JP4789031B2 - Stir and mixing device - Google Patents

Stir and mixing device Download PDF

Info

Publication number
JP4789031B2
JP4789031B2 JP2001246048A JP2001246048A JP4789031B2 JP 4789031 B2 JP4789031 B2 JP 4789031B2 JP 2001246048 A JP2001246048 A JP 2001246048A JP 2001246048 A JP2001246048 A JP 2001246048A JP 4789031 B2 JP4789031 B2 JP 4789031B2
Authority
JP
Japan
Prior art keywords
stirring
auxiliary
inner tube
column
soil cement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001246048A
Other languages
Japanese (ja)
Other versions
JP2003055956A (en
Inventor
洋一 加藤
隆司 辰口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitani Sekisan Co Ltd
Original Assignee
Mitani Sekisan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitani Sekisan Co Ltd filed Critical Mitani Sekisan Co Ltd
Priority to JP2001246048A priority Critical patent/JP4789031B2/en
Publication of JP2003055956A publication Critical patent/JP2003055956A/en
Application granted granted Critical
Publication of JP4789031B2 publication Critical patent/JP4789031B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、地盤改良工法における地盤中の土とセメント系固化材を撹拌混合してソイルセメント柱を形成する際に使用する撹拌混合装置に関する。
【0002】
【従来の技術】
従来、地盤改良工法に用いる撹拌装置としては、撹拌ロッド下端の掘削ヘッドより上部に複数枚の撹拌翼を固定したものが知られている。
【0003】
地盤改良工法、特に深層混合処理工法においては、撹拌ロッドを回転しながらセメント系固化材(例えば、セメントミルク)を注入し、地盤中の土と撹拌混合してソイルセメント柱を形成していく方法が知られている。
【0004】
【発明が解決しようとする課題】
従来の地盤改良工法に用いる撹拌装置は、掘削された土が撹拌ロッドの撹拌翼の間に絡み付き、泥塊となって適切な撹拌処理ができず、均質なソイルセメント柱が形成できない問題があった。また、撹拌ロッドの引上げ時において、撹拌翼に貯留した泥塊が下方の改良体の中に落下し均質強度の得られないソイルセメント柱が形成されるおそれがあった。
【0005】
また、ソイルセメント柱内に芯材として、テーパー状に形成した鋼管を使用することも提案されているが(特開2001-98542)、鋼管の周面摩擦力の強化のみを目的としたものであり、鉛直荷重が作用した時に鋼管から伝達する応力をソイルセメント柱内に確実に伝達させるためのソイルセメント柱と芯材との適切な外形状構造は考慮されていなかった。
【0006】
【課題を解決するための手段】
然るにこの発明では、撹拌軸に沿って上下移動する補助撹拌装置を有する撹拌混合装置としたので、従来の問題点を解決した。
【0007】
即ち、この発明は、以下のように構成したことを特徴とする撹拌混合装置である。
(1)改良対象の地盤中に貫入される撹拌軸の外周に、該撹拌軸に固定されて撹拌軸と共に上下してかつ回転する撹拌手段と、該撹拌軸に沿って独立して上下動し、かつ前記撹拌軸と独立して回転する補助撹拌装置とを設けた。
(2)前記撹拌手段を上下に所定間隙を設けて配置した上撹拌手段と下撹拌手段として、前記間隙内に補助撹拌装置を設けた。
【0008】
また、他の発明は、以下のように構成したことを特徴とする撹拌混合装置である。
(1) 互いに独立して回転できる内管と外管とで2重管状の撹拌軸を構成する。
(2) 前記外管の下端部に固定した上撹拌手段と、前記外管より下方で前記内管の外周に、前記内管に対して回転自在に取り付けた下撹拌手段とを固定板で連結する。
(3) 上下方向で【0030】前記両撹拌手段間の範囲内に、周面に撹拌する手段を有し、前記内管と共に回転してかつ軸方向に上下動する補助撹拌装置を、前記内管外周に設ける。
(4) 前記補助撹拌装置は、前記内管の表面に形成した嵌合溝又は突条と嵌合する突条又は嵌合溝を形成する。
【0009】
また、前記において、以下のように構成したことを特徴とする撹拌混合装置である。
(1)補助撹拌装置を、上補助撹拌装置と下補助撹拌装置とから構成する。
(2)前記上補助撹拌装置と下補助撹拌装置との間に、撹拌軸又は外管、と共に上下動してかつ回転する他の撹拌手段を設ける。
【0012】
後に述べる廃棄されたコンクリートポールとは、電柱や、球技場の防球ネットの支持ポール等で、使用済みのものをいう。
【0013】
また、後に述べるセメント系固化材とは、セメントミルクその他の水硬性材料からなる地盤改良材料で、改良地盤に注入使用されるものである。
【0014】
また、前記における撹拌手段とは、翼状、棒状、板状等その形状は問わない。
【0015】
【発明の実施の形態】
(1) この発明の地盤改良体41は、地盤38を掘削して掘削土とセメントミルクなどを撹拌混合して形成したソイルセメント柱39内に、芯材としてコンクリート製の柱体33を埋設した構造である(図5、図4(g))。
【0016】
(2) また、柱体33のコンクリートの圧縮強度はソイルセメント柱39の固化強度(地質にもよるが概ね0.5N/mm未満)より強いものとし、例えば58.9N/mmとする。テーパー状の柱体33の固化強度をソイルセメント柱39よりも強くしたため、地震等によってソイルセメント柱39にひび割れ等が発生して健全性が損なわれても、芯材であるテーパー状の柱体33によって建造物を支持することができる。
【0017】
(3) 柱体33は末口34側を下にして使用し、ソイルセメント柱39の軸方向に対し、下方から上方に向けて徐々に径が大きくなる形状である。
【0018】
このような形状の柱体33を使用することによって、鉛直荷重が作用した際に、柱体33の下端面(末口34)から下方への押圧力だけでなく、テーパー部から斜め下方に伝播する押圧力も作用するため、柱体33の周面摩擦力が増加し、ソイルセメント柱体全体としての支持力が向上する。
【0019】
ここで、鉛直載荷試験等によって、柱体33の下端面(末口34)から下方への押圧力は、軸方向に対し水平ではなく角度θ(θは30度程度)で伝播することが知られている。そのため、ソイルセメント柱39の下端面40と柱体33の下端面(末口34)との間に、末口外径D以上の間隔を空けて柱体33を設置する。
【0020】
(4)例えば、末口D=190mm、元口D=390mm、長さ15mの柱体33を使用する場合、柱体33の下端面(末口34)からの押圧力の伝播範囲を確保するために、以下のような形状のソイルセメント柱39を形成する。
【0021】
ソイルセメント柱33の下端面40から柱体33の末口34面までの距離L(=500mm)の縦方向の伝播範囲を確保した場合、ソイルセメント柱39の外径Dを元口Dの1.5倍以上(例えば、700mm以上)として横方向の伝播範囲を確保する。このような寸法でソイルセメント柱39を形成することによって、柱体33の下端面(末口34)から下方のソイルセメントに伝わる鉛直荷重応力を確保できる。また、ソイルセメント柱39の外径Dを元口Dの1.5倍以上とすることによって、柱体33のテーパー面から押圧力の伝播範囲も確保できる(図5)。
【0022】
(5) こうして、ソイルセメント柱39内にテーパー状の柱体33を芯材として使用し、なおかつ柱体33からソイルセメント柱39に伝わる応力の伝達範囲を確保するように距離Lをとって埋設することによって、従来のソイルセメント柱39のみを基礎としていた場合に比べて1.5〜2倍程度、支持力を向上させることができる。
【0023】
【実施例1】
図面に基づきこの発明の実施例を説明する。
【0024】
(A)撹拌混合装置25の構成
【0025】
外管4の内側に、互いに独立して回転できるように、内管1を挿入し、外管4の下端6より内管1を所定長さ突出させる。前記内管1の下端部に、外管4と略同径の取付筒8を嵌装固定し、取付筒8に、掘削刃10、10を取り付けた横杆9、9を略放射状に固定する。取付筒8(内管1)の下面にも掘削刃11、11を取付ける。
【0026】
また、横杆9の側面に、地盤改良材(セメントミルクなど)の吐出口26が形成され、地盤改良材は、内管1を通して吐出口26に導かれる。
【0027】
外管4の下端部に、上撹拌翼13を放射状で直径対称に突設固定する(図1(b))。内管1の下端部で、取付筒8の上方に、回転筒15を回転自在に嵌装し、回転筒15の外面に下撹拌翼16、16を放射状で直径対称に突設する。
【0028】
上下撹拌翼13、16は内管1の軸に対して平面同位置(同位相)で取り付けられており、上撹拌翼13の先端と対応する下撹拌翼16の先端とを、縦に配置した固定板18で結合する。
【0029】
内管1の下端部外周で、外管4の下端6と取付筒8との間で、ほぼ全長に亘り、内管1の軸方向に沿って、嵌合溝20、20を形成する。嵌合溝20は、直径対称な位置に2本形成する(図1(d))。
【0030】
内管1の下端部外周で、外管4の下端6と取付筒8との間に、移動筒22を取付ける。移動筒22の内面に軸方向の突条21、21が形成され、突条21は内管1の嵌合溝20に嵌合して、嵌合溝20に沿って、移動筒22を上下(H1の範囲)に移動できるように形成されている(図1(c))。また、嵌合溝20と突条21とが嵌合するので、内管1に対して移動筒22の回転が規制され、移動筒22は内管1と共に回転するように形成されている。また、移動筒22の外面に、放射状でかつ直径対称に移動撹拌翼23、23を上下3段に突設する。移動筒22と移動撹拌翼23、23とで補助撹拌装置24を構成する。
【0031】
内管1の上端に、回転支持装置(図示していない)に連結する中空の連結軸2を突設して、この発明の撹拌混合装置25を構成する(図1(a))。撹拌混合装置25は、内管1の連結軸2を回転支持装置の回転機構に連結し、外管4の上端部5を内管1の回転に依拠せず自由に回転できうように支持して使用し、内管1が回転した際には、外管4の上撹拌翼13が抵抗となって、外管4は内管1と共回りしない構造となっている。
【0032】
(B)他の実施例
【0033】
(1) 前記実施例において、横杆9の吐出口26に代えて、あるいは吐出口26と共に内管1の下面(取付筒8の下面)で、掘削刃11、11の間隙に、地盤改良材を注入する吐出口を形成することもできる(図示していない)。また、吐出口26は、吐出される地盤改良材を掘削土と撹拌混合して均質な地盤改良体41を形成できる位置であれば、他の位置に設けることもできる。
【0034】
(2)前記実施例において、嵌合溝20、突条21は2つづつ形成したが、1つ又は3つ以上形成することもできる(図示していない)。
【0035】
また、前記実施例において、内管1に嵌合溝20、移動筒22に突条21を形成したが、移動筒22に嵌合溝20を形成し、内管1に対応する突条21を形成することもできる(図示していない)。
【0036】
(3) 前記実施例において、外管4の下端6と取付筒8との間で、ほぼ全長に亘り嵌合溝20、20を形成したが他の構成とすることもできる(図2)。
【0037】
例えば、外管4の下端6の直ぐ下の内管1の外周に、撹拌翼を固定し、更に取付筒8の直ぐ上の内管1の外周に、撹拌翼を固定し、撹拌翼間に嵌合溝を形成する(図2(a))。この場合、移動筒22は、H2の範囲で上下に移動できる。また、移動筒8には2対の移動撹拌翼23、23を固定する。また、この場合、内管1の回転により、掘削刃10を取り付けた横杆9、撹拌翼28、29、補助撹拌装置24が同時に回転する。
【0038】
また、他の嵌合溝の例として、外管4の下端6と取付筒8との間で、ほぼ中間位置の内管1の外周に、固定撹拌翼31を固定した回転筒30を嵌装し、固定撹拌翼の先端を固定板の中央部に連設する。外管4の下端6と回転筒との間、回転筒と取付筒8との間で、それぞれ嵌合溝20a、20bを形成し、嵌合溝20a側、20b側に、突条を形成した移動筒22a、22bを夫々取付ける。この場合、移動筒22a、移動筒22bは、夫々H3、H4の範囲で、上下動できる。移動筒22a、22bには同様に移動撹拌翼23、23が突設されている。移動筒22aと移動撹拌翼23、23とで上補助撹拌装置24aを、移動筒22bと移動撹拌翼23、23とで下補助撹拌装置24bを夫々構成する(図2(b))。
【0039】
(4) また、前記実施例において、内管1の嵌合溝20と、移動筒22の突条21とを嵌合して、移動筒22を内管1と共に回転する構成としたが、嵌合溝20及び突条21を省略して、内管1に移動筒22を回転及び上下動自在に取付けることもできる(図3(a)(c))。この場合、移動筒22と移動撹拌翼23からなる補助撹拌装置24は、内管1の回転方向に拘わらず、土圧の方向に従って自由に上下動及び回転する。
【0040】
(5)前記実施例において、内管1、外管4からなる二重管を使用したので、各撹拌翼等による撹拌効率を高められるが、1本の撹拌管から構成することもできる(図示していない)。
【0041】
【実施例2】
次に、芯材としてテーパーを有する柱体33を埋設するこの発明の地盤改良体41及び地盤改良体41の構築方法について説明する。
【0042】
(A)構築方法
【0043】
(1) この発明の実施に使用する芯材は、一端の外径D(以下、末口34という)が小径で、他端の外径D(以下、元口35という)が大径に形成されたテーパー状の側面を有する遠心成形されたコンクリート製の柱体33とする。
【0044】
柱体33は、例えば杭長15m、末口34外径Dが190mm、元口34の外径Dが390mmの外形寸法であって、肉厚45mmで形成し、中空部を有するように形成されている。肉厚内にはPC鋼棒(φ10.7−8本)及びPC鋼棒を巻回した螺旋状鉄筋が埋設され、プレストレスが導入された状態となっている。また、柱体の曲げ強度を増加させるために、必要に応じてPC鋼棒に沿うように複数本の補助筋(異形鋼棒等)を配置する。
【0045】
(2)撹拌混合装置25を改良予定の地盤38の上方から下降して(図4(a))、内管1を回転して掘削刃10、11で、地盤38を掘削しながら、下降する(図4(b))。掘削した掘削土は、内管1の回転に伴い、掘削刃10を設けた横杆9、9で撹拌され、また移動撹拌翼23、23で撹拌される。このとき、外管4は、上撹拌翼13が抵抗となって、内管1の回転とは共回りしない構造となっているので、外管4に取り付けた上下撹拌翼13、16の撹拌と相まって、効率良い撹拌ができる。
【0046】
(3) 更に、撹拌混合装置25の下降に伴い、掘削土が滞留しているので、相対的に上昇する土圧によって、補助撹拌装置25は、内管1の嵌合溝20にそって上昇し、上撹拌翼13と最上の移動撹拌翼23とで、掘削土の塊を破砕できる。また、一旦、撹拌混合装置25の下降を止め若干上昇すれば、補助撹拌装置24は、内管1の嵌合溝20にそって下降し、下撹拌翼16と最下の移動撹拌翼23とで、掘削土の塊を破砕できる。
【0047】
また、掘削の進行に伴い、各撹拌翼13、16、23等によって撹拌された掘削土が上昇し、滞留してあった掘削土も掘削の進行に伴い上昇し、補助撹拌装置24の移動撹拌翼23と上撹拌翼23との間隔が狭まったことによって細かく砕かれ、掘削土は充分に均質に撹拌される。
【0048】
(4)続いて、撹拌が完了したならば、あるいは撹拌しながら、吐出口26、26からセメントミルク(水・セメント比:100%。固化強度0.5N/mm程度)を掘削土内に注入して、上記のように作用して掘削土とセメントミルクとを充分に撹拌混合して、均質なソイルセメントを形成できる。
【0049】
(5)続いて、所定深度まで掘削・撹拌・混合が完了し、所望のソイルセメント柱39を形成後(図4(c))、セメントミルクの吐出を中止し、撹拌混合装置25を回転しながら引上げる(図4(d))。撹拌混合装置25の引上げの際、形成されたソイルセメントが抵抗となって補助撹拌装置25には下向きの力が加わり、補助撹拌装置24は、嵌合溝20、20に沿って、下方に移動する。このとき、補助撹拌装置24の回転下降に伴い、補助撹拌装置24や固定板18等に付着していた掘削土を細かく砕いて掻き落としながら撹拌するので、撹拌混合装置25を地上に引き上げる際に、付着していた掘削土の塊が、形成されたソイルセメント中に落下することを防止できる。
【0050】
このようにして撹拌混合装置25を引上げて、均質なソイルセメント柱39が完成する(図4(e))。
【0051】
(6)次に、ソイルセメント柱39内に、芯材としての柱体33を、末口34側を下にして、静かに沈設する(図4(e))。柱体33の末口34をソイルセメント柱39の底面40より距離Lだけ上方に位置させ、柱体33の末口34と地盤の底との間に、距離Lのソイルセメント層が形成される。前記距離Lは、末口34の外径D以上に形成することが望ましい。
【0052】
以上のようにして、ソイルセメント柱39が固化発現することにより、芯材として柱体33と一体の地盤改良体41を構成する(図4(f))。
【0053】
(7)尚、前記におけるソイルセメント柱39の形成、柱体33の埋設の際の位置出しは例えば次のように行う(図6)。
【0054】
先ず、柱材33(芯材)の埋設位置、即ち形成予定のソイルセメント柱39の中心点45を基点として、形成されるソイルセメント柱39の外側の地盤中に、位置出し棒43aを埋め込む。位置出し棒43aと対称に(直径上に)位置出し棒43bを埋め込む。同様にして、位置出し棒43c、43dを埋め込む。その後、撹拌混合装置25で掘削を開始し、ソイルセメント柱39を形成する。
【0055】
撹拌混合装置25を引き上げた後、対称位置の位置出し棒43c、43d、位置出し棒43c、43dを夫々、テープ44、44を結び、テープ44、44の交点から中心点45を出す。尚、テープ44は、位置出し棒43a、43b間等に直線を形成できる材料であればテープ以外で、紐、糸等でも可能である。
【0056】
次に、その交点(即ち中心点45)を軸に合わせて、ソイルセメント柱39内に、柱体33を埋設する。尚、このとき柱材33の鉛直性については、下げ振り(紐等の先端に錘をぶら下げたもの)で目視により、また光波測定器等により確認しながら、埋設する。
【0057】
(B)他の実施例
【0058】
(1) 前記実施例において、ソイルセメント柱39内に1本の柱体33を埋設したが、複数本の柱体33、33を芯材として埋設することもできる(図示していない)。この場合、柱体33の配置方法としては、隣接する柱体同士を間隔を空けて配置してもよいし、間隔を空けずに当接させて配置してもよい。
【0059】
(2) また、前記実施例におけるコンクリート製の柱体33は、コンクリートで形成された電柱等で使用済みの廃棄ポールを利用してもよい。建柱されている電柱、防球ネットの支持ポール等は数年経過すると抜柱されて新しいものと取り替えられる。抜柱されたポールは廃棄ポールとして破砕され産業廃棄物として処理される。ここで、本体の強度上問題がないにもかかわらず、廃ポールとされる理由は、コンクリートの表面層の一部の劣化等による外観上の問題、あるいは足場(ボルト)部分の破損等によるものであるから、該ポールを使用してソイルセメント柱39内に埋設すれば、そのポールの表面層の劣化も防止できる。更に、この廃ポールをソイルセメント柱39の芯材として再利用すれば、産業廃棄物の低減につながり、環境上好ましい。
【0060】
一般に、電柱などは、使用状況如何にかかわらず、所定の年数を経過した場合に、廃棄されるので、クラック等が発生している場合を除き、地中に埋設されるので、芯材としての使用に何ら支障がない。
【0061】
(3) 前記における撹拌方法は任意であり、例えば、一旦地盤改良予定の深さまで掘削しながら粗く撹拌し、地盤38と底40との間で、撹拌混合装置25を上下して、均一に撹拌することもできる(図示していない)。この場合も、セメントミルクの注入時期は、粗い撹拌中、粗い撹拌が完了した時期等任意である。
【0062】
また、所定深さまで、ほぼ均一に撹拌混合し、撹拌混合装置25を引き上げる際に、底40からセメントミルクを注入しながら均一に撹拌混合しながら引き上げてソイルセメント柱39を形成することもできる。
【0063】
(4)前記実施例において、外管4を回転機構に連結せずに自由に回転できるように支持したが、外管4を回転しないように支持し、または内管1と異なる速度(早い又は遅い速度)で同方向に回転し、あるいは内管1とは異なる回転方向に回転できるように支持させることもできる。この場合にも、外管4が内管1と共回りすることを防止できる。従って、上下撹拌翼13、16、移動撹拌翼23により掘削土を効率よく撹拌できる。
【0064】
【発明の効果】
周面に撹拌翼が固定された補助撹拌装置を撹拌ロッドの軸方向に対し、上下動可能に取り付けることによって、撹拌部分で掘削土がつまりにくくなり、均質なソイルセメント柱が形成でき、また撹拌ロッドの引上げの際に該撹拌ロッドに付着した泥塊がそのまま下方のソイルセメント中に落下せずに、細分化させることができる。
【0065】
地盤中にセメント系固化材を注入して土と混合撹拌し、ソイルセメント柱を形成した後に、ソイルセメント柱の固化強度よりも強く、遠心成形によって形成された上端から下端に向けて小径となるようにテーパーを有する柱体を芯材としてソイルセメント中に埋設する際に、柱体の下端面からソイルセメント柱に伝達する鉛直荷重の伝達範囲を確保できる形状(径、深さ)に形成することによって、伝達荷重が破断せず、先端での支持力が向上し、テーパー部での摩擦力と相俟って改良体全体としての支持力が向上する。
【0066】
ソイルセメント柱内に埋設するテーパーを有する柱体として、廃棄コンクリートポールを再利用すれば、産業廃棄物の低減につながり、環境性が向上する。
【図面の簡単な説明】
【図1】(a)は、この発明の撹拌混合装置の正面図で、(b)は(a)のA−A線における一部拡大端面図、(c)は(a)のB−B線における一部拡大端面図、(d)は(a)のC−C線における一部拡大端面図である。
【図2】(a)(b)は、同じく他の撹拌混合装置の正面図である。
【図3】(a)他の撹拌混合装置の正面図で、(b)は平面図、(c)は(a)のD−D線における断面図である。
【図4】(a)〜(f)は、この発明の地盤改良方法を説明する概略した縦断面図である。
【図5】この発明の地盤改良体に作用する応力を説明する図である。
【図6】この発明の埋設方法における位置出しを説明する概略した平面図である。
【符号の説明】
1 内管
4 外管
6 外管の下端
8 取付筒
9 横杆
10 掘削刃
11 掘削刃
13 上撹拌翼
15 回転筒
16 下撹拌翼
18 固定板
20、20a、20b 嵌合溝
21 突条
22、22a、22b 移動筒
23 移動撹拌翼
24 補助撹拌装置
25 撹拌混合装置
26 吐出口
28 撹拌翼
29 撹拌翼
30 回転筒
31 固定撹拌翼
33 柱体
34 柱体の末口(細径、下端)
35 柱体の広口(太径、上端)
38 地盤
39 ソイルセメント柱
40 ソイルセメント柱の底
41 地盤改良体
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a stirring and mixing equipment used in forming a soil cement pillar soil and cement-based solidifying material in the soil in the soil improvement method by mixing and stirring.
[0002]
[Prior art]
Conventionally, as an agitator used in the ground improvement method, one in which a plurality of agitating blades are fixed above the excavation head at the lower end of the agitating rod is known.
[0003]
In the ground improvement method, especially in the deep mixing treatment method, a cement-based solidification material (for example, cement milk) is injected while rotating the stirring rod, and the soil cement column is formed by stirring and mixing with the soil in the ground. It has been known.
[0004]
[Problems to be solved by the invention]
The conventional agitation equipment used in the ground improvement method has the problem that the excavated soil becomes entangled between the agitation blades of the agitation rod, making it a muddy mass and cannot be adequately agitated, and a homogeneous soil cement column cannot be formed. It was. Further, when the stirring rod is pulled up, the mud mass stored in the stirring blade may fall into the improved body below, and a soil cement column that cannot obtain a uniform strength may be formed.
[0005]
In addition, it has been proposed to use a steel pipe formed in a tapered shape as a core material in a soil cement column (Japanese Patent Laid-Open No. 2001-98542), but only for the purpose of reinforcing the peripheral frictional force of the steel pipe. There was no consideration of an appropriate outer shape structure between the soil cement column and the core material for reliably transmitting the stress transmitted from the steel pipe into the soil cement column when a vertical load was applied.
[0006]
[Means for Solving the Problems]
However in this invention, since the stirring and mixing apparatus having an auxiliary stirring device moving up and down along the agitation shaft, and solve the conventional problems.
[0007]
That is, the present invention is an agitation and mixing apparatus configured as follows.
(1) Stirring means fixed to the stirring shaft, which moves up and down with the stirring shaft and rotates around the outer periphery of the stirring shaft penetrating into the ground to be improved, and independently moves up and down along the stirring shaft. And an auxiliary stirring device that rotates independently of the stirring shaft.
(2) An auxiliary stirring device is provided in the gap as an upper stirring means and a lower stirring means in which the stirring means is arranged with a predetermined gap above and below.
[0008]
Another invention is a stirring and mixing apparatus having the following configuration.
(1) A double tubular stirring shaft is composed of an inner tube and an outer tube that can rotate independently of each other.
(2) An upper stirring means fixed to the lower end of the outer pipe and a lower stirring means attached to the outer periphery of the inner pipe below the outer pipe and rotatably with respect to the inner pipe are connected by a fixed plate. To do.
(3) In the vertical direction An auxiliary stirring device having means for stirring on the peripheral surface within the range between the two stirring means, rotating together with the inner tube and moving up and down in the axial direction, is provided. Provide on the outer circumference of the tube.
(4) The auxiliary stirrer forms a protrusion or fitting groove that fits into a fitting groove or protrusion formed on the surface of the inner tube.
[0009]
In the above, the stirring and mixing device is configured as follows.
(1) The auxiliary stirring device includes an upper auxiliary stirring device and a lower auxiliary stirring device.
(2) Provided between the upper auxiliary stirring device and the lower auxiliary stirring device is another stirring means that moves up and down together with the stirring shaft or the outer tube and rotates.
[0012]
The discarded concrete pole described later refers to a used pole such as a utility pole or a support pole for a ball-proof net of a ball game field.
[0013]
The cement-based solidifying material described later is a ground improvement material made of cement milk or other hydraulic material, and is used by being injected into the improved ground.
[0014]
Moreover, the shape of the stirring means in the above may be any shape such as a wing shape, a rod shape, or a plate shape.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
(1) The ground improvement body 41 of this invention embeds a concrete pillar 33 as a core material in a soil cement pillar 39 formed by excavating the ground 38 and stirring and mixing the excavated soil and cement milk. It is a structure (FIG. 5, FIG. 4 (g)).
[0016]
(2) Further, the compressive strength of the concrete of the column 33 is stronger than the solidification strength of the soil cement column 39 (although depending on the geology, it is generally less than 0.5 N / mm 2 ), for example, 58.9 N / mm 2 . . Since the solidified strength of the taper-shaped column 33 is made stronger than that of the soil cement column 39, even if the soil cement column 39 is cracked or the like due to an earthquake or the like and the soundness is impaired, the taper-shaped column body which is a core material The building can be supported by 33.
[0017]
(3) The column 33 is used with the end 34 side down, and the diameter gradually increases from the lower side to the upper side with respect to the axial direction of the soil cement column 39.
[0018]
By using the column body 33 having such a shape, when a vertical load is applied, not only the pressing force downward from the lower end surface (end port 34) of the column body 33 but also the oblique downward propagation from the tapered portion. Since the pressing force to act also acts, the peripheral surface frictional force of the column 33 increases, and the supporting force as the whole soil cement column improves.
[0019]
Here, it is known from a vertical load test or the like that the downward pressing force from the lower end surface (end 34) of the column 33 is not horizontal with respect to the axial direction but is transmitted at an angle θ (θ is about 30 degrees). It has been. Therefore, between the lower end surface of the lower end surface 40 and the columnar body 33 of soil cement pillar 39 (end mouth 34), placing the cylindrical body 33 at an end extraoral diameter D 1 or more intervals.
[0020]
(4) For example, when using the column 33 having the end D 1 = 190 mm, the source D 2 = 390 mm, and the length 15 m, the propagation range of the pressing force from the lower end surface (end 34) of the column 33 is In order to ensure, a soil cement column 39 having the following shape is formed.
[0021]
If securing the longitudinal propagation range of the distance L (= 500 mm) from the bottom surface 40 of the soil cement pillar 33 to Sueguchi 34 side of the cylindrical body 33, butt D 2 the outer diameter D 3 of soil cement pillar 39 The horizontal propagation range is ensured to be 1.5 times or more (for example, 700 mm or more). By forming the soil cement column 39 with such dimensions, it is possible to secure the vertical load stress transmitted from the lower end surface (end end 34) of the column body 33 to the lower soil cement. Further, by making the outer diameter D 3 of soil cement pillar 39 and 1.5 times the butt D 2, propagation range of the pressing force from the tapered surface of the pillar 33 can be secured (Fig. 5).
[0022]
(5) Thus, the tapered column body 33 is used as a core material in the soil cement column 39, and the distance L is embedded so as to secure the transmission range of the stress transmitted from the column body 33 to the soil cement column 39. By doing so, the supporting force can be improved by about 1.5 to 2 times as compared with the case where only the conventional soil cement column 39 is based.
[0023]
[Example 1]
Embodiments of the present invention will be described with reference to the drawings.
[0024]
(A) Configuration of the stirring and mixing device 25
The inner tube 1 is inserted inside the outer tube 4 so as to be able to rotate independently of each other, and the inner tube 1 is projected from the lower end 6 of the outer tube 4 by a predetermined length. A mounting cylinder 8 having substantially the same diameter as the outer pipe 4 is fitted and fixed to the lower end portion of the inner pipe 1, and the horizontal rods 9 and 9 having excavation blades 10 and 10 are fixed to the mounting cylinder 8 in a substantially radial manner. . Excavation blades 11 and 11 are also attached to the lower surface of the mounting cylinder 8 (inner tube 1).
[0026]
Further, a ground improvement material (cement milk or the like) discharge port 26 is formed on the side surface of the horizontal bar 9, and the ground improvement material is guided to the discharge port 26 through the inner pipe 1.
[0027]
At the lower end of the outer tube 4, the upper stirring blade 13 is fixed in a projecting manner radially and symmetrically with respect to the diameter (FIG. 1B). At the lower end of the inner tube 1, a rotating cylinder 15 is rotatably fitted above the mounting cylinder 8, and lower stirring blades 16, 16 project radially and symmetrically on the outer surface of the rotating cylinder 15.
[0028]
The upper and lower stirring blades 13 and 16 are attached at the same plane (same phase) with respect to the axis of the inner tube 1, and the tip of the upper stirring blade 13 and the tip of the corresponding lower stirring blade 16 are arranged vertically. They are joined by a fixed plate 18.
[0029]
On the outer periphery of the lower end portion of the inner tube 1, fitting grooves 20, 20 are formed along the axial direction of the inner tube 1 over the entire length between the lower end 6 of the outer tube 4 and the mounting cylinder 8. Two fitting grooves 20 are formed at positions that are symmetrical with respect to the diameter (FIG. 1D).
[0030]
A movable cylinder 22 is attached between the lower end 6 of the outer pipe 4 and the mounting cylinder 8 on the outer periphery of the lower end of the inner pipe 1. Axial ridges 21, 21 are formed on the inner surface of the movable cylinder 22, and the ridges 21 are fitted into the fitting grooves 20 of the inner tube 1, and the movable cylinder 22 is moved up and down ( It is formed so that it can move to the range of H1 (FIG. 1C). Further, since the fitting groove 20 and the protrusion 21 are fitted, the rotation of the moving cylinder 22 is restricted with respect to the inner pipe 1, and the moving cylinder 22 is formed to rotate together with the inner pipe 1. Further, on the outer surface of the moving cylinder 22, the moving agitating blades 23, 23 are provided in a projecting manner in three upper and lower stages in a radial and symmetrical manner. The moving cylinder 22 and the moving stirring blades 23 and 23 constitute an auxiliary stirring device 24.
[0031]
A hollow connecting shaft 2 connected to a rotation support device (not shown) is projected from the upper end of the inner tube 1 to constitute the stirring and mixing device 25 of the present invention (FIG. 1 (a)). The stirring and mixing device 25 connects the connecting shaft 2 of the inner tube 1 to the rotation mechanism of the rotation support device, and supports the upper end portion 5 of the outer tube 4 so that it can rotate freely without depending on the rotation of the inner tube 1. When the inner tube 1 rotates, the upper stirring blade 13 of the outer tube 4 becomes a resistance, and the outer tube 4 does not rotate with the inner tube 1.
[0032]
(B) Other Examples [0033]
(1) In the above embodiment, the ground improvement material is provided in the gap between the excavating blades 11, 11 on the lower surface of the inner tube 1 (the lower surface of the mounting cylinder 8) instead of the discharge port 26 of the reed 9 or together with the discharge port 26. It is also possible to form a discharge port for injecting (not shown). In addition, the discharge port 26 can be provided at other positions as long as the ground improvement material to be discharged can be mixed with the excavated soil to form a homogeneous ground improvement body 41.
[0034]
(2) In the above embodiment, two fitting grooves 20 and two ridges 21 are formed, but one or three or more may be formed (not shown).
[0035]
Moreover, in the said Example, although the fitting groove | channel 20 was formed in the inner pipe | tube 1 and the protrusion 21 was formed in the movable cylinder 22, the fitting groove | channel 20 was formed in the movable cylinder 22 and the protrusion 21 corresponding to the inner pipe | tube 1 was formed. It can also be formed (not shown).
[0036]
(3) In the above embodiment, the fitting grooves 20 and 20 are formed over the entire length between the lower end 6 of the outer tube 4 and the mounting cylinder 8, but other configurations may be used (FIG. 2).
[0037]
For example, a stirring blade is fixed to the outer periphery of the inner tube 1 immediately below the lower end 6 of the outer tube 4, and the stirring blade is fixed to the outer periphery of the inner tube 1 immediately above the mounting cylinder 8, A fitting groove is formed (FIG. 2A). In this case, the movable cylinder 22 can move up and down within the range of H2. Further, two pairs of moving stirring blades 23 and 23 are fixed to the moving cylinder 8. Further, in this case, due to the rotation of the inner tube 1, the recumbent blade 9 to which the excavating blade 10 is attached, the stirring blades 28 and 29, and the auxiliary stirring device 24 rotate simultaneously.
[0038]
As another example of the fitting groove, a rotating cylinder 30 having a fixed stirring blade 31 fixed is fitted on the outer periphery of the inner pipe 1 at a substantially intermediate position between the lower end 6 of the outer pipe 4 and the mounting cylinder 8. The tip of the fixed stirring blade is connected to the center of the fixed plate. Fitting grooves 20a and 20b were formed between the lower end 6 of the outer tube 4 and the rotating cylinder, and between the rotating cylinder and the mounting cylinder 8, respectively, and protrusions were formed on the fitting groove 20a and 20b sides. The movable cylinders 22a and 22b are attached respectively. In this case, the movable cylinder 22a and the movable cylinder 22b can move up and down in the range of H3 and H4, respectively. Similarly, moving stirring blades 23 and 23 are projected from the moving cylinders 22a and 22b. The moving cylinder 22a and the moving stirring blades 23, 23 constitute an upper auxiliary stirring device 24a, and the moving cylinder 22b and the moving stirring blades 23, 23 constitute a lower auxiliary stirring device 24b (FIG. 2 (b)).
[0039]
(4) Moreover, in the said Example, although the fitting groove | channel 20 of the inner tube 1 and the protrusion 21 of the movable cylinder 22 were fitted, it was set as the structure which rotates the movable cylinder 22 with the inner tube 1, It is also possible to omit the joint groove 20 and the protrusion 21 and attach the movable cylinder 22 to the inner tube 1 so as to be rotatable and vertically movable (FIGS. 3A and 3C). In this case, the auxiliary stirring device 24 composed of the moving cylinder 22 and the moving stirring blade 23 freely moves up and down and rotates according to the earth pressure direction regardless of the rotation direction of the inner tube 1.
[0040]
(5) In the above embodiment, since a double tube comprising the inner tube 1 and the outer tube 4 is used, the stirring efficiency by each stirring blade can be increased, but it can also be constituted by a single stirring tube (FIG. Not shown).
[0041]
[Example 2]
Next, the ground improvement body 41 of this invention which embeds the columnar body 33 having a taper as a core material and the construction method of the ground improvement body 41 will be described.
[0042]
(A) Construction method [0043]
(1) The core material used in the practice of the present invention has a small outer diameter D 1 at one end (hereinafter referred to as end port 34) and a large diameter at the other end D 2 (hereinafter referred to as main port 35). It is assumed that the columnar body 33 is made of concrete having a tapered shape and is formed into a centrifugal shape.
[0044]
The column 33 has, for example, a pile length of 15 m, an outer diameter D 1 of the end port 34 of 190 mm, an outer diameter D 2 of the main port 34 of 390 mm, a thickness of 45 mm, and a hollow portion. Is formed. In the wall thickness, PC steel bars (φ10.7-8) and helical rebars wound with PC steel bars are buried, and prestress is introduced. Moreover, in order to increase the bending strength of the column body, a plurality of auxiliary bars (such as deformed steel bars) are arranged along the PC steel bars as necessary.
[0045]
(2) The stirring and mixing device 25 is lowered from above the ground 38 to be improved (FIG. 4A), and the inner pipe 1 is rotated and lowered while excavating the ground 38 with the excavating blades 10 and 11. (FIG. 4B). The excavated excavated soil is agitated by the reeds 9 and 9 provided with the excavating blade 10 and agitated by the moving agitating blades 23 and 23 as the inner pipe 1 rotates. At this time, since the outer tube 4 has a structure in which the upper stirring blade 13 becomes a resistance and does not rotate together with the rotation of the inner tube 1, the upper and lower stirring blades 13 and 16 attached to the outer tube 4 are stirred. Combined, efficient stirring is possible.
[0046]
(3) Further, since the excavated soil stays with the lowering of the stirring and mixing device 25, the auxiliary stirring device 25 rises along the fitting groove 20 of the inner pipe 1 due to the relatively rising earth pressure. The excavated soil lump can be crushed by the upper stirring blade 13 and the uppermost moving stirring blade 23. In addition, once the stirring and mixing device 25 is stopped and slightly lifted, the auxiliary stirring device 24 is lowered along the fitting groove 20 of the inner tube 1, and the lower stirring blade 16 and the lowermost moving stirring blade 23. With this, the excavated soil mass can be crushed.
[0047]
Further, as the excavation progresses, the excavated soil agitated by the respective stirring blades 13, 16, 23, etc. rises, and the retained excavated soil also rises as the excavation proceeds, and the auxiliary agitator 24 moves and agitates. Since the space | interval of the blade | wing 23 and the upper stirring blade 23 became narrow, it grind | pulverizes finely and excavated soil is stirred sufficiently homogeneously.
[0048]
(4) Subsequently, when stirring is completed or while stirring, cement milk (water / cement ratio: 100%, solidification strength of about 0.5 N / mm 2 ) is discharged from the discharge ports 26 and 26 into the excavated soil. Injecting and acting as described above, the excavated soil and the cement milk can be sufficiently stirred and mixed to form a homogeneous soil cement.
[0049]
(5) Subsequently, after excavating, stirring and mixing to a predetermined depth is completed and a desired soil cement column 39 is formed (FIG. 4C), the discharge of cement milk is stopped, and the stirring and mixing device 25 is rotated. While pulling up (FIG. 4 (d)). When the stirring and mixing device 25 is pulled up, the formed soil cement becomes a resistance and a downward force is applied to the auxiliary stirring device 25, and the auxiliary stirring device 24 moves downward along the fitting grooves 20 and 20. To do. At this time, as the auxiliary stirrer 24 is rotated and lowered, the excavated soil adhering to the auxiliary stirrer 24 and the fixed plate 18 is agitated while being finely crushed and scraped off. The lump of excavated soil that has adhered can be prevented from falling into the formed soil cement.
[0050]
In this way, the stirring and mixing device 25 is pulled up to complete the homogeneous soil cement column 39 (FIG. 4E).
[0051]
(6) Next, in the soil cement pillar 39, the pillar body 33 as a core material is gently laid down with the end 34 side down (FIG. 4 (e)). The end 34 of the column 33 is positioned above the bottom surface 40 of the soil cement column 39 by a distance L, and a soil cement layer having a distance L is formed between the end 34 of the column 33 and the bottom of the ground. . The distance L is preferably formed on the outer diameter D 1 or more end mouth 34.
[0052]
As described above, the soil cement pillar 39 is solidified to form the ground improvement body 41 integrated with the pillar body 33 as a core material (FIG. 4F).
[0053]
(7) The formation of the soil cement column 39 and the positioning of the column body 33 in the above are performed as follows, for example (FIG. 6).
[0054]
First, the positioning rod 43a is embedded in the ground outside the soil cement column 39 to be formed, with the embedding position of the column material 33 (core material), that is, the center point 45 of the soil cement column 39 to be formed as a base point. The positioning rod 43b is embedded symmetrically (on the diameter) with the positioning rod 43a. Similarly, the positioning rods 43c and 43d are embedded. Then, excavation is started by the stirring and mixing device 25 to form the soil cement pillar 39.
[0055]
After the stirring and mixing device 25 is pulled up, the positioning rods 43c and 43d and the positioning rods 43c and 43d at the symmetrical positions are connected to the tapes 44 and 44, respectively, and the center point 45 is taken out from the intersection of the tapes 44 and 44. The tape 44 may be a string, a thread, or the like other than the tape as long as it can form a straight line between the positioning rods 43a and 43b.
[0056]
Next, the column body 33 is embedded in the soil cement column 39 with the intersection (that is, the center point 45) aligned with the axis. At this time, the verticality of the pillar member 33 is buried while visually checking with a swinging swing (a weight suspended from the end of a string or the like) or with a light wave measuring device or the like.
[0057]
(B) Other Examples [0058]
(1) In the above embodiment, one column 33 is embedded in the soil cement column 39, but a plurality of columns 33, 33 can also be embedded as a core material (not shown). In this case, as a method of arranging the column bodies 33, the adjacent column bodies may be arranged with an interval between them, or may be arranged in contact with each other without leaving an interval.
[0059]
(2) Moreover, the pillar 33 made from concrete in the said Example may utilize the waste pole used with the electric pole etc. which were formed with concrete. The built-in utility poles, ball-proof net support poles, etc. will be removed after several years and replaced with new ones. Pole poles are crushed as waste poles and treated as industrial waste. Here, despite the fact that there is no problem with the strength of the main body, the reason why it is used as a waste pole is due to a problem in appearance due to deterioration of part of the surface layer of concrete, or damage to the scaffold (bolt) part, etc. Therefore, if the pole is embedded in the soil cement pillar 39, the surface layer of the pole can be prevented from being deteriorated. Furthermore, if this waste pole is reused as the core material of the soil cement pillar 39, it leads to reduction of industrial waste, which is preferable from the environmental viewpoint.
[0060]
Generally, utility poles, etc. are discarded after a specified number of years, regardless of the usage situation, so they are buried in the ground except when cracks etc. occur. There is no problem in use.
[0061]
(3) The agitation method described above is arbitrary. For example, the agitation is performed roughly while excavating to a depth planned to improve the ground, and the agitation and mixing device 25 is moved up and down between the ground 38 and the bottom 40 to uniformly agitate. (Not shown). Also in this case, the cement milk injection time is arbitrary during rough stirring, when rough stirring is completed, and the like.
[0062]
Further, when the stirring and mixing device 25 is almost uniformly stirred to a predetermined depth and the stirring and mixing device 25 is pulled up, the soil cement pillar 39 can be formed by pulling up while stirring and mixing uniformly while pouring cement milk from the bottom 40.
[0063]
(4) In the above-described embodiment, the outer tube 4 is supported so as to be freely rotatable without being connected to a rotating mechanism. However, the outer tube 4 is supported so as not to rotate, or has a speed different from that of the inner tube 1 (fast or It can also be supported so that it can rotate in the same direction at a low speed) or in a different rotation direction from the inner tube 1. Also in this case, it is possible to prevent the outer tube 4 from rotating together with the inner tube 1. Therefore, the excavated soil can be efficiently stirred by the upper and lower stirring blades 13 and 16 and the moving stirring blade 23.
[0064]
【The invention's effect】
By attaching an auxiliary stirrer with a stirring blade fixed to the peripheral surface so that it can move up and down with respect to the axial direction of the stirring rod, it becomes difficult to clog excavated soil in the stirring part, and a homogeneous soil cement column can be formed. The mud adhered to the stirring rod when the rod is pulled up can be subdivided without dropping into the soil cement below.
[0065]
After injecting cement-based solidification material into the ground and mixing and stirring with soil to form a soil cement column, it becomes stronger than the solidification strength of the soil cement column and decreases in diameter from the upper end to the lower end formed by centrifugal molding. When a pillar with a taper is embedded in soil cement as a core material, it is formed in a shape (diameter, depth) that can ensure the transmission range of the vertical load transmitted from the lower end surface of the pillar to the soil cement pillar. As a result, the transmission load is not broken, the support force at the tip is improved, and the support force of the entire improved body is improved in combination with the frictional force at the tapered portion.
[0066]
If the waste concrete pole is reused as a tapered pillar body embedded in the soil cement pillar, it leads to the reduction of industrial waste and the environmental performance is improved.
[Brief description of the drawings]
1A is a front view of a stirring and mixing apparatus of the present invention, FIG. 1B is a partially enlarged end view taken along line AA in FIG. 1A, and FIG. The partial expanded end view in a line, (d) is the partially expanded end view in CC line of (a).
FIGS. 2A and 2B are front views of another stirring and mixing apparatus. FIG.
3A is a front view of another stirring and mixing apparatus, FIG. 3B is a plan view, and FIG. 3C is a cross-sectional view taken along line DD of FIG.
4 (a) to 4 (f) are schematic longitudinal sectional views for explaining the ground improvement method of the present invention.
FIG. 5 is a diagram for explaining the stress acting on the ground improvement body of the present invention.
FIG. 6 is a schematic plan view for explaining positioning in the embedding method of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Inner pipe | tube 4 Outer pipe | tube 6 The lower end 8 of an outer pipe | tube 9 Mounting cylinder 9 Excavation blade 11 Excavation blade 13 Excavation blade 13 Upper stirring blade 15 Rotating cylinder 16 Lower stirring blade 18 Fixing plate 20, 20a, 20b Fitting groove 21 ridge 22, 22a, 22b Moving cylinder 23 Moving agitating blade 24 Auxiliary agitating device 25 Agitating and mixing device 26 Discharge port 28 Agitating blade 29 Agitating blade 30 Rotating cylinder 31 Fixed agitating blade 33 Column 34 The end of the column (small diameter, lower end)
35 Column wide opening (thick diameter, top)
38 Ground 39 Soil cement pillar 40 Bottom of soil cement pillar 41 Ground improvement body

Claims (3)

以下のように構成したことを特徴とする撹拌混合装置。
(1)改良対象の地盤中に貫入される撹拌軸の外周に、該撹拌軸に固定されて撹拌軸と共に上下してかつ回転する撹拌手段と、該撹拌軸に沿って独立して上下動し、かつ前記撹拌軸と独立して回転する補助撹拌装置とを設けた。
(2)前記撹拌手段を上下に所定間隙を設けて配置した上撹拌手段と下撹拌手段として、前記間隙内に補助撹拌装置を設けた。
An agitating and mixing apparatus having the following configuration .
(1) Stirring means fixed to the stirring shaft, which moves up and down with the stirring shaft and rotates around the outer periphery of the stirring shaft penetrating into the ground to be improved, and independently moves up and down along the stirring shaft. And an auxiliary stirring device that rotates independently of the stirring shaft .
(2) An auxiliary stirring device is provided in the gap as an upper stirring means and a lower stirring means in which the stirring means is arranged with a predetermined gap above and below.
以下のように構成したことを特徴とする撹拌混合装置。
(1) 互いに独立して回転できる内管と外管とで2重管状の撹拌軸を構成する。
(2) 前記外管の下端部に固定した撹拌手段と、前記外管より下方で前記内管の外周に、前記内管に対して回転自在に取り付けた下撹拌手段とを固定板で連結する。
(3) 上下方向で前記両撹拌手段間の範囲内に、周面に撹拌する手段を有し、前記内管と共に回転してかつ軸方向に上下動する補助撹拌装置を、前記内管外周に設ける。
(4) 前記補助撹拌装置は、前記内管の表面に形成した嵌合溝又は突条と嵌合する突条又は嵌合溝を形成する。
An agitating and mixing apparatus having the following configuration .
(1) A double tubular stirring shaft is composed of an inner tube and an outer tube that can rotate independently of each other .
(2) a stirring means on which is fixed to the lower end of the outer tube, the outer periphery of the inner tube below the outer tube, and a lower stirring means were Attach rotatable relative to the inner tube in a fixed plate Connect .
(3) within the range between the two stirring means in the vertical direction, and means for stirring the peripheral surface, the auxiliary stirring device moving up and down by rotating and axially with said inner tube, said inner tube outer periphery provided Ru.
(4) The auxiliary stirrer forms a protrusion or fitting groove that fits into a fitting groove or protrusion formed on the surface of the inner tube.
以下のように構成したことを特徴とする請求項1又は2記載の撹拌混合装置。3. The stirring and mixing apparatus according to claim 1, wherein the stirring and mixing apparatus is configured as follows.
(1)補助撹拌装置を、上補助撹拌装置と下補助撹拌装置とから構成する。(1) The auxiliary stirring device includes an upper auxiliary stirring device and a lower auxiliary stirring device.
(2)前記上補助撹拌装置と下補助撹拌装置との間に、撹拌軸又は外管、と共に上下動してかつ回転する他の撹拌手段を設ける。(2) Between the upper auxiliary stirring device and the lower auxiliary stirring device, another stirring means that moves up and down together with the stirring shaft or the outer tube and rotates is provided.
JP2001246048A 2001-08-14 2001-08-14 Stir and mixing device Expired - Lifetime JP4789031B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001246048A JP4789031B2 (en) 2001-08-14 2001-08-14 Stir and mixing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001246048A JP4789031B2 (en) 2001-08-14 2001-08-14 Stir and mixing device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010245685A Division JP5140136B2 (en) 2010-11-01 2010-11-01 Ground improvement body, ground improvement method

Publications (2)

Publication Number Publication Date
JP2003055956A JP2003055956A (en) 2003-02-26
JP4789031B2 true JP4789031B2 (en) 2011-10-05

Family

ID=19075682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001246048A Expired - Lifetime JP4789031B2 (en) 2001-08-14 2001-08-14 Stir and mixing device

Country Status (1)

Country Link
JP (1) JP4789031B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016000925A (en) * 2014-06-12 2016-01-07 株式会社エルフ Fixing method of column

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH063015B2 (en) * 1987-06-26 1994-01-12 一治 藤戸 Co-rotation prevention forced stirring device
JPH0827772A (en) * 1994-07-20 1996-01-30 Nippon Concrete Ind Co Ltd Mixing and stirring device for ground improvement
JPH0853834A (en) * 1994-08-10 1996-02-27 Nippon Concrete Ind Co Ltd Mixing and stirring device for ground improvement

Also Published As

Publication number Publication date
JP2003055956A (en) 2003-02-26

Similar Documents

Publication Publication Date Title
CN112323777A (en) Hollow precast pile for rock embedding and rock embedding construction method using precast pile
JP5075091B2 (en) Casting method for cast-in-place piles
JP5140136B2 (en) Ground improvement body, ground improvement method
JP4789031B2 (en) Stir and mixing device
JP5075094B2 (en) Construction method and foundation structure of foundation structure in structure
JPH11217829A (en) Construction of footing pile, footing pile, and precast hollow pile
JP2005282043A (en) Earth retaining wall reinforcing method
JP2003055965A (en) Soil cement columnar body with thin steel pipe present as core material and its construction method
JP5075093B2 (en) Construction method and foundation structure of foundation structure in structure
JP2000144726A (en) Cast-in-place pile, underground wall and their constructing method
JP4724873B2 (en) Ready-made pile
JP2819025B2 (en) Soft ground improvement method
JP2004137670A (en) Construction method for foundation pile and apparatus for it
JP2000144727A (en) Construction method of footing pile
JPH1060879A (en) Building foundation and construction method thereof
JP6634251B2 (en) Pile foundation structure, ready-made pile burying device, method of constructing pile foundation structure using said ready-made pile burying device
JP2003027481A (en) Tremie pipe, coupling construction thereof, and attaching and detaching method therefor
JPH0280710A (en) Preparing cast-in-place concrete pile
JPS6051220A (en) Improvement work of ground
CN115182334B (en) Construction method of rotary-excavated cast-in-place pile under high backfill geological condition of miscellaneous fill
JP5075092B2 (en) Construction method and foundation structure of foundation structure in structure
JPH071438A (en) Mixture of steel fiber and liquid for concretion and production of mixture and product of mixture in earth
CN118390489A (en) Karst geological foundation reinforcement structure and construction method
JPH04146324A (en) Execution method for cast-in-place concrete pile
JP3890427B2 (en) Improved column construction method for ground improvement

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110708

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4789031

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term