JP4780273B2 - Method for producing catalyst for lightening heavy oil - Google Patents

Method for producing catalyst for lightening heavy oil Download PDF

Info

Publication number
JP4780273B2
JP4780273B2 JP2004190719A JP2004190719A JP4780273B2 JP 4780273 B2 JP4780273 B2 JP 4780273B2 JP 2004190719 A JP2004190719 A JP 2004190719A JP 2004190719 A JP2004190719 A JP 2004190719A JP 4780273 B2 JP4780273 B2 JP 4780273B2
Authority
JP
Japan
Prior art keywords
catalyst
salt
heavy oil
lightening
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004190719A
Other languages
Japanese (ja)
Other versions
JP2006007151A (en
Inventor
隆夫 増田
輝興 多湖
哲也 柳瀬
裕一 池田
朋子 沖田
知之 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkaido University NUC
Toda Kogyo Corp
Metawater Co Ltd
Original Assignee
Hokkaido University NUC
Toda Kogyo Corp
Metawater Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokkaido University NUC, Toda Kogyo Corp, Metawater Co Ltd filed Critical Hokkaido University NUC
Priority to JP2004190719A priority Critical patent/JP4780273B2/en
Publication of JP2006007151A publication Critical patent/JP2006007151A/en
Application granted granted Critical
Publication of JP4780273B2 publication Critical patent/JP4780273B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、水蒸気分解法に用いられる重質油を軽質化するための触媒の製造方法に関するものである。 The present invention relates to a method for producing a catalyst for lightening heavy oil used in a steam cracking method.

従来から、劣質燃料である重質油を、H/C比を高めて良質燃料である軽質油に軽質化する方法として、水素添加型や炭素除去型の方法が知られている。水素添加型の方法は、高温高圧の条件下でCo−Mo系等の水素化触媒を用いて改質する方法であるが、水素製造コストが高く、また触媒の再生割合が低いという問題点があった。一方、炭素除去型の方法は、重質油を熱分解して改質するとともに、油中の重金属を残渣中に濃縮除去する方法であるが、留出油の安定性が低く水素化の二次処理が必要となり、また残渣等の副生品の有効利用が図りにくいという問題点があった。   Conventionally, hydrogenation type or carbon removal type methods are known as methods for lightening heavy oil, which is an inferior fuel, to light oil, which is a high quality fuel, by increasing the H / C ratio. The hydrogenation type method is a method of reforming using a hydrogenation catalyst such as a Co-Mo system under high temperature and high pressure conditions, but there are problems in that the hydrogen production cost is high and the regeneration ratio of the catalyst is low. there were. On the other hand, the carbon removal type method is a method in which heavy oil is thermally decomposed and reformed, and heavy metals in the oil are concentrated and removed in the residue. There is a problem that the next treatment is required and it is difficult to effectively use by-products such as residues.

そこで次世代型の軽質化方法として、水蒸気雰囲気下で重質油を軽質化する水蒸気分解法が注目されており、出願人は鉄化合物を触媒として用いる水蒸気分解法を開発し、先に提案した(特許文献1参照)。その他、Ni系触媒を用いた水蒸気分解法も提案されている。しかしながら、Ni系触媒は高価であり、また回収も困難であるという問題点があった。一方、鉄系触媒は安価で回収も容易であるものの、重質油の軽質化能力が若干劣るうえに、高温の水蒸気雰囲気下では安定した活性を示さない、コークス付着により劣化しやすい、残油に多く含まれる重金属によって失活しやすい等の問題点が残されており、これらの欠点がなく、しかも製造コストも安価である水蒸気分解法に用いられる鉄系触媒の開発が求められていた。
特開2001−129405号公報
Therefore, as a next-generation lightening method, a steam cracking method that lightens heavy oil in a steam atmosphere has attracted attention. The applicant developed a steam cracking method using an iron compound as a catalyst, and previously proposed it. (See Patent Document 1). In addition, a steam cracking method using a Ni-based catalyst has also been proposed. However, Ni-based catalysts are expensive and difficult to recover. On the other hand, although iron-based catalysts are cheap and easy to recover, they are slightly inferior in the ability to lighten heavy oils, and do not show stable activity in a high-temperature steam atmosphere, and are susceptible to deterioration due to coke adhesion. However, there has been a demand for the development of an iron-based catalyst used in the steam cracking method which does not have these drawbacks and is low in production cost.
JP 2001-129405 A

本発明は上記のような問題点を解決して、水蒸気分解法の触媒として求められる高い軽質化能力、水蒸気雰囲気下での安定した活性、耐劣化性、耐失活性等の全ての性能を満足することができ、しかも製造コストも安価なものとすることができる重質油を軽質化するための触媒の製造方法を提供することを目的として完成されたものである。 The present invention solves the above problems and satisfies all performances such as high lightening ability, stable activity in a steam atmosphere, deterioration resistance, and deactivation resistance, which are required as a catalyst for steam cracking. The present invention has been completed for the purpose of providing a method for producing a catalyst for lightening heavy oil that can be produced at low cost.

上記課題を解決するためになされた請求項1の発明は、FeとAlとのアルカリ共沈物をZr含有水溶液に含浸させ、次いでろ過洗浄して得られた固形分を水蒸気雰囲気下で熱処理して、Al/(Al+Fe)の比率が8〜24mol%であるAlと、Zrとを含有する鉄酸化物系触媒を得ることを特徴とするものである。また請求項2の発明は、Fe塩とAl塩とZr塩を水溶液とした後、アルカリ溶液を加えてアルカリ共沈させ、次いで固液分離した固形分をろ過洗浄してケーキ状のろ過物とし、これを熱処理して、Al/(Al+Fe)の比率が8〜24mol%であるAlと、Zrとを含有する鉄酸化物系触媒を得ることを特徴とするものである。 In order to solve the above-mentioned problems, the invention of claim 1 is characterized in that an alkaline coprecipitate of Fe and Al is impregnated in a Zr-containing aqueous solution, and then the solid content obtained by filtration and washing is heat-treated in a steam atmosphere. Thus, an iron oxide catalyst containing Al having a ratio of Al / (Al + Fe) of 8 to 24 mol% and Zr is obtained. In the invention of claim 2, after making Fe salt, Al salt and Zr salt into an aqueous solution, an alkali solution is added to cause alkali coprecipitation, and then the solid content separated by solid-liquid separation is washed by filtration to obtain a cake-like filtrate. This is heat-treated to obtain an iron oxide catalyst containing Al having a ratio of Al / (Al + Fe) of 8 to 24 mol% and Zr .

本発明の重質油を軽質化するための触媒の製造方法として、Fe塩とAl塩をアルカリ共沈させたものをZr含有水溶液に含浸させ、次いでろ過洗浄して得られた固形分を水蒸気雰囲気下で熱処理してZr/Fe−AlO触媒を得るようにしたので、簡単かつ安価に触媒を生産できる。
また、触媒の製造方法として、Fe塩とAl塩とZr塩を水溶液とした後、アルカリ溶液を加えてアルカリ共沈させ、次いで固液分離した固形分をろ過洗浄してケーキ状のろ過物とし、これを熱処理してZr/Fe−AlO触媒を得るようにすることもでき、この場合も簡単かつ安価に触媒を生産できる。
As a method for producing a catalyst for lightening a heavy oil of the present invention, a solution obtained by impregnating an alkali-precipitated Fe salt and an Al salt with a Zr-containing aqueous solution and then filtering and washing the solid content is treated with steam. Since a Zr / Fe—AlO x catalyst is obtained by heat treatment in an atmosphere, the catalyst can be produced easily and inexpensively.
In addition, as a catalyst production method, after making Fe salt, Al salt and Zr salt into an aqueous solution, an alkali solution is added to cause alkali coprecipitation, and then solid-liquid separated solid content is filtered and washed to obtain a cake-like filtrate. This can be heat-treated to obtain a Zr / Fe—AlO x catalyst. In this case as well, the catalyst can be produced simply and inexpensively.

以下に、本発明の好ましい形態を示す。
本発明の触媒は、例えば廃プラスチックを熱分解してオクタン価の高い軽質油を得るプラスチックの油化プロセス等に使用するもので、特に、水蒸気雰囲気下で重質油を軽質化する水蒸気分解法に用いられるものである。そして本発明の触媒は、Fe塩とAl塩のアルカリ共沈物からなる鉄系触媒上にZrを担持させたものとなっている。
前記Fe塩、Al塩としては、例えば、Fe(NO・9HOやAl(NO・9HO等の硝酸塩を用いることができる。そして、アルカリ共沈させた共沈物からなる鉄系触媒上にZrを担持させて、触媒Zr/Fe−AlOが形成されている。
Below, the preferable form of this invention is shown.
The catalyst of the present invention is used in, for example, a plastic oil conversion process in which waste plastic is thermally decomposed to obtain a light oil having a high octane number. In particular, the catalyst of the present invention is used in a steam decomposition method for lightening heavy oil in a steam atmosphere. It is used. In the catalyst of the present invention, Zr is supported on an iron-based catalyst made of an alkali coprecipitate of Fe salt and Al salt.
It said Fe salt, the Al salt, e.g., Fe (NO 3) 3 · 9H 2 O and Al (NO 3) can be used nitrates of 3 · 9H 2 O and the like. Then, by supporting the Zr on the iron-based catalyst comprising a co-precipitate obtained by alkali co-precipitation, the catalyst Zr / Fe-AlO x is formed.

このように、本発明の触媒は基本的には鉄系触媒であり、水蒸気分解法において高い軽質化能力を発揮するうえに安価に生産が可能となる。また、担持させたZrが水分子のかい離を促進する助触媒として作用するので、水蒸気雰囲気下での安定した活性を示すとともに、優れた耐劣化性や耐失活性も発揮することとなる。
本発明の触媒は、[化1]に示すような反応の触媒として機能すると考えられる。これにより、重質油が効果的に分解されることとなる。
As described above, the catalyst of the present invention is basically an iron-based catalyst, and exhibits high lightening ability in the steam cracking method and can be produced at low cost. Further, since the supported Zr acts as a co-catalyst that promotes the separation of water molecules, it exhibits stable activity in a water vapor atmosphere and exhibits excellent deterioration resistance and deactivation resistance.
The catalyst of the present invention is considered to function as a catalyst for the reaction shown in [Chemical Formula 1]. Thereby, heavy oil will be decomposed | disassembled effectively.

Figure 0004780273
[化1]において、R、Rは有機基を示す。また、水の分解により活性酸素を生じさせ、[化2]に示すように、該活性酸素による酸化の触媒としても機能する。
Figure 0004780273
In [Chemical Formula 1], R 1 and R 2 each represents an organic group. Moreover, active oxygen is generated by the decomposition of water, and as shown in [Chemical Formula 2], it also functions as a catalyst for oxidation by the active oxygen.

Figure 0004780273
Figure 0004780273

本発明の触媒は、鉄系の多孔質構造のものであり、[化3]、[化4]に示すような反応平衡を保ちながら酸化還元触媒として働く。   The catalyst of the present invention has an iron-based porous structure and functions as a redox catalyst while maintaining the reaction equilibrium as shown in [Chemical Formula 3] and [Chemical Formula 4].

Figure 0004780273
Figure 0004780273

Figure 0004780273
Figure 0004780273

また、本発明の触媒において、担持したZrが水分子のかい離を促進する助触媒として作用する点を説明する。図1はCOからのCOの生成工程を示す図、図2はHOからのHの生成工程を示す図であり、Zrが水分子のかい離を促進して活性化していることが解る。 In the catalyst of the present invention, the point that the supported Zr acts as a promoter for promoting the separation of water molecules will be described. Illustrates a process of generating CO from 1 CO 2, FIG. 2 is a diagram showing a production process of H 2 from the H 2 O, that Zr is activated to promote dissociation of water molecules I understand.

以上に説明した触媒Zr/Fe−AlOでは、触媒中のFe含有量に対するAl含有量の比率は、Al/(Al+Fe)で8〜24mol%の範囲とするのが好ましい。その理由は、8mol%未満ではFe触媒の構造安定性が低下し、24mol%より多いとFe活性種量が減り、活性が低下するからである。 In the catalyst Zr / Fe—AlO x described above, the ratio of the Al content to the Fe content in the catalyst is preferably in the range of 8 to 24 mol% in terms of Al / (Al + Fe). The reason is that when the amount is less than 8 mol%, the structural stability of the Fe catalyst decreases, and when it exceeds 24 mol%, the amount of Fe active species decreases and the activity decreases.

また、Zrの担持量は、ZrO換算で1.7〜7.7wt%の範囲とするのが好ましい。その理由は、1.7wt%未満では、水分解のためのZrO量が少なく十分な活性酸素と水素が生成しないし、7.7wt%より多いと、担持されるZrOが主触媒(重質油分子の分解反応が進行する場)であるFeOの表面の多くを覆うため、重質油の分解サイトが減少し、活性が低下するからである。 Further, the supported amount of Zr is preferably in the range of 1.7~7.7Wt% in terms of ZrO 2. The reason is that if it is less than 1.7 wt%, the amount of ZrO 2 for water splitting is small and sufficient active oxygen and hydrogen are not generated, and if it is more than 7.7 wt%, the supported ZrO 2 is the main catalyst (heavy catalyst). This is because most of the surface of FeO x , which is the place where the decomposition reaction of the refined oil molecules proceeds, covers most of the surface of the FeO x , so that the number of heavy oil decomposition sites decreases and the activity decreases.

次に、本発明の触媒の製造方法について説明する。製造方法としては、共沈・含浸法や共沈法が適用できるので、それぞれの方法につき以下に説明する。
[共沈・含浸法]
Fe塩(Fe(NO・9HO)と、Al塩(Al(NO・9HO)を水に攪拌溶解して水溶液とし、これにNaOHやアンモニア水等のアルカリ溶液を加えてFeとAlをアルカリ共沈させる。このアルカリ共沈物をZr含有水溶液に含浸した後、ろ過洗浄して得られた固形分を水蒸気雰囲気下で熱処理する。以上により、Zr/Fe−AlO触媒を得ることができる。
Next, the manufacturing method of the catalyst of this invention is demonstrated. As a production method, a coprecipitation / impregnation method and a coprecipitation method can be applied, and each method will be described below.
[Coprecipitation / impregnation method]
And Fe salts (Fe (NO 3) 3 · 9H 2 O), the Al salt (Al (NO 3) 3 · 9H 2 O) and an aqueous solution dissolving stirred in water, an alkaline solution such as this in NaOH and aqueous ammonia Is added to coprecipitate Fe and Al. After impregnating the alkaline coprecipitate in a Zr-containing aqueous solution, the solid content obtained by filtration and washing is heat-treated in a steam atmosphere. Thus, a Zr / Fe—AlO x catalyst can be obtained.

[共沈法]
Fe塩とAl塩とZr塩(ZrOCl・8HO)を水に攪拌溶解して、水溶液を得る。この水溶液にアルカリ溶液を加えてアルカリ共沈させ、次いで固液分離した固形分をろ過洗浄してケーキ状のろ過物を得る。最後に、このろ過物を熱処理する。以上により、Zr/Fe−AlO触媒を得ることができる。
[Co-precipitation method]
An Fe salt, an Al salt, and a Zr salt (ZrOCl 2 .8H 2 O) are stirred and dissolved in water to obtain an aqueous solution. An alkaline solution is added to this aqueous solution to cause coprecipitation, and then the solid content separated by solid-liquid separation is washed by filtration to obtain a cake-like filtrate. Finally, the filtrate is heat treated. Thus, a Zr / Fe—AlO x catalyst can be obtained.

以上のようにして得られた触媒は、反応後において空気焼成を行うことによって初期状態に再生することが可能である。即ち、触媒反応後においてマグネタイト(Fe)になった酸化鉄をヘマタイト(α−Fe)に戻すのである。この場合、共沈・含浸法によって得たZr/Fe−AlO触媒は、比表面積が増加して触媒活性が向上することが確認できた。また、共沈法によって得たZr/Fe−AlO触媒は、反応による劣化が少なく、反応後もほとんどがヘマタイト(α−Fe)のままであることが確認できている。 The catalyst obtained as described above can be regenerated to the initial state by performing air calcination after the reaction. That is, the iron oxide that has become magnetite (Fe 3 O 4 ) after the catalytic reaction is returned to hematite (α-Fe 2 O 3 ). In this case, it was confirmed that the Zr / Fe—AlO x catalyst obtained by the coprecipitation / impregnation method increases the specific surface area and improves the catalytic activity. Further, it has been confirmed that the Zr / Fe—AlO x catalyst obtained by the coprecipitation method has little deterioration due to the reaction, and most remains as hematite (α-Fe 2 O 3 ) after the reaction.

Fe(NO・9HO:226.2g、Al(NO・9HO:52.5g、ZrOCl・8HO:11.3gを水道水1.5リットルに攪拌溶解する。次いで、NaOH溶液(48.7%)を徐々に加えながら、1時間攪拌した。その後、固液分離を行い、得られた固形分を熱湯でろ過洗浄した。次いで、得られたケーキ状のろ過物を、500℃で1時間熱処理して、56gのZr/Fe−AlO触媒(ZrO:7.9wt%、Al/(Al+Fe):20mol%)を得た。 Fe (NO 3) 3 · 9H 2 O: 226.2g, Al (NO 3) 3 · 9H 2 O: 52.5g, ZrOCl 2 · 8H 2 O: stirring dissolved in tap water 1.5 liters of 11.3g To do. Subsequently, it stirred for 1 hour, adding NaOH solution (48.7%) gradually. Thereafter, solid-liquid separation was performed, and the obtained solid content was filtered and washed with hot water. Next, the obtained cake-like filtrate was heat-treated at 500 ° C. for 1 hour to obtain 56 g of Zr / Fe—AlO x catalyst (ZrO 2 : 7.9 wt%, Al / (Al + Fe): 20 mol%). It was.

図3は、Zr/Fe−AlOx触媒を用いて、常圧残油を水蒸気分解法により軽質化した結果を示す。反応1回目で、ガソリンと灯油を40%以上、さらに軽油を含めると70%以上の高い収率で得ることができるとともに、残渣を無くすことができ、触媒として優れた特性を有することが確認できた。比較例として触媒を用いない場合、FeOx触媒(図中、Fe触媒と記載)、Zr/FeOx触媒(図中、Zr/Fe触媒と記載)を用いて同様の軽質化を行った結果を示すが、無触媒とFeOxは本発明の触媒より軽質油の収率が低い。また、Zr/FeOxは1回目は活性はほぼ本発明の触媒と同じであるが、再生して2回目、3回目になると収率がガソリンと灯油を併せて37%までに、軽油を含めると65%以下まで大幅に低下する。しかし、本発明のZr/Fe−AlOx触媒は安定であり、再生を繰り返すことで軽質化が進み、3回目の収率ではガソリンと灯油が46%に、軽油を含めると77%までになり優れた性能を示すことが明らかであった。   FIG. 3 shows the result of lightening atmospheric residue using a Zr / Fe—AlOx catalyst by steam cracking. In the first reaction, gasoline and kerosene can be obtained in high yields of 40% or more, and light oil can be obtained in high yields of 70% or more. Residues can be eliminated and the catalyst has excellent characteristics. It was. When a catalyst is not used as a comparative example, the same lightening results are shown using an FeOx catalyst (described as Fe catalyst in the figure) and a Zr / FeOx catalyst (described as Zr / Fe catalyst in the figure). Non-catalyst and FeOx have a lower yield of light oil than the catalyst of the present invention. The activity of Zr / FeOx is almost the same as that of the catalyst of the present invention at the first time, but when the second and third times after regeneration, the yield is 37% for gasoline and kerosene combined. Decreases significantly to 65% or less. However, the Zr / Fe—AlOx catalyst of the present invention is stable, and lightening is promoted by repeating regeneration. In the third yield, gasoline and kerosene are 46%, and if diesel oil is included, it is 77%. It was clear that the performance was excellent.

図4は、Zr/Fe−AlO触媒の細孔径分布を示すものであるが、本発明の触媒は反応(使用)前と再生後において孔分布にほとんど差異が認められず、目詰まりを生じにくいことが確認できた。 FIG. 4 shows the pore size distribution of the Zr / Fe—AlO x catalyst. The catalyst of the present invention shows almost no difference in pore distribution before the reaction (use) and after regeneration, resulting in clogging. It was confirmed that it was difficult.

図5は、本発明のZr/Fe−AlO触媒の分解速度定数と再生回数との関係を示すグラフであるが、再生操作を行う毎に分解速度定数が大きくなり、処理効率が上がることが確認できた。これは、空気焼成を行うことによって微細孔が発達するためと思われる。 FIG. 5 is a graph showing the relationship between the decomposition rate constant of the Zr / Fe—AlO x catalyst of the present invention and the number of regenerations. Each time the regeneration operation is performed, the decomposition rate constant increases and the processing efficiency increases. It could be confirmed. This seems to be because fine pores develop by performing air firing.

以上の説明からも明らかなように、本発明はFe塩とAl塩のアルカリ共沈物からなる鉄系触媒上にZrを担持させたものであり、担持させたZrが水分子のかい離を促進する助触媒として作用するので、水蒸気雰囲気下での安定した活性を示すとともに、優れた耐劣化性や耐失活性も発揮することとなる。
また、Fe塩とAl塩をアルカリ共沈させたものをZr含有水溶液に含浸させ、次いでろ過洗浄して得られた固形分を水蒸気雰囲気下で熱処理してZr/Fe−AlO触媒を得る製造方法や、Fe塩とAl塩とZr塩を水溶液とした後、アルカリ溶液を加えてアルカリ共沈させ、次いで固液分離した固形分をろ過洗浄してケーキ状のろ過物とし、これを熱処理してZr/Fe−AlO触媒を得る製造方法によれば、簡単かつ安価にZr/Fe−AlO触媒を生産することができることとなる。
As is clear from the above explanation, the present invention is such that Zr is supported on an iron-based catalyst composed of an alkaline coprecipitate of Fe salt and Al salt, and the supported Zr promotes separation of water molecules. Therefore, it exhibits a stable activity in a water vapor atmosphere, and also exhibits excellent resistance to deterioration and deactivation.
Further, a Zr / Fe—AlO x catalyst is obtained by impregnating a Zr-containing aqueous solution with a co-precipitated Fe salt and Al salt, and then heat-treating the solid content obtained by filtration and washing in a steam atmosphere. Method, after making Fe salt, Al salt and Zr salt into aqueous solution, adding alkali solution to coprecipitate with alkali, then solid-liquid separated solid content is filtered and washed to make cake-like filtrate, and this is heat treated According to the manufacturing method for obtaining a Zr / Fe-AlO x catalyst Te, easily and inexpensively and thus capable of producing a Zr / Fe-AlO x catalyst.

COからのCOの生成工程を示す図である。It is a diagram illustrating a process of generating CO from CO 2. OからのHの生成工程を示す図である。It is a diagram showing a production process of H 2 from the H 2 O. 常圧残油を水蒸気分解したときの収率を示すグラフである。It is a graph which shows a yield when carrying out steam decomposition of a normal-pressure residual oil. 本発明の触媒の細孔径分布を示すグラフである。It is a graph which shows the pore diameter distribution of the catalyst of this invention. 本発明の触媒の分解速度定数と再生回数との関係を示すグラフである。 It is a graph which shows the relationship between the decomposition rate constant of the catalyst of this invention, and the frequency | count of regeneration .

Claims (2)

FeとAlとのアルカリ共沈物をZr含有水溶液に含浸させ、次いでろ過洗浄して得られた固形分を水蒸気雰囲気下で熱処理して、Al/(Al+Fe)の比率が8〜24mol%であるAlと、Zrとを含有する鉄酸化物系触媒を得ることを特徴とする重質油を軽質化するための触媒の製造方法。 A solid content obtained by impregnating an alkaline coprecipitate of Fe and Al in a Zr-containing aqueous solution and then filtering and washing is heat-treated in a water vapor atmosphere, and the ratio of Al / (Al + Fe) is 8 to 24 mol%. A method for producing a catalyst for lightening heavy oil, characterized in that an iron oxide catalyst containing Al and Zr is obtained. Fe塩とAl塩とZr塩を水溶液とした後、アルカリ溶液を加えてアルカリ共沈させ、次いで固液分離した固形分をろ過洗浄してケーキ状のろ過物とし、これを熱処理して、Al/(Al+Fe)の比率が8〜24mol%であるAlと、Zrとを含有する鉄酸化物系触媒を得ることを特徴とする重質油を軽質化するための触媒の製造方法。 After making Fe salt, Al salt, and Zr salt into an aqueous solution, an alkali solution is added to cause alkali coprecipitation, and then the solid content separated by solid-liquid separation is filtered and washed to obtain a cake-like filtrate, which is heat-treated, and Al A method for producing a catalyst for lightening heavy oil, characterized in that an iron oxide-based catalyst containing Al having a ratio of / (Al + Fe) of 8 to 24 mol% and Zr is obtained.
JP2004190719A 2004-06-29 2004-06-29 Method for producing catalyst for lightening heavy oil Active JP4780273B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004190719A JP4780273B2 (en) 2004-06-29 2004-06-29 Method for producing catalyst for lightening heavy oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004190719A JP4780273B2 (en) 2004-06-29 2004-06-29 Method for producing catalyst for lightening heavy oil

Publications (2)

Publication Number Publication Date
JP2006007151A JP2006007151A (en) 2006-01-12
JP4780273B2 true JP4780273B2 (en) 2011-09-28

Family

ID=35774967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004190719A Active JP4780273B2 (en) 2004-06-29 2004-06-29 Method for producing catalyst for lightening heavy oil

Country Status (1)

Country Link
JP (1) JP4780273B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011114670A1 (en) * 2010-03-19 2011-09-22 Jx日鉱日石エネルギー株式会社 Heavy hydrocarbon oil cracking catalyst and heavy hydrocarbon oil cracking method
JP5631612B2 (en) * 2010-03-19 2014-11-26 Jx日鉱日石エネルギー株式会社 Heavy hydrocarbon oil cracking catalyst
JP5530774B2 (en) * 2010-03-19 2014-06-25 Jx日鉱日石エネルギー株式会社 Decomposition method of heavy hydrocarbon oil
CA2831545A1 (en) * 2011-03-31 2012-10-04 Jx Nippon Oil & Energy Corporation Hydrocarbon oil cracking catalyst and method for cracking hydrocarbon oil
JP5687941B2 (en) * 2011-03-31 2015-03-25 Jx日鉱日石エネルギー株式会社 Hydrocarbon oil cracking catalyst and hydrocarbon oil cracking method
RU2524211C1 (en) * 2013-06-24 2014-07-27 Александр Анатольевич Симонов Catalyst system in thermolysis of heavy oil stock and oil extraction and refining wastes
KR102549406B1 (en) 2016-10-25 2023-06-30 에스케이이노베이션 주식회사 Process of desulfurization and denitrification of heavy oil using water
KR102541598B1 (en) * 2022-03-03 2023-06-13 한국화학연구원 Catalyst for cracking of heavy oil and method for upgrading of heavy oil using the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3521766A1 (en) * 1985-06-19 1987-01-02 Basf Ag HONEYCOMB CATALYST, ITS PRODUCTION AND USE
DE4303715A1 (en) * 1993-02-09 1994-08-11 Sued Chemie Ag Chromium-free catalyst based on iron oxide for the conversion of carbon monoxide
JP4508381B2 (en) * 1999-08-25 2010-07-21 メタウォーター株式会社 Iron oxide catalyst for decomposition of organic waste, method for producing the same, and method for treating organic waste
JP2002129171A (en) * 2000-10-27 2002-05-09 Ngk Insulators Ltd Decomposition method for heavy oil
JP2002273223A (en) * 2001-03-22 2002-09-24 Idemitsu Kosan Co Ltd Method for manufacturing co removing catalyst

Also Published As

Publication number Publication date
JP2006007151A (en) 2006-01-12

Similar Documents

Publication Publication Date Title
Bulushev et al. Heterogeneous catalysts for hydrogenation of CO2 and bicarbonates to formic acid and formates
Pal et al. Performance of water gas shift reaction catalysts: A review
KR100903439B1 (en) Preparation method of direct synthesis of light hydrocarbons from natural gas
JP4780273B2 (en) Method for producing catalyst for lightening heavy oil
CN104815659A (en) Iron-based catalyst used for Fischer-Tropsch synthesis, preparation method and application
KR101437072B1 (en) Catalyst for efficient co2 conversion and method for preparing thereof
TW200904526A (en) DeNOx catalyst preparation method
JPH11276893A (en) Metal fine particle-supported hydrocarbon modifying catalyst and its production
CN113546632A (en) Catalyst for treating phenolic wastewater by wet oxidation method and preparation method thereof
JP3718092B2 (en) Carbon monoxide selective oxidation catalyst in hydrogen-containing gas, carbon monoxide selective removal method using the catalyst, and solid polymer electrolyte fuel cell system
Park et al. Carbon Dioxide Utilization for Global Sustainability: Proceedings of the 7th International Conference on Carbon Dioxide Utilization, Seoul, Korea, October 12-16, 2003
JP4122426B2 (en) Hydrogen production method
WO2008047676A1 (en) Method for producing hydrogen-containing gas
JPS61502948A (en) Production of synthesis gas conversion catalyst and its use
JP4942718B2 (en) Autothermal reforming catalyst
JP4465478B2 (en) Catalyst for hydrogen production
CN102441403B (en) Method for preparing cobalt-based Fischer-Tropsch synthetic catalyst
JP3837520B2 (en) Catalyst for CO shift reaction
JP2005254076A (en) Reforming catalyst composition
CN117545554A (en) Method for preparing a water gas shift catalyst, catalyst and method for reducing carbon monoxide content
FR2857003A1 (en) Catalyst and process for the reforming of ethanol and other heavier alcohols, useful for the production of hydrogen
JP4015390B2 (en) Hydrocarbon reforming catalyst and method for producing the same
TWI270543B (en) Process for catalytically decomposing organic hydroperoxides
CN106944078A (en) A kind of preparation method for catalyst for hydrogen production from methane vapor reforming
Gahtori et al. Advances in Direct Thermocatalytic CO 2 Conversion to Chemicals and Hydrocarbons

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070509

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070509

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070824

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080430

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080519

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080604

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110603

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110621

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4780273

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250