JP4787088B2 - Electrode pattern forming method - Google Patents

Electrode pattern forming method Download PDF

Info

Publication number
JP4787088B2
JP4787088B2 JP2006174291A JP2006174291A JP4787088B2 JP 4787088 B2 JP4787088 B2 JP 4787088B2 JP 2006174291 A JP2006174291 A JP 2006174291A JP 2006174291 A JP2006174291 A JP 2006174291A JP 4787088 B2 JP4787088 B2 JP 4787088B2
Authority
JP
Japan
Prior art keywords
electrode
dielectric constant
mask material
measurement sample
relative dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006174291A
Other languages
Japanese (ja)
Other versions
JP2008001959A (en
Inventor
義哉 日下
亜希子 下川
和光 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumika Chemical Analysis Service Ltd
Original Assignee
Sumika Chemical Analysis Service Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumika Chemical Analysis Service Ltd filed Critical Sumika Chemical Analysis Service Ltd
Priority to JP2006174291A priority Critical patent/JP4787088B2/en
Publication of JP2008001959A publication Critical patent/JP2008001959A/en
Application granted granted Critical
Publication of JP4787088B2 publication Critical patent/JP4787088B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)

Description

本発明は、電極パターン形成方法に関する。   The present invention relates to an electrode pattern forming method.

試料の電気特性を測定する場合、試料に電圧を印加するための電極パターンを形成する必要がある。この電極パターンは、金属マスクを用いて形成する方法が考えられる。しかし、単に試料の電気特性の測定のためにそのような方法を用いるのは、コストの面から現実的ではない。そこで、簡易的な電極パターン形成方法として、紙製の基材の表面に粘着剤が設けられたマスク材によって試料をマスクし、電極材料を蒸着する方法が用いられている。   When measuring the electrical characteristics of a sample, it is necessary to form an electrode pattern for applying a voltage to the sample. The electrode pattern can be formed using a metal mask. However, using such a method simply for measuring the electrical properties of a sample is not practical in terms of cost. Therefore, as a simple electrode pattern forming method, a method is used in which a sample is masked with a mask material in which an adhesive is provided on the surface of a paper substrate, and the electrode material is vapor-deposited.

しかしながら、上述の紙製の基材で構成されるマスク材によるマスクでは、電極材料を蒸着した際に紙製の基材が変質して破れ易くなり、マスク材を剥がせなくなる場合があった。また、電極材料の蒸着のために試料を蒸着装置の真空チャンバー内に入れると、紙製の基材はアウトガスが多いため、蒸着可能な真空度に達するまでに長い時間がかかるという問題点があった。   However, in the mask made of the mask material composed of the above-mentioned paper base material, when the electrode material is vapor-deposited, the paper base material changes in quality and is easily broken, and the mask material may not be peeled off. In addition, when a sample is placed in the vacuum chamber of the vapor deposition apparatus for electrode material vapor deposition, the paper base material has a large amount of outgas, so that it takes a long time to reach the degree of vacuum that allows vapor deposition. It was.

本発明はこのような従来の問題点を解決するためになされたもので、マスク材を容易に剥がすことができ、試料を真空装置内に入れた時にマスク材からのアウトガスが少ない電極パターンの形成方法を提供することを目的とする。   The present invention has been made to solve such conventional problems. The mask material can be easily peeled off, and an electrode pattern can be formed with less outgas from the mask material when the sample is placed in a vacuum apparatus. It aims to provide a method.

本発明に係る電極パターン形成方法は、試料の表面に対して、基材の表面に粘着剤が設けられたマスク材を貼り付けることにより、試料の表面の一部をマスクする工程と、マスク材の上から試料の表面に、気相成長法によって金属膜を成膜する工程とを備え、基材は、フッ素樹脂製であることを特徴とする。   The electrode pattern forming method according to the present invention includes a step of masking a part of the surface of the sample by attaching a mask material provided with an adhesive on the surface of the substrate to the surface of the sample, and a mask material And a step of forming a metal film on the surface of the sample by vapor phase epitaxy from above, and the base material is made of a fluororesin.

この電極パターン形成方法では、フッ素樹脂は耐熱性が高く化学的に安定なため電極材料を成膜後も劣化することはほとんどない。従って、成膜後にマスク材を試料から剥がす際に基材が破れてしまい、マスク材を剥がせなくなることは非常に少ない。またフッ素樹脂は電極材料の成膜装置の真空チャンバー内に置かれてもアウトガスが少ないため、成膜可能な真空度まで短時間で到達する。   In this electrode pattern forming method, since the fluororesin has high heat resistance and is chemically stable, it hardly deteriorates after the electrode material is formed. Therefore, when the mask material is peeled off from the sample after film formation, the base material is torn and the mask material cannot be peeled off very rarely. Further, since the fluororesin has little outgas even when placed in the vacuum chamber of the electrode material film forming apparatus, it reaches the degree of vacuum capable of film formation in a short time.

また、フッ素樹脂は、ポリテトラフルオロエチレンであることが好ましい。ポリテトラフルオロエチレンはフッ素樹脂の中でも耐熱性が高く化学的に安定なため、マスク材を試料から剥がせなくなることはさらに少なくなる。   The fluororesin is preferably polytetrafluoroethylene. Since polytetrafluoroethylene has high heat resistance and is chemically stable among fluororesins, it is further less likely that the mask material cannot be removed from the sample.

また、気相成長法は、真空蒸着法であることが好ましい。真空蒸着法は気相成長法の中でも簡易的な成膜方法であるため、簡易的に電極パターンを形成することができる。   The vapor phase growth method is preferably a vacuum vapor deposition method. Since the vacuum deposition method is a simple film formation method among the vapor phase growth methods, an electrode pattern can be easily formed.

また、金属は、金、銀、銅及びアルミニウムからなる群から選ばれる1の金属又はこの群から選ばれる2以上の金属の合金であることが好ましい。この場合、抵抗率の低い金属で電極パターンを形成することができるため、試料の電気特性を正確に測定することができる。   The metal is preferably one metal selected from the group consisting of gold, silver, copper and aluminum, or an alloy of two or more metals selected from this group. In this case, since the electrode pattern can be formed of a metal having a low resistivity, the electrical characteristics of the sample can be accurately measured.

本発明によれば、マスク材を容易に剥がすことができ、試料を真空装置内に入れた時にマスク材からのアウトガスが少ない電極パターンの形成方法が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the mask material can be peeled easily and the formation method of an electrode pattern with little outgas from a mask material when a sample is put in a vacuum device is provided.

以下、添付図面を参照して本発明に係る電極パターンの形成方法の実施の形態について詳細に説明する。なお、同一又は同等の要素については同一の符号を付し、説明が重複する場合にはその説明を省略する。   Embodiments of an electrode pattern forming method according to the present invention will be described below in detail with reference to the accompanying drawings. In addition, the same code | symbol is attached | subjected about the same or equivalent element, and the description is abbreviate | omitted when description overlaps.

電極パターン形成が必要な電気的特性の測定方法の種類には様々なものがあるが、ここでは誘電体試料の比誘電率の測定に本発明を適用する形態について図1〜図3を用いて説明する。   There are various types of measurement methods of electrical characteristics that require electrode pattern formation, but here, an embodiment in which the present invention is applied to measurement of relative permittivity of a dielectric sample will be described with reference to FIGS. explain.

まず、図1(a)に示すような誘電体試料1を用意する。誘電体試料1は、例えば、一辺の長さがDの正方形の薄い平板状である。また、図1(b)及び(c)に示すようなマスク材12及び15を用意する。マスク材12は、一辺の長さがDの正方形の中心から直径d3(<D)の円を切り取った形状をしている。また、マスク材15は、内径d1外径d2(d1<d2)の環状をしている。図1(d)は図1(b)及び(c)のI-I端面図である。図1(d)に示すように、マスク材12及び15は、フッ素樹脂製のシート状の基材2と、基材2の表面に設けられた粘着材3を備えている。 First, a dielectric sample 1 as shown in FIG. The dielectric sample 1 is, for example, a thin flat plate having a square length of D on one side. Further, mask materials 12 and 15 as shown in FIGS. 1B and 1C are prepared. The mask material 12 has a shape obtained by cutting a circle having a diameter d 3 (<D) from the center of a square having a side length of D. The mask material 15 has an annular shape with an inner diameter d 1 and an outer diameter d 2 (d 1 <d 2 ). FIG.1 (d) is an II end view of FIG.1 (b) and (c). As shown in FIG. 1 (d), the mask materials 12 and 15 include a fluororesin sheet-like base material 2 and an adhesive material 3 provided on the surface of the base material 2.

フッ素樹脂としては、例えば、ポリテトラフルオロエチレン、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン・エチレン共重合体、またはポリビニリデンフルオライド等が挙げられる。中でも、ポリテトラフルオロエチレンは特に耐熱性が高く、かつ化学的に安定なため、好ましい。   Examples of the fluororesin include polytetrafluoroethylene, tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer, tetrafluoroethylene / hexafluoropropylene copolymer, tetrafluoroethylene / ethylene copolymer, or polyvinylidene fluoride. Is mentioned. Among these, polytetrafluoroethylene is preferable because it has particularly high heat resistance and is chemically stable.

基材の厚さは特に限定されないが、例えば20〜100μmとすることができる。   Although the thickness of a base material is not specifically limited, For example, it can be set as 20-100 micrometers.

また、粘着材3の材質は特に限定されないが、例えばアクリル系粘着材等を粘着材3として用いることができる。粘着材3の厚さも特に限定されないが、例えば10〜100μmとすることができる。   The material of the adhesive material 3 is not particularly limited, but for example, an acrylic adhesive material or the like can be used as the adhesive material 3. Although the thickness of the adhesive material 3 is not specifically limited, For example, it can be 10-100 micrometers.

次に、図2(b)及び図2(b)のIIa-IIa線端面図である図2(a)に示すように、誘電体試料1の一方の表面にマスク材12及びマスク材15を、それぞれの中心点が略一致するように粘着剤3により貼り付ける。このようにして、誘電体試料1の一方の表面の一部がマスクされたマスク試料10aが作成される。   Next, as shown in FIG. 2A, which is an end view taken along the line IIa-IIa of FIGS. 2B and 2B, a mask material 12 and a mask material 15 are formed on one surface of the dielectric sample 1. The adhesive 3 is pasted so that the respective center points substantially coincide. In this way, a mask sample 10a in which a part of one surface of the dielectric sample 1 is masked is created.

次に、図2(d)及び図2(d)のIIc-IIc線端面図である図2(c)に示すように、マスク試料10aの他方の表面にマスク材12のみを、それぞれの中心点が略一致するように粘着材3により貼り付ける。このようにして、誘電体試料1の両面の一部がマスクされたマスク試料10bが作成される。   Next, as shown in FIG. 2 (c), which is an end view taken along line IIc-IIc in FIGS. 2 (d) and 2 (d), only the mask material 12 is placed on the other surface of the mask sample 10a. It sticks with the adhesive material 3 so that a point may correspond substantially. In this way, a mask sample 10b in which a part of both surfaces of the dielectric sample 1 is masked is created.

次にマスク試料10bの両面に電極として機能する金属膜を成膜する。具体的には、マスク試料10bを真空蒸着機のチャンバー内に入れ、まずマスク試料10bの一方の表面に電極材料である金属膜20を真空蒸着法によって成膜する。すると、図3(a)に示すようにマスク試料10bの一方の表面のうち、マスク材12又はマスク材15によってマスクされていない部分には金属膜20が直接成膜され、マスクされた部分はマスク材12及びマスク材15上に金属膜20が成膜される。   Next, a metal film functioning as an electrode is formed on both surfaces of the mask sample 10b. Specifically, the mask sample 10b is put in a chamber of a vacuum evaporation machine, and first, a metal film 20 as an electrode material is formed on one surface of the mask sample 10b by a vacuum evaporation method. Then, as shown in FIG. 3A, a metal film 20 is directly formed on a portion of one surface of the mask sample 10b that is not masked by the mask material 12 or the mask material 15, and the masked portion is A metal film 20 is formed on the mask material 12 and the mask material 15.

次に、マスク試料10bからマスク材12及びマスク材15を剥がす。すると、図3(b)及び(c)に示すように、金属膜20のうち、マスク試料10bの表面に直接成膜された部分のみが残る。成膜された金属膜20のうち、マスク試料10bの表面の中心部に円板上に成膜された部分が主電極5となり、マスク試料10bの表面に環状に成膜された部分がガード電極7となる。このようにして電極付き試料30aが作成される。   Next, the mask material 12 and the mask material 15 are peeled off from the mask sample 10b. Then, as shown in FIGS. 3B and 3C, only a portion of the metal film 20 directly formed on the surface of the mask sample 10b remains. Of the deposited metal film 20, the portion deposited on the disc at the center of the surface of the mask sample 10b becomes the main electrode 5, and the portion deposited annularly on the surface of the mask sample 10b is the guard electrode. 7 In this way, the electrode-attached sample 30a is prepared.

続いて、電極付き試料30aの電極が形成されていない側の表面に金属膜20を成膜し(図3(d))、マスク材12を剥がすことにより、対電極9を形成する(図3(e)及び(f))。このようにして、一方の表面に主電極5及びガード電極7が形成され、他方の表面に対電極9が形成された電極付き試料30bが作成される。ここで、金属膜20の厚さは特に制限されないが、例えば0.5〜5μmとすることができる。なお、図3(a)の状態からマスク材12、15を剥がさずに、裏面に対電極9用の金属膜20を形成し、その後マスク材12、15を剥がしてもよい。   Subsequently, the metal film 20 is formed on the surface of the electrode-attached sample 30a where the electrode is not formed (FIG. 3D), and the mask material 12 is peeled off to form the counter electrode 9 (FIG. 3). (e) and (f)). In this way, the electrode-attached sample 30b is formed in which the main electrode 5 and the guard electrode 7 are formed on one surface and the counter electrode 9 is formed on the other surface. Here, the thickness of the metal film 20 is not particularly limited, but may be, for example, 0.5 to 5 μm. Note that the metal film 20 for the counter electrode 9 may be formed on the back surface without removing the mask materials 12 and 15 from the state of FIG. 3A, and then the mask materials 12 and 15 may be peeled off.

金属膜20の材料は、金属であれば特に限定はされないが、例えば金、銀、銅またはアルミニウム、あるいは金、銀、銅及びアルミニウムからなる群から選ばれる2以上の金属の合金が挙げられる。これらは抵抗率の低い金属であり、電気特性測定の電極として使用することにより、誤差の少ない測定が可能となる。電極材料の成膜方法としては、真空蒸着法が最も簡便な方法であるため好適であるが、他の気相成長法でもよく、例えばスパッタリング法、イオンプレーティング法等の物理気相成長法や、MOCVD法等の化学気相成長法であってもよい。   The material of the metal film 20 is not particularly limited as long as it is a metal, and examples thereof include gold, silver, copper or aluminum, or an alloy of two or more metals selected from the group consisting of gold, silver, copper and aluminum. These are metals with low resistivity, and by using them as electrodes for measuring electrical characteristics, it is possible to perform measurement with little error. As a film forming method of the electrode material, vacuum vapor deposition is preferable because it is the simplest method, but other vapor deposition methods may be used, for example, physical vapor deposition methods such as sputtering and ion plating, Alternatively, chemical vapor deposition such as MOCVD may be used.

また、主電極5の直径d1の大きさは特に限定されないが、例えば4〜51mmとすることができる。ガード電極の内径d2の大きさも特に限定されず、例えば8〜52mmとすることができ、ガード電極の外径d3の大きさも特に限定されず、例えば10〜62mmとすることができる。さらに、対電極9の直径d3の大きさも特に限定されず、例えば10〜62mmとすることができる。 Further, the size of the diameter d 1 of the main electrode 5 is not particularly limited, but may be, for example, 4 to 51 mm. The inner diameter d 2 of the shield electrode is not particularly limited, for example 8~52mm and it is possible to, the size of the outer diameter d 3 of the shield electrode is not particularly limited and may be, for example, 10~62Mm. Furthermore, the size of the diameter d 3 of the counter electrode 9 is not particularly limited, and can be, for example, 10 to 62 mm.

なお、上記実施形態では、試料の両面にマスクをした後に両面に電極膜を形成しているが、一方の表面にマスク及び電極膜の形成をし、その後に他方の表面にマスク及び電極膜を形成してもよい。   In the above embodiment, the electrode film is formed on both surfaces after masking on both surfaces of the sample. However, the mask and electrode film are formed on one surface, and then the mask and electrode film are formed on the other surface. It may be formed.

上述のような電極パターン形成方法によれば、上記電極材料の成膜の際に用いるマスク材12及びマスク材15を構成する基材2は、フッ素樹脂製であるため、真空中に置かれた場合にアウトガスの発生量が少ない。そのため、従来のように紙製の基材で構成されるマスク材を用いた場合と比較して、蒸着可能な真空度に短時間で到達するため、電極パターン形成に必要な時間を短縮することができる。また、大量の試料に電極を形成しても、試料からのアウトガスが少なく真空装置のチャンバー内はそれほど汚染されないため、高純度の成膜が可能となる。   According to the electrode pattern forming method as described above, since the mask material 12 and the base material 2 constituting the mask material 15 used when forming the electrode material are made of fluororesin, they are placed in a vacuum. When outgas generation is small. Therefore, compared with the case where a mask material composed of a paper base material is used as in the prior art, the time required for electrode pattern formation is shortened in order to reach the degree of vacuum that can be deposited in a short time. Can do. In addition, even when electrodes are formed on a large amount of sample, the amount of outgas from the sample is small, and the inside of the chamber of the vacuum apparatus is not significantly contaminated, so that high-purity film formation is possible.

さらに、上記の電極パターン形成の際に使用するマスク材12及びマスク材15を構成する基材2として用いるフッ素樹脂は、耐熱性が高く化学的に安定である。そのため、金属膜20を成膜中に基材2が変質する可能性は低い。従って、紙製の基材で構成されるマスク材を使用した場合と異なり、マスク材12及び15を剥がす際に基材が変質して破れてしまい、マスク材の一部が誘電体試料に残ってしまうことは極めて起こりにくい。また、加工が容易な材質であるため、マスク材の形状を自在に作成することができ、短時間かつ容易に電極パターンを形成することができる。   Further, the fluororesin used as the base material 2 constituting the mask material 12 and the mask material 15 used in the above electrode pattern formation has high heat resistance and is chemically stable. Therefore, the possibility that the base material 2 is altered during the formation of the metal film 20 is low. Therefore, unlike the case of using a mask material composed of a paper base material, the base material is altered and torn when the mask materials 12 and 15 are peeled off, and a part of the mask material remains on the dielectric sample. It is extremely unlikely to occur. Further, since the material is easy to process, the shape of the mask material can be freely created, and the electrode pattern can be easily formed in a short time.

次に、上述の工程により作成した電極付き試料30bを用いた、比誘電率測定の方法について説明する。図2(e)に示すように、主電極5は、直径がd1の円板状の電極である。ガード電極7は、内径d2外径d3の環状の電極であり、d1<d2<d3の関係がある。主電極5とガード電極7は、それぞれの中心点が略一致するように形成されているため、主電極5とガード電極7の間には、一定幅の輪状のすきまが形成される。また、図3(a)に示すように、対電極9は、直径がガード電極7の外径と等しいd3の円板状の電極であり、誘電体試料1を介して主電極5及びガード電極7と対向する位置に形成されている。 Next, a method for measuring the relative dielectric constant using the electrode-attached sample 30b prepared by the above-described process will be described. As shown in FIG. 2 (e), the main electrode 5, it is disk-shaped electrodes of the d 1 diameter. Guard electrode 7 is an annular electrode having an inner diameter d 2 outer diameter d 3, a relationship of d 1 <d 2 <d 3 . Since the main electrode 5 and the guard electrode 7 are formed so that their center points substantially coincide with each other, a ring-shaped gap having a constant width is formed between the main electrode 5 and the guard electrode 7. Further, as shown in FIG. 3A, the counter electrode 9 is a disk-shaped electrode having a diameter d 3 equal to the outer diameter of the guard electrode 7, and the main electrode 5 and the guard through the dielectric sample 1. It is formed at a position facing the electrode 7.

比誘電率を測定するには、電極付き試料30bをブリッジ回路に接続し、交流電圧を印加した時のブリッジ回路の平衡条件から誘電体試料1の静電容量を測定する。その値と既知の値である誘電体試料1の厚さ、主電極5の面積及び真空の誘電率から、誘電体試料1の比誘電率を求めることができる。また、主電極5を取り囲むようにガード電極7が形成されているが、これはブリッジ回路での静電容量の測定時に、主電極5と対電極9間の浮遊容量の影響をなくすためである。従って、ガード電極7を形成することにより、静電容量の測定精度を向上させることができる。   In order to measure the relative dielectric constant, the electrode-attached sample 30b is connected to a bridge circuit, and the capacitance of the dielectric sample 1 is measured from the equilibrium condition of the bridge circuit when an AC voltage is applied. The relative dielectric constant of the dielectric sample 1 can be obtained from the value and the known thickness of the dielectric sample 1, the area of the main electrode 5, and the dielectric constant of the vacuum. In addition, the guard electrode 7 is formed so as to surround the main electrode 5 in order to eliminate the influence of the stray capacitance between the main electrode 5 and the counter electrode 9 when measuring the electrostatic capacitance in the bridge circuit. . Therefore, by forming the guard electrode 7, the capacitance measurement accuracy can be improved.

なお、誘電体試料1の形状は正方形状に限られず、多角形状、円形状、楕円形状等であってもよい。主電極及び対電極の形状も円形に限られず、楕円形状、多角形状等であってもよく、ガード電極の形状も主電極を取り囲む形状であればよい。また、特にガード電極を設けないこともできる。   The shape of the dielectric sample 1 is not limited to a square shape, and may be a polygonal shape, a circular shape, an elliptical shape, or the like. The shape of the main electrode and the counter electrode is not limited to a circle, and may be an elliptical shape, a polygonal shape, or the like, and the shape of the guard electrode may be any shape that surrounds the main electrode. In particular, it is possible not to provide a guard electrode.

また、上記実施形態は、誘電体試料の比誘電率(静電容量)の測定を行う場合の実施形態だが、それ以外の電気的特性、例えば導体試料の抵抗率の測定等を行う場合の電極パターン形成に本発明を適用してもよい。本発明のマスク材は加工が容易なため、測定方法の種類に合わせて様々な形状の電極を簡易的な方法で作成することができる。また、上述の効果により、短時間で様々な形状の電極を作成することができる。   Moreover, although the said embodiment is embodiment when measuring the dielectric constant (capacitance) of a dielectric material sample, it is an electrode when measuring other electrical characteristics, for example, the resistivity of a conductor sample, etc. The present invention may be applied to pattern formation. Since the mask material of the present invention is easy to process, electrodes having various shapes can be prepared by a simple method according to the type of measurement method. In addition, due to the above-described effects, various shapes of electrodes can be created in a short time.

以下、本発明の効果をより一層明らかなものとするため、実施例および比較例を用いて説明する。
(実施例)
Hereinafter, in order to further clarify the effects of the present invention, description will be made using examples and comparative examples.
(Example)

石英ガラスの比誘電率及び誘電正接の測定を行った。石英ガラスとして、25mm角で厚さ0.64mmの寸法の試料を用いた。石英ガラスの一方の表面に、マスク材を用いて主電極及びガード電極を作成し、他方の表面にはマスク材を用いて対電極を作成した。電極形成の際のマスク材として、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体製の基材とアクリル系の粘着材を備えるマスク材を用いた。金製の電極(金属膜)を、真空蒸着法により1〜2μmの厚さに成膜することにより形成した。具体的には、主電極を直径10mmの円形に形成し、ガード電極を内径13mm外径20mmの環状に形成した。対電極を直径20mmの円形に形成した。   The relative dielectric constant and dielectric loss tangent of quartz glass were measured. A sample having a size of 25 mm square and a thickness of 0.64 mm was used as quartz glass. A main electrode and a guard electrode were formed on one surface of quartz glass using a mask material, and a counter electrode was formed on the other surface using a mask material. As a mask material for electrode formation, a mask material comprising a base material made of a tetrafluoroethylene / hexafluoropropylene copolymer and an acrylic adhesive material was used. A gold electrode (metal film) was formed by forming a film having a thickness of 1 to 2 μm by a vacuum deposition method. Specifically, the main electrode was formed in a circular shape having a diameter of 10 mm, and the guard electrode was formed in an annular shape having an inner diameter of 13 mm and an outer diameter of 20 mm. The counter electrode was formed in a circle with a diameter of 20 mm.

上記のように電極を形成した石英ガラスを、アジレント製 16451B 誘電率測定器具を用いてブリッジ回路に接続した。測定周波数1kHz及び測定電圧1Vの条件でブリッジ回路を平衡状態にし、アジレント製4284A精密LCRメーターを用いて、静電容量を測定した。静電容量の値から、比誘電率及び誘電正接を計算した。
(比較例)
The quartz glass on which the electrodes were formed as described above was connected to a bridge circuit using an Agilent 16451B dielectric constant measuring instrument. The bridge circuit was balanced under the conditions of a measurement frequency of 1 kHz and a measurement voltage of 1 V, and the capacitance was measured using an Agilent 4284A precision LCR meter. From the capacitance value, the relative dielectric constant and the dielectric loss tangent were calculated.
(Comparative example)

マスク材の基材を紙製とする以外は、実施例と同様に電極を形成し、静電容量の測定を行った。   Except that the base material of the mask material was made of paper, electrodes were formed in the same manner as in the examples, and the capacitance was measured.

図4に、実施例及び比較例の電極形成結果及び測定結果を示す。実施例では、電極パターン形成後のマスク材除去は問題なく行うことができた。比較例では、紙製の基材が破れてしまい、マスク材を完全に除去することができなかった。また、実施例では、各電極作成の為に真空蒸着装置内に入れた時、蒸着可能な真空度に達するまでの時間は、約8分であり、比較例では約30分であった。比誘電率及び誘電正接の測定結果は、実施例ではそれぞれ3.8及び0.002であり、比較例では測定ができなかった。   In FIG. 4, the electrode formation result and measurement result of an Example and a comparative example are shown. In the example, the mask material removal after forming the electrode pattern could be performed without any problem. In the comparative example, the paper base material was torn and the mask material could not be completely removed. Further, in the example, when it was put in a vacuum vapor deposition apparatus for producing each electrode, the time required to reach a vacuum degree capable of vapor deposition was about 8 minutes, and in the comparative example, it was about 30 minutes. The measurement results of the relative dielectric constant and the dielectric loss tangent were 3.8 and 0.002 in the examples, respectively, and could not be measured in the comparative examples.

誘電体試料(a)、2種類のマスク材(b)(c)及びマスク材の端面図(d)である。FIG. 2 is an end view (d) of a dielectric sample (a), two types of mask materials (b) and (c), and a mask material. 試料の両面の一部をマスクする工程図である。It is process drawing which masks a part of both surfaces of a sample. 試料の両面に電極パターンを形成する工程図である。It is process drawing which forms an electrode pattern on both surfaces of a sample. 実施例及び比較例の電極形成結果及び測定結果を示す表である。It is a table | surface which shows the electrode formation result and measurement result of an Example and a comparative example.

符号の説明Explanation of symbols

1…誘電体試料、2…マスク材の基材、3…粘着材、5…主電極、7…ガード電極、9…対電極、10a,10b…マスク試料、12,15…マスク材、20…金属膜、30a,30b…電極付き試料。
DESCRIPTION OF SYMBOLS 1 ... Dielectric sample, 2 ... Base material of mask material, 3 ... Adhesive material, 5 ... Main electrode, 7 ... Guard electrode, 9 ... Counter electrode, 10a, 10b ... Mask sample, 12, 15 ... Mask material, 20 ... Metal film, 30a, 30b ... Sample with electrodes.

Claims (4)

比誘電率測定試料の表面に対して、基材の表面に粘着剤が設けられたマスク材を貼り付けることにより、前記比誘電率測定試料の表面の一部をマスクする工程と、
前記マスク材の上から前記比誘電率測定試料の表面に、気相成長法によって金属膜を成膜する工程と、を備え、
前記基材は、フッ素樹脂製であり、
前記比誘電率測定試料の表面の一部をマスクする前記工程は、
前記比誘電率測定試料の一方の表面に環状の第1マスク材を貼り付けると共に、当該第1マスク材の外径よりも大きな直径の円状の開口を有する第2マスク材を、当該第1マスク材を囲むように、かつ、当該第1マスク材と離間するように前記比誘電率測定試料の前記一方の表面に貼り付ける工程と、
前記比誘電率測定試料の他方の表面に円状の開口を有する第3マスク材を貼り付ける工程と、を有する比誘電率測定試料への電極形成方法。
A step of masking a part of the surface of the relative dielectric constant measurement sample by attaching a mask material provided with an adhesive on the surface of the base material to the surface of the relative dielectric constant measurement sample;
Forming a metal film on the surface of the relative dielectric constant measurement sample from above the mask material by vapor phase growth, and
The substrate, Ri fluororesin der,
The step of masking a part of the surface of the relative dielectric constant measurement sample includes:
An annular first mask material is attached to one surface of the relative dielectric constant measurement sample, and a second mask material having a circular opening having a diameter larger than the outer diameter of the first mask material is used as the first mask material. A process of pasting on the one surface of the relative dielectric constant measurement sample so as to surround the mask material and to be separated from the first mask material;
Attaching a third mask material having a circular opening to the other surface of the relative dielectric constant measurement sample, and forming an electrode on the relative dielectric constant measurement sample.
前記粘着剤は、アクリル系の粘着剤である請求項1に記載の比誘電率測定試料への電極形成方法。   The method for forming an electrode on a relative dielectric constant measurement sample according to claim 1, wherein the pressure-sensitive adhesive is an acrylic pressure-sensitive adhesive. 前記気相成長法は、真空蒸着法である請求項1又は2に記載の比誘電率測定試料への電極形成方法。   The method for forming an electrode on a relative dielectric constant measurement sample according to claim 1, wherein the vapor phase growth method is a vacuum deposition method. 請求項1〜3のいずれか一項に記載の比誘電率測定試料への電極形成方法によって、前記比誘電率測定試料に電極を形成する工程と、
前記電極に電圧を印加して、前記比誘電率測定試料の静電容量を測定する工程と、
を備える比誘電率測定方法。
A step of forming an electrode on the relative dielectric constant measurement sample by the electrode formation method on the relative dielectric constant measurement sample according to any one of claims 1 to 3,
Applying a voltage to the electrode to measure a capacitance of the relative permittivity measurement sample; and
A dielectric constant measurement method comprising:
JP2006174291A 2006-06-23 2006-06-23 Electrode pattern forming method Expired - Fee Related JP4787088B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006174291A JP4787088B2 (en) 2006-06-23 2006-06-23 Electrode pattern forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006174291A JP4787088B2 (en) 2006-06-23 2006-06-23 Electrode pattern forming method

Publications (2)

Publication Number Publication Date
JP2008001959A JP2008001959A (en) 2008-01-10
JP4787088B2 true JP4787088B2 (en) 2011-10-05

Family

ID=39006587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006174291A Expired - Fee Related JP4787088B2 (en) 2006-06-23 2006-06-23 Electrode pattern forming method

Country Status (1)

Country Link
JP (1) JP4787088B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5289007B2 (en) * 2008-11-20 2013-09-11 日東電工株式会社 Masking pressure-sensitive adhesive sheet and tape, and sputtering target manufacturing method
JP6078741B2 (en) * 2011-11-04 2017-02-15 株式会社ブイ・テクノロジー Thin film pattern forming method and mask
TWI555862B (en) 2011-09-16 2016-11-01 V科技股份有限公司 Evaporation mask, method for manufacturing the same and thinfilm pattern forming method
JP2013173968A (en) * 2012-02-24 2013-09-05 V Technology Co Ltd Vapor-deposition mask, and method for manufacturing vapor-deposition mask
JP5899585B2 (en) * 2011-11-04 2016-04-06 株式会社ブイ・テクノロジー Mask manufacturing method
WO2013039196A1 (en) * 2011-09-16 2013-03-21 株式会社ブイ・テクノロジー Vapor-deposition mask, vapor-deposition mask manufacturing method, and thin-film pattern forming method
JP5517308B2 (en) * 2011-11-22 2014-06-11 株式会社ブイ・テクノロジー Mask manufacturing method, mask and mask manufacturing apparatus
CN115799047A (en) * 2021-09-10 2023-03-14 隆基绿能科技股份有限公司 Film mask
CN118516640A (en) * 2023-03-20 2024-08-20 隆基绿能科技股份有限公司 Film mask and deposition method of solar cell

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61123570A (en) * 1984-11-20 1986-06-11 Fujitsu Ltd Color printer
JPS61227161A (en) * 1985-03-30 1986-10-09 Mitsubishi Plastics Ind Ltd Production of vapor deposited film
JPH09326388A (en) * 1996-06-05 1997-12-16 Ulvac Japan Ltd Forming method of low specific dielectric constant polymer film, forming method of interlayer insulating film and low specific dielectric constant polymer film forming apparatus
JP4060585B2 (en) * 2001-12-25 2008-03-12 日東電工株式会社 Masking adhesive tape and method of using the same
JP2003286568A (en) * 2002-03-28 2003-10-10 Nitto Denko Corp Adhesive tape for masking
JP2005133041A (en) * 2003-10-31 2005-05-26 Jsr Corp High dielectric polymer, process for producing the same and film
JP2007056345A (en) * 2005-08-26 2007-03-08 Kansai Paint Co Ltd Electrode pattern forming method, and photoelectric cell module

Also Published As

Publication number Publication date
JP2008001959A (en) 2008-01-10

Similar Documents

Publication Publication Date Title
JP4787088B2 (en) Electrode pattern forming method
KR101645213B1 (en) Capacitive sensor and method of manufacturing the same
US11187666B2 (en) Method for manufacturing a relative humidity sensor and relative humidity sensor
US9882546B2 (en) Alkali-niobate-based piezoelectric thin film element
CN105241568B (en) A kind of manufacture method of flexible temperature sensor
JP2008255435A (en) Mask for vapor deposition, method for producing vapor-deposition pattern using the same, method for producing sample of semiconductor wafer for evaluation, method for evaluating semiconductor wafer, and method for manufacturing semiconductor wafer
JP2008255433A (en) Mask for vapor deposition, method for producing vapor-deposition pattern using the same, method for producing sample of semiconductor wafer for evaluation, method for evaluating semiconductor wafer, and method for manufacturing semiconductor wafer
JP2010230369A (en) Electrode structure, manufacturing method of the same, and electrochemical sensor
JP2014182086A (en) Temperature sensor
CN108845017A (en) A kind of flexible ion transducer based on two tungsten selenides
US10366813B2 (en) High-precision additive formation of electrical resistors
US4024041A (en) Method of forming deposition films for use in multi-layer metallization
JPH07101672B2 (en) Method for fixing fine materials and forming electrodes
US9709453B2 (en) Pressure sensor and method for manufacturing the same
US20210159387A1 (en) Mems structures and methods of forming mems structures
JP6245036B2 (en) Infrared detector
CN118329124B (en) Preparation method of temperature and conductivity simultaneous measurement sensor and sensor
US8879274B2 (en) Method of manufacturing an electrical component
US11427731B2 (en) Adhesive silicon oxynitride film
RU2544864C1 (en) Method of manufacturing of thin film nano- and microelectromechanical system of mechanical values transmitter
JP6319566B2 (en) Metal nitride material for thermistor, manufacturing method thereof, and film type thermistor sensor
CN114459624B (en) Built-in film thermocouple and preparation method thereof
KR102606035B1 (en) Sensor manufacturing method using laser and the sensor manufactured by the method
RU2554083C1 (en) Manufacturing method of nano- and micro-sized system of sensor of physical values with specified positive temperature coefficient of resistance of resistive elements
JPH04155253A (en) Capacity type thin film moisture sensor and manufacture thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110621

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110714

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4787088

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140722

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees