushiki Kaisha Variable magnification optical system and camera having the same
WO2001025833A1 (en) * 1999-10-07 2001-04-12 Matsushita Electric Industrial Co., Ltd. Zoom lens and video camera comprising the same
JP4447703B2 (en) 1999-10-20 2010-04-07 キヤノン株式会社 Zoom lens and optical apparatus using the same
JP4593715B2 (en) * 2000-02-18 2010-12-08 キヤノン株式会社 Rear focus type zoom lens and optical apparatus using the same
JP2001343583A (en) * 2000-05-31 2001-12-14 Matsushita Electric Ind Co Ltd Zoom lens and video camera using the same
US6710933B2 (en) 2000-05-31 2004-03-23 Matsushita Electric Industrial Co., Ltd. Zoom lens and video camera comprising the same
JP2003255438A (en) 2002-02-28 2003-09-10 Canon Inc Zoom lens and optical equipment having the same
JP3826061B2 (en) 2002-03-29 2006-09-27 キヤノン株式会社 Zoom lens and optical apparatus having the same
JP4438046B2 (en) 2003-08-11 2010-03-24 キヤノン株式会社 Zoom lens and imaging apparatus having the same

Also Published As

Publication number Publication date
JPH0560974A (en) 1993-03-12

Similar Documents

Publication Publication Date Title
JP3606548B2 (en) 3 group zoom lens
JP4507140B2 (en) 3 group zoom lens
JP2619632B2 (en) Compact high-magnification zoom lens
JP3147167B2 (en) Zoom lens
JP2628633B2 (en) Compact zoom lens
JP3264949B2 (en) Zoom lens with short overall length
JPH11119098A (en) Small-sized zoom lens
JPH05173071A (en) Wide angle zoom lens
JP2558138B2 (en) Zoom lens
US5652678A (en) Zoom lens system with function for reducing vibration
JP2001228397A (en) Zoom lens
JPH07253542A (en) Zoom lens
US5296969A (en) Zoom lens system having a short total length
JP2963520B2 (en) Zoom lens with short overall length
JPH0527167A (en) Zoom lens
JPH0566348A (en) Variable power lens with short overall length
JP3302063B2 (en) Rear focus compact zoom lens
JP3325058B2 (en) Zoom lens with little fluctuation of short distance aberration
JPH07140388A (en) Zoom lens
JP3288422B2 (en) High zoom lens
JP3821330B2 (en) Zoom lens
JP3003226B2 (en) Zoom lens
JPH0634886A (en) Variable power lens
JP3392881B2 (en) Zoom lens
JP3431996B2 (en) Zoom lens

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20011211

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081228

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081228

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091228

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees