JP4782510B2 - レーザービーム送出システムの安定性のためにビーム整形を用いる補償器光学系、及び横方向ビームドリフトによるエネルギー分布形状歪みを補正するための径方向非対称ビーム形成素子 - Google Patents

レーザービーム送出システムの安定性のためにビーム整形を用いる補償器光学系、及び横方向ビームドリフトによるエネルギー分布形状歪みを補正するための径方向非対称ビーム形成素子 Download PDF

Info

Publication number
JP4782510B2
JP4782510B2 JP2005246669A JP2005246669A JP4782510B2 JP 4782510 B2 JP4782510 B2 JP 4782510B2 JP 2005246669 A JP2005246669 A JP 2005246669A JP 2005246669 A JP2005246669 A JP 2005246669A JP 4782510 B2 JP4782510 B2 JP 4782510B2
Authority
JP
Japan
Prior art keywords
distribution shape
laser beam
input
conversion function
compensator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005246669A
Other languages
English (en)
Other versions
JP2006106703A (ja
Inventor
トッド,イー.ライゾット
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Via Mechanics Ltd
Original Assignee
Hitachi Via Mechanics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/958,712 external-priority patent/US7075724B2/en
Priority claimed from US11/020,914 external-priority patent/US7016117B2/en
Application filed by Hitachi Via Mechanics Ltd filed Critical Hitachi Via Mechanics Ltd
Publication of JP2006106703A publication Critical patent/JP2006106703A/ja
Application granted granted Critical
Publication of JP4782510B2 publication Critical patent/JP4782510B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Lasers (AREA)

Description

本発明は、レーザービーム送出システムにおけるレーザー照準及び熱ドリフト不安定の制御と補正に関し、特にレーザー照準及び熱ドリフト不安定の制御と補正のためにビーム整形を用いる補償器光学系、及びレーザービーム送出システムにおけるレーザー照準及び熱ドリフト不安定の制御と補正に関し、特に横方向へのビーム移動によるレーザービームエネルギー分布形状の歪みを補正するための径方向非対称ビーム形成素子に関する。
集束有向レーザービームは、通例、金属、高分子、集積回路、基板、セラミックス、他の材料などの材料に関して、貫通及び微小ブラインドバイアの穿孔、レーザーイメージング、集積回路の基板切断及び修正や特注生産、穿孔、切断、及び、選択材料の除去や他の複雑な機械加工やマイクロマシニング作業など、多様な工程に使用される。このような工程は非常に複雑なものとなり、同時又は逐次作業において、単一又は複数のレーザーや、可視光レーザー、赤外線(IR)レーザー、紫外線(UV)レーザーなどの複数タイプのレーザーの同時又は逐次使用を含むことも多い。しかしながら、このようなレーザー工程全般において、レーザーシステムの一般的な目的は、1つ又は多数のレーザービームのエネルギーを制御可能且つ信頼性高く方向付け、集束、集中させて、目標スポットに各ビームを収束、又は、目標の表面上にレーザービームの開口領域を描画することである。
しかしながら、従来技術の従来レーザーシステムに発生する多くの問題は、高信頼且つ制御可能な形でレーザービームを目標位置へ「位置決め」することに対して直接影響を及ぼす。第1の問題は、図1A及び1Bに示すように、「ビーム揺動」又は「位置決め不安定」として言及されることが多いが、レーザービーム12のビーム軸10が最適中心線14から偏差角θずれる径方向偏差であり、しばしば「ポンピングジッタ」とも称されるレーザービームのパルスエネルギー変動に関することが多い。位置決め不安定は、レーザー16自体の特性と「ポンピングジッタ」のようなレーザー16の通常作用の両方に本質的に内在するものである。
従来技術の第2の問題は、図2A及び2Bに示されるが、「熱ドリフト」と称されることが多いものであり、これもレーザービーム12のビーム軸10を最適中心線14から外れさせる原因となる。熱ドリフトは一般に、レーザーデューティサイクルの変化、動作中の加熱、レーザー16のパワーレベルの変化によるレーザー16のパラメータの変化に起因すると考えられる。注意すべきは、「位置決め不安定」がビーム軸10の最適中心線14からの角偏差を生じるのに対して、「熱ドリフト」は最適中心線14に対するビーム軸10の直線的な径方向ドリフトを生じることである。即ち、レーザービーム12のビーム軸10は、最適中心線14の軸に平行なまま、最適中心線14から径方向に離れるようにドリフトする。
更に、従来技術の第3の問題は、「ホットスポット」つまりビーム分布形状の歪みを生じる、経時的なビームモード変化の問題である。ビームの分布形状が均一でない場合、あるいは、最適ガウス分布形状を持たない場合、分布形状の形状は実質上好適な「フラットトップ」分布形状に整形できず、マイクロマシニングやマイクロバイア穿孔など、レーザーシステムの行う加工の質に悪影響を及ぼすことになる。この問題は、勿論、位置決め不安定や熱ドリフトと更に組み合わされる。
実際上、マイクロバイア穿孔などのマイクロマシニングに使用される全てのレーザーは位置決め不安定、熱ドリフト及び分布形状歪みを示すので、これらの問題を補正あるいは少なくとも制御しようとする多くの試みがなされている。例えば、従来技術のレーザーシステムは、能動制御されたサーボミラーを使用して「位置決め不安定」及び「熱ドリフト」の影響を補正しようと試みる。このサーボミラーは、レーザービームを再方向付けして「位置決め不安定」及び「熱ドリフト」を補正するように制御される。しかし、この種の方法は、位置決め不安定や熱的不安定性によるビームの実際の経路を検出し、当該ビームの目標最適経路と比較し、その目標経路にビームを向けるようにサーボミラーを制御する必要がある。このような方法は複雑で高価となるだけでなく、位置決め不安定や熱ドリフトの影響を検出して補正するのに固有の時間遅延があり、しかも、機械系公差及び制御系公差によってそれらの方法自体の誤差を持ち込んでしまうので、これらの問題に対する完全に満足のいく解決策を提供することはない。
これらの問題に対する従来技術の他の方策は、レーザービーム経路中に光学素子を用いて位置決め不安定及び熱ドリフトを補正し、マイクロバイア穿孔などのマイクロマシニングのためにビームを最適ガウス分布やフラットトップ分布形状に整形する。しかし、光学ビーム整形システムが悪く照明された場合、即ち、位置決め不安定や熱ドリフトやホットスポットの結果、ある入射角で照明されたり横方向にずれたビームで照明されたりする場合、光学ビーム整形素子はレーザービームを目標分布形状に整形できない。しかし、位置決め不安定と熱ドリフトは、元来、ビームをある入射角であるいはある横方向変位でビーム整形素子に到達させてしまい、その結果ビーム整形素子の照明状態が悪くなり、ビーム分布形状の適当な整形に問題を生じるということは明らかであろう。
位置決め不安定及び熱ドリフトを補正あるいは補償するために光学素子を使用するのに伴って生じる基本的な問題は、ビーム整形素子としてホログラフィック光学素子(HOE)及び標準対称ホログラフィック光学素子(SSHOE)を使用する場合について図3A及び3Bに示される。図3Aは、例えば、ホログラフィック光学素子(HOE)の場合、特に標準対称ホログラフィック光学素子(SSHOE)18あるいは同等のレンズに関して、熱ドリフト効果による径方向の変位の結果を示す。SSHOE18は対称なので、HOE軸20に平行なビーム軸10Aに沿ってSSHOE18に入射するレーザービーム12Aは、ビーム軸10B上のレーザービーム12BとしてSSHOE18を出射する。なお、ビーム軸10Bはビーム軸10Aに同軸で、その直線延長である。より具体的には、HOE軸20に平行だが、HOE軸20から距離Dだけ半径方向に変位したビーム軸10Aに沿ってSSHOE18に入射するレーザービーム12Aは、ビーム軸10Bとして示す同じビーム軸10Aに沿ってSSHOE18を出射し、HOE軸20に対して距離Dだけ半径方向に変位したままとなる。このように、SSHOE18や同等の対称レンズは、入射レーザービーム12のビーム軸10をSSHOE18のHOE軸20に対して径方向に再方向付けすることはないので、熱ドリフト効果を補正あるいは制御することは不可能である。
図3Bを参照すると、「位置決め不安定」の影響を受けたレーザービーム12Aは、HOE軸20に対して角偏差θを有するビーム軸10Aに沿ってSSHOE18の入射面22に入射することになる。即ち、レーザービーム12Aは、HOE軸20に対して平行にはならない。SSHOE18や同等の対称レンズの対称性のため、レーザービーム12Bは、レーザービーム12AがSSHOE18に入射したビーム軸10Aの延長であるビーム軸10Bに沿ってSSHOE18の出射面24を出射することになる。それ故、熱ドリフトの場合のように、従来のSSHOE18や同等な対称レンズは、位置決め不安定やその結果生じるビーム軸10の角偏差を補正あるいは制御することは不可能である。
しかしながら、ビームシフト素子への入力ビームにおける不安定性及びズレは、しばしば、マイクロバイア穿孔のためのマイクロマシニングシステムなどの典型的なビーム送出システムでは、当該システムのビーム整形光学系によって生じるレーザービームの歪みによって他の問題がなお生じうる。
例えば、図8Aから8Dに示すような典型的なレーザービーム送出システムでは、レーザー12は通例、最適ガウスエネルギー分布形状を持つTEM00シングルモード・レーザービームを発生する傾向のある、ダイオード励起固体(DPSS)レーザー又はダイオード励起ファイバ(DPFL)レーザーからなる。図8Aから8Dに示すような典型的なシステムでは、ビーム整形光学系26は、最適ガウス分布形状12GPを持つ出力ビーム12Iをフラットトップ分布形状12FP、即ち、特にマイクロマシニング作業に有利な一様なエネルギー分布形状を持つ出力ビーム12Oに再整形するために使用され、典型的には、例えば、回折性又はホログラフィック・ビーム拡散器又は整形光学系からなる。
よく知られているように、レーザー12の発生する入力ビーム12Iは、励起ダイオード電流変化、調波水晶のズレ、パルス発信周波数や繰返し率の変化など、レーザー12のパラメータの変化に伴って、数ミクロンから数百ミクロンにわたる量で横方向にドリフトする傾向がある。ビーム整形光学系26の光学的中心線26CRに同軸な最適中心線14からの入力ビーム12Iのビーム軸10のこのような横方向ドリフトの典型的な結果が図8A、8B、8C及び8Dに概略図示されている。図8A及び8Bは、入力ビーム12Iのビーム軸10がビーム整形光学系26の光学的中心線26CRに同軸である状況を示し、図8Bは、入力ビーム12Iとその結果生じた出力ビーム12Oのエネルギー分布形状を重ね合わせて比較している。次に、図8C及び8Dは、入力ビーム12Iのビーム軸10がビーム整形光学系26の光学的中心線26CRに対して横方向にずれている状況を示し、図8Dもまた、入出力ビームのエネルギー分布形状を重ね合わせて比較している。
しかしながら、図8Aから8Dに示すように、ビーム整形光学系26の軸に対する入力ビーム12Iの横方向の各々のズレ、即ち、図8A及び8Bの状況と図8C及び8Dの状況との各々のズレは、出力ビーム12Oにおいて不均一なエネルギー分布形状を生じる。図8C及び8Dに示すような典型的な状況では、例えば、入力ビーム12Iの横方向のズレ64Oは出力ビーム12Oのエネルギー分布形状における「ホットスポット」64Hと出力ビーム12Oのエネルギー分布形状における「不足」64Dのどちらか一方あるいは両方を生じることになる。図示のように、ホットスポット64Sは、目標よりも高いエネルギーレベルのエネルギー分布形状を持つ領域であり、不足64Dは目標よりも低いエネルギーレベルのエネルギー分布形状を持つ領域である。この点に関して注意すべきは、ホットスポット64Sは典型的にはエネルギー分布形状のうち入力ビーム12Iの横方向のズレ64Oの側に形成されるのに対して、不足64Dは通例エネルギー分布形状のうち横方向のズレ64Oとは反対側に生じるということである。
出力ビーム12Oのエネルギー分布形状におけるこのような歪みは、レーザーマイクロマシニングシステムなどのレーザービーム送出システムの性能を明白に低下させる。その結果、このようなビーム軸のズレはそれぞれ、出力ビーム12Oの目標フラットトップ分布形状12Fに復帰するためにはビーム送出システムの再調整を必要とする。システムの必要な再調整は、ビーム整形光学系26を入力ビーム12Iのビーム軸10の新たな位置へ再調整することと入力ビーム12Iのビーム軸10をビーム整形光学系26の光学的中心線26CRへ再調整することのどちらか一方又は両方によって行われる。どちらの再調整にも著しいシステム休止期間が必要となる。レーザービームの横方向ズレ毎にそのズレの原因に関わらずレーザービームシステム光学系又はレーザービームを再調整する必要があるということは、著しい問題となるということが理解されるであろう。というのも、典型的には、例えば、製造フロアに設置した工業用レーザーシステムの場合、1日に数回あるいは1交替に付き数回も再調整が必要となるからである。
この点では、レーザービームにおける望ましからざる横方向ズレから生じる問題の幾つかに対処するために補償器及び再配置素子を含む非対称光学素子を用いる場合、このような非対称素子は通例ホログラフィック又は回折性光学素子からなるということにも注意せねばならない。このような光学素子は通例一定の特性を持つが、レーザービームの有り得る横方向ズレが一定でないのに拘わらず一定であるので、所与のシステムにおけるレーザービームの有り得る横方向ズレの全範囲に十分対処できるわけではない。
本発明は、従来技術の持つこれらの問題及び関連する問題に対する解決策を提供する。
本発明は、レーザービームを発生するレーザー及びレーザービームをビーム経路に沿って目標に対して方向付け、整形及び収束させるための複数の光学素子を有するレーザービーム送出システムにおいてレーザー位置決め及び熱ドリフト不安定を制御及び補正するためのレーザービームの補償及び再配置のための補償器・再配置器及び方法を対象とする。
本発明によると、補償器・再配置器は、補償器素子と再配置器素子とを有する。補償器素子は、ある範囲の入力角と横方向変位を有する入力レーザービームを受光し、入力レーザービームの成分を均一分布平行成分を持つ整列済みレーザービームに再方向付けする。再配置器素子は、補償器素子からの整列済みレーザービームによって照明され、整列済みレーザービームの成分を、フラットトップレーザービームに再配置するのに最適な分布形状を持つ整形済みレーザービームに再配置する。
本発明の多様な実施例では、補償器素子は、全表面にわたって符号化されたコンピュータ発生ホログラミックレンズであっても良く、再配置器素子は、コンピュータ発生径方向対称回折光学素子(RSDOE)又はコンピュータ発生径方向非対称回折光学素子(NSDOE)であっても良い。
例えば、補償器素子は、基板と、基板の入力側に配置した視野レンズと、基板の出力側に配置した回折光学素子整形器と、視野レンズによって規定される開口とを有しても良い。また、補償器素子は、屈折レンズ素子で形成された補償器素子と、補償器素子の出力側に配置したコンピュータ発生ホログラフィック回折光学素子整形器とを有しても良い。この場合、屈折レンズが回折光学素子整形器の基板を形成し、整形器が開口を形成する。また別の実施例では、補償器素子は、基板と、基板の入力側に配置し、一体型視野レンズ素子及び整形器素子を形成する単一回折光学素子と、基板の出力側に形成した開口とを有しても良い。
本発明の現在の好適な実施例では、整形器素子の配列済みレーザービーム出力は非円形ガウス分布形状を持ち、再配置器素子の整形済みレーザービーム出力は円形ガウス分布形状を持つ。
また、本発明は、入力レーザービームのビーム軸が径方向及び大小に関して可変な横方向ズレを受けるシステムにおいて、入力レーザービームの入力エネルギー分布形状を出力レーザービームの目標出力エネルギー分布形状に変換するための径方向非対称ビーム形成素子を対象とする。
本発明のビーム形成素子は、入力エネルギー分布形状を目標出力エネルギー分布形状に変換するための第1分布形状変換機能と、入力レーザービームの横方向ズレが導入された出力エネルギー分布形状における歪みを補正するように第1分布形状変換機能を修正するために第1分布形状変換機能に追加された分布形状補正変換機能とを有する分布形状変換機能を有する光学素子を有する。
現在の好適な一実施例では、径方向非対称ビーム形成素子の分布形状補正変換機能は、不足分布形状変換機能とホットスポット分布形状変換機能との少なくとも1つを有する。不足分布形状変換機能は、入力レーザービームの横方向ズレから生じるホットスポットに対応する位置で補償用不足エネルギー分布形状を目標出力エネルギー分布形状に追加するために第1分布形状変換機能に追加される。ホットスポット分布形状変換機能は、同様に、入力レーザービームの横方向ズレから生じる不足に対応する位置で補償用ホットスポットエネルギー分布形状を目標出力エネルギー分布形状に追加するために第1分布形状変換機能に追加される。
本発明によれば、更に、ビーム形成素子の光学軸は、入力レーザービームのビーム軸に対して平行に位置合わせされる一方で、入力レーザービームのビーム軸の最大期待横方向ズレに比例した距離だけ入力レーザービームのズレの無いビーム軸からずらされるので、入力レーザービームは光学素子の光学軸に対して平行且つズレた状態でビーム形成素子を通る。
更に別の実施例では、ビーム形成素子は、入力レーザービームの現在の横方向ズレに対する分布形状変換機能の調整を可能にするために、光学素子の光学軸を中心にした分布形状変換機能の回転を可能にする回転マウントに支持される。
ここで、例示によって添付図面を参照しながら本発明を説明する。
〔第1の実施形態〕
以下、本発明の第1の実施形態について説明する。
A. 概要
本発明によれば、図4及び図5Aから5Fに概略図示するように、熱ドリフトによる径方向変位と位置決め不安定による角偏差の一方又は両方は、図4に示すように非対称素子(NSE)26によって補正できる。図示のように、NSE26は、例えば、非対称ホログラム光学素子(NSHOE)や、非対称レンズや非対称屈折素子や非対称回折素子などの同等の光学素子である。図示のように、NSE26はSSHOE18や同等の対称素子とは違って、NSE26を横切るレーザービーム12のビーム軸10の経路は、NSE26をレーザービーム12が通過中に補正角φだけ屈折又は曲げられる。次に更に論じることになるが、NSE26の一実施例では、角φは入射ビーム軸10のNSE26の中心線軸28からの径方向変位Δの増加に従って増加する。NSE26の第2実施例では、補正角φはNSE26の平面に対する入射レーザービーム12のビーム軸10の入射角αの減少に従って増加する。
熱ドリフトによる径方向変位と位置決め不安定による角偏差の一方又は両方を補正するためのドリフト・偏差補正素子30の実施例は図5A、5B及び5Cに例示される。
図5Aは、位置決め不安定によるレーザービーム12の角偏差を補正するためのドリフト・偏差補正素子30の一実施例を示す。図示のように、本例では、ドリフト・偏差補正素子30は、非対称ホログラム光学素子(NSHOE)や同等の非対称レンズなどの単一NSE26、26A、26B、26C、26D又は26Sからなる。
まず図5Aに示すような位置決め不安定による角偏差の幾何学的様相を考慮して、位置決め不安定から生じる角偏差を有するレーザービーム12を、一点、即ち、レーザー16から放射されたものと考えると、各レーザービーム12のビーム軸10は、ゆらぎの度合いによって決まる角偏差θで当該点から外側に向かって放射され、それはレーザービーム12がNSE26の平面に衝突するまで続く。図5Aに示す素子配置を考慮すると、ビーム軸10とNSE26Aの平面との入射角αは、角偏差θが増加するのに従ってある相互関係で減少することが分かる。また、NSE26Aの中心線軸28とビーム軸10がNSE26Aに入射する点との径方向変位Δは、角偏差θが増加するのに従って増加することが分かる。換言すれば、角偏差θは、NSE26Aに対する入射角αに逆比例すると共に、NSE26Aの中心線軸28からの径方向変位Δに比例する。
位置決め不安定による角偏差の補正には、レーザービーム12のビーム軸10を適切な方法で方向付ける補正角φで再方向付けすること、即ち、曲げたり屈折したりすることが必要なことは明らかであろう。この点に関して、例えば、補正角φは、ビーム軸10がNSE26Aを出射するや否やHOE軸20と平行になるように構成しても良い。他の例では、補正角φは、第2NSE(図示せず)の入射面など、NSE26Aから所定距離だけ離れた選択点又は領域上にレーザービーム12を方向付けするように構成しても良い。
どちらの場合も、上述の角偏差幾何学の説明から分かるように、補正角φの大きさは、それ故、径方向変位Δの増加又は入射角αの減少に従って増加しなければならない。それ故、角補正NSE26Aの第1実施例では、例えばNSHOE又は同等の非対称レンズである角補正NSE26Aは、補正角φが角補正NSE26Aの中心軸からの径方向距離に比例して増加するように構成される。上述のように、それ故、ビーム軸10の角偏差θが大きくなればなるほど、ビーム軸10の角補正NSE26Aの中心軸からの径方向変位Δは大きくなり、補正角φも大きくなる。
角補正NSE26Aの第2実施例では、角補正NSE26Aは、補正角φが入射角αの減少に従って、即ち、ビーム軸10の角偏差θの増加に従って増加するように構成される。しかしながら、角偏差θ、入射角α及び径方向変位Δの関係から、この2つの角補正NSE26Aの実施例は等価であることが分かる。
それ故、図5Aに示すように、ドリフト・偏差補正素子30の角補正NSE26Aは、角偏差θに比例した補正角φでレーザービーム12を曲げたり屈折させたりすることによって角偏差θを補正する。その結果、HOE軸20に対して平行でないビーム軸10を持つ如何なるレーザービーム12も補正角φで曲げられ、ビーム軸10はHOE軸20に平行となるか、又は、ビーム軸10は選択焦点又は領域に方向付けられる。
角補正NSE26Aの動作の結果は図5Bに示される。図5Bは、最適中心線14を中心にした補正済みビーム12Cの有り得る分布を未補正ビーム12Uの有り得る分布と比較して示すレーザー16の端面図である。
次に図5Cは、熱ドリフトによるレーザービーム12の径方向変位を補正するドリフト・偏差補正素子30の一実施例を示す。前述のように、熱ドリフトあるいは同様な径方向変位の原因は、ビーム軸10の目標最適中心線14からの角偏差ではなくて最適中心線14からの径方向変位を生じる。このため、径方向変位、即ち、熱ドリフトは、NSE26に対して約90°の入射角αを有するビーム軸10を生じ、径方向変位Δの補正は入射角αではなく径方向変位Δの関数となる。
図示のように、本例では、ドリフト・偏差補正素子30は、変位補正NSE26Bとそれに続くコリメーティングNSE26Cとからなり、それぞれ、例えば非対称ホログラム光学素子又は同等の非対称レンズであって良い。
本実施例では、上述のように、変位補正NSE26Bの補正角φは、変位補正NSE26Bの中心線軸28とレーザービーム12のビーム軸10が変位補正NSE26Bの平面に入射する点との径方向変位Δに比例して径方向に増加する。ドリフト補正NSE26Bの効果は、それ故、ビーム軸10の径方向変位Δに比例した補正角φ、即ち、レーザービーム12の熱ドリフトに比例した角で、レーザービーム12を屈折させたり曲げたりすることである。熱ドリフトから生じるレーザービーム12のビーム軸10の変位は径方向であり、レーザービーム12のビーム軸10はそれ故最適中心線14にほぼ平行となるので、ビーム軸10は通常変位補正NSE26Bの入射面に垂直となる。このように、変位補正NSE26Bの賦課する補正角φは、変位補正NSE26Bから一定距離にある点あるいは小領域上にビーム軸10を凝縮、即ち、方向付け又は集束させることになる。図5Cに図示するように、変位補正NSE26Bの焦点は、コリメーティングNSE26Cとして示されたドリフト・偏差補正素子30の第2素子の入射面上あるいはその付近にある。
コリメーティングNSE26Cは、幾つかの点で、角補正NSE26Aの逆変換に類似である。即ち、図示のように、レーザービーム12は、それぞれのビーム軸10が凡そコリメーティングNSE26CのHOE軸20に対して角α、即ち、角偏差θに類似の角となるように、補正NSE26BからコリメーティングNSE26Cに入射する。図示のように、コリメーティングNSE26Cは、レーザービーム出射コリメーティングNSE26Cのビーム軸が平行となるように、入射角αに逆比例する補正角φで各入射レーザービーム12を再方向付けしたり曲げたりする。
変位補正NSE26Bとそれに続くコリメーティングNSE26Cからなるドリフト・偏差補正素子30は、それ故、まず各レーザービーム12の径方向変位を減少させるようにレーザービーム12を再方向付け、所定の距離にある所定の領域にレーザービーム12を集束又は方向付けし、その後ビーム軸10の相対角を目標最適中心線14に対して平行となるように補正することによって、熱ドリフトによる径方向変位を補正することができる。
こうしたドリフト・偏差補正素子30の動作は図5Dに示される。図5Dは、最適中心線14を中心にした補正済みビーム12Cの有り得る分布を未補正ビーム12Uと比較して示す。
次に図5Eに示された場合を考えると、位置決め不安定による角偏差と熱ドリフトによる径方向変位は別個に発生することは希で、両方の影響が所与の状況に現存する方が普通であるということが分かるであろう。このように、全てのレーザービーム12ではないにしても多くのレーザービーム12は、角偏差と径方向変位の両方を呈し、所与のレーザービーム12がNSE26Dに衝突するNSE26Dの中心線軸28からの径方向距離は、径方向変位又は角偏差、又は程度の差はあれ、その両方によるものであり得る。
このように、2素子ドリフト・偏差補正素子30は、例えば、偏差補正NSE26Aとそれに続く変位補正NSE26Bとを用いて構成しても良い。それぞれ上述のように機能し、この組み合わせによって、まずレーザービーム12の角偏差を補正して、角偏差によって決まる補正角φによって平行ビーム軸10を持つ出力レーザービーム12に各レーザービーム12を再方向付けする。それ故、この第1段では、事実上、角偏差を径方向変位にそして径方向変位を角変位に変え、出力レーザービーム12は径方向変位のみを示すこととなる。その後の第2段で、最終的なレーザー出力ビーム12を提供するために、図5Cで論じたように径方向変位を補正することになる。
ドリフト・偏差補正素子30の他の実施例が図5Eに示される。これは、角補正NSE26Aと変位補正NSE26Bの両方の特性を単一の角・変位補正NSE26Dに組み合わせたものであり、例えば、NSHOEからなる。本例では、補正角φは、衝突レーザービーム12のHOE軸20からの径方向変位と角・変位補正NSE26Dへのレーザービーム12の入射角αの両方の関数となるので、単一角・変位補正NSE26Dは角補正NSE26Aと変位補正NSE26Bの両方の機能を実行する。
どちらの実施例でも、ドリフト・偏差補正素子30の出力はコリメーティングNSE26Cを通過して平行ビーム12となり、整形器素子26Sに通される。この点で、コリメーティングNSE26Cと整形器素子26Sの順番はどのように配置してもよく、これらの素子は、例えば、必要な機能を実行するNSHOEやHOEや非球面光学素子やその他の素子からなっても良いことが分かるであろう。
図5Eに示す実施例の結果は、最適中心線14を中心にした補正済みビーム12Cの有り得る分布をドリフト未補正ビーム12UD及び角未補正ビーム12UAと比較して図5Fに示す。
B. 本発明の詳細な説明
レーザービームの角偏差及び径方向ドリフトを補正又は補償する本発明の一般的な方法と装置を説明してきたが、次に、上述の一般的な原理及び装置の現在の好適な実施例を説明する。
図6A、6B及び6Cを参照すると、以後システム32として総称する典型的なシステム32A、32B及び32Cの実施例が示されている。それぞれのシステムは、本発明の補償器・再配置器34を有する。後述のように、補償器・再配置器34はある範囲の入力角及び横方向変位にわたって入力ビームを受け付け、補償器・再配置器34からの入力ビームを最終的な出力ビームに整形する後続の素子に最適な出力分布形状を持つ出力ビームを提供するように入力ビームの入力分布形状を「再配置」する。
図6A、6B及び6Cに示すように、システム32はレーザービームを発生するレーザー36を有する。発生したレーザービームは、一般にビーム38として同定され、ビーム経路40に沿って1つ以上の目標42に伝達される。注意すべきは、ある種のシステムでは、ビーム38は個々にあるいは一群単位で操縦可能な一群のビームレットに分割される場合もあるが、本発明の趣旨として、以降の説明ではビーム38として総称することである。図示のように、ビーム経路40は典型的には、ビーム経路40に沿ってビーム38を形成、集束及び整形するレンズ44L及びミラー44Mなどの多くの光学素子44を含む。
典型的なレーザーシステム32の光学素子44は、例えば、レーザー36の放射するビーム38を最初に整形、集束する複数のレンズ44Lの組立品であるアップテレスコープ組立品44LTを有する。アップテレスコープ組立品44LTの後段には補償器・再配置器34が続いても良い。補償器・再配置器34は、下記に詳述するが、整形済み分布形状38SPを持つ最終整形済みビーム38Sに再配置する後続の整形器46に最適なものとして選択される再配置済み分布形状38RPを持つ再配置済みビーム38Rに補償器・再配置器34への入力ビーム38Iを再配置する1つ以上の素子からなっても良い。マイクロバイア穿孔用のシステム32における現在好適な一実施例では、例えば、再配置済み分布形状38RPは円形ガウス分布形状であり、整形済み分布形状38SPは典型的には「フラットトップ」分布形状、即ち、ビーム38の直径にわたってほぼ均一なエネルギー分布を持つ分布形状となる。その後、後続の開口48がビーム38Sを更に整形、特にビーム38Sの横分布形状像を整形する。
最後に、図示のように、ビーム経路38は、ビーム30又はビームレット30Bを再方向付け操縦するための、固定ミラー44Mとガルバノ制御された可動ミラー44Mとを更に有し、典型的には、ビーム30又はビームレット30Bを最終的に整形、集束するためのFθレンズなどの最終レンズ44Lを有することになる。
C. 補償器・再配置器34
上述のように、本発明によれば、ビーム経路40は、入力分布形状38IPを持つ入力ビーム38Iを受け付け、最終的な分布形状に再配置する後続の整形器46に最適な再配置済み分布形状38RPを有する再配置済みビーム38Rを提供するように入力ビーム38Iの分布形状を「再配置」する。本発明の現在の好適な一実施例では、補償器・再配置器34は補償器34C素子を有し、その補償器34C素子は、典型的にはある範囲の入力角及び横方向変位を持つビーム又はビーム成分を有する入力ビーム38Iを受け付け、本質上均一に分布されて平行であり、例えば、後続の再配置器34R素子を均一に照明する非円形分布形状を持つビーム成分を有する整列済みビーム38Aを発生する。その後、再配置器34Rは出力された整列済みビーム38Aを円形ガウス分布形状などの最適再配置済み分布形状38RPを持つ再配置済みビーム38Rに再配置する。再配置済みビーム38Rはその後、整形器46によって、例えばフラットトップ分布形状を持つ整形済みビーム38Sに再配置されても良い。
D. 補償器34C
補償器・再配置器34の現在の好適な一実施例では、補償器34C素子は、コンピュータ発生ホログラム素子、つまり、「CGH」であり、異なる入力角且つ異なる横方向変位で入力ビーム38Iによって照明可能であり、再配置器34Rを照明する均一分布で平行な整列済みビーム38Aに入力ビーム38Iを形成する。現在の実施例では、例えば、補償器34Cへの入力ビーム38Iは本質上如何なる分布形状を持ってもよく、整列済み分布形状38APは、例えば、非円形分布形状でよい。
本発明の現在の好適な一実施例では、補償器34Cは、その全表面にわたって符号化されたホログラフィックレンズとして実現される。補償器34Cの符号化面又はその如何なる部分も、それ故、入力ビーム38Iを整列済みビーム38Aに再配置するのに必要な全ての情報を有するので、補償器34Cは、補償器34Cの表面の何処が入力ビーム38Iによって照明されているかに拘わらず入力ビーム38Iを再配置することになる。しかし注意すべきことは、後述するように、補償器34Cは他の形式で実現しても良いということである。
図5A〜5Fを参照して上述した補償器34Cの実現及び動作を詳細に考えると、熱ドリフトによる径方向変位と位置決め不安定による角偏差の一方又は両方は、非対称素子(NSE)26を具体化、実現する補償器34Cによって補正できる。上述のように、NSE26は、例えば、非対称ホログラム光学素子(NSHOE)、即ち、ある種のCGH素子、又は、非対称レンズや非対称屈折素子や非対称回折素子などの同等の光学素子である。上述のように、NSE26はSSHOE18や同等の対称素子とは異なり、NSE26を横切るレーザービーム12のビーム軸10の経路は、レーザービーム12がNSE26を通過する間に補正角φで屈折されたり曲げられたりする。例えば、上述のように、NSE26の一実施例では、角φは、入射ビーム軸10のNSE26の中心線軸28からの径方向変位Δの増加に従って増加する。NSE26の別の実施例では、補正角φは、NSE26の平面に対する入射レーザービーム12のビーム軸10の入射角αの減少に従って増加する。
ここで図7A、7B、7C及び7Dを参照すると、横方向ドリフト及び角誤差の補正及び補償を実行する単一又は複数の補償器34C素子の現在の好適な代替実施例が示される。当業者には分かることであるが、単一又は複数の補償器34C素子は、単一及び複数のNSE26による様々な形式に関して本明細書において上述した原理、構造及び素子を用いて実現することができる。単一又は複数の補償器34C素子は、例えば、多機能屈折光学素子(MFDOE)、集積多機能屈折光学素子(IMFDOE)、多機能ホログラフィック光学素子(MFCGH)、多機能フレネルプリズム(MFFZP)、他のCGH、目標機能を実施可能な光学組立品として具体化できる。
例えば、図7Aに示す補償器34Cは、入力側50Iに視野レンズ52を、出力側50OにDOE整形器54を備えた基板50からなり、視野レンズ52とDOE整形器54はホログラフィック光学素子からなり、また、視野レンズ52は開口56を規定する。視野レンズ52とDOE整形器54は、典型的には、上述のように、横方向ドリフト及び角誤差の補正及び補償を実行するように構成されたCGH素子であり、開口56は補償器34Cを通過するビームを整形し、入力ビーム30Iのうち、視野レンズ52とDOE整形器54の範囲外にある部分を阻止する。
次に図7Bは開口56を有する補償器34Cを示すが、DOE整形器54は、視野レンズ52を構成する屈折レンズ素子の出力面上のCGH素子として実現される。図示のように、本実施例は、視野レンズ52を構成する屈折レンズが基板として機能するので、別個の基板50を必要としない。
図7Cは基板50を用いる補償器34Cの一実施例を示し、視野レンズ52と整形器54は、基板50の入力側50Iに搭載した単一化合物又は複合体のホログラフィックDOEレンズ素子に統合される。また、本実施例は、基板50の出力側50Oに形成した開口60を有する。
最後に図7Dは補償器34Cの一実施例を示し、視野レンズ52と整形器54は、ここでも、基板50の入力側50Iに搭載した単一化合物又は複合体のホログラフィックDOEレンズ素子に統合される。ただし、本例では、開口56は、入力側50Iで視野レンズ52・整形器54素子を取り囲むDOE偏向開口によって形成される。当業者には分かることであるが、偏向開口は機能上は開口であるが、入力ビーム30Iのうち、視野レンズ52・整形器54素子の範囲外にある部分は偏向除外する。
E. 再配置器34R
ここで図7Eを参照すると、補償器34Cと連係して補償器・再配置器34で使用可能な再配置器34Rの一実施例が示されている。
上述のように、補償器34Cは入力ビーム38Iによって照明されるが、入力ビーム38Iの成分は異なる入力角と異なる横方向変位を有しているので、再配置器34Rを照明する均一分布で平行な配列済みビーム38Aに当該入力ビーム38Iを形成することになる。例えば、配列済みビーム38Aが非円形ガウス分布形状を持つならば、再配置器34Rは配列済みビーム38Aを、例えば円形ガウス分布形状である分布形状38RPとして示された最適分布形状を持つ再配置済みビーム38Rに再配置する。再配置済みビーム38Rはその後、整形器46によって、フラットトップ分布形状などの整形済み分布形状38SPを持つ整形済みビーム38Sに再配置される。
現在の好適な一実施例では、再配置器34Rは、均一分布で平行な配列済みビーム38Aを補償器34Cから受け付け、非円形ガウス分布形状を持っても良い配列済みビーム38Aの分布形状を平行化、収束及び再配置して、円形ガウス分布形状などの整形器46にとっての目標分布形状を持つ再配置済みビーム38Rを形成する径方向対称屈折光学素子(RSDOE)又は非対称屈折光学素子(NSDOE)として実現されるCGHである。
本発明の補償器・再配置器34の素子構成のうちの幾つかは既に論じてきたが、補償器・再配置器34が多くの方法で配置した多くの素子から構成可能であることは上述説明から分かるであろう。しかし、現在好適な補償器・再配置器34の構成は、DOE素子とそれに続くCGH素子を持つ2素子設計である。この2素子構成では、2素子の光学系間の間隔は最適距離を50mmとする凡そ50mmから1500mmであり、補償器・再配置器34の最適正味開口は凡そ0.4mmから25mmである。
最後に、本発明の上述光学素子は市販のものであり、例えば、アラバマ州ハンツビルのMEMSオプティカル、フィンランドのヘプタゴン、スイス・ヌーシャテルのSUSSマイクロオプティックス、又は、ノースカロライナ州シャーロットのデジタルオプティックス社から入手可能又はそれらによって製造可能である。
上述の発明には、本明細書に含まれた発明の精神及び範囲から逸脱することなく変更を加えられるので、上述の説明や付属図面で示した材料の全ては、本明細書において発明概念を説明する単なる例として解釈されるべきものであり、発明を制限するものとして解釈されるべきではない。
〔第2の実施形態〕
以下、本発明の第2の実施形態について説明する。なお、前記第1の実施形態と図1ないし図7についての説明は重複する部分が多いので、説明は適宜省略し、本実施形態に係る部分について主に説明する。
従来技術の上述の問題に対処するため、
1)熱ドリフトによる径方向変位と位置決め不安定による角偏差のどちらか一方あるいは両方を非対称素子によって補正する。
2)補償器及び再配置非対称素子の形で径方向(横方向)変位及び位置決め不安定を補正する。
3)横方向(径方向)にドリフトしたレーザービームを再位置合わせし、ビーム整形素子の出力ビームのエネルギー分布形状から「ホットスポット」を除去し、ビーム整形素子の出力ビームの目標エネルギー分布形状を回復する。
などの方法があり、この方法を実施するための装置や素子がある。この内、1)及び2)は第1の実施形態において図1ないし図7を参照して説明した通りであるので、説明は省略する。
そこで、以下、前記3)に対応する実施形態、すなわち、横方向ズレ歪みを補正するための径方向非対称回折及びホログラフィックビーム形成光学素子によるビーム整形について説明する。
例えば、最適ガウス分布形状12GPを持つ入力ビーム12Iをフラットトップ分布形状12FPを持つ出力ビーム12Oに再整形するためにビーム整形光学系が通常用いられることは前記第1の実施形態において既に述べた。しかし、多くの理由で、ビーム整形光学系へのレーザービーム入力は横方向ズレ、即ち、ビーム整形光学系の光学的中心線に対する径方向のズレを受ける可能性があることも既に述べた。上述のように、入力ビームにおけるこのような横方向ズレは、出力ビーム12Oのエネルギー分布形状に望ましからざる「ホットスポット」や「不足」を生じ得る。
また、これも本明細書において上述したことであるが、非対称光学素子を用いて、熱ドリフトによるレーザービームの径方向変位及び位置決め不安定によるレーザービームの角偏差を補正しても良い。また、補償器及び再配置素子を用いて、ビーム整形素子などの後続素子に最適な出力分布形状を持つ出力ビームを提供できるよう入力ビームのエネルギー分布形状を「再配置」しても良い。これらの方法を用いてビーム整形光学系へのレーザービームの横方向ズレから生じる問題に対処して、レーザービームを必要に応じて再方向付けあるいは再整形しても良いが、これらの方法は全ての場合に利用可能なものあるいは好ましいものとは限らない。例えば、別途光学素子を使用することはシステムのコストや複雑性の一方あるいは両方を容認出来ないあるいは不経済なレベルにまで高めるかも知れず、あるいは、システムのエネルギー変換効率を容認できないほど低下させるかも知れない。
また、補償器及び再配置素子を含むこのような非対称光学素子は典型的にはホログラフィック又は回折光学素子からなるが、通常一定特性を持っている。しかし、レーザービームの横方向ズレは一定ではなく、相対的に広範囲な方向及び量にわたって変化するので、ホログラフィック及び回折光学素子では、所与のシステムにおけるレーザービームの有り得る横方向ズレの全範囲に対して十分には対処できない恐れがある。
本発明のこの様相によれば、それ故、ビーム整形光学素子への入力ビームの横方向ズレから生じる問題を、好適には、また、多くの場合において、別途光学素子を必要とすることなく解決しなければならない。また、これらの問題に対する解決策は、好適には、一定特性を持つホログラフィック又は回折光学素子などの固定光学素子によって提供されなければならない。固定光学素子は可変素子よりもコストが低く、複雑さも低いからである。本解決策は、しかしながら、入力ビームの実際の横方向ズレに対して固定光学素子を即座に調整あるいは適応させることができなければならない。実際の横方向ズレは、方向及び量の双方に関して相対的に広範囲にわたって発生する可能性がある。
図9A及び9Bは、ガウス分布形状12GPを持つ入力ビーム12Iをフラットトップ分布形状12FPを持つ出力ビーム12Oに再整形するためのビーム整形変換機能62Tを有する非対称ビーム形成光学素子62を示す。このとき、入力ビーム12Iのビーム軸10はビーム整形光学素子62の光学軸に対して横方向ズレ64を有する。
図9A及び9Bに概略図示するように、ビーム形成変換機能62Tとして非対称ビーム形成光学素子62に実現されるエネルギー分布形状変換機能は、入力ガウス分布形状12GPを非対称分布形状12NPに変換するように設計される。後述するように、非対称分布形状12NPと対応ビーム形成変換機能62Tは、入力ビームの横方向ズレによって導入されたビーム形成歪みの予想範囲を補償するように設計される。この点及び次の説明の点では、ビーム形成変換機能62Tは、入力ビーム12Iのガウス分布形状12GP、入力ビーム12Iの横方向ズレの予想範囲、及び、出力ビーム12Oに目標フラットトップ分布形状12FPを生ずるのに必要な非対称分布形状12NPによって決定され、それらの関数となる。
ビーム形成変換機能62Tによって実行される変換機能は、図9A及び9Bを参照して、また、ガウス分布形状12GPと非対称ビーム形成光学素子62の好学中心線62Cを中心とするビーム軸10とを有する入力ビーム12Iの照明によってビーム形成変換機能62Tから生じる非対称分布形状12Nを考慮して説明しても良い。入力ビーム12Iから非対称分布形状12NPを持つ出力ビーム12Oを発生するビーム形成変換機能62Tは、非対称分布形状12NPが非対称ビーム形成光学素子62に対する入力ビーム12Iの横方向ズレによって生じる歪みを補償する特徴を有するように設計される。
図9A及び9Bに示すような代表的な場合には、非対称分布形状12NPは事実上、重畳された補償分布形状12CPを有するフラットトップ分布形状12FPからなり、補償分布形状12CPの具体的な形は、入力ビーム12Iのドリフトによって出力ビーム12Oの分布形状に導入される具体的な歪みによって決まる。典型的な例では、例えば、補償分布形状12CPは、重畳された非対称ホットスポット分布形状12HPと重畳された非対称不足分布形状12DPの一方又は両方を有し、入力ビームの横方向ズレによって導入される予想歪みによって決まる。
典型的な補償分布形状12CPの成分を個々に考えると、非対称不足分布形状12DPは、入力ビーム12Iのズレのために出力ビーム12Oのエネルギー分布形状に生ずるホットスポット64Hを少なくとも意味ある程度まで補償あるいは相殺するように設計される。図示のように、非対称不足分布形状12DPは、典型的には、潜在的なホットスポット64H上にほぼ重畳されるように、変換半径62Rに沿って且つ非対称フラットトップ分布形状12NPのフラットトップ分布形状12FP成分の外周縁に対してビーム形成光学素子62の光学的中心線62Cからズレている。非対称不足分布形状12DPは、典型的には、非対称フラットトップ分布形状12NPの全周に沿って延伸せず、ホットスポット64Hを包含すると期待される部分にのみ沿って延伸する。また、注意すべきことは、変換半径62Rは、典型的には、入力ビーム12Iのビーム軸10が非対称ビーム形成光学素子62の光学的中心線62Cに対してずれる径方向あるいは横方向に延伸することである。というのも、この方向には、ホットスポット64Hが通常発生することになるからである。
次に、非対称ホットスポット分布形状12HPは、入力ビーム12Iのズレのために出力ビーム12Oのエネルギー分布形状に生ずる不足64Dを少なくとも意味ある程度まで補償あるいは相殺するように構成される。非対称ホットスポット分布形状12HPは、典型的には、変換半径62Rに沿って且つ非対称フラットトップ分布形状12NPのフラットトップ分布形状12FP成分の外周縁に向かって非対称ビーム形成光学素子62の光学的中心線62Cからずれている。非対称ホットスポット分布形状12HPもまた、典型的には、非対称フラットトップ分布形状12NPの全周に沿って延伸せず、不足64Dを包含すると期待される部分にのみ沿って延伸する。しかし、この場合に注意すべきことは、変換半径62Rは、典型的には、入力ビーム12Iのビーム軸10が非対称ビーム形成光学素子62の光学的中心線62Cに対してずれる径方向あるいは横方向とは反対方向、即ち、非対称不足分布形状12DPとは凡そ逆方向に延伸することである。というのも、この方向には、不足64Dが通常発生することになるからである。
ビーム形成変換機能62Tを簡単に考察すると、上述のように、ビーム形成変換機能62Tは、入力ビーム12Iのエネルギー分布形状、出力ビーム12Oのエネルギー分布形状、及び、入力ビーム12Iの予想横方向ズレから生じると期待される歪みを補償あるいは補正するのに必要な補償分布形状12CPによって決定される。本例では、それ故、非対称分布形状12NPに対応させる場合には、ビーム形成変換機能62Tは、ホットスポット変換機能62TH及び不足変換機能62TDの一方あるいは両方からなる追加補償変換機能62CTを備えたフラットトップ変換機能62TFからなる。
非対称ビーム形成光学素子62の動作は、非対称ビーム形成光学素子62の光学的中心線62Cに対してずれたビーム軸10を持つ入力ビーム12Iによって非対称ビーム形成光学素子62が照明される場合に発生する出力ビーム12Oのエネルギー分布形状と、ずれていないビーム軸10を持つ入力ビーム12Iによって照明される場合に発生する出力ビーム12Oのエネルギー分布形状とを考慮して説明できる。入力ビーム12Iが非対称ビーム形成光学素子62に対してずれていない場合、生じる出力ビーム12Oは、従って、具体的なビーム形成変換機能62Tによって決まる、追加非対称ホットスポット分布形状12HP及非対称不足分布形状12Dの一方又は両方を備えたフラットトップ分布形状12FPからなる非対称分布形状12NPを持つことになる。しかし、注意しなければならないことは、入力ビーム12Iが横方向にずれていない場合、エネルギー分布形状の歪みは存在しないかも知れないので、ビーム形成変換機能62Tが存在しない歪みを補正しようとして出力ビーム12Oのエネルギー分布形状に歪みを持ち込むかも知れないということである。この考察は以下において更に論じることとする。
しかし、ビーム形成光学素子62がビーム形成光学素子62の光学的中心線62Cからずれた入力ビーム12Iによって照明される場合、生じる出力ビーム12Oはフラットトップ分布形状12Fを持つことになる。このような結果の生じる理由は、ビーム形成変換機能62Tの補償変換機能62CT成分がホットスポット62H及び不足64Dなどの歪みを出力ビーム12Oのエネルギー分布形状に導入して入力ビーム12Iの横方向ズレから生じる歪みを補償あるいは相殺するからである。
次に、本発明の更なる様相を考察すると、入力ビーム12Iのビーム軸10の横方向ズレ64はシステムを通るビームのズレのない経路に対して、即ち、非対称ビーム形成光学素子62の光学的中心線62Cに対して方向及び大きさにおいて大きく変化する可能性があることは本明細書において上述した。しかし、ビーム形成変換機能62Tは非対称なので、入出力ビームのエネルギー波形に与えるビーム形成変換機能62Tの影響は、ビーム形成変換機能62Tに対する横方向ズレ64の大きさだけでなく径方向にも左右されることになる。
別の言い方では、出力エネルギー分布形状におけるホットスポット及び不足の周方向位置は入力ビームの横方向ズレの径方向によって決まると述べた。このように、出力ビームエネルギー分布形状におけるホットスポット及び不足の位置は、横方向ズレの径方向に比例する出力ビームの軸を中心に回転するように見えることになる。ビーム形成変換機能62Tは非対称なので、ビーム形成変換機能62Tの回転位置が一定ならば、横方向ズレの径方向における変動は、生じるホットスポットや不足のビーム形成変換機能62Tの回転位置に対する回転方向のズレや変化として現れることになる。ビーム形成変換機能62Tと横方向ズレの回転方向の不整合は、ビーム形成変換機能62Tによるホットスポット及び不足の未補正、及び、ビーム形成変換機能62Tによる更なるホットスポットや不足の導入さえ生じる可能性がある。
また、上述したように、入力ビーム12Iが非対称ビーム形成光学素子62の軸に合致している場合、即ち、入力ビームに横方向ズレがない場合、ビーム形成変換機能62Tは、実際には、横方向ズレの欠如のために現実には存在しない不足やホットスポットを補正しようとしてホットスポットや不足を導入してしまい、除去しようとしている歪みを導入してしまう可能性がある。
非対称ビーム形成光学素子62は、それ故、入力ビームの横方向ズレの方向及び大きさにおける変動に適応して、出力ビームにおける歪みを補正しないで導入してしまう非対称ビーム形成光学素子62で入力ビームを位置合わせすることを避けるように設計されなければならない。
また、非対称ビーム形成光学素子62は、好適には、複雑性やコストを低下させるために、回折又はホログラフィックビーム拡散器あるいは整形光学系などの固定光学素子から構成される。しかし、その結果、所与の非対称ビーム形成光学素子62は、相対的に小さな範囲の横方向ズレの大きさや角度でしか補償効果を提供しないかも知れない。
これらの問題は、しかし、非対称ビーム形成光学素子62の設計によって対処可能である。例えば、まず、横方向ズレが存在しない状態を含む横方向ズレの大小における変動を考えると、現在の好適な一実施例では、非対称ビーム形成光学素子62はオフセットマウント68によって支持される。図9Cに示すように、オフセットマウント68は、非対称ビーム形成光学素子62、即ち、ビーム形成変換機能62Tの光学的中心線64Cが公称ビーム軸10に平行となるが、公称ビーム軸に対してオフセット70だけずれるように非対称ビーム形成光学素子62を支持する。また、入力ビーム12Iの期待される最大横方向ズレ64にほぼ等しくあるいはそれよりも若干大きくオフセット70を選択して、光学的中心線64Cに対して最大横方向ズレ64の場合でもビーム軸10が光学的中心線64Cに一致しないようにする。
また、ビーム形成変換機能62Tは、好適には、横方向ズレ64の期待される方向及び期待される大きさに十分適合できる「幅」や「直径」を持つように設計される。別の言い方をすれば、ビーム形成変換機能62Tは、最大期待横方向ズレ64に等しい半径あるいはそれよりも若干大きな半径を有し、そのため最大期待横方向ズレ64に適合するのに必要な幅を提供できるように設計される。
オフセットマウント68によってビーム形成変換機能62Tのオフセットを与えるので、入力ビーム12Iは常にビーム形成変換機能62Tの光学的中心線64Cと外径との間でビーム形成変換機能62Tを通過することになる。この結果、最大横方向ズレ64の場合でも横方向ズレ64の方向に関わらず入力ビーム12Iがビーム形成変換機能62Tを通過することを保証する。また、オフセット70は入力ビーム12Iの最大横方向ズレ64よりも大きいので、入力ビーム12Iが光学的中心線64Cに一致することはなく、補正すべき歪みが無いためにビーム形成変換機能62Tによって不本意な歪みを導入してしまうことを回避できる。
最後にこの点に関して注意すべきことは、入力ビーム12Iの横方向ズレ64の歪み効果は、典型的には、横方向ズレ64の大小に従って増加することである。しかし、その代わりに、補償変換機能62CTの成分素子、例えば、ホットスポット変換機能62TH及び不足変換機能62TDの一方あるいは両方の効果も同様に横方向ズレ64の増加と共に増加するように設計されるので、補償変換機能62CTの補正効果は横方向ズレの大小に追随する。
本発明の上述の様相の結果、ビーム形成変換機能62Tの軸に対する入力ビームのズレの大小における変動の影響は自己補償する傾向を持つことになる。即ち、ズレの大小における減少や増加は、入力ビームをホットスポット変換機能62TH及び不足変換機能62TDの一方あるいは両方に沿って径方向内側あるいは外側に移動させて、ズレ補償効果を減少あるいは増加させる。このように、ビーム形成変換機能62Tが最大期待ズレの大きさに適合できる限り、大抵の場合には、更なる複雑性無しにズレの大小に十分適合できることになる。しかし、注意すべきことは、ビーム形成変換機能62Tは過大なズレに適合するように設計しない方が概して好ましいということである。というのも、そのような設計は、より小さなズレ範囲における変換機能とズレとの「適合」を低下させるからである。
次に、入力ビームの横方向ズレの径方向における変動の影響を考えると、このような横方向のズレの径方向における変動は、ビーム形成変換機能62Tの回転方向位置に対して出力エネルギー分布形状に現れる歪みの回転方向の見かけ上のズレ又はオフセットとして現れることは本明細書において既に上述した。例えば、変換機能の非対称ホットスポット分布形状12HP及び非対称不足分布形状12HD成分の周方向「傾斜」は相対的に「急峻」なので、相対的に小さな回転方向のズレが大きな影響を持つ可能性がある。このことは、例えば、ホットスポット変換機能62TH及び不足変換機能62TDの両成分が存在する場合や、変換機能が回転方向に非対称である場合には特に懸念される。
本発明によれば、入力ビームの横方向ズレのために出力分布形状に現れる歪みとビーム形成変換機能62Tの回転方向位置のために出力分布形状に現れる歪みの間のこのような見かけ上の回転方向ズレの影響は、好適には、光学的中心線64Cを中心にビーム形成変換機能62Tを回転させることによって調節される。本発明によれば、それ故、図9Dに示すように、非対称ビーム形成光学素子62は回転ベアリング72によってオフセットマウント68に支持される。回転ベアリング72によって、非対称ビーム形成光学素子62は、横方向にずれた入力ビーム12Iとビーム形成変換機能62Tとの最適な回転方向の位置関係を達成すべく、ビーム形成変換機能62Tの光学的中心線64Cを中心に回転可能とされる。
この点で注意しなければならないのは、ビーム形成変換機能62Tの非対称とビーム形成変換機能62Tの適当な整形によって、通例、ビーム形成変換機能62Tは横方向ズレ64の径方向における変動だけでなく横方向ズレ64の様々な大小も補償するように調整可能となるということである。
それ故、本発明によれば、入力ビーム12I及び出力ビーム12Oのエネルギー波形に対するビーム形成変換機能62Tの効果は、非対称ビーム形成光学素子62に対する入力ビームの横方向ズレの大小及び角方向の両方によって決まることになる。更に本発明によれば、出力ビームのエネルギー分布形状に歪みを生じる入力ビーム12Iの可変な横方向及び回転方向ズレの影響は、入力ビームに対して一定量だけオフセットされ、入力ビームに対して長手方向に回転するエネルギー分布形状変換機能を持つビーム整形素子によって目標エネルギー分布形状を持つ出力ビームを生じるように補償可能となる。更に本発明によれば、エネルギー分布形状変換機能がホットスポット分布形状変換成分及び不足分布形状変換成分の一方あるいは両方を有する場合、目標出力ビームエネルギー分布形状を達成するための入力ビーム12Iとビーム形成変換機能62Tとの最適な横方向及び回転方向の関係は、入力ビーム12Iに対するビーム形成変換機能62Tの回転方向位置を調整することによって調整可能に達成することができる。
図9C及び図9Dのビーム形成変換機能62Tの例
図9Dに示すような本発明の更なる様相では、目標出力ビーム12Oのエネルギー分布形状を得るために可変横方向ドリフトを受けた入力ビーム12Iに対するビーム形成変換機能62Tの位置合わせ及び再位置合わせは簡単に自動化することができる。この方法では、部分ミラー76が出力ビーム12Oの経路に搭載されて、電荷結合素子や感光性抵抗材料からなるセンサなどの光学センサ78にビーム12の像を反射し、光学センサ78はその像によってスペクトルの適当な部分で出力ビーム12Oのエネルギー分布形状を監視できる。例えば、光学センサ78はハママツコープの製造販売するような2次元位置感知型検出器である。出力ビーム12Oのエネルギー分布形状を示す像は、その後、プロセッサ・コントローラ80に通される。プロセッサ・コントローラ80は、出力ビーム12Oのエネルギー分布形状が目標分布形状に一致しているかどうかを判定する。プロセッサ・コントローラ80が出力ビーム12Oのエネルギー分布形状を許容公差内で目標分布形状に一致していないと判定すれば、プロセッサ・コントローラ80は回転ベアリング72を適当な駆動機構82を介して駆動して、入力ビーム12Iとビーム形成変換機能62Tの間の回転方向位置が目標出力ビーム12Oのエネルギー分布形状を生じるまで非対称ビーム形成光学素子62を回転する。
最後に、上述のような本発明は図10A、10B、10C及び10Dに更に図解される。図10A及び10Bは、本発明による2つの典型的な非対称ビーム形成光学素子の位相表面図であり、図10C及び10Dは対応する横断面図である。
本発明は、図11Aから11Eに更に図解される。図11Aから11Eは本発明によるレーザービームのエネルギー分布形状の横断面図を示す。例えば、図11Aは左側にはホットスポットを持つが概して許容できるエネルギー分布形状を持つビームを示す。図11Bは右にドリフトしているビームを示し、本発明の光学素子によってビームを右にドリフトしてビーム分布形状が改善している。図11Cは100ミクロンの距離だけ右にドリフトしたビームを示し、説明した非対称ビーム形成光学素子に最適である。図11Dはビームが150ミクロンだけ右にドリフトし続けた場合を示し、その結果分布形状の右側が「上昇」し始めている。最後に図11Eはビームが200ミクロン右にドリフトした場合を示し、図11Aに示したものの鏡像となる状況になる。これらの例は、従って、図示したような本発明の非対称ビーム形成光学素子が例えば上限200ミクロンのビームドリフトまでは許容可能なビーム分布形状を提供し、そこまで適応可能であることを示す。
上述の発明には、本明細書に含まれた発明の精神及び範囲から逸脱することなく変更を加えられるので、上述の説明や付属図面で示した材料の全ては、本明細書において発明概念を説明する単なる例として解釈されるべきものであり、発明を制限するものとして解釈されるべきではない。
位置決め不安定によるレーザービームの角偏差の説明図である。 位置決め不安定によるレーザービームの角偏差の説明図である。 熱ドリフトによるレーザービームの径方向ドリフトの説明図である。 熱ドリフトによるレーザービームの径方向ドリフトの説明図である。 レーザービームの径方向変位及び角偏差の説明図である。 レーザービームの径方向変位及び角偏差の説明図である。 角偏差又は径方向変位を補正するための本発明の方法の説明図である。 レーザービームの角偏差及び径方向ドリフトを補正するための光学素子及び光学素子の組み合わせを示す説明図である。 レーザービームの角偏差及び径方向ドリフトを補正するための光学素子及び光学素子の組み合わせを示す説明図である。 レーザービームの角偏差及び径方向ドリフトを補正するための光学素子及び光学素子の組み合わせを示す説明図である。 レーザービームの角偏差及び径方向ドリフトを補正するための光学素子及び光学素子の組み合わせを示す説明図である。 レーザービームの角偏差及び径方向ドリフトを補正するための光学素子及び光学素子の組み合わせを示す説明図である。 レーザービームの角偏差及び径方向ドリフトを補正するための光学素子及び光学素子の組み合わせを示す説明図である。 本発明が実現されるシステムの説明図である。 本発明が実現されるシステムの説明図である。 本発明が実現されるシステムの説明図である。 典型的な補償器及び再配置器の説明図である。 典型的な補償器及び再配置器の説明図である。 典型的な補償器及び再配置器の説明図である。 典型的な補償器及び再配置器の説明図である。 典型的な補償器及び再配置器の説明図である。 ビーム整形光学系の軸に位置合わせした入力レーザービーム及びビーム整形光学系の軸に対して横方向にずらせた入力レーザービームのためのビーム整形光学系の説明図である。 図8Aに示した状況に対して入出力ビームエネルギー分布形状の重ね合わせ比較説明図である。 ビーム整形光学系の軸に位置合わせした入力レーザービーム及びビーム整形光学系の軸に対して横方向にずらせた入力レーザービームのためのビーム整形光学系の説明図である。 図8Cに示した状況に対して入出力ビームエネルギー分布形状の重ね合わせ比較説明図である。 非対称ビーム形成光学素子の動作を示す図である。 非対称ビーム形成光学素子の動作を示す図である。 オフセットマウントに搭載された非対称ビーム形成光学素子を示す図である。 回転ベアリングを用いてオフセットマウントに搭載した非対称ビーム形成光学素子を示す図である。 本発明による2つの典型的な非対称ビーム形成光学素子の位相表面及び対応横断面図である。 本発明による2つの典型的な非対称ビーム形成光学素子の位相表面及び対応横断面図である。 本発明による2つの典型的な非対称ビーム形成光学素子の位相表面及び対応横断面図である。 本発明による2つの典型的な非対称ビーム形成光学素子の位相表面及び対応横断面図である。 本発明によるレーザービームのエネルギー分布形状を示す横断面図である。 本発明によるレーザービームのエネルギー分布形状を示す横断面図である。 本発明によるレーザービームのエネルギー分布形状を示す横断面図である。 本発明によるレーザービームのエネルギー分布形状を示す横断面図である。 本発明によるレーザービームのエネルギー分布形状を示す横断面図である。

Claims (18)

  1. レーザービームを発生するレーザー及び前記レーザービームをビーム経路に沿って目標に対して方向付け、整形及び収束させるための複数の光学素子を有するレーザービーム送出システムにおいてレーザー位置決め不安定及び熱ドリフト不安定を制御及び補正するための補償器・再配置器において、
    ある範囲の入力角と横方向変位を有する入力レーザービームを受光し、前記入力レーザービームの成分を均一分布平行成分を持つ整列済みレーザービームに再配置及び再方向付けするための補償器素子と、
    前記補償器素子からの前記整列済みレーザービームによって照明され、前記整列済みレーザービームの成分を、フラットトップレーザービームに再配置するのに最適な円形ガウス分布形状を持つ整形済みレーザービームに再配置するコンピュータ発生ホログラフィック径方向対称回折光学素子(RSDOE)又はコンピュータ発生ホログラフィック非対称回折光学素子(NSDOE)からなる再配置器素子とを有することを特徴とする前記補償器・再配置器。
  2. 前記補償器素子が、基板と、前記基板の入力側に配置した視野レンズと、前記基板の出力側に配置した回折光学素子整形器と、前記視野レンズによって規定される開口とを有することを特徴とする請求項1に記載の補償器・再配置器。
  3. 前記補償器素子が、屈折レンズ素子で形成された補償器素子と、前記補償器素子の出力側に配置したコンピュータ発生ホログラフィック回折光学素子整形器とを有し、前記屈折レンズが前記回折光学素子整形器の基板を形成し、前記整形器が開口を形成することを特徴とする請求項1に記載の補償器・再配置器。
  4. 前記補償器素子が、基板と、前記基板の入力側に配置し、一体型視野レンズ素子及び整形器素子を形成する単一回折光学素子と、前記基板の出力側に形成した開口とを有することを特徴とする請求項1に記載の補償器・再配置器。
  5. 前記補償器素子の前記配列済みレーザービーム出力が非円形ガウス分布形状を持つことを特徴とする請求項1に記載の補償器・再配置器。
  6. レーザービームを発生するレーザー及び前記レーザービームをビーム経路に沿って目標に対して方向付け、整形及び収束させるための複数の光学素子を有するレーザービーム送出システムにおいてレーザー位置決め不安定及び熱ドリフト不安定を制御及び補正するための方法において、
    ある範囲の入力角と横方向変位を有する入力レーザービームの成分を均一分布平行成分を持つ整列済みレーザービームに再方向付けする工程と、
    前記整列済みレーザービームの成分を、フラットトップレーザービームに再配置するのに最適な円形ガウス分布形状を持つ整形済みレーザービームに再配置するためのコンピュータ発生ホログラフィック径方向対称回折光学素子(RSDOE)又はコンピュータ発生ホログラフィック非対称回折光学素子(NSDOE)によって実行される再配置工程とを有することを特徴とする前記方法
  7. 請求項6に記載のレーザー位置決め及び熱ドリフト不安定を制御及び補正するための方法において、
    前記入力レーザービームの成分を再方向付けする工程は補償器素子によって実行され、前記補償器素子は、基板と、前記基板の入力側に配置した視野レンズと、前記基板の出力側に配置した回折光学素子整形器と、前記視野レンズによって規定される開口とを有することを特徴とする前記方法
  8. 請求項6に記載のレーザー位置決め及び熱ドリフト不安定を制御及び補正するための方法において、
    前記入力レーザービームの成分を再方向付けする工程は、屈折レンズ素子で形成された補償器素子と、前記補償器素子の出力側に配置したコンピュータ発生ホログラフィック回折光学素子整形器とによって実行され、前記屈折レンズが前記回折光学素子整形器の基板を形成し、前記整形器が開口を形成することを特徴とする前記方法。
  9. 請求項に記載のレーザー位置決め及び熱ドリフト不安定を制御及び補正するための方法において、
    前記入力レーザービームの成分を再方向付けする工程は補償器素子によって実行され、前記補償器素子は、基板と、前記基板の入力側に配置し、一体型視野レンズ素子及び整形器素子を形成する単一回折光学素子と、前記基板の出力側に形成した開口とを有することを特徴とする前記方法。
  10. 請求項に記載のレーザー位置決め及び熱ドリフト不安定を制御及び補正するための方法において、
    前記整列済みレーザービームが非円形ガウス分布形状を持つことを特徴とする前記方法。
  11. 分布形状変換機能を有する光学素子からなり、径方向及び大小に関して可変な横方向ズレを受けるビーム軸を有する入力レーザービームの入力エネルギー分布形状を目標出力エネルギー分布形状を有する出力レーザービームに変換するための径方向非対称ビーム形成素子において、
    前記分布形状変換機能は、前記入力エネルギー分布形状を前記目標出力エネルギー分布形状に変換するための第1分布形状変換機能と、前記入力レーザービームの横方向ズレが導入された前記出力エネルギー分布形状におけるホットスポットやエネルギー不足などの歪みを補正するように前記第1分布形状変換機能を修正するために前記第1分布形状変換機能に追加された分布形状補正変換機能とを有することを特徴とする前記径方向非対称ビーム形成素子
  12. 前記分布形状補正変換機能は、前記入力レーザービームの横方向ズレから生じるホットスポットに対応する位置で補償用不足エネルギー分布形状を前記目標出力エネルギー分布形状に追加するために前記第1分布形状変換機能に追加される不足分布形状変換機能と、前記入力レーザービームの横方向ズレから生じる不足に対応する位置で補償用ホットスポットエネルギー分布形状を前記目標出力エネルギー分布形状に追加するために前記第1分布形状変換機能に追加されるホットスポット分布形状変換機能との少なくとも1つを有することを特徴とする請求項11に記載の径方向非対称ビーム形成素子
  13. 前記ビーム形成素子の光学軸は、前記入力レーザービームのビーム軸に対して平行に位置合わせされる一方で、前記入力レーザービームが前記光学素子の光学軸に対して平行且つズレた状態で前記ビーム形成素子を通るように、前記入力レーザービームのビーム軸の最大期待横方向ズレに比例した距離だけ前記入力レーザービームのズレの無いビーム軸からずらされることを特徴とする請求項11に記載の径方向非対称ビーム形成素子
  14. 前記ビーム形成素子は、前記入力レーザービームの現在の横方向ズレに対する前記分布形状変換機能の調整を可能にするために、前記光学素子の光学軸を中心にした前記分布形状変換機能の回転を可能にする回転マウントに支持されることを特徴とする請求項11に記載の径方向非対称ビーム形成素子
  15. 径方向及び大小に関して可変な横方向ズレを受けるビーム軸を有する入力レーザービームの入力エネルギー分布形状を目標出力エネルギー分布形状を有する出力レーザービームに変換する方法において、
    前記入力レーザービームに対して分布形状変換機能を実施する工程からなり、前記工程は、前記入力エネルギー分布形状を前記目標出力エネルギー分布形状に変換するための第1分布形状変換機能を実施する工程と、前記入力レーザービームの横方向ズレが導入された前記出力エネルギー分布形状におけるホットスポットやエネルギー不足などの歪みを補正するように前記第1分布形状変換機能を修正するために前記第1分布形状変換機能に追加された分布形状補正変換機能を実施する工程とを有することを特徴とする前記方法
  16. 径方向及び大小に関して可変な横方向ズレを受けるビーム軸を有する入力レーザービームの入力エネルギー分布形状を目標出力エネルギー分布形状を有する出力レーザービームに変換する請求項15に記載の方法において、前記入力レーザービームの横方向ズレから生じるホットスポットに対応する位置で補償用不足エネルギー分布形状を前記目標出力エネルギー分布形状に追加するために前記第1分布形状変換機能に追加される不足分布形状変換機能と、前記入力レーザービームの横方向ズレから生じる不足に対応する位置で補償用ホットスポットエネルギー分布形状を前記目標出力エネルギー分布形状に追加するために前記第1分布形状変換機能に追加されるホットスポット分布形状変換機能との少なくとも1つ実施する工程を有することを特徴とする前記方法。
  17. 径方向及び大小に関して可変な横方向ズレを受けるビーム軸を有する入力レーザービームの入力エネルギー分布形状を目標出力エネルギー分布形状を有する出力レーザービームに変換する請求項15に記載の方法において、前記分布形状変換機能及び分布形状補正変換機能は1つのビーム形成素子に組み込まれ、前記ビーム形成素子の光学軸は、前記入力レーザービームのビーム軸に対して平行に位置合わせされる一方で、前記入力レーザービームが前記光学素子の光学軸に対して平行且つズレた状態で前記ビーム形成素子を通るように、前記入力レーザービームのビーム軸の最大期待横方向ズレに比例した距離だけ前記入力レーザービームのズレの無いビーム軸からずらされることを特徴とする前記方法
  18. 径方向及び大小に関して可変な横方向ズレを受けるビーム軸を有する入力レーザービームの入力エネルギー分布形状を目標出力エネルギー分布形状を有する出力レーザービームに変換する請求項15に記載の方法において、前記ビーム形成素子は、前記光学素子の光学軸を中心にした前記分布形状変換機能の回転を可能にする回転マウントに支持され、前記ビーム形成素子の回転によって前記入力レーザービームの現在の横方向ズレに対して前記分布形状変換機能の調整を行う工程を更に有することを特徴とする前記方法
JP2005246669A 2004-10-05 2005-08-26 レーザービーム送出システムの安定性のためにビーム整形を用いる補償器光学系、及び横方向ビームドリフトによるエネルギー分布形状歪みを補正するための径方向非対称ビーム形成素子 Expired - Fee Related JP4782510B2 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US10/958,712 US7075724B2 (en) 2003-04-10 2004-10-05 Compensator optics to improve the stability of beam delivery systems that utilize beam shaping technology
US10/958,712 2004-10-05
US11/020,914 2004-12-22
US11/020,914 US7016117B2 (en) 2003-04-10 2004-12-22 Radially non-symmetric beam forming elements for correction of energy profile distortion due to lateral beam drift

Publications (2)

Publication Number Publication Date
JP2006106703A JP2006106703A (ja) 2006-04-20
JP4782510B2 true JP4782510B2 (ja) 2011-09-28

Family

ID=36376455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005246669A Expired - Fee Related JP4782510B2 (ja) 2004-10-05 2005-08-26 レーザービーム送出システムの安定性のためにビーム整形を用いる補償器光学系、及び横方向ビームドリフトによるエネルギー分布形状歪みを補正するための径方向非対称ビーム形成素子

Country Status (1)

Country Link
JP (1) JP4782510B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008027231B4 (de) * 2008-06-06 2016-03-03 Limo Patentverwaltung Gmbh & Co. Kg Vorrichtung zur Strahlformung
KR20130118491A (ko) 2012-04-20 2013-10-30 삼성디스플레이 주식회사 레이저 실링 장치 및 이를 이용한 유기 발광 표시 장치의 제조 방법
US9291825B2 (en) * 2013-03-22 2016-03-22 Applied Materials Israel, Ltd. Calibratable beam shaping system and method
WO2017005604A1 (en) 2015-07-07 2017-01-12 Koninklijke Philips N.V. Light emitting apparatus
CN117192668B (zh) * 2023-11-06 2024-02-23 杭州拓致光电科技有限公司 一种体布拉格光栅的衍射效率补偿方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01117077A (ja) * 1987-10-29 1989-05-09 Fuji Electric Co Ltd スラブ形固体レーザ発振装置
JP2599463Y2 (ja) * 1993-02-22 1999-09-06 川崎重工業株式会社 レーザ集光位置変動計測装置
JP3334447B2 (ja) * 1995-09-29 2002-10-15 富士ゼロックス株式会社 光走査装置の光軸調整方法、光軸調整装置、及び光走査装置
JP3666435B2 (ja) * 2001-09-28 2005-06-29 松下電器産業株式会社 光照射装置と光加工装置およびその加工方法

Also Published As

Publication number Publication date
JP2006106703A (ja) 2006-04-20

Similar Documents

Publication Publication Date Title
US7499207B2 (en) Beam shaping prior to harmonic generation for increased stability of laser beam shaping post harmonic generation with integrated automatic displacement and thermal beam drift compensation
US7408687B2 (en) Beam shaping prior to harmonic generation for increased stability of laser beam shaping post harmonic generation with integrated automatic displacement and thermal beam drift compensation
JP4782510B2 (ja) レーザービーム送出システムの安定性のためにビーム整形を用いる補償器光学系、及び横方向ビームドリフトによるエネルギー分布形状歪みを補正するための径方向非対称ビーム形成素子
KR101821463B1 (ko) 빔 가이드 장치 및 레이저 빔의 개방각 조절 방법
US11619742B2 (en) Line beam scanning optical system and laser radar
US8378259B2 (en) Eliminating head-to-head offsets along common chuck travel direction in multi-head laser machining systems
JP5039122B2 (ja) 曲率可変鏡およびそれを用いた光学装置
KR20130130813A (ko) 광 주사 장치 및 레이저 가공 장치
US11112615B2 (en) Device and method for the generation of a double or multiple spot in laser material processing
US7016117B2 (en) Radially non-symmetric beam forming elements for correction of energy profile distortion due to lateral beam drift
US11878367B2 (en) Optical device and article manufacturing method
US10926355B2 (en) Systems and methods for laser-welding tubular components using a single, fixed optical reflector with multiple reflecting surfaces
US8314362B2 (en) Device for machining a workpiece by means of parallel laser beams
US20040095625A1 (en) Multibeam scanning optical device and image forming apparatus using the same
US7075724B2 (en) Compensator optics to improve the stability of beam delivery systems that utilize beam shaping technology
US20060102603A1 (en) Laser machine tool
JP2597260B2 (ja) レ−ザ−パルス蒸着堆積による薄膜形成方法
US20240157470A1 (en) Laser processing device
EP4046740A1 (en) System and method for laser-welding a workpiece with a laser beam that reaches inaccessible areas of the workpiece using multiple reflecting parts
JP3915300B2 (ja) 光走査装置
TW202404420A (zh) 雷射射束旋轉後的euv輻射產生
KR20200122021A (ko) 멀티 빔 가공장치 및 멀티 빔 가공방법
CN118160413A (zh) 具有射束位态调整装置的euv光源
JPH02269305A (ja) 光走査装置
JPH05289017A (ja) 光走査装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070828

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110628

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110707

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees