JP2002129171A - Decomposition method for heavy oil - Google Patents

Decomposition method for heavy oil

Info

Publication number
JP2002129171A
JP2002129171A JP2000328910A JP2000328910A JP2002129171A JP 2002129171 A JP2002129171 A JP 2002129171A JP 2000328910 A JP2000328910 A JP 2000328910A JP 2000328910 A JP2000328910 A JP 2000328910A JP 2002129171 A JP2002129171 A JP 2002129171A
Authority
JP
Japan
Prior art keywords
heavy oil
iron
catalyst
steam
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000328910A
Other languages
Japanese (ja)
Inventor
Takao Masuda
隆夫 増田
Yuichi Ikeda
裕一 池田
Nobuhiro Sato
伸博 佐藤
Shuichi Yoshida
修一 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2000328910A priority Critical patent/JP2002129171A/en
Publication of JP2002129171A publication Critical patent/JP2002129171A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a decomposition method for a heavy oil where the amount of precipitated carbon is small, the catalyst is hardly degraded, and the running cost is low. SOLUTION: This decomposition method uses an iron compound as a catalyst. The iron compound is obtained by heating an iron compound comprising at least one compound selected from the group consisting of iron hydroxide (FeOOH), triiron tetraoxide (Fe3O4), and diiron trioxide (Fe2O3) with steam or in an atmosphere containing steam.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、触媒を用いた重質
油の分解方法に関する。
[0001] The present invention relates to a method for cracking heavy oil using a catalyst.

【0002】[0002]

【従来技術】従来、有機廃棄物を有用性有機物へ転換す
るために、ゼオライト触媒を用いて有機廃棄物を接触分
解することが行われていた(特開平5−138,03
1)。
2. Description of the Related Art Conventionally, in order to convert organic waste into useful organic matter, catalytic decomposition of organic waste using a zeolite catalyst has been performed (Japanese Patent Laid-Open No. 5-13803).
1).

【0003】[0003]

【発明が解決しようとする課題】特開平5−138,0
31の方法では、触媒の活性点へ炭素が析出することに
よって触媒が劣化し、また触媒の製造コストが高いとい
う問題点がある。
Problems to be Solved by the Invention Japanese Patent Laid-Open No. 5-138,0
The method 31 has the problems that the catalyst is deteriorated due to the deposition of carbon at the active site of the catalyst, and the production cost of the catalyst is high.

【0004】本発明は、炭素の析出量が少なく、触媒が
劣化しにくく、ランニングコストの小さい重質油の分解
方法を提供することを目的とする。
[0004] It is an object of the present invention to provide a method for decomposing heavy oil, which has a low carbon deposition amount, hardly deteriorates the catalyst, and has a low running cost.

【0005】[0005]

【課題を解決するための手段】本発明の重質油分解方法
は、鉄化合物を触媒として用いて重質油を分解する重質
油の分解方法であって、該鉄化合物が水酸化鉄(FeO
OH)、四酸化三鉄(Fe34)及び三酸化二鉄(Fe
23)からなる群のうち少なくとも一種以上からなる鉄
系化合物を選択し、かつ該鉄系化合物を水蒸気あるいは
水蒸気を含有する雰囲気中で加熱して得られた鉄化合物
である、重質油分解方法。
The heavy oil cracking method of the present invention is a method for cracking heavy oil using an iron compound as a catalyst to crack heavy oil. FeO
OH), triiron tetroxide (Fe 3 O 4 ) and diiron trioxide (Fe
Heavy oil, which is an iron compound obtained by selecting at least one iron compound from the group consisting of 2 O 3 ) and heating the iron compound in steam or an atmosphere containing steam. Disassembly method.

【0006】本発明の重質油分解方法の好ましい実施態
様としては、以下の態様が挙げられる。下記いずれかの
組合せも互いに矛盾しない限り、本発明の好ましい実施
態様に含まれる。 (1)選択された鉄系化合物が水酸化鉄(FeOOH)
である。FeOOHを水蒸気加熱処理することにより、
FeOOH中の結晶水が気化し、1〜10nmの細孔が
生成する。この細孔内に触媒活性を示す部位が現れる。
この時FeOOHの一部はFe,Fe等に
変化する。 (2)水蒸気または水蒸気を含有する雰囲気中の加熱処
理を400〜700℃で行う。400〜700℃処理に
より、FeOOHの一部がFeに効率的に変化し
磁性を持つようになるため、触媒の磁力回収が可能とな
る。 (3)鉄化合物に酸化ジルコニウム(ZrO)が担持
または含有されている。 (4)触媒に酸化亜鉛、酸化錫、アルカリ金属酸化物お
よびアルカリ土類金属酸化物からなる群のうち一種類以
上を担持または含有させる。上記(3)及び(4)の酸
化ジルコニウム、酸化亜鉛等については、水分が分解さ
れて活性酸素、活性水素、活性水酸基等を生成し、これ
ら活性種が上記(1),(2)に記載した鉄化合物の細
孔表面活性点に移動して、重質油の分解を促進する。そ
の結果、炭素残渣の発生率をより低減することができ
る。すなわち、酸化ジルコニウム、酸化亜鉛等は助触媒
として働く。 (5)触媒が、該鉄化合物100重量部と、該酸化ジル
コニウム14重量部以下とからなる。より好ましくは、
後述する蒸発乾固法で担持させる場合には、鉄化合物1
00重量部に対して、酸化ジルコニウム(ZrO2
1.6乃至7.7重量部を担持する。この範囲である
と、残渣の発生をより低減することができる。 (6)重質油を不活性溶媒と混合後、得られた混合物に
対して重質油の分解反応を行う。重質油を溶媒で希釈す
ることによって、希釈しない場合と比べて炭素残渣発生
率を低減できる。 (7)重質油分解反応を水蒸気中または水蒸気を含有す
る雰囲気中で行う。この場合、本願の重質油分解反応に
より適合した水酸化鉄(FeOOH)、四酸化三鉄(F
34)及び三酸化二鉄(Fe23)のうち少なくとも
一種以上からなる鉄化合物が形成され重質油をより効果
的に分解できる。 (8) 重質油と、不活性溶媒と水酸化鉄(FeOO
H)とからなる混合物を水蒸気中または水蒸気を含有す
る雰囲気中で加熱し、水酸化鉄(FeOOH)、四酸化
三鉄(Fe34)及び三酸化二鉄(Fe23)のうち少
なくとも一種以上からなる鉄化合物を形成し、該鉄化合
物を触媒として用いる。なお、このとき鉄化合物は多孔
質もしくは微粒子となっている。実質的に触媒成分とし
て水酸化鉄(FeOOH)を用いても、本願の重質油分
解反応により適合した水酸化鉄(FeOOH)、四酸化
三鉄(Fe34)及び三酸化二鉄(Fe23)のうち少
なくとも一種以上からなる鉄化合物が形成され重質油を
より効果的に分解できる。 (9)触媒反応生成物を、ガス、軽質油、未分解重質
油、溶媒及び水に分離し、分離した溶媒を循環して使用
する。溶媒は触媒によって分解されないので、循環使用
が可能となる。 (10)不活性溶媒として、ケトン、ベンゼン、フェノ
ールおよびこれらの混合溶媒からなる群から選ばれた溶
媒を用いる、請求項7乃至10のいずれかの重質油分解
方法。これらの溶媒に対して、本願発明で用いる触媒は
不活性であり、好適に使用できる。 (11)重質油分解処理後に、前記触媒を磁力により回
収する。このようにすることによって、触媒を再生再利
用可能となり、重油分解方法の実施コストの低減が図れ
る。
Preferred embodiments of the heavy oil cracking method of the present invention include the following. Unless inconsistent with one another, any of the following combinations are also included in the preferred embodiments of the present invention. (1) The selected iron compound is iron hydroxide (FeOOH)
It is. By subjecting FeOOH to steam heating treatment,
The water of crystallization in FeOOH evaporates, producing pores of 1 to 10 nm. A site showing catalytic activity appears in these pores.
At this time, part of the FeOOH changes to Fe 3 O 4 , Fe 2 O 3, and the like. (2) Heat treatment is performed at 400 to 700 ° C. in steam or an atmosphere containing steam. By the treatment at 400 to 700 ° C., part of FeOOH is efficiently changed to Fe 3 O 4 and becomes magnetic, so that the magnetic force of the catalyst can be recovered. (3) Zirconium oxide (ZrO 2 ) is supported or contained in the iron compound. (4) The catalyst carries or contains at least one member selected from the group consisting of zinc oxide, tin oxide, alkali metal oxides and alkaline earth metal oxides. With respect to zirconium oxide, zinc oxide and the like of the above (3) and (4), water is decomposed to generate active oxygen, active hydrogen, active hydroxyl group and the like, and these active species are described in the above (1) and (2). The iron compound moves to the pore surface active site to promote the decomposition of heavy oil. As a result, the rate of occurrence of carbon residues can be further reduced. That is, zirconium oxide, zinc oxide and the like work as a co-catalyst. (5) The catalyst comprises 100 parts by weight of the iron compound and 14 parts by weight or less of the zirconium oxide. More preferably,
When supported by the evaporation to dryness method described below, iron compound 1
00 parts by weight, zirconium oxide (ZrO 2 )
It carries 1.6 to 7.7 parts by weight. Within this range, the generation of residues can be further reduced. (6) After mixing the heavy oil with the inert solvent, the resulting mixture is subjected to a heavy oil decomposition reaction. By diluting the heavy oil with the solvent, the carbon residue generation rate can be reduced as compared with the case where the heavy oil is not diluted. (7) The heavy oil cracking reaction is performed in steam or an atmosphere containing steam. In this case, iron hydroxide (FeOOH) and triiron tetroxide (F
e 3 O 4 ) and iron compound composed of at least one of diiron trioxide (Fe 2 O 3 ), and the heavy oil can be decomposed more effectively. (8) Heavy oil, inert solvent and iron hydroxide (FeOO)
H) is heated in steam or in an atmosphere containing steam to obtain a mixture of iron hydroxide (FeOOH), triiron tetroxide (Fe 3 O 4 ) and diiron trioxide (Fe 2 O 3 ). An iron compound composed of at least one or more is formed, and the iron compound is used as a catalyst. At this time, the iron compound is porous or fine particles. Even when iron hydroxide (FeOOH) is used substantially as a catalyst component, iron hydroxide (FeOOH), triiron tetroxide (Fe 3 O 4 ), and diiron trioxide ( An iron compound composed of at least one of Fe 2 O 3 ) is formed, and heavy oil can be decomposed more effectively. (9) The catalyst reaction product is separated into gas, light oil, uncracked heavy oil, solvent and water, and the separated solvent is circulated for use. Since the solvent is not decomposed by the catalyst, it can be recycled. (10) The heavy oil cracking method according to any one of claims 7 to 10, wherein a solvent selected from the group consisting of ketone, benzene, phenol, and a mixed solvent thereof is used as the inert solvent. The catalyst used in the present invention is inert with respect to these solvents and can be suitably used. (11) After the heavy oil cracking treatment, the catalyst is recovered by magnetic force. By doing so, the catalyst can be recycled and reused, and the implementation cost of the heavy oil cracking method can be reduced.

【0007】本発明の重質油分解用酸化鉄系触媒は、以
下のような反応の触媒として機能すると考えられる。
The iron oxide catalyst for cracking heavy oil of the present invention is considered to function as a catalyst for the following reactions.

【化1】 上記式中、R、Rは有機基を示す。また、水の分解
により活性酸素を生じさせ、該活性酸素による酸化の触
媒としても機能する。
Embedded image In the above formula, R 1 and R 2 represent an organic group. In addition, active oxygen is generated by decomposition of water, and also functions as a catalyst for oxidation by the active oxygen.

【化2】 Embedded image

【0008】また、本発明の重質油分解用酸化鉄系触媒
は磁性を有し磁力回収が可能な鉄化合物を含むので回収
が容易であるという利点を有する。
Further, the iron oxide catalyst for cracking heavy oil of the present invention has an advantage that the recovery is easy because it contains an iron compound which is magnetic and can be recovered by magnetic force.

【0009】[0009]

【実施の態様】以下に、本発明に係る重質油有機廃棄物
分解用酸化鉄系触媒について説明をする。 (1)重質油分解用酸化鉄系触媒 本発明に係る重質油分解用酸化鉄系触媒は、水酸化鉄
(FeOOH)、四酸化鉄(Fe3 4)及び三酸化鉄
(Fe3 3)のうち、一種類以上からなる鉄系化合物
を水蒸気あるいは水蒸気を含有する雰囲気中で加熱する
ことにより得られる。 (2)重質油分解用酸化ジルコニウム等導入酸化鉄系触
媒 本発明に係る重質油分解用酸化ジルコニウム等導入酸化
鉄系触媒は、水酸化鉄(FeOOH)、四酸化三鉄(Fe
O)及び三酸化二鉄(FeO)のうち一種類以上か
らなる鉄系化合物から得られる鉄化合物と、該鉄化合物
に担持または含有されている酸化ジルコニウム、酸化亜
鉛、酸化錫、アルカリ金属酸化物、アルカリ土類金属酸
化物のうち、一種類以上とからなる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an iron oxide-based catalyst for decomposing heavy oil organic waste according to the present invention will be described. (1) Iron Oxide Catalyst for Heavy Oil Cracking The iron oxide catalyst for heavy oil cracking according to the present invention comprises iron hydroxide (FeOOH), iron tetroxide (Fe 3 O 4 ), and iron trioxide (Fe 3 O 3 ) can be obtained by heating one or more iron-based compounds in steam or an atmosphere containing steam. (2) Zirconium oxide-introduced iron oxide catalyst for heavy oil cracking The zirconium oxide-introduced iron oxide catalyst for heavy oil cracking according to the present invention includes iron hydroxide (FeOOH), triiron tetroxide (Fe
An iron compound obtained from an iron-based compound comprising at least one of 3 O 4 ) and diiron trioxide (Fe 2 O 3 ); and zirconium oxide, zinc oxide, and tin oxide carried or contained in the iron compound. , Alkali metal oxides and alkaline earth metal oxides.

【0010】鉄化合物の水酸化鉄(FeOOH)、四酸化三
鉄(FeO)及び三酸化二鉄(FeO)は触媒製造時
の出発原料であり、水酸化鉄(FeOOH)は水蒸気雰囲気
中で加熱することによって四酸化三鉄(FeO)及び
三酸化二鉄(FeO)を形成する。また、構造は多孔
質となる。四酸化三鉄(FeO)及び三酸化二鉄(Fe
O)はともに触媒構成成分であり、以下の反応平衡
を保ち酸化還元触媒として働く。
The iron compounds iron hydroxide (FeOOH), triiron tetroxide (Fe 3 O 4 ) and diiron trioxide (Fe 2 O 3 ) are starting materials for the production of the catalyst, and iron hydroxide (FeOOH) Forms triiron tetroxide (Fe 3 O 4 ) and diiron trioxide (Fe 2 O 3 ) by heating in a steam atmosphere. Also, the structure becomes porous. Triiron tetraoxide (Fe 3 O 4) and ferric oxide (Fe
2 O 3 ) are both catalyst constituents and serve as an oxidation-reduction catalyst while maintaining the following reaction equilibrium.

【化3】 上記各々の役割が発揮される限り水酸化鉄(FeOOH)、
四酸化三鉄(FeO)及び三酸化二鉄(FeO)の比
率は特に限定されるものではない。また、一般の触媒と
同様、多孔質化や微粒子化により比表面積が大きくなる
と触媒活性は上がる。
Embedded image Iron hydroxide (FeOOH), as long as each of the above roles is fulfilled
The ratio of the triiron tetraoxide (Fe 3 O 4) and ferric oxide (Fe 2 O 3) is not particularly limited. Further, similarly to general catalysts, when the specific surface area increases due to porosity or fine particles, the catalytic activity increases.

【0011】なお、鉄化合物に酸化ジルコニウムを担持
あるいは含有させる場合には、鉄系化合物に酸化ジルコ
ニウムを担持、含有させるが、その場合、以下の態様で
水蒸気あるいは水蒸気を含有する雰囲気中で加熱する。 (a)鉄系化合物を加熱処理し、その後酸化ジルコニウ
ムを担持させ、さらに加熱する。 (b)鉄系化合物を加熱処理し、その後酸化ジルコニウ
ムを担持させ、さらに加熱を行わない。 (c)鉄系化合物に加熱処理を行わずに、酸化ジルコニ
ウムを担持し、その後加熱する。 (d)鉄系化合物に加熱処理を行わずに、酸化ジルコニ
ウムを担持し、その後も加熱を行わずに、重質油分解反
応を水蒸気あるいは水蒸気を含有する雰囲気中で行っ
て、酸化ジルコニウム担持鉄系化合物の加熱処理を行
う。 上記(a)〜(d)のいずれも採用できるが、(a)〜
(c)が好ましく、(a)が特に好ましい。
When zirconium oxide is carried or contained in the iron compound, zirconium oxide is carried and contained in the iron-based compound. In this case, heating is performed in the following manner in steam or in an atmosphere containing steam. . (A) Heat treatment of an iron-based compound, and then supporting zirconium oxide, and further heating. (B) heat-treating the iron-based compound, and then supporting zirconium oxide, without further heating; (C) The zirconium oxide is supported without heating the iron-based compound, and then heated. (D) zirconium oxide is supported on the iron-based compound without heat treatment, and the heavy oil decomposition reaction is carried out in a steam or an atmosphere containing steam without heating thereafter, and the zirconium oxide-carrying iron is supported. The heat treatment of the system compound is performed. Although any of the above (a) to (d) can be adopted,
(C) is preferred, and (a) is particularly preferred.

【0012】また、鉄系化合物に酸化ジルコニウムを含
有させる場合には、一般的には鉄系化合物と酸化ジルコ
ニウムとを混合、共沈した後、加熱処理を行う。酸化ジ
ルコニウム、酸化亜鉛、酸化錫、アルカリ金属酸化物、
アルカリ土類金属酸化物は(i)の正反応(→向きの反
応)を促進する。反応イメージは下図の通り
When zirconium oxide is contained in the iron-based compound, generally, the iron-based compound and zirconium oxide are mixed and coprecipitated, and then heat treatment is performed. Zirconium oxide, zinc oxide, tin oxide, alkali metal oxide,
The alkaline earth metal oxide promotes the positive reaction (i) of (i). The reaction image is as shown below

【化4】 Embedded image

【0013】また、本発明に係る重質油分解用酸化ジル
コニウム等導入酸化鉄系触媒は、一般的には、温度30
0‐600℃、圧力は常圧から25MPa以上(超臨界
域)で粉末あるいは造粒物の形状で触媒反応に使用され
る。
The iron oxide-based catalyst introduced with zirconium oxide or the like for cracking heavy oil according to the present invention generally has a temperature of 30.
The pressure is from 0 to 600 ° C. and the pressure is from normal pressure to 25 MPa or more (supercritical range).

【0014】(3)重質油分解用酸化ジルコニウム等導
入酸化鉄系触媒の製造方法 本発明の重質油分解用酸化鉄系触媒の製造方法は、水酸
化鉄(FeOOH)、四酸化三鉄(Fe34)及び三酸
化二鉄(Fe23)からなる群のうち少なくとも一種以
上からなる鉄系化合物を選択し、かつ該鉄系化合物を水
蒸気あるいは水蒸気を含有する雰囲気中で加熱して得ら
れる。鉄系化合物としては、水酸化鉄(FeOOH)を用い
ることができ、該水酸化鉄を水蒸気中または水蒸気を含
有する雰囲気中で加熱し鉄化合物を形成し、その後該鉄
化合物に酸化ジルコニウム等を担持または含有させるこ
とができる。この場合、酸化鉄触媒は、ジルコニウム等
の塩と鉄塩を共沈させることによっても得ることができ
る。
(3) Method for Producing Zirconium Oxide and Other Iron Oxide Catalysts for Heavy Oil Cracking The method for producing the iron oxide catalyst for heavy oil cracking according to the present invention comprises iron hydroxide (FeOOH), triiron tetroxide (Fe 3 O 4 ) and at least one iron-based compound selected from the group consisting of diiron trioxide (Fe 2 O 3 ), and heating the iron-based compound in steam or an atmosphere containing steam. Is obtained. As the iron-based compound, iron hydroxide (FeOOH) can be used, and the iron hydroxide is heated in steam or in an atmosphere containing steam to form an iron compound, and then zirconium oxide or the like is added to the iron compound. It can be carried or contained. In this case, the iron oxide catalyst can also be obtained by coprecipitating a salt such as zirconium and an iron salt.

【0015】(3−1)水酸化鉄(FeOOH)を水蒸気中
または水蒸気を含有する雰囲気中で加熱し鉄化合物を形
成する工程。 水酸化鉄は、例えば石英製等の反応管に仕込み、水蒸気
圧を例えば1気圧(常圧)とし、温度を例えば350℃
乃至700℃の温度範囲において、水酸化鉄(FeOO
H)、四酸化三鉄(FeO)及び三酸化二鉄(Fe
O)の少なくとも1種類からなる鉄化合物を形成す
るに十分な時間、例えば水蒸気処理時間を1時間として
熱処理をして鉄化合物を形成する。水蒸気を含有する雰
囲気とは、例えば、過熱水蒸気、飽和水蒸気、燃焼排ガ
ス等を例示できる。酸化ジルコニウム等を担持または含
有させない場合はこの鉄化合物を本発明の重質油分解方
法に用いる。
(3-1) A step of heating iron hydroxide (FeOOH) in steam or an atmosphere containing steam to form an iron compound. Iron hydroxide is charged into a reaction tube made of, for example, quartz, and the steam pressure is set to, for example, 1 atm (normal pressure), and the temperature is set to, for example, 350 ° C.
In the temperature range of ~ 700 ° C, iron hydroxide (FeOO
H), triiron tetroxide (Fe 3 O 4 ) and diiron trioxide (Fe
Heat treatment is performed for a time sufficient to form at least one type of iron compound of 2 O 3 ), for example, a steam treatment time of 1 hour to form an iron compound. Examples of the atmosphere containing steam include superheated steam, saturated steam, and combustion exhaust gas. When zirconium oxide or the like is not supported or contained, the iron compound is used in the heavy oil cracking method of the present invention.

【0016】(2−2)形成された鉄化合物に酸化ジル
コニウム等を担持する工程 形成された鉄化合物に酸化ジルコニウム等を担持するに
は、鉄化合物を水に懸濁させた状態で、該懸濁液中で、
例えば水酸化ジルコニウムを生成させ鉄化合物に担持さ
せ、その後乾燥・焼成を行って酸化ジルコニウムを鉄化
合物に担持させる。酸化亜鉛、酸化錫、アルカリ金属酸
化物およびアルカリ土類金属酸化物の担持方法は、基本
的には酸化ジルコニウムの場合と同じである。酸化亜鉛
等を含有させるには、含有させる金属の塩と鉄塩とを共
沈させることにより行う。また、アルカリ金属酸化物と
しては、LiO,NaO,KO,RbO,Cs
O,FrOがあり、特にLiO,NaO及びK
Oが好ましい。アルカリ土類金属酸化物としては、B
eO,MgO,CaO,SrO,BaO,RaOがあ
り、特にBeO,MgO,CaOが好ましい。
(2-2) Step of supporting zirconium oxide and the like on the formed iron compound To support zirconium oxide and the like on the formed iron compound, the iron compound is suspended in water while the suspension is suspended. In the suspension,
For example, zirconium hydroxide is generated and supported on an iron compound, and then dried and fired to carry zirconium oxide on the iron compound. The supporting method of zinc oxide, tin oxide, alkali metal oxide and alkaline earth metal oxide is basically the same as that of zirconium oxide. Incorporation of zinc oxide or the like is carried out by coprecipitating a salt of a metal to be contained and an iron salt. Examples of the alkali metal oxide include Li 2 O, Na 2 O, K 2 O, Rb 2 O, and Cs.
2 O, Fr 2 O, especially Li 2 O, Na 2 O and K
2 O is preferred. As alkaline earth metal oxides, B
There are eO, MgO, CaO, SrO, BaO, and RaO, with BeO, MgO, and CaO being particularly preferred.

【0017】(実施例)以下に、本発明を具体的実施例
1乃至6に基づいて詳細に説明する。実施例中、また、
酸化ジルコニウムを担持させない酸化鉄系触媒(以下の
工程1のみで製造)および酸化ジルコニウム担持酸化鉄
系触媒を以下の通り調製した。 (1)酸化ジルコニウムを担持させない酸化鉄系触媒お
よび酸化ジルコニウム担持酸化鉄系触媒の調製 1.FeOOH粉末を石英反応管に仕込み、水蒸気中で350℃
‐700℃で1時間加熱処理した。 2.得られた鉄化合物に20ml/gのイオン交換水を
加えて2時間攪拌して鉄化合物の懸濁液を得た。 3.攪拌しながら、0.1mol/リットルのZrOCl
水溶液を所定量添加した。滴下終了後、1時間さらに攪
拌した、24時間放置した。 4.反応懸濁液を110℃で12時間乾燥し、水を完全
に蒸発させた。 5.析出した余剰なZr化合物を固形酸化鉄系触媒から剥
離することによって取り除いた後、粉体を粉砕した。粉
砕粉末を成形後、再度粉砕し、分級した。 6.分級した粉末(粒度:0.2〜0.4mm)を石英
反応管に仕込み、水蒸気中、350〜700℃で1時間
加熱処理し、酸化ジルコニウム担持酸化鉄系触媒を得
た。
(Embodiments) The present invention will be described below in detail based on specific embodiments 1 to 6. In the examples,
An iron oxide-based catalyst not supporting zirconium oxide (manufactured only in the following step 1) and a zirconium oxide-supported iron oxide-based catalyst were prepared as follows. (1) Preparation of an iron oxide catalyst not supporting zirconium oxide and an iron oxide catalyst supporting zirconium oxide Charge the FeOOH powder into a quartz reaction tube and place it in steam at 350 ° C.
Heat treatment was performed at -700 ° C for 1 hour. 2. 20 ml / g of ion-exchanged water was added to the obtained iron compound and stirred for 2 hours to obtain a suspension of the iron compound. 3. While stirring, 0.1 mol / l of ZrOCl 2
A predetermined amount of the aqueous solution was added. After completion of the dropwise addition, the mixture was further stirred for 1 hour and left for 24 hours. 4. The reaction suspension was dried at 110 ° C. for 12 hours and the water was completely evaporated. 5. After removing the precipitated excess Zr compound by peeling off the solid iron oxide-based catalyst, the powder was pulverized. After the pulverized powder was formed, it was pulverized again and classified. 6. The classified powder (particle size: 0.2 to 0.4 mm) was charged into a quartz reaction tube and heat-treated in steam at 350 to 700 ° C for 1 hour to obtain a zirconium oxide-supported iron oxide catalyst.

【0018】実施例1 酸化ジルコニウム担持酸化鉄系
触媒を水蒸気下場合の水蒸気処理温度における触媒の磁
性変化を以下の条件で試験し、結果を表1及び図1に示
す。 使用触媒 :酸化ジルコニウム担持酸化鉄系触媒(酸
化ジルコニウム:鉄化合物=7.7:100) 水蒸気処理温度:350〜700℃ 磁性測定試験:永久磁石で回収できた量を目視で評価し
た。 X線回折 :粉末X線回折法(常法)によって行っ
た。
Example 1 The change in magnetic properties of a zirconium oxide-supported iron oxide-based catalyst at the steam treatment temperature under steam was tested under the following conditions. The results are shown in Table 1 and FIG. Catalyst used: zirconium oxide-supported iron oxide-based catalyst (zirconium oxide: iron compound = 7.7: 100) Steam treatment temperature: 350 to 700 ° C. Magnetic measurement test: The amount recovered with a permanent magnet was visually evaluated. X-ray diffraction: Performed by powder X-ray diffraction method (ordinary method).

【0019】[0019]

【表1】 [Table 1]

【0020】表1及び図1の結果から、水蒸気処理温度
が350℃では、触媒の持つ磁性が弱く、磁力回収は困
難であったが、水蒸気処理温度が400〜700℃で
は、触媒は磁力回収可能な磁性が付与された。また、X
線回折の結果からも、水蒸気処理温度が400℃、50
0℃〜700℃では磁性を有するFeOが検出され
た。従って、400℃〜700℃で水蒸気処理をするこ
とによって磁力回収可能な触媒が得られる。
From the results shown in Table 1 and FIG. 1, when the steam treatment temperature was 350 ° C., the magnetism of the catalyst was weak and the magnetic recovery was difficult, but when the steam treatment temperature was 400 to 700 ° C., the catalyst recovered the magnetic force. Possible magnetism was provided. Also, X
From the results of the line diffraction, it was found that the steam treatment temperature was 400 ° C. and 50 ° C.
At 0 ° C. to 700 ° C., Fe 3 O 4 having magnetism was detected. Therefore, a catalyst that can be magnetically recovered by performing steam treatment at 400 ° C. to 700 ° C. is obtained.

【0021】実施例2 酸化ジルコニウム担持法の比較 下記被分解対象物を以下の条件で分解処理した。結果を
図2に示す。 被分解対象物 :常圧残油 10%、ベンゼン 90%混合物 供給量 0.78g/h 反応温度 :500℃ 触媒量/被分解対象物供給量 :1.0g/(g・h) 酸化ジルコニウム担持法:蒸発乾固法(実施例1の方法) ろ過法(以下参照)
Example 2 Comparison of Zirconium Oxide Loading Method The following objects to be decomposed were decomposed under the following conditions. The results are shown in FIG. Decomposition target: 10% normal pressure residual oil, 90% benzene Mixture supply amount: 0.78 g / h Reaction temperature: 500 ° C Catalyst amount / Decomposition target supply amount: 1.0 g / (g · h) Zirconium oxide supported Method: evaporation to dryness method (method of Example 1) Filtration method (see below)

【0022】<ろ過法による酸化ジルコニウム担持> 1.FeOOH粉末を石英反応管に仕込み、水蒸気中3
50〜500℃で1時間処理し酸化鉄系触媒を得た。 2.得られた酸化鉄系触媒を真空中で200℃、1h加
熱した。 3.熱処理した酸化鉄系触媒に対して真空中でZrOC
水溶液を酸化産科鉄系触媒1gあたり10g滴下
した。 4.滴下終了後、得られた懸濁液を1時間攪拌し、24
時間放置した。 5.ろ過後、110℃、12時間乾燥し、水を蒸発させ
た。 6.得られた粉末をプレス成形後、粉砕・分解した(粉
末粒度:0.2〜0.4mm)。 7.得られた酸化鉄系触媒を水蒸気中500℃で1時間
処理した。ろ過法で酸化ジルコニウム担持した触媒は、
酸化ジルコニウム:酸化鉄=1.7:100においても
蒸発乾固法で酸化ジルコニウム担持した触媒で酸化ジル
コニウム:酸化鉄=7.7:100と同等の分解能を示
した。
<Supporting Zirconium Oxide by Filtration Method> FeOOH powder is charged into a quartz reaction tube,
The mixture was treated at 50 to 500 ° C. for 1 hour to obtain an iron oxide catalyst. 2. The obtained iron oxide catalyst was heated in a vacuum at 200 ° C. for 1 hour. 3. ZrOC in vacuum against heat-treated iron oxide catalyst
l 2 The aqueous solution was dropped at 10 g per 1 g of the oxidizing iron oxide-based catalyst. 4. After dropping, the resulting suspension was stirred for 1 hour,
Left for hours. 5. After filtration, drying was performed at 110 ° C. for 12 hours, and water was evaporated. 6. The obtained powder was press-molded and then pulverized and decomposed (powder particle size: 0.2 to 0.4 mm). 7. The obtained iron oxide catalyst was treated in steam at 500 ° C. for 1 hour. The catalyst loaded with zirconium oxide by filtration is
Even in the case of zirconium oxide: iron oxide = 1.7: 100, the same resolution as that of zirconium oxide: iron oxide = 7.7: 100 was exhibited by the catalyst supporting zirconium oxide by the evaporation to dryness method.

【0023】実施例3 酸化鉄系触媒(酸化ジルコニウ
ム:酸化鉄=0:100)について、常圧残油のみを分
解対象物とし、反応温度を500℃、触媒量/被分解対
象物供給量1.5g/(g/h)、水蒸気雰囲気中で触
媒分解反応を行ったところ、供給常圧残油の92.5%
はガス、ガソリン、灯油、C19以上の重質油となり、
供給常圧残油の7.5%の炭素残渣が発生した。
Example 3 With respect to an iron oxide catalyst (zirconium oxide: iron oxide = 0: 100), only the residual oil at normal pressure was used as a decomposition target, the reaction temperature was 500 ° C., and the amount of catalyst / the supply amount of decomposition target substance 1 When the catalytic cracking reaction was carried out in a steam atmosphere at a rate of 0.5 g / (g / h), 92.5%
Becomes gas, gasoline, kerosene, heavy oil of C19 or higher,
7.5% of carbon residue of the supplied atmospheric residue was generated.

【0024】実施例4 酸化鉄系触媒(酸化ジルコニウ
ム:酸化鉄=0:100)について、常圧残油50wt
%およびベンゼン50wt%の混合物を分解対象物と
し、反応温度を500℃、触媒量/被分解対象物供給量
1.0g/(g/h)、水蒸気雰囲気中で触媒分解反応
を行ったところ、供給常圧残油の93.6%はガス、ガ
ソリン、灯油、C19以上の重質油となり、供給常圧残
油の6.4%の炭素残渣が発生した。
Example 4 An iron oxide-based catalyst (zirconium oxide: iron oxide = 0: 100) was mixed with 50 wt.
% And benzene 50 wt% as a decomposition target, a reaction temperature of 500 ° C., a catalyst amount / amount of the decomposition target supply 1.0 g / (g / h), and a catalytic decomposition reaction was performed in a steam atmosphere. 93.6% of the supplied atmospheric residual oil was gas, gasoline, kerosene and heavy oil of C19 or higher, and 6.4% of the supplied atmospheric residual oil had carbon residues.

【0025】実験例5 酸化鉄系触媒(酸化ジルコニウ
ム:酸化鉄=0:100)、酸化ジルコニウム担持酸化
鉄系触媒(酸化ジルコニウム:酸化鉄=7.7:10
0)について、常圧残油10wt%及びベンゼン90w
t%の混合物を、反応温度を500℃、触媒量/被分解
対象物供給量1g/(g/h)、水蒸気雰囲気中で、触
媒反応を行ったところ、触媒活性低下の原因となる炭素
残渣は発生しなかった。 実施例6 酸化鉄系触媒(酸化ジルコニウム:酸化鉄=
0:100)、酸化ジルコニウム担持酸化鉄系触媒(酸
化ジルコニウム:酸化鉄=2.0、4.3、7.7、1
3.7:100)について、反応温度を400℃、触媒
量/被分解対象物供給量1g/(g/h)、水蒸気雰囲
気中で、アセトン、ブタノン、フェノール、ベンゼンを
供給し触媒反応を行った。両触媒の場合とも、アセト
ン、ブタノン、フェノール、ベンゼンは分解されず、回
収後再使用可能であることが分かった。
Experimental Example 5 Iron oxide catalyst (zirconium oxide: iron oxide = 0: 100), iron oxide catalyst supported on zirconium oxide (zirconium oxide: iron oxide = 7.7: 10)
About 0), 10 wt% of normal pressure residual oil and 90 w of benzene
t% of the mixture was subjected to a catalytic reaction in a steam atmosphere at a reaction temperature of 500 ° C., an amount of catalyst / amount of the substance to be decomposed 1 g / (g / h). Did not occur. Example 6 Iron oxide-based catalyst (zirconium oxide: iron oxide =
0: 100), zirconium oxide-supported iron oxide catalyst (zirconium oxide: iron oxide = 2.0, 4.3, 7.7, 1)
3.7: 100), the reaction temperature was 400 ° C., the amount of catalyst / the amount of the substance to be decomposed was 1 g / (g / h), and acetone, butanone, phenol and benzene were supplied in a steam atmosphere to carry out the catalytic reaction. Was. In both cases, it was found that acetone, butanone, phenol and benzene were not decomposed and could be reused after recovery.

【図面の簡単な説明】[Brief description of the drawings]

【図1】酸化ジルコニウム担持酸化鉄系触媒を水蒸気処
理した場合の水蒸気処理温度における触媒の磁性変化を
以下の条件で試験し、結果を表1及び図1に示す。
FIG. 1 shows a test of the change in magnetic properties of a zirconium oxide-supported iron oxide-based catalyst at the steaming temperature when the iron oxide catalyst is steamed under the following conditions. The results are shown in Table 1 and FIG.

【図2】酸化ジルコニウムを蒸発乾固法及びろ過法で酸
化鉄系触媒に担持させた触媒を用いて行なった比較実験
の結果を示す。
FIG. 2 shows the results of a comparative experiment performed using a catalyst in which zirconium oxide is supported on an iron oxide-based catalyst by an evaporation to dryness method and a filtration method.

フロントページの続き (72)発明者 佐藤 伸博 愛知県名古屋市瑞穂区須田町2番56号 日 本碍子株式会社内 (72)発明者 吉田 修一 愛知県名古屋市瑞穂区須田町2番56号 日 本碍子株式会社内 Fターム(参考) 4G069 AA03 AA08 AA09 BB04A BB04B BC51A BC51B BC66A BC66B CC05 FA08 FC04 FC07 4H029 BA11 BB05 BB06 BB07 BB10 BC02 BC03 BC04 BD01 BD17 CA00 DA00 Continuing from the front page (72) Inventor Nobuhiro Sato 2-56, Suda-cho, Mizuho-ku, Nagoya, Aichi Prefecture Inside Nihon Insulator Co., Ltd. (72) Inventor Shuichi Yoshida 2-56, Suda-cho, Mizuho-ku, Nagoya, Aichi Japan Insulator Co., Ltd. F term (reference) 4G069 AA03 AA08 AA09 BB04A BB04B BC51A BC51B BC66A BC66B CC05 FA08 FC04 FC07 4H029 BA11 BB05 BB06 BB07 BB10 BC02 BC03 BC04 BD01 BD17 CA00 DA00

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 鉄化合物を触媒として用いて、重質油を
分解する重質油の分解方法であって、該鉄化合物が水酸
化鉄(FeOOH)、四酸化三鉄(Fe34)及び三酸
化二鉄(Fe23)からなる群のうち少なくとも一種以
上からなる鉄系化合物を選択し、かつ該鉄系化合物を水
蒸気あるいは水蒸気を含有する雰囲気中で加熱して得ら
れた鉄化合物である、重質油分解方法。
1. A method for decomposing heavy oil using an iron compound as a catalyst, wherein the iron compound is composed of iron hydroxide (FeOOH), triiron tetroxide (Fe 3 O 4 ). And iron obtained by heating at least one iron-based compound from the group consisting of diiron trioxide (Fe 2 O 3 ) and heating the iron-based compound in steam or an atmosphere containing steam. A method for cracking heavy oil, which is a compound.
【請求項2】 前記選択された鉄系化合物が水酸化鉄
(FeOOH)である、請求項1に記載の重質油分解方
法。
2. The heavy oil cracking method according to claim 1, wherein the selected iron-based compound is iron hydroxide (FeOOH).
【請求項3】 前記水蒸気または水蒸気を含有する雰囲
気中の加熱処理を400〜700℃で行う、請求項1ま
たは2に記載の重質油分解方法。
3. The heavy oil cracking method according to claim 1, wherein the heat treatment in the steam or the atmosphere containing the steam is performed at 400 to 700 ° C.
【請求項4】 前記鉄化合物に酸化ジルコニウム(Zr
)が担持または含有されている、請求項1乃至3の
いずれかに記載の重質油分解方法。
4. The method according to claim 1, wherein the iron compound is zirconium oxide (Zr).
O 2) is supported or contained, heavy oil cracking process according to any one of claims 1 to 3.
【請求項5】 前記触媒に酸化亜鉛、酸化錫、アルカリ
金属酸化物およびアルカリ土類金属酸化物からなる群の
うち一種類以上を担持または含有させた、請求項1乃至
4のいずれかに記載の重質油分解方法。
5. The catalyst according to claim 1, wherein the catalyst carries or contains at least one member selected from the group consisting of zinc oxide, tin oxide, alkali metal oxides and alkaline earth metal oxides. Heavy oil decomposition method.
【請求項6】該触媒が、該鉄化合物100重量部と、該
酸化ジルコニウム14重量部以下とからなる、請求項4
または5に記載の重質油分解方法。
6. The catalyst according to claim 4, wherein the catalyst comprises 100 parts by weight of the iron compound and 14 parts by weight or less of the zirconium oxide.
Or the heavy oil cracking method according to 5.
【請求項7】 前記重質油を不活性溶媒と混合後、得ら
れた混合物に対して重質油の分解反応を行う請求項1乃
至6のいずれかの重質油分解方法。
7. The heavy oil cracking method according to claim 1, wherein after the heavy oil is mixed with an inert solvent, the obtained mixture is subjected to a cracking reaction of the heavy oil.
【請求項8】 前記重質油分解反応を水蒸気中または水
蒸気を含有する雰囲気中で行う、請求項7の重質油分解
方法。
8. The heavy oil cracking method according to claim 7, wherein the heavy oil cracking reaction is performed in steam or in an atmosphere containing steam.
【請求項9】 重質油と、不活性溶媒と水酸化鉄(Fe
OOH)とからなる混合物を水蒸気中または水蒸気を含
有する雰囲気中で加熱し、水酸化鉄(FeOOH)、四
酸化三鉄(Fe34)及び三酸化二鉄(Fe23)のう
ち少なくとも一種以上からなる鉄化合物を形成し、該鉄
化合物を触媒として用いる、請求項1乃至6のいずれか
の重質油分解方法。
9. A heavy oil, an inert solvent and iron hydroxide (Fe
OOH) is heated in steam or in an atmosphere containing steam to obtain a mixture of iron hydroxide (FeOOH), triiron tetroxide (Fe 3 O 4 ), and diiron trioxide (Fe 2 O 3 ). The heavy oil cracking method according to any one of claims 1 to 6, wherein an iron compound composed of at least one or more is formed and the iron compound is used as a catalyst.
【請求項10】 触媒反応生成物を、ガス、軽質油、未
分解重質油、溶媒及び水に分離し、分離した溶媒を循環
して使用する、請求項7乃至10のいずれかの重質油分
解方法。
10. The heavy fuel according to claim 7, wherein the catalyst reaction product is separated into gas, light oil, uncracked heavy oil, solvent and water, and the separated solvent is circulated for use. Oil decomposition method.
【請求項11】 不活性溶媒として、ケトン、ベンゼ
ン、フェノールおよびこれらの混合溶媒からなる群から
選ばれた溶媒を用いる、請求項7乃至10のいずれかの
重質油分解方法。
11. The heavy oil cracking method according to claim 7, wherein a solvent selected from the group consisting of ketone, benzene, phenol and a mixed solvent thereof is used as the inert solvent.
【請求項12】重質油分解処理後に、前記触媒を磁力に
より回収する、請求項1乃至11のいずれかの重質油分
解方法。
12. The heavy oil cracking method according to claim 1, wherein the catalyst is recovered by magnetic force after the heavy oil cracking treatment.
JP2000328910A 2000-10-27 2000-10-27 Decomposition method for heavy oil Pending JP2002129171A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000328910A JP2002129171A (en) 2000-10-27 2000-10-27 Decomposition method for heavy oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000328910A JP2002129171A (en) 2000-10-27 2000-10-27 Decomposition method for heavy oil

Publications (1)

Publication Number Publication Date
JP2002129171A true JP2002129171A (en) 2002-05-09

Family

ID=18805692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000328910A Pending JP2002129171A (en) 2000-10-27 2000-10-27 Decomposition method for heavy oil

Country Status (1)

Country Link
JP (1) JP2002129171A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006007151A (en) * 2004-06-29 2006-01-12 Ngk Insulators Ltd Catalyst for cracking heavy oil into light oil and manufacturing method for it
US7648625B2 (en) 2003-12-19 2010-01-19 Shell Oil Company Systems, methods, and catalysts for producing a crude product
US7678264B2 (en) 2005-04-11 2010-03-16 Shell Oil Company Systems, methods, and catalysts for producing a crude product
US7745369B2 (en) 2003-12-19 2010-06-29 Shell Oil Company Method and catalyst for producing a crude product with minimal hydrogen uptake
US7749374B2 (en) 2006-10-06 2010-07-06 Shell Oil Company Methods for producing a crude product
US7763160B2 (en) 2003-12-19 2010-07-27 Shell Oil Company Systems and methods of producing a crude product
US7918992B2 (en) 2005-04-11 2011-04-05 Shell Oil Company Systems, methods, and catalysts for producing a crude product
WO2011114670A1 (en) * 2010-03-19 2011-09-22 Jx日鉱日石エネルギー株式会社 Heavy hydrocarbon oil cracking catalyst and heavy hydrocarbon oil cracking method
JP2011194338A (en) * 2010-03-19 2011-10-06 Jx Nippon Oil & Energy Corp Catalyst for heavy hydrocarbon oil cracking
JP2011195733A (en) * 2010-03-19 2011-10-06 Jx Nippon Oil & Energy Corp Method for cracking heavy hydrocarbon oil
KR20180045136A (en) 2016-10-25 2018-05-04 에스케이이노베이션 주식회사 Process of desulfurization and denitrification of heavy oil using water
CN108587675A (en) * 2018-03-29 2018-09-28 南京大学连云港高新技术研究院 A kind of method of heavy oil visbreaking
KR102541598B1 (en) * 2022-03-03 2023-06-13 한국화학연구원 Catalyst for cracking of heavy oil and method for upgrading of heavy oil using the same

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8025794B2 (en) 2003-12-19 2011-09-27 Shell Oil Company Systems, methods, and catalysts for producing a crude product
US8241489B2 (en) 2003-12-19 2012-08-14 Shell Oil Company Systems, methods, and catalysts for producing a crude product
US7674370B2 (en) 2003-12-19 2010-03-09 Shell Oil Company Systems, methods, and catalysts for producing a crude product
US8613851B2 (en) 2003-12-19 2013-12-24 Shell Oil Company Crude product composition
US7736490B2 (en) 2003-12-19 2010-06-15 Shell Oil Company Systems, methods, and catalysts for producing a crude product
US7745369B2 (en) 2003-12-19 2010-06-29 Shell Oil Company Method and catalyst for producing a crude product with minimal hydrogen uptake
US8506794B2 (en) 2003-12-19 2013-08-13 Shell Oil Company Systems, methods, and catalysts for producing a crude product
US7763160B2 (en) 2003-12-19 2010-07-27 Shell Oil Company Systems and methods of producing a crude product
US7780844B2 (en) 2003-12-19 2010-08-24 Shell Oil Company Systems, methods, and catalysts for producing a crude product
US7807046B2 (en) 2003-12-19 2010-10-05 Shell Oil Company Systems, methods, and catalysts for producing a crude product
US7837863B2 (en) 2003-12-19 2010-11-23 Shell Oil Company Systems, methods, and catalysts for producing a crude product
US7879223B2 (en) 2003-12-19 2011-02-01 Shell Oil Company Systems and methods of producing a crude product
US8394254B2 (en) 2003-12-19 2013-03-12 Shell Oil Company Crude product composition
US7648625B2 (en) 2003-12-19 2010-01-19 Shell Oil Company Systems, methods, and catalysts for producing a crude product
US8070937B2 (en) 2003-12-19 2011-12-06 Shell Oil Company Systems, methods, and catalysts for producing a crude product
US8070936B2 (en) 2003-12-19 2011-12-06 Shell Oil Company Systems and methods of producing a crude product
JP2006007151A (en) * 2004-06-29 2006-01-12 Ngk Insulators Ltd Catalyst for cracking heavy oil into light oil and manufacturing method for it
US8481450B2 (en) 2005-04-11 2013-07-09 Shell Oil Company Catalysts for producing a crude product
US7678264B2 (en) 2005-04-11 2010-03-16 Shell Oil Company Systems, methods, and catalysts for producing a crude product
US7918992B2 (en) 2005-04-11 2011-04-05 Shell Oil Company Systems, methods, and catalysts for producing a crude product
US7749374B2 (en) 2006-10-06 2010-07-06 Shell Oil Company Methods for producing a crude product
JP2011195733A (en) * 2010-03-19 2011-10-06 Jx Nippon Oil & Energy Corp Method for cracking heavy hydrocarbon oil
JP2011194338A (en) * 2010-03-19 2011-10-06 Jx Nippon Oil & Energy Corp Catalyst for heavy hydrocarbon oil cracking
WO2011114670A1 (en) * 2010-03-19 2011-09-22 Jx日鉱日石エネルギー株式会社 Heavy hydrocarbon oil cracking catalyst and heavy hydrocarbon oil cracking method
KR20180045136A (en) 2016-10-25 2018-05-04 에스케이이노베이션 주식회사 Process of desulfurization and denitrification of heavy oil using water
CN108587675A (en) * 2018-03-29 2018-09-28 南京大学连云港高新技术研究院 A kind of method of heavy oil visbreaking
CN108587675B (en) * 2018-03-29 2020-06-09 南京大学连云港高新技术研究院 Heavy oil viscosity reducing method
KR102541598B1 (en) * 2022-03-03 2023-06-13 한국화학연구원 Catalyst for cracking of heavy oil and method for upgrading of heavy oil using the same

Similar Documents

Publication Publication Date Title
JP2002129171A (en) Decomposition method for heavy oil
Ventura et al. Selective Aerobic Oxidation of 5‐Hydroxymethylfurfural to 2, 5‐Diformylfuran or 2‐Formyl‐5‐furancarboxylic Acid in Water by using MgO⋅ CeO2 Mixed Oxides as Catalysts
JP2001129405A (en) Iron oxide-based catalyst for decomposing organic waste, its manufacturing method and treating method of organic waste
Dias Ribeiro de Sousa Martins et al. Supported gold nanoparticles as reusable catalysts for oxidation reactions of industrial significance
Musolino et al. Glycerol hydrogenolysis promoted by supported palladium catalysts
RU2478721C2 (en) Extraction of rhenium
US2025140A (en) Carrying out catalytic oxidations
US4686204A (en) Sorbent for reducing sulfur oxide emissions from catalytic cracking units and process for producing the sorbent
JPS58174237A (en) Reforming catalyst of methanol
Hong et al. Covalent immobilization of polyoxotungstate on alumina and its catalytic generation of sulfoxides
WO2011108195A1 (en) Method for producing hydrotalcite-like compound, hydrotalcite-like compound, complex oxide, anion adsorbent, and solid base catalyst
JPH0230740B2 (en)
JP5576607B2 (en) Catalyst for producing alkylene oxide, method for producing the same, and method for producing alkylene oxide using the catalyst
JP4122426B2 (en) Hydrogen production method
Zhou et al. A time-of-flight SIMS study of the chemical nature of highly dispersed Pt on alumina
JP2001239164A (en) Cadmium sulfide-based photocatalyst for hydrogen generation, its manufacturing method, and method for manufacturing hydrogen using the photocatalyst
CN113522280A (en) Catalyst, and defect regulation method and application of catalyst
EP0062410B1 (en) Catalytic preparation of hydrogen from carbon monoxide and water
CN112121798A (en) Method for degrading chloramphenicol in water under catalysis of MIL-101(Fe/Co) derived magnetic cobalt ferrite and application
JP4267357B2 (en) Trace metal removing material and method for removing trace metal
JPH10165818A (en) Decomposition catalyst for nitrous oxide and removing method of nitrous oxide
CN103288574B (en) A kind of benzene selective hydrogenation prepares the method for tetrahydrobenzene
Delmon Dynamic processes in active phase-support interactions
JPS6363626A (en) Production of hydrocarbon
CN111054383B (en) Catalyst for dehydrogenation reaction of organic liquid hydrogen storage material and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070619

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080304