JP2004061681A - Zoom lens and optical equipment with same - Google Patents

Zoom lens and optical equipment with same Download PDF

Info

Publication number
JP2004061681A
JP2004061681A JP2002217416A JP2002217416A JP2004061681A JP 2004061681 A JP2004061681 A JP 2004061681A JP 2002217416 A JP2002217416 A JP 2002217416A JP 2002217416 A JP2002217416 A JP 2002217416A JP 2004061681 A JP2004061681 A JP 2004061681A
Authority
JP
Japan
Prior art keywords
lens
lens group
positive
refractive power
zoom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002217416A
Other languages
Japanese (ja)
Inventor
Teruhiro Nishio
西尾 彰宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2002217416A priority Critical patent/JP2004061681A/en
Publication of JP2004061681A publication Critical patent/JP2004061681A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/145Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only
    • G02B15/1451Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being positive
    • G02B15/145115Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being positive arranged ++++-
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/64Imaging systems using optical elements for stabilisation of the lateral and angular position of the image
    • G02B27/646Imaging systems using optical elements for stabilisation of the lateral and angular position of the image compensating for small deviations, e.g. due to vibration or shake

Abstract

<P>PROBLEM TO BE SOLVED: To provide a zoom lens for a lens shutter which has large variable power ratio. <P>SOLUTION: The zoom lens has a 1st lens group with negative refracting power, a 2nd lens group with positive or negative refracting power, a 3rd lens group with positive or negative refracting power, a 4th lens group with positive refracting power, and a 5th lens group with negative refracting power in order from the object side. For power variation from a wide-angle side to a telephoto side, the 1st lens group and 5th lens group, and 2nd lens group and 4th lens group are moved together integrally on the optical axis to vary air gaps between the respective lens groups. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は写真レンズ、ビデオカメラレンズ等の撮影光学系において特にコンパクトカメラ用の写真レンズとして好適な、変倍比4.5倍程度の高変倍でコンパクトなズームレンズの達成をおこなうものである。
【0002】
【従来の技術】
近年、写真レンズやビデオレンズにおいてはよりコンパクトで高性能な撮影光学系が要求されている。
【0003】
特にレンズシャッターカメラの撮影光学系においては高変倍なものの要求と共に、周辺のメカ機構、電気回路の発達によってカメラの小型化の達成に有利化と伴って光学系についてもより小型なものが望まれている。
【0004】
レンズシャッターカメラ用の高変倍な撮影光学系としては、例えば特開平8−262325公報、特開平9−120028公報等にて正、正、負の3群構成のズームレンズが提案されている。
【0005】
また正、負、正、負の4群構成の変倍比が3倍程度のズームレンズが特許2832376号、変倍比3.8倍程度のズームレンズが特開平11−352401公報で提案されている。
【0006】
【発明が解決しようとする課題】
しかしながら、前記した正、正、負の3群構成のズームレンズの提案においては、レンズ構成枚数が多いため、高変倍でかつコンパクトなズームレンズとは言えなかった。
【0007】
また、正、負、正、負の4群構成のズームレンズに対しては変倍比が3倍又は3.8倍程度であり、更にレンズ構成枚数も多いため、更なる高変倍化においても小型で高画質なズームレンズの達成要求のための光学的配置の工夫が要求されている。
【0008】
本案は、適切なズームレンズ構成及びレンズ群配置を行うことにより、高画質を維持しつつコンパクトなズームレンズ光学系を達成をおこなうものである。
【0009】
【課題を解決するための手段】
本発明は物体側より正の屈折力を有する第1レンズ群、正又は負の屈折力を有する第2レンズ群、正又は負の屈折力を有する第3レンズ群、正の屈折力を有する第4レンズ群、負の屈折力を有する第5レンズ群を有し、広角から望遠への変倍は、前記第1レンズ群と第5レンズ群を一体に、かつ第2レンズ群と第4レンズ群を一体に共に物体側へ光軸上の移動を行ない各レンズ群間の空気間隔を変化させることで行なうことを特徴としている。
【0010】
【発明の実施の形態】
図面を用いて本実施形態のズームレンズについて説明する。
【0011】
図1〜図5は各々後述する数値実施例1〜5のズームレンズのレンズ断面図、図6〜図10は各々後述する数値実施例1〜5の各ズーム位置におけるレンズ配置図、図11〜図25は各々後述する数値実施例1〜5のズームレンズの広角端、中間、望遠端の収差図である。
【0012】
一般的にレンズシャッターカメラの撮影系に用いられる正、正、負構成の3群ズームレンズは主に正の第2レンズ群と負の第3レンズ群の空気間隔変化により変倍作用を行い更に望遠に行くに従って正の第1レンズ群と正の第2レンズ群の空気間隔を狭めることにより更なる変倍作用を行うと同時に、変倍時の像面湾曲変動の補正を行うことを特徴としている。
【0013】
しかしながら更なる高変倍化においては変倍時の色収差及び前記した3群構成のズームレンズにおいても補正困難な像面湾曲の収差変動が問題となってくる。他方、良好な画質を得ようとするならば、各レンズ群で発生する色収差の補正関係を良好に保つために各レンズ群で発生する色収差の量を小さくする必要が有る。そしてその色収差補正のためにレンズ構成枚数を増加させる必要が生じてしまうこととなりレンズ系の小型化や少レンズ枚数構成の要求に対しての達成が困難となっている。
【0014】
本発明においては、物体側より正の屈折力を有する第1レンズ群、正または負の屈折力を有する第2レンズ群、正または負の屈折力を有する第3レンズ群、正の屈折力を有する第4レンズ群、負の屈折力を有する第5レンズ群を有し、広角から望遠への変倍の際は、前記した各レンズ群間の空気間隔を変化させ、かつ前記第1レンズ群と第5レンズ群及び第2レンズ群と第4レンズ群が一体に光軸上の移動を行ない、多群ズーム構成ながらズーム移動に際して簡易なメカ構成の達成を容易にするとともに、2つのレンズ群を一体化することによって互いの相対偏心量の低減を行い光学性能の維持を可能ならしめており、更に前記第3レンズ群を第2、第4レンズ群間において自由に光軸上移動を行なうことにより光学系を高変倍化したときに生ずる像面湾曲や色収差変動の良好な補正を可能としている。
【0015】
また、ズームレンズ系の小型化を行う際には、以下の条件式を満足することが望ましい。
【0016】
0.3 <|F5/Fw|< 0.8 ・・・(1)
1.1 <β5w < 2 ・・・(2)
但し、  Fw :広角端におけるレンズ全系の焦点距離
F5 :前記、第5レンズ群の焦点距離
β5w:前記、第5レンズ群の広角端における横倍率
条件式(1)、(2)は、広角端における負の第5レンズ群の屈折力に関するものである。
【0017】
条件式(1)の上限値を越えて第5レンズ群の負の屈折力が弱くなるか、条件式(2)の上限値を越えて第3レンズ群の広角端における横倍率が大きくなりすぎると、変倍時に第3レンズ群による変倍作用が弱くなってくるため一定の変倍比を得るために各レンズ群の移動量を大きくしなければならなくなり結果としてレンズ全長が長くなってくる。
【0018】
他方、条件式(1)、(2)のどちらかが下限値を越えるとレンズ全体としてテレフォト系の作用が強まってくるため、バックフォーカスが短く成りすぎると同時に、一定の周辺光量を確保するために第5レンズ群のレンズ外径の大型化をまねいてしまうと同時に像面湾曲や非点収差が発生してくるため良くない。
【0019】
また更に望ましくは、条件式(1)、(2)の数値範囲は以下のように限定するのがレンズ系の小型化と高い光学性能を両立することに対し良い。
【0020】
0.4 <|F5/Fw|< 0.7 ・・・(1)’
1.2 < β5w < 1.8 ・・・(2)’
より更に光学性能向上のためには、以下の条件式を満足することが望ましい。
【0021】
0.5 < F234w/Fw < 1.3 ・・・(3)
但し、 F234w:広角端における前記、第2,第3,第4レンズ群の合成焦点距離
条件式(3)は広角端における第2,第3,第4レンズ群の正の合成屈折力に関するものである。
【0022】
上限値を越えると、第2,第3,第4レンズ群の正の合成屈折力が弱くなりすぎて球面収差の補正が不足してくると同時に一定の広角端の焦点距離を維持するためにレンズ全長が増加してしまう。
【0023】
他方、下限値を越えると、負の球面収差が大きく発生してしまい他のレンズ群でこれを補正することが困難となってくる。
【0024】
また、ズームレンズ系の小型化を達成しつつ高画質化を図るならば、以下の条件式を満足することが良い。
【0025】
1.0 < F1/Fw < 3.5 ・・・(4)
0.4 < F4/Fw < 1.3 ・・・(5)
但し、F1:第1レンズ群の焦点距離
F4 :第4レンズ群の焦点距離
条件式(4)は広角端における第1レンズ群の正の合成屈折力に関するものである。下限値を越えると、広角端において前記正の合成屈折力が強くなり過ぎレンズ系全体としてテレフォト系の作用が強まってくるため、バックフォーカスが短く成りすぎたり、負の球面が大きく発生してしまいこれを補正することが困難になってくる。
【0026】
一方、上限値を越えるとレンズ全長の増加を招くとともに広角端の焦点距離を維持するために第3レンズ群の正の屈折力を強くしなければならないため変倍域全域にわたって諸収差をバランス良く補正することが困難になってくる。
【0027】
条件式(5)は広角端における第4群の正の屈折力に関するものである。条件式(5)の下限値を越えると、広角端においてバックフォーカスが取りずらくなり、結果として第5群のレンズ外径の増大をまねいてしまう。又、上限値を越えると、一定の焦点距離を得るために、他のレンズ群の正の屈折力が強くなってくるため変倍時の収差変動を補正することが難しくなってくる。更に前群の焦点距離をより長くしなければならず、レンズ全長が長くなってくるので良くない。
【0028】
また前記第4レンズ群はレンズ系の小型化とそれに伴う光学性能劣化を防止するために非球面を有した正レンズとするのが望ましい。
【0029】
そのとき、前記非球面は、生産性を考慮したときに使用できる硝種を拡大するために複合型非球面(レプリカ非球面)を用いても良い。
【0030】
本発明に好適な第1レンズ群構成は、物体側より像面側に凸である負メニスカスレンズ、物体側に強い凸面を有する正レンズの2枚構成である。
【0031】
それにより前記負レンズの物体側の凹面で発生する広角端におけるディストーションと望遠端にて発生する正の球面収差を前記正レンズの物体側の強い凸面にてキャンセル作用を生じさせ、良好な収差補正作用を行っている。
【0032】
第4レンズ群構成は、物体側より正レンズ、物体側に強い凹面を向けた負レンズで構成するのが良く、第4レンズ群中には非球面を導入することが高い光学性能の達成に望ましい。
【0033】
また正レンズは比較的屈折力の小さい正レンズとし、そのレンズ面に非球面を有することが温度変化による光学性能劣化を防止するとともに低コストを達成するのに望ましい。
【0034】
フォーカスは第2,第3,第4レンズ群を一体に光軸上に物体側に移動させることにより行うのが望ましいが、レンズ系全体または他のレンズ群を同時に光軸上に物体側に移動させても良い。
【0035】
虹彩絞りは第2レンズ群から第4レンズ群間中の空気間隔に配置することが望ましい、それにより第1群レンズ群径と第5レンズ群径の大きさのバランスが取りやすくなり、鏡筒径の大きさを抑えることが可能になる。また同時に高次の軸外収差をバランスよく補正することが容易になる。
【0036】
但し、小絞り時に軸外の光線ケラレが生じなければ、レンズ群間中のどの空気間隔中に配置しても良い。
【0037】
また変倍中、虹彩絞りは各レンズ群とは独立した光軸移動を行わせることで理想的な入射瞳位置を得ることが可能となってくるが、メカ機構の簡略化のために任意のレンズ群と一体に移動させても良い。
【0038】
そして更なる光学性能向上のためレンズ系に更なる非球面の導入や回折光学素子、屈折分布型光学材料を導入しても良い。
【0039】
また、レンズ群やレンズ群の一部を偏心させることにより手ぶれ等が原因となる像位置変位を補正する作用を持たせるのも良い。
【0040】
(数値実施例)
次に、本発明の実施形態1〜5に各々対応する数値実施例1〜5を示す。各数値実施例においてiは物体側からの光学面の順序を示し、Riは第i番目の光学面(第i面)の曲率半径、Diは第i面と第i+1面との間の間隔、Niとνiはそれぞれd線に対する第i番目の光学部材の屈折率、アッベ数を示す。fは焦点距離、FNoはFナンバー、ωは半画角である。またkを離心率、A、B、C、D、Eを非球面係数、光軸からの高さhの位置での光軸方向の変位を面頂点を基準にしてxとするとき、非球面形状は、
x=(h/R)/[1+[1−(1+k)(h/R)1/2]+Ah+Bh
+Ch+Dh+Eh10
で表示される。但しRは曲率半径である。また、例えば「e−Z」の表示は「10−Z」を意味する。又、各数値実施例における上述した条件式との対応を表1に示す。
【0041】
数値実施例1及び2は、物体側より、正、負,正、正、負レンズ群構成のズームレンズである。
【0042】
数値実施例3は、物体側より、正、負,負、正、負レンズ群構成のズームレンズである。
【0043】
数値実施例4及び5は、物体側より、正、正,負、正、負レンズ群構成のズームレンズである。
【0044】
【外1】

Figure 2004061681
【0045】
【外2】
Figure 2004061681
【0046】
【外3】
Figure 2004061681
【0047】
【外4】
Figure 2004061681
【0048】
【外5】
Figure 2004061681
【0049】
【表1】
Figure 2004061681
【0050】
次に本発明のズームレンズを撮影光学系として用いたレンズシャッター形式のコンパクトカメラの実施形態を図26を用いて説明する。
【0051】
図26において、10はコンパクトカメラ本体、11は本発明のズームレンズによって構成された撮影光学系、12はカメラ本体に内蔵されたストロボ、13は外部式ファインダー、14はシャッターボタンである。
【0052】
このように本発明のズームレンズをレンズシャッターカメラ等の光学機器に適用することにより、小型で高い光学性能を有する光学機器を実現している。
【0053】
【発明の効果】
以上説明したように、本発明によれば、物体側より正、正または負、正または負、正、負レンズ群を有するズームレンズにおいて、変倍比が約4.5倍と高変倍ながら好適な光学配置を行うことにより、コンパクトでかつ良好な光学性能を維持できるズームレンズ光学系を達成することができる。
【図面の簡単な説明】
【図1】本発明の数値実施例1のレンズ断面図
【図2】本発明の数値実施例2のレンズ断面図
【図3】本発明の数値実施例3のレンズ断面図
【図4】本発明の数値実施例4のレンズ断面図
【図5】本発明の数値実施例5のレンズ断面図
【図6】本発明の数値実施例1の各ズーム位置におけるレンズ配置図
【図7】本発明の数値実施例2の各ズーム位置におけるレンズ配置図
【図8】本発明の数値実施例3の各ズーム位置におけるレンズ配置図
【図9】本発明の数値実施例4の各ズーム位置におけるレンズ配置図
【図10】本発明の実施形態5の各ズーム位置におけるレンズ配置図
【図11】本発明の数値実施例1の広角端の収差図
【図12】本発明の数値実施例1の中間の収差図
【図13】本発明の数値実施例1の望遠端の収差図
【図14】本発明の数値実施例2の広角端の収差図
【図15】本発明の数値実施例2の中間の収差図
【図16】本発明の数値実施例2の望遠端の収差図
【図17】本発明の数値実施例3の広角端の収差図
【図18】本発明の数値実施例3の中間の収差図
【図19】本発明の数値実施例3の望遠端の収差図
【図20】本発明の数値実施例4の広角端の収差図
【図21】本発明の数値実施例4の中間の収差図
【図22】本発明の数値実施例4の望遠端の収差図
【図23】本発明の数値実施例5の広角端の収差図
【図24】本発明の数値実施例5の中間の収差図
【図25】本発明の数値実施例5の望遠端の収差図
【図26】本発明のズームレンズを撮影光学系として用いたレンズシャッター形式のコンパクトカメラの要部概略図
【符号の説明】
B1、B2、B3、B4、B5 それぞれ第1レンズ群、第2レンズ群、第3レンズ群、第4レンズ群、第5レンズ群
SP 光彩絞り
IP 結像面
SA 球面収差
AS 非点収差
DIST 歪曲収差
CHRO 倍率色収差
d−LINE d線
g−LINE g線
ΔS サジタル像面
ΔM メリディオナル像面[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention achieves a high zoom ratio and compact zoom lens having a zoom ratio of about 4.5, which is particularly suitable as a photographic lens for a compact camera in a photographic optical system such as a photographic lens and a video camera lens. .
[0002]
[Prior art]
2. Description of the Related Art In recent years, more compact and high-performance photographing optical systems have been required for photographic lenses and video lenses.
[0003]
In particular, in addition to the demand for high-magnification imaging optics for lens shutter cameras, the development of peripheral mechanical mechanisms and electrical circuits has made it easier to achieve camera miniaturization. It is rare.
[0004]
As a high-magnification photographing optical system for a lens shutter camera, for example, JP-A-8-262325 and JP-A-9-120028 disclose a positive, positive, and negative three-group zoom lens.
[0005]
Japanese Patent No. 2832376 discloses a zoom lens having a zoom ratio of about 3 times in a four-group configuration including positive, negative, positive, and negative, and JP-A-11-352401 discloses a zoom lens having a zoom ratio of about 3.8. I have.
[0006]
[Problems to be solved by the invention]
However, in the above-mentioned proposal of the zoom lens having the three groups of positive, positive, and negative, the zoom lens cannot be said to be a high zoom ratio and compact zoom lens because of the large number of lens components.
[0007]
In addition, the zoom ratio of the four-group zoom lens of positive, negative, positive, and negative is about 3 or 3.8, and the number of lens elements is large. In addition, there is a demand for an optical arrangement to achieve a compact and high-quality zoom lens.
[0008]
The present invention achieves a compact zoom lens optical system while maintaining high image quality by performing appropriate zoom lens configuration and lens group arrangement.
[0009]
[Means for Solving the Problems]
The present invention provides a first lens group having a positive refractive power from the object side, a second lens group having a positive or negative refractive power, a third lens group having a positive or negative refractive power, and a third lens group having a positive refractive power. The zoom lens system includes a fourth lens group and a fifth lens group having a negative refractive power, and zooming from wide-angle to telephoto is performed by integrating the first lens group and the fifth lens group and the second lens group and the fourth lens. It is characterized in that the groups are moved together on the optical axis toward the object side and the air gap between the lens groups is changed.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
The zoom lens according to the present embodiment will be described with reference to the drawings.
[0011]
1 to 5 are lens sectional views of zoom lenses of Numerical Examples 1 to 5 to be described later, respectively, and FIGS. 6 to 10 are lens arrangement diagrams at zoom positions of Numerical Examples 1 to 5 to be described later. FIG. 25 is an aberration diagram at a wide-angle end, a middle position, and a telephoto end of zoom lenses according to Numerical Examples 1 to 5 described below.
[0012]
In general, a three-group zoom lens having a positive, positive, and negative configuration generally used in a photographing system of a lens shutter camera performs a zooming function mainly by a change in an air gap between a positive second lens group and a negative third lens group. It is characterized in that further zooming action is performed by narrowing the air gap between the first positive lens unit and the second positive lens unit as the distance to the telephoto increases, and at the same time, the field curvature fluctuation at the time of zooming is corrected. I have.
[0013]
However, when the zoom ratio is further increased, chromatic aberration at the time of zooming and aberration fluctuation of the curvature of field, which is difficult to correct even in the above-described three-unit zoom lens, become problems. On the other hand, in order to obtain good image quality, it is necessary to reduce the amount of chromatic aberration generated in each lens group in order to maintain a good correction relationship of chromatic aberration generated in each lens group. In order to correct the chromatic aberration, it is necessary to increase the number of lens components, which makes it difficult to meet the demands for downsizing of the lens system and the configuration of a small number of lenses.
[0014]
In the present invention, the first lens group having a positive refractive power from the object side, the second lens group having a positive or negative refractive power, the third lens group having a positive or negative refractive power, and the positive refractive power A fourth lens group having a negative refractive power, a fifth lens group having a negative refractive power, and when changing magnification from wide angle to telephoto, the air gap between the lens groups is changed, and the first lens group is changed. And the fifth lens group and the second lens group and the fourth lens group move integrally on the optical axis, thereby facilitating the achievement of a simple mechanical configuration during zoom movement in a multi-group zoom configuration, and the two lens groups. By reducing the relative eccentricity of each other by maintaining the optical performance, it is possible to maintain the optical performance. Further, the third lens group can be freely moved on the optical axis between the second and fourth lens groups. When the magnification of the optical system is increased by Thereby making it possible to preferably correct sly curvature and chromatic aberration fluctuations.
[0015]
When downsizing the zoom lens system, it is desirable to satisfy the following conditional expressions.
[0016]
0.3 <| F5 / Fw | <0.8 (1)
1.1 <β5w <2 ... (2)
Where Fw: focal length of the entire lens system at the wide-angle end F5: focal length of the fifth lens group β5w: the lateral magnification conditional expressions (1) and (2) at the wide-angle end of the fifth lens group are: This relates to the refractive power of the negative fifth lens unit at the end.
[0017]
The negative refractive power of the fifth lens unit is weakened beyond the upper limit of conditional expression (1), or the lateral magnification at the wide angle end of the third lens unit is too large beyond the upper limit of conditional expression (2). Then, during zooming, the zooming action of the third lens unit is weakened, so that the moving amount of each lens unit must be increased in order to obtain a constant zoom ratio, and as a result, the overall length of the lens becomes longer. .
[0018]
On the other hand, if either of the conditional expressions (1) and (2) exceeds the lower limit, the effect of the telephoto system as a whole becomes stronger, so that the back focus becomes too short and at the same time, a constant peripheral light amount is secured. In addition, this leads to an increase in the outer diameter of the lens of the fifth lens group, and also causes curvature of field and astigmatism, which is not good.
[0019]
More preferably, the numerical ranges of the conditional expressions (1) and (2) are limited as follows in order to achieve both miniaturization of the lens system and high optical performance.
[0020]
0.4 <| F5 / Fw | <0.7 (1) '
1.2 <β5w <1.8 (2) ′
In order to further improve the optical performance, it is desirable to satisfy the following conditional expressions.
[0021]
0.5 <F234w / Fw <1.3 (3)
F234w: The combined focal length conditional expression (3) of the second, third, and fourth lens groups at the wide-angle end relates to the positive combined refractive power of the second, third, and fourth lens groups at the wide-angle end. It is.
[0022]
When the value exceeds the upper limit, the positive combined refractive power of the second, third, and fourth lens units becomes too weak to correct spherical aberration, and at the same time, to maintain a constant focal length at the wide-angle end. The overall length of the lens increases.
[0023]
On the other hand, if the lower limit is exceeded, a large amount of negative spherical aberration occurs, and it becomes difficult to correct this with another lens group.
[0024]
In order to achieve high image quality while achieving downsizing of the zoom lens system, it is preferable to satisfy the following conditional expressions.
[0025]
1.0 <F1 / Fw <3.5 (4)
0.4 <F4 / Fw <1.3 (5)
Here, F1: focal length of the first lens group F4: focal length of the fourth lens group Conditional expression (4) relates to the positive combined refractive power of the first lens group at the wide-angle end. If the lower limit value is exceeded, the positive combined refractive power at the wide-angle end becomes too strong and the effect of the telephoto system as a whole lens system becomes stronger, so that the back focus becomes too short or a large negative spherical surface is generated. It becomes difficult to correct this.
[0026]
On the other hand, when the value exceeds the upper limit, the total length of the lens is increased, and the positive refractive power of the third lens unit must be increased in order to maintain the focal length at the wide-angle end. It becomes difficult to correct.
[0027]
Conditional expression (5) relates to the positive refractive power of the fourth unit at the wide-angle end. If the lower limit of conditional expression (5) is exceeded, it becomes difficult to obtain a back focus at the wide-angle end, which results in an increase in the outer diameter of the fifth lens unit. If the value exceeds the upper limit, the positive refractive power of the other lens units increases in order to obtain a constant focal length, so that it becomes difficult to correct aberration fluctuations during zooming. Furthermore, the focal length of the front group must be made longer, which is not good because the overall length of the lens becomes longer.
[0028]
It is desirable that the fourth lens group be a positive lens having an aspheric surface in order to reduce the size of the lens system and prevent the optical performance from deteriorating.
[0029]
At this time, a composite aspherical surface (replica aspherical surface) may be used as the aspherical surface in order to expand the types of glass that can be used in consideration of productivity.
[0030]
The first lens group configuration suitable for the present invention is a two-lens configuration including a negative meniscus lens convex on the image surface side from the object side and a positive lens having a strong convex surface on the object side.
[0031]
Thereby, the distortion at the wide-angle end generated at the concave surface on the object side of the negative lens and the positive spherical aberration generated at the telephoto end have a canceling effect at the strong convex surface on the object side of the positive lens, thereby achieving good aberration correction. Is working.
[0032]
It is preferable that the fourth lens group is composed of a positive lens from the object side and a negative lens with a strong concave surface facing the object side. Introducing an aspheric surface into the fourth lens group achieves high optical performance. desirable.
[0033]
Further, it is desirable that the positive lens has a relatively small refractive power and has an aspherical surface on its lens surface in order to prevent deterioration of optical performance due to a temperature change and to achieve low cost.
[0034]
It is desirable to perform focusing by moving the second, third, and fourth lens groups integrally on the optical axis toward the object side. However, the entire lens system or another lens group is simultaneously moved on the optical axis toward the object side. You may let it.
[0035]
It is desirable that the iris diaphragm is arranged at an air space between the second lens unit and the fourth lens unit. This makes it easier to balance the diameters of the first lens unit and the fifth lens unit, and makes it easy to balance the lens barrel. The size of the diameter can be reduced. At the same time, it becomes easy to correct high-order off-axis aberrations in a well-balanced manner.
[0036]
However, if off-axis light-ray vignetting does not occur at the time of a small stop, it may be arranged in any air interval between the lens groups.
[0037]
Also, during zooming, the iris diaphragm can obtain an ideal entrance pupil position by moving the optical axis independently of each lens group. It may be moved integrally with the lens group.
[0038]
Then, in order to further improve the optical performance, a further aspherical surface may be introduced into the lens system, or a diffractive optical element or a refractive distribution type optical material may be introduced.
[0039]
It is also possible to provide an effect of correcting image position displacement caused by camera shake or the like by decentering a lens group or a part of the lens group.
[0040]
(Numerical example)
Next, Numerical Examples 1 to 5 respectively corresponding to Embodiments 1 to 5 of the present invention will be described. In each numerical example, i indicates the order of the optical surface from the object side, Ri is the radius of curvature of the i-th optical surface (i-th surface), Di is the distance between the i-th surface and the (i + 1) -th surface, Ni and νi represent the refractive index and Abbe number of the i-th optical member with respect to the d-line, respectively. f is the focal length, FNo is the F number, and ω is the half angle of view. When k is the eccentricity, A, B, C, D, and E are aspherical coefficients, and the displacement in the optical axis direction at the position of height h from the optical axis is x with respect to the surface vertex, the aspherical surface The shape is
x = (h 2 / R) / [1+ [1- (1 + k) (h / R) 2] 1/2] + Ah 2 + Bh 4
+ Ch 6 + Dh 8 + Eh 10
Displayed with. Here, R is a radius of curvature. Further, for example, "e-Z" means "10 -Z". Table 1 shows the correspondence between the numerical expressions and the conditional expressions described above.
[0041]
Numerical Embodiments 1 and 2 are zoom lenses having a positive, negative, positive, positive, and negative lens group configuration from the object side.
[0042]
Numerical example 3 is a zoom lens having a positive, negative, negative, positive, and negative lens group configuration from the object side.
[0043]
Numerical Embodiments 4 and 5 are zoom lenses having a positive, positive, negative, positive, and negative lens unit configuration from the object side.
[0044]
[Outside 1]
Figure 2004061681
[0045]
[Outside 2]
Figure 2004061681
[0046]
[Outside 3]
Figure 2004061681
[0047]
[Outside 4]
Figure 2004061681
[0048]
[Outside 5]
Figure 2004061681
[0049]
[Table 1]
Figure 2004061681
[0050]
Next, an embodiment of a lens shutter type compact camera using the zoom lens of the present invention as a photographing optical system will be described with reference to FIG.
[0051]
In FIG. 26, reference numeral 10 denotes a compact camera main body, 11 denotes a photographing optical system constituted by the zoom lens of the present invention, 12 denotes a flash built in the camera main body, 13 denotes an external viewfinder, and 14 denotes a shutter button.
[0052]
As described above, by applying the zoom lens of the present invention to an optical device such as a lens shutter camera, an optical device having a small size and high optical performance is realized.
[0053]
【The invention's effect】
As described above, according to the present invention, in a zoom lens having a positive, positive or negative, positive or negative, positive, or negative lens group from the object side, the zoom ratio is as high as about 4.5, and the zoom ratio is high. By performing a suitable optical arrangement, it is possible to achieve a zoom lens optical system that is compact and can maintain good optical performance.
[Brief description of the drawings]
1 is a sectional view of a lens according to a numerical example 1 of the present invention. FIG. 2 is a sectional view of a lens according to a numerical example 2 of the present invention. FIG. 3 is a sectional view of a lens according to a numerical example 3 of the present invention. FIG. 5 is a sectional view of a lens according to a fourth numerical embodiment of the present invention. FIG. 5 is a sectional view of a lens according to a fifth numerical embodiment of the present invention. FIG. FIG. 8 is a lens arrangement diagram at each zoom position in Numerical Example 2 of the present invention. FIG. 9 is a lens arrangement diagram at each zoom position in Numerical Example 3 of the present invention. FIG. 10 is a lens arrangement diagram at each zoom position in Embodiment 5 of the present invention. FIG. 11 is an aberration diagram at a wide-angle end of Numerical Embodiment 1 of the present invention. FIG. 12 is an intermediate diagram of Numerical Embodiment 1 of the present invention. FIG. 13 is an aberration diagram at the telephoto end in Numerical Example 1 of the present invention. FIG. 15 is an aberration diagram at the wide-angle end of Numerical Embodiment 2 of the present invention. FIG. 15 is an intermediate aberration diagram of Numerical Embodiment 2 of the present invention. FIG. 16 is an aberration diagram at a telephoto end of Numerical Embodiment 2 of the present invention. FIG. 18 is an aberration diagram at the wide angle end of Numerical Embodiment 3 of the present invention. FIG. 18 is an intermediate aberration diagram of Numerical Embodiment 3 of the present invention. FIG. 19 is an aberration diagram at a telephoto end of Numerical Embodiment 3 of the present invention. FIG. 21 is an aberration diagram at the wide angle end of Numerical Embodiment 4 of the present invention. FIG. 21 is an intermediate aberration diagram of Numerical Embodiment 4 of the present invention. FIG. 22 is an aberration diagram at a telephoto end of Numerical Embodiment 4 of the present invention. FIG. 24 is an aberration diagram at the wide angle end of Numerical Embodiment 5 of the present invention. FIG. 24 is an intermediate aberration diagram of Numerical Embodiment 5 of the present invention. FIG. 25 is an aberration diagram at a telephoto end of Numerical Embodiment 5 of the present invention. Schematic diagram of the main part of a lens shutter type compact camera using the zoom lens of the invention as a photographing optical system.
B1, B2, B3, B4, B5 First lens group, second lens group, third lens group, fourth lens group, fifth lens group SP Iris stop IP Image plane SA Spherical aberration AS Astigmatism DIST Distortion Aberration CHRO Magnification chromatic aberration d-LINE d-line g-LINE g-line ΔS Sagittal image plane ΔM Meridional image plane

Claims (9)

物体側より正の屈折力を有する第1レンズ群、正又は負の屈折力を有する第2レンズ群、正又は負の屈折力を有する第3レンズ群、正の屈折力を有する第4レンズ群、負の屈折力を有する第5レンズ群を有し、広角から望遠への変倍は、前記第1レンズ群と第5レンズ群を一体に、かつ第2レンズ群と第4レンズ群を一体に共に物体側へ光軸上の移動を行ない各レンズ群間の空気間隔を変化させることで行なうことを特徴とするズームレンズ及びそれを有した光学機器。A first lens group having a positive refractive power from the object side, a second lens group having a positive or negative refractive power, a third lens group having a positive or negative refractive power, a fourth lens group having a positive refractive power A fifth lens group having a negative refractive power, and zooming from wide angle to telephoto is performed by integrating the first lens group and the fifth lens group and integrating the second lens group and the fourth lens group. 1. A zoom lens and an optical apparatus having the zoom lens, wherein the zoom lens is moved by moving along the optical axis toward the object side and changing the air gap between the lens groups. 以下の条件式を満足することを特徴とする特許請求項1記載のズームレンズ及びそれを有した光学機器。
0.3 <|F5/Fw|< 0.8
1.1 < β5w < 2
但し、  Fw :広角端におけるレンズ全系の焦点距離
F5 :前記、第5レンズ群の焦点距離
β5w:前記、第5レンズ群の広角端における横倍率
2. The zoom lens according to claim 1, wherein the following conditional expression is satisfied, and an optical apparatus having the zoom lens.
0.3 <| F5 / Fw | <0.8
1.1 <β5w <2
Here, Fw: focal length of the entire lens system at the wide-angle end F5: focal length of the fifth lens group β5w: lateral magnification of the fifth lens group at the wide-angle end
以下の条件式を満足することを特徴とした特許請求項1記載のズームレンズ及びそれを有した光学機器。
0.5 < F234w/Fw < 1.3
但し、 F234w:広角端における前記、第2,第3,第4レンズ群の合成焦点距離
2. The zoom lens according to claim 1, wherein the following conditional expression is satisfied and an optical apparatus having the zoom lens.
0.5 <F234w / Fw <1.3
Where F234w is the combined focal length of the second, third, and fourth lens groups at the wide-angle end.
以下の条件式を満足することを特徴とする特許請求項1記載のズームレンズ及びそれを有する光学機器。
1.0 < F1/Fw < 3.5
0.4 < F4/Fw < 1.3
但し、 F1:第1レンズ群の焦点距離
F4:第4レンズ群の焦点距離
The zoom lens according to claim 1, wherein the following conditional expression is satisfied, and an optical apparatus having the same.
1.0 <F1 / Fw <3.5
0.4 <F4 / Fw <1.3
Where F1: focal length of the first lens group F4: focal length of the fourth lens group
前記第2レンズ群は負の屈折力を有し、前記第3レンズ群は正の屈折力を有することを特徴とする特許請求項1記載のズームレンズ及びそれを有する光学機器。The zoom lens according to claim 1, wherein the second lens group has a negative refractive power, and the third lens group has a positive refractive power. 前記第2レンズ群は負の屈折力を有し、前記第3レンズ群は負の屈折力を有することを特徴とする特許請求項1記載のズームレンズ及びそれを有する光学機器。The zoom lens according to claim 1, wherein the second lens group has a negative refractive power, and the third lens group has a negative refractive power. 前記第2レンズ群は正の屈折力を有し、前記第3レンズ群は負の屈折力を有することを特徴とする特許請求項1記載のズームレンズ及びそれを有する光学機器。The zoom lens according to claim 1, wherein the second lens group has a positive refractive power, and the third lens group has a negative refractive power. 前記第4レンズ群は非球面を有する正レンズで構成されていることを特徴とする特許請求項1記載のズームレンズ及びそれを有する光学機器。2. The zoom lens according to claim 1, wherein the fourth lens group includes a positive lens having an aspheric surface. 特許請求項1から8のいずれか1項のズームレンズを有することを特徴とする光学機器。An optical apparatus comprising the zoom lens according to any one of claims 1 to 8.
JP2002217416A 2002-07-26 2002-07-26 Zoom lens and optical equipment with same Pending JP2004061681A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002217416A JP2004061681A (en) 2002-07-26 2002-07-26 Zoom lens and optical equipment with same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002217416A JP2004061681A (en) 2002-07-26 2002-07-26 Zoom lens and optical equipment with same

Publications (1)

Publication Number Publication Date
JP2004061681A true JP2004061681A (en) 2004-02-26

Family

ID=31938860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002217416A Pending JP2004061681A (en) 2002-07-26 2002-07-26 Zoom lens and optical equipment with same

Country Status (1)

Country Link
JP (1) JP2004061681A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102073130A (en) * 2011-02-28 2011-05-25 腾龙光学(佛山)有限公司 Zoom lens
JP2011186095A (en) * 2010-03-08 2011-09-22 Sigma Corp Telephoto zoom lens
JP2013101316A (en) * 2011-10-17 2013-05-23 Panasonic Corp Zoom lens system, interchangeable lens device, and camera system
JP2013242518A (en) * 2012-04-27 2013-12-05 Olympus Imaging Corp Zoom lens and imaging apparatus using the same
JP2014089293A (en) * 2012-10-30 2014-05-15 Nikon Corp Variable magnification optical system, optical device, and manufacturing method for variable magnification optical system
JP2014163982A (en) * 2013-02-21 2014-09-08 Konica Minolta Inc Imaging optical system
JP2017040875A (en) * 2015-08-21 2017-02-23 株式会社タムロン Zoom lens and imaging apparatus
JP2017151241A (en) * 2016-02-24 2017-08-31 キヤノン株式会社 Zoom lens and imaging device having the same
US10168512B2 (en) 2012-10-30 2019-01-01 Nikon Corporation Variable magnification optical system, optical device, and production method for variable magnification optical system
JP2020122822A (en) * 2019-01-29 2020-08-13 株式会社タムロン Zoom lens and image capturing device
JP2020122823A (en) * 2019-01-29 2020-08-13 株式会社タムロン Zoom lens and image capturing device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011186095A (en) * 2010-03-08 2011-09-22 Sigma Corp Telephoto zoom lens
CN102073130A (en) * 2011-02-28 2011-05-25 腾龙光学(佛山)有限公司 Zoom lens
CN102073130B (en) * 2011-02-28 2012-02-15 腾龙光学(佛山)有限公司 Zoom lens
JP2013101316A (en) * 2011-10-17 2013-05-23 Panasonic Corp Zoom lens system, interchangeable lens device, and camera system
JP2013242518A (en) * 2012-04-27 2013-12-05 Olympus Imaging Corp Zoom lens and imaging apparatus using the same
US10168512B2 (en) 2012-10-30 2019-01-01 Nikon Corporation Variable magnification optical system, optical device, and production method for variable magnification optical system
JP2014089293A (en) * 2012-10-30 2014-05-15 Nikon Corp Variable magnification optical system, optical device, and manufacturing method for variable magnification optical system
JP2014163982A (en) * 2013-02-21 2014-09-08 Konica Minolta Inc Imaging optical system
JP2017040875A (en) * 2015-08-21 2017-02-23 株式会社タムロン Zoom lens and imaging apparatus
JP2017151241A (en) * 2016-02-24 2017-08-31 キヤノン株式会社 Zoom lens and imaging device having the same
JP2020122822A (en) * 2019-01-29 2020-08-13 株式会社タムロン Zoom lens and image capturing device
JP2020122823A (en) * 2019-01-29 2020-08-13 株式会社タムロン Zoom lens and image capturing device
JP7210303B2 (en) 2019-01-29 2023-01-23 株式会社タムロン Zoom lens and imaging device
JP7216557B2 (en) 2019-01-29 2023-02-01 株式会社タムロン Zoom lens and imaging device

Similar Documents

Publication Publication Date Title
JP5455572B2 (en) Zoom lens and imaging apparatus having the same
JP5465000B2 (en) Zoom lens and imaging apparatus having the same
JP4989079B2 (en) Zoom lens and image projection apparatus having the same
JP5173260B2 (en) Zoom lens and imaging apparatus having the same
JP2011141364A (en) Optical system and image pickup apparatus having the same
JP2007140359A (en) Zoom lens and imaging apparatus equipped with the same
JP2011033770A (en) Zoom lens and optical apparatus including the same
JP2005092056A (en) Zoom lens and image pickup device having same
JP6253379B2 (en) Optical system and imaging apparatus having the same
JP3619117B2 (en) Zoom lens and optical apparatus using the same
JP5465018B2 (en) Zoom lens and optical apparatus having the same
JP5038028B2 (en) Zoom lens and imaging apparatus having the same
JP2004061681A (en) Zoom lens and optical equipment with same
JP2002365549A (en) Zoom lens and optical equipment having the same
JP3085823B2 (en) Aspherical zoom lens and video camera using it
JP2011065185A (en) Zoom lens and imaging apparatus having the same
JP5059210B2 (en) Zoom lens and imaging apparatus having the same
JP2011164517A (en) Zoom lens and image pickup device having the same
JP2006003539A (en) Zoom lens and imaging apparatus having same
JP2004037700A (en) Zoom lens and optical device having same
JP4817551B2 (en) Zoom lens
JPH08292369A (en) Zoom lens and video camera using the zoom lens
JP2005345891A (en) Zoom lens and imaging apparatus having the same
JP6716215B2 (en) Imaging device
JP4444416B2 (en) Zoom lens