WO2011108195A1 - Method for producing hydrotalcite-like compound, hydrotalcite-like compound, complex oxide, anion adsorbent, and solid base catalyst - Google Patents

Method for producing hydrotalcite-like compound, hydrotalcite-like compound, complex oxide, anion adsorbent, and solid base catalyst Download PDF

Info

Publication number
WO2011108195A1
WO2011108195A1 PCT/JP2011/000707 JP2011000707W WO2011108195A1 WO 2011108195 A1 WO2011108195 A1 WO 2011108195A1 JP 2011000707 W JP2011000707 W JP 2011000707W WO 2011108195 A1 WO2011108195 A1 WO 2011108195A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrotalcite
compound
steel slag
solution
composite oxide
Prior art date
Application number
PCT/JP2011/000707
Other languages
French (fr)
Japanese (ja)
Inventor
弘巳 山下
泰隆 桑原
浩亮 森
孝 亀川
徹太郎 大道
Original Assignee
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人大阪大学 filed Critical 国立大学法人大阪大学
Publication of WO2011108195A1 publication Critical patent/WO2011108195A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/041Oxides or hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • B01J20/08Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04 comprising aluminium oxide or hydroxide; comprising bauxite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/007Mixed salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/20Carbon compounds
    • B01J27/232Carbonates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • C01B13/18Methods for preparing oxides or hydroxides in general by thermal decomposition of compounds, e.g. of salts or hydroxides
    • C01B13/185Preparing mixtures of oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/78Compounds containing aluminium and two or more other elements, with the exception of oxygen and hydrogen
    • C01F7/784Layered double hydroxide, e.g. comprising nitrate, sulfate or carbonate ions as intercalating anions
    • C01F7/785Hydrotalcite
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/20Two-dimensional structures
    • C01P2002/22Two-dimensional structures layered hydroxide-type, e.g. of the hydrotalcite-type
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • C02F2001/422Treatment of water, waste water, or sewage by ion-exchange using anionic exchangers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/105Phosphorus compounds

Definitions

  • the present invention relates to the synthesis of hydrotalcite-like compounds or composite oxides derived therefrom for the purpose of reusing steel slag, which is industrial waste, as well as the synthesis of anion adsorbents, solid base catalysts and silicon compounds. About.
  • Steel slag produced in the iron smelting process is produced in large quantities in Japan alone, and the production volume in 2007 is estimated to be about 39.57 million tons. Most of steel slag is reused for cement raw materials, roadbed materials, concrete aggregates and so on. However, because of the shortage of disposal sites and stricter environmental standards at the time of disposal, new applications are desired.
  • Steel slag is classified into blast furnace slag and steelmaking slag, depending on the production process. More than 60% of the total is produced as blast furnace slag.
  • the main components of blast furnace slag are silicon oxide, aluminum oxide, calcium oxide and magnesium oxide, and further contain small amounts of iron and manganese. If steel slag can be used as abundant chemical raw materials at low cost, not only manufacturing costs can be reduced, but also waste resources can be effectively used.
  • Patent Documents 1 to 3 development of a method for synthesizing a large amount of zeolite at low cost from blast furnace slag has been promoted.
  • Hydrotalcite has an anion exchange function and can be used particularly for removing phosphate ions in water (Patent Document 5).
  • Non-patent Document 1 there is an example in which hydrotalcite is synthesized from dolomite (CaMg (CO 3 ) 2 ), which is a kind of mineral (main components: Ca, Mg, and Mn) generated during the production of calcium carbide (Non-patent Document 1). .
  • Non-patent Document 2 a method of synthesizing biodiesel by a transesterification reaction between fat and methanol has been proposed. At that time, calcium oxide is used as a catalyst (Non-patent Document 2).
  • JP 2001-220132 A Japanese Patent Laid-Open No. 2005-239459 JP 2007-222713 A JP 2007-51022 A Japanese Patent Laid-Open No. 2004-167408
  • hydrotalcite-like compounds In conventional synthesis examples of hydrotalcite-like compounds, it is necessary to add aluminum as a trivalent cation source to inorganic waste, and it is impossible to produce hydrotalcite-like compounds using only inorganic waste as a raw material. there were.
  • One aspect of the present invention includes (i) a step of adding an acid to steel slag to dissolve the steel slag to obtain a solution, and (ii) a step of generating a gel containing silica in the obtained solution. iii) a step of separating the gel-containing solution into a gel and a liquid; and (iv) a step of adding an alkali to the obtained liquid to form a hydrotalcite-like compound.
  • the present invention relates to a method for producing a talcite-like compound or a composite oxide derived therefrom.
  • the solution in the step (ii), is heated to 60 ° C. to 150 ° C., more preferably 90 ° C. to 100 ° C.
  • the pH of the liquid to which alkali has been added is adjusted to 9 to 13, more preferably 9 to 11.5.
  • the liquid temperature is set to 0 ° C. to 100 ° C., more preferably 95 ° C. to 100 ° C.
  • the method includes, in addition to the steps (i) to (iv), further (v) calcining the hydrotalcite-like compound, for example, at 300 ° C. to 700 ° C. in an inert atmosphere; A step of changing to a complex oxide.
  • the method includes a step of performing the firing in air at 700 ° C. to 900 ° C. to generate calcium oxide.
  • the above method includes (vi) adding alkali to the obtained gel and dissolving the gel to obtain a solution or uniform gel, and (vii) adding sodium aluminate to the solution or uniform gel. Further, the method may further include a step of causing gelation to produce aluminosilicate.
  • the hydrotalcite-like compound of the present invention is represented by, for example, the general formula (1): [Ca 2 + ax M x Al (OH) 6 + b ] A y .mH 2 O.
  • M is a metal element contained in steel slag other than Ca and Al
  • A is at least one selected from the group consisting of halogen ions, inorganic acid anions and organic acid anions, and ⁇ 1 ⁇ It satisfies a ⁇ 1, 0 ⁇ b ⁇ 1.5, 0.3 ⁇ x ⁇ 1, 0.5 ⁇ y ⁇ 1.5, and 1 ⁇ m ⁇ 3.
  • M is preferably at least one selected from the group consisting of Mg, Fe, Mn, Si, Ti and Cr.
  • the hydrotalcite-like compound has a Fe content ratio of 0.1 to 3 mol% (eg, 0.3 to 2 mol%) in all metal elements, and Mn accounts for all metal elements.
  • the content ratio is 0.1 to 3 mol% (for example, 0.3 to 2 mol%).
  • the hydrotalcite-like compound has a Si content ratio of 0 to 3 mol% (for example, 0.1 to 3 mol% or 0.3 to 2 mol%) in all metal elements,
  • the content ratio of Ti in the metal element is 0 to 3 mol% (for example, 0.1 to 3 mol% or 0.3 to 2 mol%).
  • Si is also treated as a metal element.
  • Still another aspect of the present invention relates to a composite oxide obtained by firing the above hydrotalcite-like compound at, for example, 300 ° C. to 700 ° C. in an inert atmosphere.
  • Still another aspect of the present invention relates to a composite oxide obtained by calcining the above hydrotalcite-like compound or the composite oxide in air at 700 ° C. to 900 ° C. to generate calcium oxide.
  • the composite oxide is represented, for example, by the general formula (2): [Ca 2 + ax M x AlO 3 + b ] A y .
  • M is a metal element contained in steel slag other than Ca and Al
  • A is at least one selected from the group consisting of halogen ions, inorganic acid anions and organic acid anions, and ⁇ 1 ⁇ It satisfies a ⁇ 1, 0 ⁇ b ⁇ 0.8, 0.3 ⁇ x ⁇ 1, and 0 ⁇ y ⁇ 1.5.
  • M is preferably at least one selected from the group consisting of Mg, Fe, Mn, Si, Ti and Cr.
  • Still another aspect of the present invention relates to a fuel production method in which a biofuel is produced by performing a transesterification reaction between an oil and an alcohol in the presence of the solid base catalyst.
  • Still another aspect of the present invention relates to a water purification method in which the anion adsorbent is mixed with sewage containing phosphate ions, and the phosphate ions are adsorbed on the adsorbent.
  • divalent (Ca 2+ , Mg 2+ ) and trivalent (Al 3+ ) metal elements have an optimal molar ratio for synthesizing hydrotalcite-like compounds, ie, (Ca + Mg) / Al atoms.
  • the ratio is included at approximately 2-5. Therefore, it is possible to synthesize a hydrotalcite-like compound at low cost by effectively using steel slag. This makes it possible to use waste resources effectively.
  • the production volume of steel slag far exceeds the production volume of dust and other inorganic waste generated during the manufacture of calcium carbide, and can be used as an inexpensive and abundant chemical raw material.
  • a hydrotalcite-like compound and a silicon compound can be synthesized simultaneously from steel slag as a raw material by a simple process.
  • the hydrotalcite-like compound has a composition represented by the general formula: [M (II) 1-v M (III) v (OH) 2 ] w + (A n- w / n ) ⁇ mH 2 O And it has a layered crystal structure.
  • M (II) represents a divalent metal
  • M (III) represents a trivalent metal.
  • the hydrotalcite-like compound of the present invention produced from steel slag is represented, for example, by the general formula (1): [Ca 2 + ax M x Al (OH) 6 + b ] A y ⁇ mH 2 O
  • the general formula (1) [Ca 2 + ax M x Al (OH) 6 + b ] A y ⁇ mH 2 O
  • M is at least one selected from the group consisting of metal elements contained in steel slag, such as Mg, Fe, Mn, Si, Ti and Cr, and A is a halogen ion, an inorganic acid anion, and At least one selected from the group consisting of organic acid anions, ⁇ 1 ⁇ a ⁇ 1, 0 ⁇ b ⁇ 1.5, 0.3 ⁇ x ⁇ 1, 0.5 ⁇ y ⁇ 1.5, ⁇ m ⁇ 3 is satisfied.
  • the range of a is ⁇ 0.5 ⁇ a ⁇ 0.5
  • the range of b is 0 ⁇ b ⁇ 1
  • the range of x is 0.4 ⁇ x ⁇ 0.8
  • the range of y is 0.8 ⁇ y.
  • ⁇ 1.2 is preferred.
  • the range of x is more preferably 0.5 ⁇ x ⁇ 0.6.
  • the element M preferably contains at least Fe and Mn, and more preferably contains Si and Ti.
  • the hydrotalcite-like compound may further contain an element other than the above (for example, P, S, Na, etc.) in a trace amount (1 mol% or less in terms of content relative to all metal elements).
  • an element other than the above for example, P, S, Na, etc.
  • Halogen ions include F ions, Cl ions, Br ions, and I ions. These are derived, for example, from the acid used when melting steel slag. For example, when steel slag is dissolved using hydrochloric acid, the hydrotalcite-like compound contains Cl ions. However, any halogen ion may be added separately.
  • inorganic acid anion examples include oxo acid anions such as carbonate ion, nitrate ion, sulfate ion and phosphate ion, but nitrate ion that does not react with Ca to form an insoluble component is preferable.
  • organic acid anions examples include carboxylate anions such as formate ion and acetate ion. Of these, formate ions, which are formic acid conjugate bases capable of dissolving steel slag, are preferred.
  • hydrotalcite is represented by Mg 6 Al 2 (OH) 16 CO 3 .4H 2 O or Mg 3 Al (OH) 8 Cl.2H 2 O, which is an example of a hydrotalcite-like compound.
  • hydrocalumite represented by Ca 2 Al (OH) 6 Cl ⁇ 2H 2 O.
  • the hydrotalcite-like compound has an anion (Cl ion in FIG. 1) for maintaining electrical neutrality between layers, and is therefore used as an anion adsorbent.
  • Hydrotalcite-like compounds for example, take up phosphate ions in contaminated seawater and release Cl ions. Hydrotalcite-like compounds are also useful as solid base catalysts that are active in various reactions.
  • Steel slag is classified into blast furnace slag and steelmaking slag.
  • Figure 2 shows the trend of domestic production of blast furnace slag in Japan.
  • Steel slag used as a raw material in the present invention is not particularly limited, but blast furnace slag is suitable, and amorphous granulated slag is more suitable than annealed slag having high crystallinity. Since granulated slag is amorphous, it is relatively easily dissolved by an acid such as hydrochloric acid.
  • Table 1 shows an example of the composition of blast furnace slag.
  • the blast furnace slag contains calcium oxide, silicon oxide (silica), aluminum oxide (alumina) and magnesium oxide as main components, and generally further contains iron and manganese. In addition, it often contains a small amount of titanium oxide or sulfur.
  • Steel slag contains Al: Ca in a molar ratio of about 1: 2 to 1: 5, and as such, becomes a raw material for a hydrotalcite-like compound having a composition similar to hydrocalumite.
  • an iron source for example, aluminum oxide, aluminum hydroxide, sodium aluminate, aluminum chloride, aluminum nitrate, aluminum sulfide, aluminum isopropoxy
  • a source of magnesium for example, magnesium oxide, magnesium hydroxide, magnesium chloride, magnesium nitrate, magnesium sulfide
  • magnesium may be used as a raw material.
  • the content of each component contained in the steel slag is, for example, as follows.
  • the content of calcium oxide is, for example, 20% by weight or more or 25% by weight or more, for example, 60% by weight or less or 55% by weight or less.
  • the content of magnesium oxide is, for example, 1% by weight or more or 2% by weight or more, and is 20% by weight or less or 10% by weight or less.
  • the content of silicon oxide is, for example, 10% by weight or more or 15% by weight or more, and is 45% by weight or less or 40% by weight or less.
  • the content of aluminum oxide is, for example, 1% by weight or more or 2% by weight or more, and is 20% by weight or less or 18% by weight or less.
  • steel slag called steelmaking slag generally has an iron content of 10% by weight. In the present invention, naturally, steelmaking slag may be used as a raw material.
  • the content of manganese oxide is, for example, 0.1% by weight or more or 1% by weight or more, and is 10% by weight or less or 5% by weight or less.
  • the content of titanium oxide is, for example, 0.1% by weight or more or 1% by weight or more, and is 5% by weight or less or 3% by weight or less.
  • [Dissolution of steel slag] In the method of the present invention, first, an acid is added to steel slag to dissolve the steel slag to obtain a solution.
  • the acid to be used include inorganic acids such as hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid and hydrofluoric acid, and organic acids such as formic acid, acetic acid and citric acid. Of these, it is preferable to use hydrochloric acid or nitric acid. Since the steel slag dissolves quickly due to the action of hydrochloric acid or nitric acid, a uniform solution can be obtained. For example, steel slag is dissolved in 0.1 to 5N (normal) hydrochloric acid (hydrogen chloride solution).
  • the mixing ratio of the acid and the steel slag is not particularly limited as long as the mixing ratio allows the steel slag to be completely dissolved.
  • the steel slag is pulverized to be as small as possible, for example, 100 ⁇ m or less, and further 50 ⁇ m or less before mixing with the acid.
  • melting of the steel slag can be accelerated.
  • steel slag may be used as it is without being crushed.
  • the temperature of the acid is preferably controlled to, for example, room temperature to 60 ° C. Thereby, dissolution of steel slag can be accelerated.
  • the gel containing a silica is produced
  • condensation of silicon components proceeds. Therefore, after a while, silica in a gel state is generated.
  • the solution is preferably heated to 60 ° C. to 150 ° C., more preferably 95 ° C. to 100 ° C. In this step, most of the silicon component contained in the steel slag is converted to silica.
  • the solution containing the gel is separated into a gel and a liquid.
  • the separation method is not particularly limited, and examples thereof include suction filtration.
  • silica with extremely high purity for example, purity of 92% by weight or more
  • the obtained silica can be used as a silica gel for various purposes as it is, and is also suitable as a raw material for high-purity silicon and zeolite.
  • the liquid remaining after separating the silica contains metal components other than silicon in an ionic state. These ionic species serve as raw materials for hydrotalcite-like compounds.
  • hydrotalcite-like compounds When an alkali is added to a liquid containing a metal component other than silicon in an ionic state, a hydrotalcite-like compound is generated.
  • the type of alkali is not particularly limited, but monovalent alkali metal hydroxides are preferable, and sodium hydroxide, potassium hydroxide, lithium hydroxide, and the like are used. Ammonia and aqueous ammonia are also preferably used. From the viewpoint of accelerating the formation of the hydrotalcite-like compound, the monovalent alkali metal hydroxide may be mixed with a liquid containing the metal component in an aqueous solution state.
  • the pH of the liquid is preferably 9 or more, and more preferably pH 11 or more.
  • the pH is preferably 13 or less, and more preferably 12 or less.
  • the liquid temperature is preferably 0 ° C to 100 ° C, more preferably 95 ° C to 100 ° C. In order to obtain a compound with higher crystallinity, it is desirable to hold at the above temperature for 1 to 24 hours, more preferably about 18 hours. Thereafter, the produced hydrotalcite-like compound is filtered, washed with water and dried.
  • composition of the composite oxide is, for example, the general formula: [M (II) 1-y M (III) y O] x + (A n ⁇ x / n ), or the general formula (2): [Ca 2 + ax M x AlO 3 + b ]
  • a y (a, x, M and A can be represented by 0 ⁇ b ⁇ 0.8, 0 ⁇ y ⁇ 1.5, etc., as in the general formula (1)).
  • the inert atmosphere may be a reduced pressure atmosphere of 100 Pa or less, or an inert gas atmosphere.
  • the inert gas argon, helium, nitrogen, or the like can be used, but nitrogen is preferably used from the viewpoint of cost reduction.
  • the nitrogen partial pressure may be atmospheric pressure.
  • the firing temperature is preferably 300 ° C. to 700 ° C., more preferably 400 ° C. to 500 ° C. If the calcination temperature is too low, a hydrotalcite-like compound having a relatively high water content can be obtained.
  • the composite oxide when used as a catalyst for a transesterification reaction when producing biofuel, it is preferable to calcine the composite oxide in air at a temperature at which calcium oxide is generated.
  • the hydrotalcite-like compound may be gradually heated in air and fired at a temperature at which calcium oxide is generated.
  • the temperature at which calcium oxide is generated is preferably 700 ° C. to 900 ° C., particularly preferably 750 ° C. to 850 ° C.
  • the product hydrotalcite-like compound is, for example, Ca 2-x M x Al (OH) 6 Cl ⁇ 2H 2 O (x is the same as in the general formula (1), M has a composition similar to hydrocalumite such as Mg, Fe, Mn, Si and Ti.
  • the composite oxide obtained by firing this has a composition such as Ca 2 ⁇ x M x AlO 3 Cl (x and M are the same as above).
  • M contains Fe and Mn in addition to Mg.
  • the hydrotalcite-like compound or composite oxide may contain a trace amount of Si or Ti that has not been separated as silica.
  • Such a characteristic composition affects the activity as a solid base catalyst for various reactions. For example, high activity for transesterification is obtained. It is considered that transition metal species such as Fe and Mn dissolved in the composite oxide obtained by the firing step have an action of enhancing the basicity of the solid.
  • the composition of the product contains Ca, Mg and Al in a molar ratio almost derived from steel slag, and more often contains Fe and Mn. Therefore, the proportion of Fe in all metal elements is 0 to 3 mol% (for example, 0.1 to 3 mol%), and the proportion of Mn in all metal elements is 0 to 3 mol% (for example, 0.1 to 3 mol%). Mol%).
  • the ratio of Si in the total metal elements is 0 to 3 mol% (for example, 0.1 to 3 mol%), and the ratio of Ti in the total metal elements is 0 to 3 mol%. 3 mol% (for example, 0.1 to 3 mol%).
  • the ratio of Mg in all metal elements is 5 to 20 mol%, and the ratio of Al in all metal elements is 10 to 40 mol%.
  • the balance of all metal elements of the hydrotalcite-like compound and the composite oxide is Ca and inevitable impurities, and usually contains the most Ca.
  • the specific surface area of the product measured by the BET method is larger than that of hydrocalumite, for example, 20 to 50 m 2 / g, and the pore volume is, for example, 0.1 to 0.3 m 3 / g. Therefore, it is useful as an adsorbent for various substances.
  • the element map is measured with EPMA in the cross section of the product particles, it can be observed that each element is uniformly distributed in the particles.
  • the hydrotalcite-like compound of the present invention obtained by the above method is useful as an anion adsorbent, and is particularly suitable as an adsorbent for phosphate ions.
  • phosphate ions which are pollutants
  • the phosphate ion may be any of a first phosphate ion, a second phosphate ion, and a third phosphate ion.
  • the hydrotalcite-like compound has a layered crystal structure and contains Cl ions between layers. Cl ions are derived from hydrochloric acid used to dissolve steel slag. Phosphate ions in seawater enter between layers, and Cl ions are released from the layers to seawater. Cl ions are components originally contained in a large amount in seawater, and no environmental problems occur even when released into seawater.
  • hydrotalcite-like compound of the present invention obtained by the above method is also useful as a solid base catalyst, for example, Knoevenagel condensation reaction, transesterification reaction, alkyl fragrance using oxygen as an oxidizing agent. High activity in oxidation reaction of aromatic or alkylene aromatic.
  • Kunefenagel condensation reaction is a technique for obtaining an alkene by condensing an active methylene compound with an aldehyde or a ketone.
  • a base is used as the catalyst.
  • the hydrotalcite-like compound of the present invention has a catalytic activity as high as that of an existing solid base catalyst for the Kunefenagel condensation reaction.
  • Kunefenagel condensation reaction a model reaction formula of Kunefenagel condensation of benzaldehyde and ethyl cyanoacetate is shown below.
  • a model reaction formula for the transesterification reaction is shown below.
  • glycerin is generated in addition to the fatty acid methyl ester.
  • the fats and oils may be vegetable oils or animal oils, and for example, soybean oil, palm oil, corn oil, rapeseed oil and the like can be used. Among them, soybean oil (including linoleic acid, oleic acid, palmitic acid, linolenic acid, stearic acid, etc.) has a large production amount and is easily available.
  • R is preferably a C 16 to C 18 saturated or unsaturated hydrocarbon group.
  • the hydrotalcite-like compound of the present invention and the composite oxide obtained by firing the compound have high activity with respect to the transesterification as described above, although they can be produced at low cost.
  • its activity is higher than that of calcium oxide, and high activity can be maintained even when left in the air for a day.
  • a composite oxide fired at 700 ° C. or higher preferably about 800 ° C.
  • Hydrocalumite exhibits a relatively high activity for transesterification when heat-treated in an inert gas or in air, but it is difficult to maintain the activity. The activity is significantly degraded.
  • ⁇ Oxidation reaction of alkyl / alkylene aromatic The oxidation reaction of aromatic hydrocarbons using oxygen as an oxidizing agent is useful as a method for synthesizing clean aromatic ketones. Since one aspect of the hydrotalcite-like compound of the present invention contains Mn derived from the components of steel slag in the crystal structure, Mn is an active metal species and has high activity against the above oxidation reaction. Have. The model reaction equation for the oxidation reaction of diphenylmethane with oxygen is shown below.
  • a gel containing silica is produced during the production process of the hydrotalcite-like compound.
  • the silica obtained at this time has high purity and is suitable as a raw material for synthesis of zeolite.
  • alkali is added to a gel containing silica, and the gel is dissolved to obtain a uniform solution.
  • the alkali is preferably used as an aqueous solution.
  • a sodium hydroxide aqueous solution, a potassium hydroxide aqueous solution, a lithium hydroxide aqueous solution, or the like can be used.
  • the amount of alkali may be an amount that completely dissolves silica.
  • the pH of the mixture of gel and aqueous alkali solution is preferably controlled to 11-13.
  • sodium aluminate is added to the solution to promote gelation.
  • the amount of sodium aluminate may be appropriately selected according to the composition of the zeolite to be produced.
  • the temperature of the solution during the gelation is preferably maintained at 60 to 200 ° C., and 80 to 120 ° C. when more general A-type and X-type zeolites are to be obtained. Thereafter, the product can be filtered, dried, and calcined as necessary to obtain the desired zeolite.
  • Example 1 Steel slag (a granulated slag composed of an amorphous phase) having the composition shown in Table 2 was used as a raw material.
  • the numerical values in Table 2 are% by weight.
  • the following composition was calculated from the results of elemental analysis by ICP.
  • the above steel slag was pulverized for 10 minutes with a ball mill having a rotation speed of 650 rpm, and classified to a particle size of 45 ⁇ m or less.
  • 10 g of pulverized steel slag is dissolved in 200 mL of 3N hydrochloric acid (manufactured by Wako Pure Chemical Industries, Ltd.), the temperature of the solution is raised to 100 ° C., and stirring is continued for 2 hours. Made it.
  • the obtained gel was filtered and separated into 3.6 g of hydrous silica gel and a filtrate containing metal components other than silicon.
  • the temperature of the obtained filtrate was maintained at 65 ° C., and a 2N aqueous sodium hydroxide solution was added dropwise thereto, the pH of the filtrate was adjusted to 11.5, and a precipitate was produced while stirring. Subsequently, the precipitate was left to age at that temperature for 18 hours. The obtained precipitate was filtered and dried at 100 ° C. for 24 hours to obtain 6.2 g of Sample 1 (Sample 1).
  • Examples 2 to 4 Similar to Example 1 except that the pH of the filtrate when generating the precipitate was changed to 8.5 (Example 2), 9.5 (Example 3) or 10.5 (Example 4). Samples 2, 3 and 4 were obtained respectively.
  • Example 2 The composition of the hydrous silica gel obtained in Example 1 was measured by EDX. The results are shown in Table 3. The numerical values in Table 3 are% by weight. The purity of the hydrous silica was high and was confirmed to be 92.2% by weight.
  • a uniform gel was obtained by adding 100 mL of a 2N aqueous sodium hydroxide solution and 2.7 g of sodium aluminate to 3.6 g of this hydrous silica. Thereafter, the obtained gel was filled in a tetrafluoroethylene container and allowed to stand at 100 ° C. for 6 hours. The obtained product was filtered, washed, and dried to obtain a zeolite.
  • FIG. 4 shows the relationship between the X-ray diffraction patterns of Samples 1, 5 and 6 produced at pH 11.5 and the temperature at which the samples were produced.
  • FIG. 5 shows an X-ray diffraction pattern of a zeolite synthesized from hydrous silica. The figure also shows the pattern of standard samples of silica (acid-leached slag) and faujasite type zeolite (standard FAU-zeolite).
  • the obtained zeolite was a single-phase faujasite type zeolite containing Na as a cation.
  • the specific surface area derived from the pore structure of the zeolite was 770 m 2 / g and the average pore diameter was 0.7 nm.
  • sample 1 has a high phosphate ion adsorption capacity equivalent to that of hydrocalumite, and the adsorption capacity is superior to hydrotalcite which is widely used as an anion adsorbent. did it.
  • ⁇ Kunefenagel condensation experiment> Using the sample 1 of Example 1 as a solid base catalyst, a Kunefenagel condensation reaction between benzaldehyde and ethyl cyanoacetate was performed. Specifically, 0.217 g (2 mmol) of benzaldehyde, 0.226 g (2 mmol) of ethyl cyanoacetate and 50 mg of sample 1 were added to 10 mL of ethanol and stirred at a liquid temperature of 60 ° C. for 8 hours to proceed the reaction. I let you.
  • CAL calcined hydrotalcite
  • steel slag discarded in large quantities can be converted into useful hydrotalcite-like compounds, solid base catalysts, silicon compounds, and the like.
  • it is not necessary to add further metal components to the steel slag as raw materials, and hydrotalcite-like compounds, solid base catalysts, silicon compounds, etc. can be manufactured by an inexpensive and simple process, enabling large-scale industrial production. is there.
  • Silica produced in the process of producing a hydrotalcite-like compound has a high purity and is suitable as a raw material for high-purity silicon and zeolite.
  • the hydrotalcite-like compound of the present invention and the composite oxide obtained by firing the compound have high versatility as an anion adsorbent or a solid base catalyst.

Abstract

A hydrotalcite-like compound and a silicon compound are synthesized at low cost by effectively utilizing iron and steel slag that is a waste resource. Specifically disclosed is a method for producing a hydrotalcite-like compound, which comprises: a step wherein an acid such as hydrochloric acid is added to iron and steel slag so as to melt the iron and steel slag, thereby obtaining a solution; a step wherein a gel that contains silica is produced in the thus-obtained solution; a step wherein the solution containing the gel is separated into the gel and a liquid; and a step wherein an alkali is added into the thus-obtained liquid, thereby producing a hydrotalcite-like compound.

Description

ハイドロタルサイト様化合物の製造法ならびにハイドロタルサイト様化合物もしくは複合酸化物、陰イオン吸着剤および固体塩基触媒Method for producing hydrotalcite-like compound, hydrotalcite-like compound or composite oxide, anion adsorbent and solid base catalyst
 本発明は、産業廃棄物である鉄鋼スラグの再利用を目的とするハイドロタルサイト様化合物またはこれに由来する複合酸化物の合成、更には、陰イオン吸着剤、固体塩基触媒およびケイ素化合物の合成に関する。 The present invention relates to the synthesis of hydrotalcite-like compounds or composite oxides derived therefrom for the purpose of reusing steel slag, which is industrial waste, as well as the synthesis of anion adsorbents, solid base catalysts and silicon compounds. About.
 鉄の製錬工程で生産される鉄鋼スラグは、国内だけでも多量に生産されており、2007年度の生産量は約3957万トンになると推定されている。鉄鋼スラグの多くはセメント原料、路盤材、コンクリート骨材などへ再利用されている。しかし、処分場不足の問題や処分の際の環境基準の厳格化などから、新規用途の開拓が望まれている。 Steel slag produced in the iron smelting process is produced in large quantities in Japan alone, and the production volume in 2007 is estimated to be about 39.57 million tons. Most of steel slag is reused for cement raw materials, roadbed materials, concrete aggregates and so on. However, because of the shortage of disposal sites and stricter environmental standards at the time of disposal, new applications are desired.
 鉄鋼スラグは、生産される工程によって、高炉スラグと製鋼スラグに分類される。全体の6割以上は高炉スラグとして生産されている。高炉スラグの主成分は、酸化ケイ素、酸化アルミニウム、酸化カルシウムおよび酸化マグネシウムであり、更に少量の鉄やマンガンを含んでいる。鉄鋼スラグを安価で豊富な化学原料として利用することができれば、製造の低コスト化が図れるだけでなく、廃棄物資源の有効利用も可能となる。 Steel slag is classified into blast furnace slag and steelmaking slag, depending on the production process. More than 60% of the total is produced as blast furnace slag. The main components of blast furnace slag are silicon oxide, aluminum oxide, calcium oxide and magnesium oxide, and further contain small amounts of iron and manganese. If steel slag can be used as abundant chemical raw materials at low cost, not only manufacturing costs can be reduced, but also waste resources can be effectively used.
 そこで、高炉スラグからゼオライトを安価で大量合成する方法の開発がすすめられている(特許文献1~3)。 Therefore, development of a method for synthesizing a large amount of zeolite at low cost from blast furnace slag has been promoted (Patent Documents 1 to 3).
 一方、類似の廃棄物資源の有効利用の例として、無機廃棄物からハイドロタルサイト様化合物を合成した例がある(特許文献4)。ハイドロタルサイトは、陰イオン交換機能を有し、特に水中のリン酸イオンの除去に利用できる(特許文献5)。 On the other hand, as an example of effective utilization of similar waste resources, there is an example in which a hydrotalcite-like compound is synthesized from inorganic waste (Patent Document 4). Hydrotalcite has an anion exchange function and can be used particularly for removing phosphate ions in water (Patent Document 5).
 また、カルシウムカーバイド製造時に発生するダスト(主成分:Ca、MgおよびMn)や鉱物の一種であるドロマイト(CaMg(CO32)からハイドロタルサイトを合成した例がある(非特許文献1)。 Moreover, there is an example in which hydrotalcite is synthesized from dolomite (CaMg (CO 3 ) 2 ), which is a kind of mineral (main components: Ca, Mg, and Mn) generated during the production of calcium carbide (Non-patent Document 1). .
 なお、有機廃棄物の有効利用の例として、油脂とメタノールとのエステル交換反応によりバイオディーゼルを合成する方法が提案されている。その際、酸化カルシウムが触媒として使用されている(非特許文献2)。 In addition, as an example of effective use of organic waste, a method of synthesizing biodiesel by a transesterification reaction between fat and methanol has been proposed. At that time, calcium oxide is used as a catalyst (Non-patent Document 2).
特開2001-220132号公報JP 2001-220132 A 特開2005-239459号公報Japanese Patent Laid-Open No. 2005-239459 特開2007-222713号公報JP 2007-222713 A 特開2007-51022号公報JP 2007-51022 A 特開2004-167408号公報Japanese Patent Laid-Open No. 2004-167408
 従来のハイドロタルサイト様化合物の合成例では、無機廃棄物に3価のカチオン源としてアルミニウムを添加する必要があり、無機廃棄物だけを原料としてハイドロタルサイト様化合物を製造することは不可能であった。 In conventional synthesis examples of hydrotalcite-like compounds, it is necessary to add aluminum as a trivalent cation source to inorganic waste, and it is impossible to produce hydrotalcite-like compounds using only inorganic waste as a raw material. there were.
 本発明の一局面は、(i)鉄鋼スラグに酸を添加して前記鉄鋼スラグを溶解させ、溶液を得る工程、(ii)得られた前記溶液中にシリカを含むゲルを生成させる工程、(iii)前記ゲルを含む溶液を、ゲルと液に分離する工程、(iv)得られた前記液にアルカリを添加し、ハイドロタルサイト様化合物(hydrotalcite-like compound)を生成させる工程、を有するハイドロタルサイト様化合物もしくはこれに由来する複合酸化物の製造法に関する。 One aspect of the present invention includes (i) a step of adding an acid to steel slag to dissolve the steel slag to obtain a solution, and (ii) a step of generating a gel containing silica in the obtained solution. iii) a step of separating the gel-containing solution into a gel and a liquid; and (iv) a step of adding an alkali to the obtained liquid to form a hydrotalcite-like compound. The present invention relates to a method for producing a talcite-like compound or a composite oxide derived therefrom.
 好ましい一態様においては、前記工程(ii)で、前記溶液を60℃~150℃、より好ましくは90℃~100℃に加熱する。
 好ましい一態様においては、前記工程(iv)で、アルカリを添加した前記液のpHを9~13、より好ましくは9~11.5に調整する。また、液温を0℃~100℃、より好ましくは95℃~100℃にする。
In a preferred embodiment, in the step (ii), the solution is heated to 60 ° C. to 150 ° C., more preferably 90 ° C. to 100 ° C.
In a preferred embodiment, in the step (iv), the pH of the liquid to which alkali has been added is adjusted to 9 to 13, more preferably 9 to 11.5. The liquid temperature is set to 0 ° C. to 100 ° C., more preferably 95 ° C. to 100 ° C.
 別の好ましい一態様において、上記方法は、上記工程(i)~(iv)に加え、更に(v)前記ハイドロタルサイト様化合物を、例えば不活性雰囲気で300℃~700℃で、焼成し、複合酸化物に変化させる工程を有する。 In another preferred embodiment, the method includes, in addition to the steps (i) to (iv), further (v) calcining the hydrotalcite-like compound, for example, at 300 ° C. to 700 ° C. in an inert atmosphere; A step of changing to a complex oxide.
 更に別の好ましい一態様において、上記方法は、上記焼成を、空気中で700℃~900℃で行い、酸化カルシウムを生成させる工程を有する。 In still another preferred embodiment, the method includes a step of performing the firing in air at 700 ° C. to 900 ° C. to generate calcium oxide.
 なお、鉄鋼スラグからゼオライトを合成する従来の方法では、高純度な製品を得ることが難しく、かつコストに見合う付加価値の高い合成方法は見出されていないのが現状である。そこで、上記方法は、(vi)得られた前記ゲルにアルカリを添加し、前記ゲルを溶解して溶液または均一ゲルを得る工程、および(vii)前記溶液または均一ゲルにアルミン酸ナトリウムを添加し、ゲル化を進行させて、アルミノシリケートを生成させる工程、を更に有することもできる。 In addition, it is difficult to obtain a high-purity product by the conventional method for synthesizing zeolite from steel slag, and no high-value-added synthesis method suitable for cost has been found. Therefore, the above method includes (vi) adding alkali to the obtained gel and dissolving the gel to obtain a solution or uniform gel, and (vii) adding sodium aluminate to the solution or uniform gel. Further, the method may further include a step of causing gelation to produce aluminosilicate.
 本発明の別の一局面は、上記方法で製造された、ハイドロタルサイト様化合物に関する。具体的には、本発明のハイドロタルサイト様化合物は、例えば、一般式(1):[Ca2+a-xxAl(OH)6+b]Ay・mH2Oで表される。ただし、Mは、CaおよびAl以外の鉄鋼スラグに含有される金属元素であり、Aは、ハロゲンイオン、無機酸アニオンおよび有機酸アニオンよりなる群から選択される少なくとも1種であり、-1≦a≦1、0≦b≦1.5、0.3≦x≦1、0.5≦y≦1.5、1≦m≦3を満たす。Mは、Mg、Fe、Mn、Si、TiおよびCrよりなる群から選択される少なくとも1種であることが好ましい。 Another aspect of the present invention relates to a hydrotalcite-like compound produced by the above method. Specifically, the hydrotalcite-like compound of the present invention is represented by, for example, the general formula (1): [Ca 2 + ax M x Al (OH) 6 + b ] A y .mH 2 O. However, M is a metal element contained in steel slag other than Ca and Al, A is at least one selected from the group consisting of halogen ions, inorganic acid anions and organic acid anions, and −1 ≦ It satisfies a ≦ 1, 0 ≦ b ≦ 1.5, 0.3 ≦ x ≦ 1, 0.5 ≦ y ≦ 1.5, and 1 ≦ m ≦ 3. M is preferably at least one selected from the group consisting of Mg, Fe, Mn, Si, Ti and Cr.
 好ましい一態様において、上記ハイドロタルサイト様化合物は、全金属元素に占めるFeの含有割合が0.1~3モル%(例えば0.3~2モル%)であり、全金属元素に占めるMnの含有割合が0.1~3モル%(例えば0.3~2モル%)である。 In a preferred embodiment, the hydrotalcite-like compound has a Fe content ratio of 0.1 to 3 mol% (eg, 0.3 to 2 mol%) in all metal elements, and Mn accounts for all metal elements. The content ratio is 0.1 to 3 mol% (for example, 0.3 to 2 mol%).
 好ましい一態様において、上記ハイドロタルサイト様化合物は、全金属元素に占めるSiの含有割合が0~3モル%(例えば0.1~3モル%もしくは0.3~2モル%)であり、全金属元素に占めるTiの含有割合が0~3モル%(例えば0.1~3モル%もしくは0.3~2モル%)である。なお、Siも金属元素として扱う。 In a preferred embodiment, the hydrotalcite-like compound has a Si content ratio of 0 to 3 mol% (for example, 0.1 to 3 mol% or 0.3 to 2 mol%) in all metal elements, The content ratio of Ti in the metal element is 0 to 3 mol% (for example, 0.1 to 3 mol% or 0.3 to 2 mol%). Si is also treated as a metal element.
 本発明の更に別の一局面は、上記のハイドロタルサイト様化合物を、例えば不活性雰囲気中で300℃~700℃で、焼成して得られた複合酸化物に関する。 Still another aspect of the present invention relates to a composite oxide obtained by firing the above hydrotalcite-like compound at, for example, 300 ° C. to 700 ° C. in an inert atmosphere.
 本発明の更に別の一局面は、上記のハイドロタルサイト様化合物もしくは前記複合酸化物を、空気中で700℃~900℃で焼成し、酸化カルシウムを生成させた複合酸化物に関する。 Still another aspect of the present invention relates to a composite oxide obtained by calcining the above hydrotalcite-like compound or the composite oxide in air at 700 ° C. to 900 ° C. to generate calcium oxide.
 上記複合酸化物は、例えば、一般式(2):[Ca2+a-xxAlO3+b]Ayで表される。ただし、Mは、CaおよびAl以外の鉄鋼スラグに含有される金属元素であり、Aは、ハロゲンイオン、無機酸アニオンおよび有機酸アニオンよりなる群から選択される少なくとも1種であり、-1≦a≦1、0≦b≦0.8、0.3≦x≦1、0≦y≦1.5を満たす。Mは、Mg、Fe、Mn、Si、TiおよびCrよりなる群から選択される少なくとも1種であることが好ましい。 The composite oxide is represented, for example, by the general formula (2): [Ca 2 + ax M x AlO 3 + b ] A y . However, M is a metal element contained in steel slag other than Ca and Al, A is at least one selected from the group consisting of halogen ions, inorganic acid anions and organic acid anions, and −1 ≦ It satisfies a ≦ 1, 0 ≦ b ≦ 0.8, 0.3 ≦ x ≦ 1, and 0 ≦ y ≦ 1.5. M is preferably at least one selected from the group consisting of Mg, Fe, Mn, Si, Ti and Cr.
 本発明の更に別の一局面は、上記ハイドロタルサイト様化合物を含む陰イオン吸着剤または固体塩基触媒に関する。
 本発明の更に別の一局面は、上記複合酸化物を含む固体塩基触媒に関する。
Yet another aspect of the present invention relates to an anion adsorbent or a solid base catalyst comprising the hydrotalcite-like compound.
Yet another aspect of the present invention relates to a solid base catalyst containing the above composite oxide.
 本発明の更に別の一局面は、上記固体塩基触媒の存在下で、油脂とアルコールのエステル交換反応を行い、バイオ燃料を生成させる、燃料製造法に関する。 Still another aspect of the present invention relates to a fuel production method in which a biofuel is produced by performing a transesterification reaction between an oil and an alcohol in the presence of the solid base catalyst.
 本発明の更に別の一局面は、上記陰イオン吸着剤を、リン酸イオンを含む汚水と混合し、前記リン酸イオンを前記吸着剤に吸着させる、水浄化方法に関する。 Still another aspect of the present invention relates to a water purification method in which the anion adsorbent is mixed with sewage containing phosphate ions, and the phosphate ions are adsorbed on the adsorbent.
 鉄鋼スラグには、2価(Ca2+、Mg2+)および3価(Al3+)の金属元素が、ハイドロタルサイト様化合物の合成に最適なモル比、すなわち(Ca+Mg)/Alの原子比がおよそ2~5で含まれている。よって、鉄鋼スラグを有効利用してハイドロタルサイト様化合物を安価で合成することが可能である。これにより、廃棄物資源の有効利用が可能となる。 In steel slag, divalent (Ca 2+ , Mg 2+ ) and trivalent (Al 3+ ) metal elements have an optimal molar ratio for synthesizing hydrotalcite-like compounds, ie, (Ca + Mg) / Al atoms. The ratio is included at approximately 2-5. Therefore, it is possible to synthesize a hydrotalcite-like compound at low cost by effectively using steel slag. This makes it possible to use waste resources effectively.
 本発明の新規な特徴を添付の請求の範囲に記述するが、本発明は、構成および内容の両方に関し、本発明の他の目的および特徴と併せ、図面を照合した以下の詳細な説明によりさらによく理解されるであろう。 While the novel features of the invention are set forth in the appended claims, the invention will be further described by reference to the following detailed description, taken in conjunction with the other objects and features of the invention, both in terms of construction and content. It will be well understood.
ハイドロタルサイト様化合物の層状構造を示す概念図である。It is a conceptual diagram which shows the layered structure of a hydrotalcite-like compound. 高炉スラグ生産量の推移を示すグラフである。It is a graph which shows transition of blast furnace slag production. 65℃で生成させたハイドロタルサイト様化合物のX線回折パターンと同化合物生成時のpHとの関係を示す図である。It is a figure which shows the relationship between the X-ray-diffraction pattern of the hydrotalcite-like compound produced | generated at 65 degreeC, and pH at the time of the compound production | generation. pH11.5で生成させたハイドロタルサイト様化合物のX線回折パターンと同化合物生成時の温度との関係を示す図である。It is a figure which shows the relationship between the X-ray-diffraction pattern of the hydrotalcite-like compound produced | generated by pH 11.5, and the temperature at the time of the compound production | generation. 残留シリカから合成されたゼオライトのX線回折パターンを示す図である。It is a figure which shows the X-ray-diffraction pattern of the zeolite synthesize | combined from the residual silica. 吸着時間とリン酸イオン濃度との関係を示す図である。It is a figure which shows the relationship between adsorption time and phosphate ion concentration. ベンズアルデヒドとシアノ酢酸エチルのクネフェナゲル縮合反応における反応時間と収率との関係を示す図である。It is a figure which shows the relationship between the reaction time and yield in the Kunephenagel condensation reaction of benzaldehyde and ethyl cyanoacetate. 酪酸エチルとメタノールとのエステル交換反応における反応時間と転化率との関係を示す図である。It is a figure which shows the relationship between reaction time and conversion in the transesterification reaction of ethyl butyrate and methanol. 大豆油とメタノールとのエステル交換反応における反応時間と収率との関係を示す図である。It is a figure which shows the relationship between the reaction time and yield in the transesterification reaction of soybean oil and methanol.
 鉄鋼スラグの生産量は、カルシウムカーバイド製造時に発生するダストその他の無機廃棄物の生産量を遥かに上回っており、安価かつ豊富な化学原料として利用可能である。本発明では、簡便なプロセスにより、鉄鋼スラグを原料としてハイドロタルサイト様化合物およびケイ素化合物を同時に合成することができる。 The production volume of steel slag far exceeds the production volume of dust and other inorganic waste generated during the manufacture of calcium carbide, and can be used as an inexpensive and abundant chemical raw material. In the present invention, a hydrotalcite-like compound and a silicon compound can be synthesized simultaneously from steel slag as a raw material by a simple process.
 ハイドロタルサイト様化合物は、一般式:[M(II)1-v M(III)v(OH)2w+(An- w/n)・mH2Oで表される組成を有し、かつ層状の結晶構造を有する。ここで、M(II)は2価の金属、M(III)は3価の金属を示す。
 ただし、鉄鋼スラグから製造される本発明のハイドロタルサイト様化合物は、例えば、一般式(1):[Ca2+a-xxAl(OH)6+b]Ay・mH2Oで表される。
The hydrotalcite-like compound has a composition represented by the general formula: [M (II) 1-v M (III) v (OH) 2 ] w + (A n- w / n ) · mH 2 O And it has a layered crystal structure. Here, M (II) represents a divalent metal and M (III) represents a trivalent metal.
However, the hydrotalcite-like compound of the present invention produced from steel slag is represented, for example, by the general formula (1): [Ca 2 + ax M x Al (OH) 6 + b ] A y · mH 2 O The
 ここで、Mは、鉄鋼スラグに含有される金属元素、例えばMg、Fe、Mn、Si、TiおよびCrよりなる群から選択される少なくとも1種であり、Aは、ハロゲンイオン、無機酸アニオンおよび有機酸アニオンよりなる群から選択される少なくとも1種であり、-1≦a≦1、0≦b≦1.5、0.3≦x≦1、0.5≦y≦1.5、1≦m≦3を満たす。ただし、aの範囲は-0.5≦a≦0.5、bの範囲は0≦b≦1、xの範囲は0.4≦x≦0.8、yの範囲は0.8≦y≦1.2が好ましい。xの範囲は、0.5≦x≦0.6が更に好ましい。 Here, M is at least one selected from the group consisting of metal elements contained in steel slag, such as Mg, Fe, Mn, Si, Ti and Cr, and A is a halogen ion, an inorganic acid anion, and At least one selected from the group consisting of organic acid anions, −1 ≦ a ≦ 1, 0 ≦ b ≦ 1.5, 0.3 ≦ x ≦ 1, 0.5 ≦ y ≦ 1.5, ≦ m ≦ 3 is satisfied. However, the range of a is −0.5 ≦ a ≦ 0.5, the range of b is 0 ≦ b ≦ 1, the range of x is 0.4 ≦ x ≦ 0.8, and the range of y is 0.8 ≦ y. ≦ 1.2 is preferred. The range of x is more preferably 0.5 ≦ x ≦ 0.6.
 元素Mは、少なくともFeおよびMnを含むことが好ましく、更に、SiおよびTiを含むことがより好ましい。 The element M preferably contains at least Fe and Mn, and more preferably contains Si and Ti.
 ハイドロタルサイト様化合物は、更に上記以外の元素(例えば、P、S、Na等)を微量(全金属元素に対する含有割合で1モル%以下)に含む場合もある。 The hydrotalcite-like compound may further contain an element other than the above (for example, P, S, Na, etc.) in a trace amount (1 mol% or less in terms of content relative to all metal elements).
 ハロゲンイオンとしては、Fイオン、Clイオン、BrイオンおよびIイオンが挙げられる。これらは、例えば、鉄鋼スラグを溶解する際に用いる酸に由来する。例えば塩酸を用いて鉄鋼スラグを溶解する場合、ハイドロタルサイト様化合物にはClイオンが含まれる。ただし、任意のハロゲンイオンを別途添加してもよい。 Halogen ions include F ions, Cl ions, Br ions, and I ions. These are derived, for example, from the acid used when melting steel slag. For example, when steel slag is dissolved using hydrochloric acid, the hydrotalcite-like compound contains Cl ions. However, any halogen ion may be added separately.
 無機酸アニオンとしては、炭酸イオン、硝酸イオン、硫酸イオン、リン酸イオン等のオキソ酸アニオンが挙げられるが、Caと反応して不溶成分を生成しない硝酸イオンが好ましい。 Examples of the inorganic acid anion include oxo acid anions such as carbonate ion, nitrate ion, sulfate ion and phosphate ion, but nitrate ion that does not react with Ca to form an insoluble component is preferable.
 有機酸アニオンとしては、蟻酸イオン、酢酸イオン等のカルボン酸アニオンが挙げられる。なかでも鉄鋼スラグを溶解することのできる蟻酸の共役塩基である蟻酸イオンが好ましい。 Examples of organic acid anions include carboxylate anions such as formate ion and acetate ion. Of these, formate ions, which are formic acid conjugate bases capable of dissolving steel slag, are preferred.
 なお、一般的にハイドロタルサイトは、Mg6Al2(OH)16CO3・4H2OもしくはMg3Al(OH)8Cl・2H2Oなどで表され、ハイドロタルサイト様化合物の一例にCa2Al(OH)6Cl・2H2Oで表されるハイドロカルマイトがある。 In general, hydrotalcite is represented by Mg 6 Al 2 (OH) 16 CO 3 .4H 2 O or Mg 3 Al (OH) 8 Cl.2H 2 O, which is an example of a hydrotalcite-like compound. There is a hydrocalumite represented by Ca 2 Al (OH) 6 Cl · 2H 2 O.
 図1に示すように、ハイドロタルサイト様化合物は、層間に電気的中性を保つためのアニオン(図1ではClイオン)を有するため、陰イオンの吸着剤として用いられている。ハイドロタルサイト様化合物は、例えば汚染された海水中のリン酸イオンを取り込み、Clイオンを放出する。また、ハイドロタルサイト様化合物は、様々な反応に活性を示す固体塩基触媒としても有用である。 As shown in FIG. 1, the hydrotalcite-like compound has an anion (Cl ion in FIG. 1) for maintaining electrical neutrality between layers, and is therefore used as an anion adsorbent. Hydrotalcite-like compounds, for example, take up phosphate ions in contaminated seawater and release Cl ions. Hydrotalcite-like compounds are also useful as solid base catalysts that are active in various reactions.
 以下、本発明のハイドロタルサイト様化合物およびケイ素化合物の製造法の一実施形態について詳細に説明する。
[原料]
 鉄鋼スラグは、高炉スラグと製鋼スラグに分類される。図2は高炉スラグの日本国内生産量の推移を示している。本発明で原料として用いる鉄鋼スラグは特に限定されないが、高炉スラグが適しており、特に、結晶性の高い徐冷スラグよりも、非晶質(アモルファス)の水砕スラグが適している。水砕スラグは非晶質であるため、塩酸などの酸により、比較的容易に溶解する。表1に高炉スラグの組成の一例を示す。
Hereinafter, an embodiment of a method for producing a hydrotalcite-like compound and a silicon compound of the present invention will be described in detail.
[material]
Steel slag is classified into blast furnace slag and steelmaking slag. Figure 2 shows the trend of domestic production of blast furnace slag in Japan. Steel slag used as a raw material in the present invention is not particularly limited, but blast furnace slag is suitable, and amorphous granulated slag is more suitable than annealed slag having high crystallinity. Since granulated slag is amorphous, it is relatively easily dissolved by an acid such as hydrochloric acid. Table 1 shows an example of the composition of blast furnace slag.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
 表1に示されるように、高炉スラグは、酸化カルシウム、酸化ケイ素(シリカ)、酸化アルミニウム(アルミナ)および酸化マグネシウムを主成分として含み、一般的には、更に、鉄およびマンガンを含む。また、微量の酸化チタンやイオウを含むことが多い。鉄鋼スラグは、Al:Caを約1:2~1:5のモル比で含むことから、それだけでハイドロカルマイトに似た組成を有するハイドロタルサイト様化合物の原料となる。 As shown in Table 1, the blast furnace slag contains calcium oxide, silicon oxide (silica), aluminum oxide (alumina) and magnesium oxide as main components, and generally further contains iron and manganese. In addition, it often contains a small amount of titanium oxide or sulfur. Steel slag contains Al: Ca in a molar ratio of about 1: 2 to 1: 5, and as such, becomes a raw material for a hydrotalcite-like compound having a composition similar to hydrocalumite.
 ただし、所望の組成比のハイドロタルサイト様化合物が得られるように、鉄鋼スラグに、アルミニウム源(例えば、酸化アルミニウム、水酸化アルミニウム、アルミン酸ナトリウム、塩化アルミニウム、硝酸アルミニウム、硫化アルミニウム、アルミニウムイソプロポキシド)、マグネシウム源(例えば、酸化マグネシウム、水酸化マグネシウム、塩化マグネシウム、硝酸マグネシウム、硫化マグネシウム)などの物質を添加して原料として用いてもよい。 However, in order to obtain a hydrotalcite-like compound having a desired composition ratio, an iron source (for example, aluminum oxide, aluminum hydroxide, sodium aluminate, aluminum chloride, aluminum nitrate, aluminum sulfide, aluminum isopropoxy) is added to the steel slag. And a source of magnesium (for example, magnesium oxide, magnesium hydroxide, magnesium chloride, magnesium nitrate, magnesium sulfide) may be used as a raw material.
 鉄鋼スラグに含まれる各成分の含有量は、例えば下記の通りである。
 酸化カルシウムの含有量は、例えば20重量%以上もしくは25重量%以上であり、例えば60重量%以下もしくは55重量%以下である。
The content of each component contained in the steel slag is, for example, as follows.
The content of calcium oxide is, for example, 20% by weight or more or 25% by weight or more, for example, 60% by weight or less or 55% by weight or less.
 酸化マグネシウムの含有量は、例えば1重量%以上もしくは2重量%以上であり、20重量%以下もしくは10重量%以下である。 The content of magnesium oxide is, for example, 1% by weight or more or 2% by weight or more, and is 20% by weight or less or 10% by weight or less.
 酸化ケイ素の含有量は、例えば10重量%以上もしくは15重量%以上であり、45重量%以下もしくは40重量%以下である。 The content of silicon oxide is, for example, 10% by weight or more or 15% by weight or more, and is 45% by weight or less or 40% by weight or less.
 酸化アルミニウムの含有量は、例えば1重量%以上もしくは2重量%以上であり、20重量%以下もしくは18重量%以下である。 The content of aluminum oxide is, for example, 1% by weight or more or 2% by weight or more, and is 20% by weight or less or 18% by weight or less.
 酸化鉄の含有量は、例えば0.1重量%以上もしくは1重量%以上であり、30重量%以下、5重量%以下もしくは3重量%以下である。なお、製鋼スラグと称される鉄鋼スラグは、一般に鉄含有量が10重量%である。本発明では、当然、製鋼スラグを原料として用いてもよい。 The content of iron oxide is, for example, 0.1% by weight or more or 1% by weight or more, and is 30% by weight or less, 5% by weight or less, or 3% by weight or less. In addition, steel slag called steelmaking slag generally has an iron content of 10% by weight. In the present invention, naturally, steelmaking slag may be used as a raw material.
 酸化マンガンの含有量は、例えば0.1重量%以上もしくは1重量%以上であり、10重量%以下もしくは5重量%以下である。 The content of manganese oxide is, for example, 0.1% by weight or more or 1% by weight or more, and is 10% by weight or less or 5% by weight or less.
 酸化チタンの含有量は、例えば0.1重量%以上もしくは1重量%以上であり、5重量%以下もしくは3重量%以下である。 The content of titanium oxide is, for example, 0.1% by weight or more or 1% by weight or more, and is 5% by weight or less or 3% by weight or less.
[鉄鋼スラグの溶解]
 本発明の方法では、まず、鉄鋼スラグに酸を添加して鉄鋼スラグを溶解させ、溶液を得る。用いる酸としては、塩酸、硝酸、硫酸、リン酸、フッ酸などの無機酸および蟻酸、酢酸、クエン酸などの有機酸が挙げられる。これらのうちでは、塩酸または硝酸を用いるのが好ましい。塩酸または硝酸の作用により、鉄鋼スラグは速やかに溶解するため、均一な溶液を得ることができる。例えば、0.1~5N(規定)の塩酸(塩化水素溶液)に、鉄鋼スラグを溶解する。酸と鉄鋼スラグとの混合比は特に限定されず、鉄鋼スラグが完全に溶解する混合比であればよい。例えば3規定の塩酸1リットルあたり、30~70g程度、特に50g程度の鉄鋼スラグを溶解することが好ましい。
[Dissolution of steel slag]
In the method of the present invention, first, an acid is added to steel slag to dissolve the steel slag to obtain a solution. Examples of the acid to be used include inorganic acids such as hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid and hydrofluoric acid, and organic acids such as formic acid, acetic acid and citric acid. Of these, it is preferable to use hydrochloric acid or nitric acid. Since the steel slag dissolves quickly due to the action of hydrochloric acid or nitric acid, a uniform solution can be obtained. For example, steel slag is dissolved in 0.1 to 5N (normal) hydrochloric acid (hydrogen chloride solution). The mixing ratio of the acid and the steel slag is not particularly limited as long as the mixing ratio allows the steel slag to be completely dissolved. For example, it is preferable to dissolve about 30 to 70 g, particularly about 50 g of steel slag per liter of 3 N hydrochloric acid.
 鉄鋼スラグは、酸と混合する前に、予めできるだけ小さく、例えば100μm以下、更には50μm以下に粉砕することが望ましい。粉砕により、鉄鋼スラグの溶解を早めることができる。ただし、鉄鋼スラグは粉砕せずにそのまま用いてもよい。また、酸の温度は、例えば室温~60℃に制御することが好ましい。これにより、鉄鋼スラグの溶解をより早めることができる。 It is desirable that the steel slag is pulverized to be as small as possible, for example, 100 μm or less, and further 50 μm or less before mixing with the acid. By pulverization, melting of the steel slag can be accelerated. However, steel slag may be used as it is without being crushed. Further, the temperature of the acid is preferably controlled to, for example, room temperature to 60 ° C. Thereby, dissolution of steel slag can be accelerated.
[シリカの生成]
 続いて、鉄鋼スラグの溶液中にシリカを含むゲルを生成させる。鉄鋼スラグの溶液中では、ケイ素成分の縮合が進行している。したがって、しばらくすると、ゲル状態のシリカが生成する。ゲル化を促進する観点から、溶液を60℃~150℃、より好ましくは95℃~100℃に加熱することが好ましい。この工程において、鉄鋼スラグに含まれているケイ素成分のほとんどがシリカに変換される。
[Formation of silica]
Then, the gel containing a silica is produced | generated in the solution of steel slag. In the steel slag solution, condensation of silicon components proceeds. Therefore, after a while, silica in a gel state is generated. From the viewpoint of promoting gelation, the solution is preferably heated to 60 ° C. to 150 ° C., more preferably 95 ° C. to 100 ° C. In this step, most of the silicon component contained in the steel slag is converted to silica.
[シリカの分離]
 次に、ゲルを含む溶液を、ゲルと液に分離する。分離の方法は特に限定されないが、吸引ろ過などの方法が挙げられる。このとき、極めて高純度(例えば純度92重量%以上)のシリカが得られる。得られたシリカは、シリカゲルとしてそのまま様々な用途に用いることができ、また高純度シリコンやゼオライトの原料としても好適である。
[Separation of silica]
Next, the solution containing the gel is separated into a gel and a liquid. The separation method is not particularly limited, and examples thereof include suction filtration. At this time, silica with extremely high purity (for example, purity of 92% by weight or more) is obtained. The obtained silica can be used as a silica gel for various purposes as it is, and is also suitable as a raw material for high-purity silicon and zeolite.
 一方、シリカを分離した後に残された液中には、ケイ素以外の金属成分がイオンの状態で含まれている。これらのイオン種はハイドロタルサイト様化合物の原料となる。 On the other hand, the liquid remaining after separating the silica contains metal components other than silicon in an ionic state. These ionic species serve as raw materials for hydrotalcite-like compounds.
[ハイドロタルサイト様化合物の生成]
 ケイ素以外の金属成分をイオンの状態で含む液に、アルカリを添加すると、ハイドロタルサイト様化合物を生成する。アルカリの種類は、特に限定されないが、1価のアルカリ金属の水酸化物が好ましく、水酸化ナトリウム、水酸化カリウム、水酸化リチウムなどが用いられる。また、アンモニアやアンモニア水溶液も好ましく用いられる。ハイドロタルサイト様化合物の生成を早める観点から、1価のアルカリ金属の水酸化物は、水溶液の状態で、上記金属成分を含む液と混合してもよい。
[Formation of hydrotalcite-like compounds]
When an alkali is added to a liquid containing a metal component other than silicon in an ionic state, a hydrotalcite-like compound is generated. The type of alkali is not particularly limited, but monovalent alkali metal hydroxides are preferable, and sodium hydroxide, potassium hydroxide, lithium hydroxide, and the like are used. Ammonia and aqueous ammonia are also preferably used. From the viewpoint of accelerating the formation of the hydrotalcite-like compound, the monovalent alkali metal hydroxide may be mixed with a liquid containing the metal component in an aqueous solution state.
 ハイドロタルサイト様化合物の生成を促進する観点から、液のpHは9以上とすることが好ましく、pH11以上とすることが更に好ましい。ただし、廃液の取り扱いを容易にする観点からは、pH13以下とすることが好ましく、pH12以下とすることが更に好ましい。 From the viewpoint of promoting the formation of a hydrotalcite-like compound, the pH of the liquid is preferably 9 or more, and more preferably pH 11 or more. However, from the viewpoint of facilitating handling of the waste liquid, the pH is preferably 13 or less, and more preferably 12 or less.
 また、液温は0℃~100℃、より好ましくは95℃~100℃に加熱することが好ましい。より高い結晶性の化合物を得るためには、上記温度にて1~24時間、より好ましくは18時間程度、保持することが望ましい。その後、生成したハイドロタルサイト様化合物をろ過し、水洗し、乾燥させる。 The liquid temperature is preferably 0 ° C to 100 ° C, more preferably 95 ° C to 100 ° C. In order to obtain a compound with higher crystallinity, it is desirable to hold at the above temperature for 1 to 24 hours, more preferably about 18 hours. Thereafter, the produced hydrotalcite-like compound is filtered, washed with water and dried.
[ハイドロタルサイト様化合物の焼成]
 乾燥後のハイドロタルサイト様化合物を、例えば不活性雰囲気中で焼成すると、ハイドロタルサイト様化合物は複合酸化物へと変化する。その結果、材料の吸着剤または固体塩基触媒としての性能も向上する。複合酸化物の組成は、例えば一般式:[M(II)1-y M(III)yO]x+(An- x/n)、もしくは一般式(2):[Ca2+a-xxAlO3+b]Ay(a、x、MおよびAは一般式(1)と同様、0≦b≦0.8、0≦y≦1.5)などで表すことができる。
[Baking of hydrotalcite-like compounds]
When the hydrotalcite-like compound after drying is baked, for example, in an inert atmosphere, the hydrotalcite-like compound is converted into a composite oxide. As a result, the performance of the material as an adsorbent or solid base catalyst is also improved. The composition of the composite oxide is, for example, the general formula: [M (II) 1-y M (III) y O] x + (A n− x / n ), or the general formula (2): [Ca 2 + ax M x AlO 3 + b ] A y (a, x, M and A can be represented by 0 ≦ b ≦ 0.8, 0 ≦ y ≦ 1.5, etc., as in the general formula (1)).
 不活性雰囲気は、100Pa以下の減圧雰囲気でもよく、不活性ガス雰囲気でもよい。不活性ガスには、アルゴン、ヘリウム、窒素などを用いることができるが、低コスト化の観点から窒素を用いることが好ましい。窒素分圧は大気圧でよい。 The inert atmosphere may be a reduced pressure atmosphere of 100 Pa or less, or an inert gas atmosphere. As the inert gas, argon, helium, nitrogen, or the like can be used, but nitrogen is preferably used from the viewpoint of cost reduction. The nitrogen partial pressure may be atmospheric pressure.
 焼成温度は、300℃~700℃が好ましく、400℃~500℃が更に好ましい。焼成温度が低すぎると、比較的水分の多いハイドロタルサイト様化合物が得られる。 The firing temperature is preferably 300 ° C. to 700 ° C., more preferably 400 ° C. to 500 ° C. If the calcination temperature is too low, a hydrotalcite-like compound having a relatively high water content can be obtained.
 一方、複合酸化物を、バイオ燃料を製造する際のエステル交換反応の触媒として用いる場合、複合酸化物を、空気中で、酸化カルシウムが生成する温度で焼成することが好ましい。なお、不活性雰囲気での焼成を行わずに、ハイドロタルサイト様化合物を空気中で徐々に昇温し、酸化カルシウムが生成する温度で焼成してもよい。酸化カルシウムが生成する温度としては、700℃~900℃が好ましく、750℃~850℃が特に好ましい。 On the other hand, when the composite oxide is used as a catalyst for a transesterification reaction when producing biofuel, it is preferable to calcine the composite oxide in air at a temperature at which calcium oxide is generated. Note that, without firing in an inert atmosphere, the hydrotalcite-like compound may be gradually heated in air and fired at a temperature at which calcium oxide is generated. The temperature at which calcium oxide is generated is preferably 700 ° C. to 900 ° C., particularly preferably 750 ° C. to 850 ° C.
[生成物の組成]
 表1のような原料を用いる場合、生成物であるハイドロタルサイト様化合物は、例えばCa2-xxAl(OH)6Cl・2H2O(xは、一般式(1)と同様、Mは、Mg、Fe、Mn、SiおよびTiを含む)のようなハイドロカルマイトに似た組成を有する。また、これを焼成した複合酸化物は、例えばCa2-xxAlO3Cl(x、Mは、上記と同様)のような組成を有する。
[Composition of product]
When raw materials as shown in Table 1 are used, the product hydrotalcite-like compound is, for example, Ca 2-x M x Al (OH) 6 Cl · 2H 2 O (x is the same as in the general formula (1), M has a composition similar to hydrocalumite such as Mg, Fe, Mn, Si and Ti. In addition, the composite oxide obtained by firing this has a composition such as Ca 2−x M x AlO 3 Cl (x and M are the same as above).
 上記のように、Mは、Mgの他に、FeおよびMnを含む。また、ハイドロタルサイト様化合物または複合酸化物は、シリカとして分離されなかった微量のSiまたはTiを含む場合がある。このような特徴的な組成は、様々な反応に対する固体塩基触媒としての活性に影響を与える。例えば、エステル交換反応に対する高い活性が得られる。上記焼成工程によって得られる複合酸化物中に固溶したFeやMnなどの遷移金属種は、固体の塩基性を強める作用があると考えられる。 As described above, M contains Fe and Mn in addition to Mg. Further, the hydrotalcite-like compound or composite oxide may contain a trace amount of Si or Ti that has not been separated as silica. Such a characteristic composition affects the activity as a solid base catalyst for various reactions. For example, high activity for transesterification is obtained. It is considered that transition metal species such as Fe and Mn dissolved in the composite oxide obtained by the firing step have an action of enhancing the basicity of the solid.
 生成物の組成は、ほぼ鉄鋼スラグに由来するモル比でCa、MgおよびAlを含み、更に多くの場合はFeおよびMnを含む。よって、全金属元素に占めるFeの割合は0~3モル%(例えば0.1~3モル%)であり、全金属元素に占めるMnの割合は0~3モル%(例えば0.1~3モル%)である。 The composition of the product contains Ca, Mg and Al in a molar ratio almost derived from steel slag, and more often contains Fe and Mn. Therefore, the proportion of Fe in all metal elements is 0 to 3 mol% (for example, 0.1 to 3 mol%), and the proportion of Mn in all metal elements is 0 to 3 mol% (for example, 0.1 to 3 mol%). Mol%).
 生成物が、更にSiおよびTiを含む場合、全金属元素に占めるSiの割合は0~3モル%(例えば0.1~3モル%)であり、全金属元素に占めるTiの割合は0~3モル%(例えば0.1~3モル%)である。 When the product further contains Si and Ti, the ratio of Si in the total metal elements is 0 to 3 mol% (for example, 0.1 to 3 mol%), and the ratio of Ti in the total metal elements is 0 to 3 mol%. 3 mol% (for example, 0.1 to 3 mol%).
 なお、全金属元素に占めるMgの割合は5~20モル%であり、全金属元素に占めるAlの割合は10~40モル%である。
 ハイドロタルサイト様化合物および複合酸化物の全金属元素の残部は、Caおよび不可避不純物であり、通常、Caが最も多く含まれている。
The ratio of Mg in all metal elements is 5 to 20 mol%, and the ratio of Al in all metal elements is 10 to 40 mol%.
The balance of all metal elements of the hydrotalcite-like compound and the composite oxide is Ca and inevitable impurities, and usually contains the most Ca.
[生成物の性質]
 生成物のBET法で測定される比表面積は、ハイドロカルマイトよりも大きく、例えば20~50m2/gであり、細孔容積は、例えば0.1~0.3m3/gである。よって、様々な物質の吸着剤として有用である。
 なお、生成物の粒子の断面において元素マップをEPMAで測定すると、各元素が均一に粒子内に分布している様子を観測できる。
[Product properties]
The specific surface area of the product measured by the BET method is larger than that of hydrocalumite, for example, 20 to 50 m 2 / g, and the pore volume is, for example, 0.1 to 0.3 m 3 / g. Therefore, it is useful as an adsorbent for various substances.
When the element map is measured with EPMA in the cross section of the product particles, it can be observed that each element is uniformly distributed in the particles.
 上記のような方法で得られる本発明のハイドロタルサイト様化合物は、陰イオン吸着剤として有用であり、特にリン酸イオンの吸着剤として好適である。例えば赤潮が発生している汚染された海域に、本発明のハイドロタルサイト様化合物を含む吸着剤を散布すると、汚染物質であるリン酸イオンが吸着剤に吸着される。リン酸イオンは、第1リン酸イオン、第2リン酸イオンおよび第3リン酸イオンのいずれでも良い。ハイドロタルサイト様化合物は、層状の結晶構造を有し、層間にClイオンが含まれている。Clイオンは鉄鋼スラグを溶解させる際に用いた塩酸に由来する。海水中のリン酸イオンが層間に侵入し、Clイオンが層間から海水に放出される。Clイオンは元来海水中に多量に含まれている成分であり、海水に放出されても環境上の問題は全く生じない。 The hydrotalcite-like compound of the present invention obtained by the above method is useful as an anion adsorbent, and is particularly suitable as an adsorbent for phosphate ions. For example, when an adsorbent containing the hydrotalcite-like compound of the present invention is sprayed on a contaminated sea area where red tide is generated, phosphate ions, which are pollutants, are adsorbed by the adsorbent. The phosphate ion may be any of a first phosphate ion, a second phosphate ion, and a third phosphate ion. The hydrotalcite-like compound has a layered crystal structure and contains Cl ions between layers. Cl ions are derived from hydrochloric acid used to dissolve steel slag. Phosphate ions in seawater enter between layers, and Cl ions are released from the layers to seawater. Cl ions are components originally contained in a large amount in seawater, and no environmental problems occur even when released into seawater.
 また、上記のような方法で得られる本発明のハイドロタルサイト様化合物は、固体塩基触媒としても有用であり、例えば、クネフェナゲル(Knoevenagel)縮合反応、エステル交換反応、酸素を酸化剤とするアルキル芳香族またはアルキレン芳香族の酸化反応などに高い活性を示す。 In addition, the hydrotalcite-like compound of the present invention obtained by the above method is also useful as a solid base catalyst, for example, Knoevenagel condensation reaction, transesterification reaction, alkyl fragrance using oxygen as an oxidizing agent. High activity in oxidation reaction of aromatic or alkylene aromatic.
<クネフェナゲル縮合反応>
 クネフェナゲル縮合反応とは、活性メチレン化合物を、アルデヒドまたはケトンと縮合させて、アルケンを得る手法である。触媒として塩基が用いられる。本発明のハイドロタルサイト様化合物は、クネフェナゲル縮合反応に対して、既存の固体塩基触媒と同程度の高い触媒活性を有する。
 クネフェナゲル縮合反応の一例として、ベンズアルデヒドとシアノ酢酸エチルのクネフェナゲル縮合のモデル反応式を以下に示す。
<Kunefenagel condensation reaction>
Kunefenagel condensation reaction is a technique for obtaining an alkene by condensing an active methylene compound with an aldehyde or a ketone. A base is used as the catalyst. The hydrotalcite-like compound of the present invention has a catalytic activity as high as that of an existing solid base catalyst for the Kunefenagel condensation reaction.
As an example of Kunefenagel condensation reaction, a model reaction formula of Kunefenagel condensation of benzaldehyde and ethyl cyanoacetate is shown below.
Figure JPOXMLDOC01-appb-C000001
 
Figure JPOXMLDOC01-appb-C000001
 
<エステル交換反応>
 油脂とアルコール(特にメタノール)とのエステル交換反応で生成する脂肪酸メチルエステルは、軽油と似た燃料油特性を有することから、バイオ燃料(バイオディーゼル)として注目されている。なお、アルコールとしては、メタノールの他に、エタノール、プロパノールなども用いることができる。
<Transesterification>
Fatty acid methyl esters produced by transesterification of fats and alcohols (especially methanol) have attracted attention as biofuels (biodiesel) because they have fuel oil characteristics similar to light oil. In addition to methanol, ethanol, propanol, etc. can be used as the alcohol.
 エステル交換反応のモデル反応式を以下に示す。油脂を用いる反応(バイオディーゼルの製造)では、脂肪酸メチルエステルの他にグリセリンが生成する。油脂は、植物油でも動物油でもよいが、例えば大豆油、パーム油、とうもろこし油、菜種油等を用いることができる。中でも大豆油(リノール酸、オレイン酸、パルミチン酸、リノレン酸、ステアリン酸等を含む)は生産量が多く、入手が容易である。バイオディーゼルとなる脂肪酸メチルエステルをCH3O-CO-Rで表すとき、RはC16~C18の飽和または不飽和炭化水素基であることが好ましい。 A model reaction formula for the transesterification reaction is shown below. In the reaction using fats and oils (production of biodiesel), glycerin is generated in addition to the fatty acid methyl ester. The fats and oils may be vegetable oils or animal oils, and for example, soybean oil, palm oil, corn oil, rapeseed oil and the like can be used. Among them, soybean oil (including linoleic acid, oleic acid, palmitic acid, linolenic acid, stearic acid, etc.) has a large production amount and is easily available. When the fatty acid methyl ester serving as biodiesel is represented by CH 3 O—CO—R, R is preferably a C 16 to C 18 saturated or unsaturated hydrocarbon group.
Figure JPOXMLDOC01-appb-C000002
  
Figure JPOXMLDOC01-appb-C000002
  
 現在、バイオディーゼルの生産は、水酸化ナトリウムを触媒として用いる均一触媒法で行われているが、生成物と水酸化ナトリウムとの分離工程が煩雑であり、安価な生産方法であるとはいえない。また、酸化カルシウムを用いる不均一触媒法も提案されているが、酸化カルシウムを高価なヘリウムガス中で900℃程度の高温で熱処理する必要があり、低コスト化は進んでいない。また、不活性ガス中で熱処理した酸化カルシウムであっても、高活性を維持することが困難であり、例えば空気中に放置すると一日で活性が顕著に劣化する。 Currently, biodiesel production is performed by a homogeneous catalyst method using sodium hydroxide as a catalyst, but the separation process of the product and sodium hydroxide is complicated, and it cannot be said that it is an inexpensive production method. . A heterogeneous catalyst method using calcium oxide has also been proposed, but it is necessary to heat-treat calcium oxide in expensive helium gas at a high temperature of about 900 ° C., and cost reduction has not progressed. Moreover, even calcium oxide heat-treated in an inert gas is difficult to maintain high activity. For example, when it is left in the air, the activity is significantly deteriorated in one day.
 一方、本発明のハイドロタルサイト様化合物およびこれを焼成して得られる複合酸化物は、安価に製造できるにもかかわらず、上記のようなエステル交換反応に対して高い活性を有する。また、その活性は、酸化カルシウムよりも高く、空気中に一日放置した場合でも高活性を維持することができる。
 特に700℃以上(好ましくは約800℃)で焼成された複合酸化物は、極めて高活性である。よって、本発明のハイドロタルサイト様化合物または複合酸化物を用いることにより、安価で効率の高いバイオ燃料の製造プロセスを構築できる。このようなハイドロタルサイト様化合物または複合酸化物に特有の触媒特性には、カルシウム以外の金属成分の存在が大きく寄与しているものと考えられる。
On the other hand, the hydrotalcite-like compound of the present invention and the composite oxide obtained by firing the compound have high activity with respect to the transesterification as described above, although they can be produced at low cost. In addition, its activity is higher than that of calcium oxide, and high activity can be maintained even when left in the air for a day.
In particular, a composite oxide fired at 700 ° C. or higher (preferably about 800 ° C.) has extremely high activity. Therefore, by using the hydrotalcite-like compound or composite oxide of the present invention, an inexpensive and highly efficient biofuel production process can be constructed. It is considered that the presence of metal components other than calcium greatly contributes to the catalytic properties peculiar to such hydrotalcite-like compounds or composite oxides.
 なお、ハイドロカルマイトは、不活性ガス中または空気中で熱処理すると、エステル交換反応に対して比較的高い活性を示すが、活性を維持することが困難であり、空気中に放置すると一日で活性が顕著に劣化する。 Hydrocalumite exhibits a relatively high activity for transesterification when heat-treated in an inert gas or in air, but it is difficult to maintain the activity. The activity is significantly degraded.
<アルキル/アルキレン芳香族の酸化反応>
 酸素を酸化剤として用いる芳香族炭化水素の酸化反応は、クリーンな芳香族ケトンの合成法として有用である。本発明のハイドロタルサイト様化合物の一態様は、鉄鋼スラグの成分に由来するMnを結晶構造中に含んでいるため、Mnを活性金属種として上記のような酸化反応に対しても高い活性を有する。
 ジフェニルメタンの酸素による酸化反応のモデル反応式を以下に示す。
<Oxidation reaction of alkyl / alkylene aromatic>
The oxidation reaction of aromatic hydrocarbons using oxygen as an oxidizing agent is useful as a method for synthesizing clean aromatic ketones. Since one aspect of the hydrotalcite-like compound of the present invention contains Mn derived from the components of steel slag in the crystal structure, Mn is an active metal species and has high activity against the above oxidation reaction. Have.
The model reaction equation for the oxidation reaction of diphenylmethane with oxygen is shown below.
Figure JPOXMLDOC01-appb-C000003
 
Figure JPOXMLDOC01-appb-C000003
 
[ゼオライトの合成]
 本発明の製造方法では、ハイドロタルサイト様化合物の製造過程でシリカを含むゲルが生成する。このとき得られるシリカは高純度であり、ゼオライトの合成原料として適している。
 ゼオライトを合成する場合、まず、シリカを含むゲルにアルカリを添加し、ゲルを溶解して均一溶液とする。ゲルの状態によるが、アルカリは水溶液として用いることが好ましい。例えば、水酸化ナトリウム水溶液、水酸化カリウム水溶液、水酸化リチウム水溶液などを用いることができる。アルカリの量はシリカが完全に溶解する量であればよい。例えばゲルとアルカリ水溶液との混合物のpHを11~13に制御することが好ましい。
[Synthesis of zeolite]
In the production method of the present invention, a gel containing silica is produced during the production process of the hydrotalcite-like compound. The silica obtained at this time has high purity and is suitable as a raw material for synthesis of zeolite.
When synthesizing zeolite, first, alkali is added to a gel containing silica, and the gel is dissolved to obtain a uniform solution. Depending on the state of the gel, the alkali is preferably used as an aqueous solution. For example, a sodium hydroxide aqueous solution, a potassium hydroxide aqueous solution, a lithium hydroxide aqueous solution, or the like can be used. The amount of alkali may be an amount that completely dissolves silica. For example, the pH of the mixture of gel and aqueous alkali solution is preferably controlled to 11-13.
 ゲルを完全に溶解して均一溶液とした後、その溶液にアルミン酸ナトリウムを添加し、ゲル化を進行させる。アルミン酸ナトリウムの量は、生成させるゼオライトの組成に応じて適宜選択すればよい。ゲル化進行中の溶液の温度は、60~200℃、より汎用的なA型およびX型ゼオライトを得ようとする場合には80~120℃に維持することが好ましい。その後、生成物をろ過し、乾燥し、必要に応じて焼成すれば、所望のゼオライトを得ることができる。 After completely dissolving the gel to make a uniform solution, sodium aluminate is added to the solution to promote gelation. The amount of sodium aluminate may be appropriately selected according to the composition of the zeolite to be produced. The temperature of the solution during the gelation is preferably maintained at 60 to 200 ° C., and 80 to 120 ° C. when more general A-type and X-type zeolites are to be obtained. Thereafter, the product can be filtered, dried, and calcined as necessary to obtain the desired zeolite.
 次に、本発明を実施例に基づいて、より詳細に説明する。ただし、本発明は以下の実施例に限定されるものではない。 Next, the present invention will be described in more detail based on examples. However, the present invention is not limited to the following examples.
《実施例1》
 表2に示す組成を有する鉄鋼スラグ(アモルファス相からなる水砕スラグ)を原料に用いた。表2中の数値は重量%である。下記組成はICPによる元素分析の結果から計算により求めた。
Example 1
Steel slag (a granulated slag composed of an amorphous phase) having the composition shown in Table 2 was used as a raw material. The numerical values in Table 2 are% by weight. The following composition was calculated from the results of elemental analysis by ICP.
Figure JPOXMLDOC01-appb-T000002
その他:TiO2、イオウなど
Figure JPOXMLDOC01-appb-T000002
Other: TiO 2 , sulfur, etc.
 溶解を促進するために、上記の鉄鋼スラグを回転数650rpmのボールミルで10分間粉砕処理し、粒径45μm以下に分級した。
 粉砕された鉄鋼スラグ10gを、3Nの塩酸(和光純薬工業(株)製)200mLに溶解させ、溶液の温度を100℃に昇温し、2時間攪拌を続け、ケイ素成分だけをシリカとしてゲル化させた。得られたゲルをろ過し、含水シリカゲル3.6gとケイ素以外の金属成分を含むろ液とに分離した。得られたろ液の温度を65℃に維持し、これに2Nの水酸化ナトリウム水溶液を滴下し、ろ液のpHを11.5に調整し、攪拌しながら沈殿を生成させた。引き続き、その温度で、沈殿を18時間静置して熟成させた。得られた沈殿をろ過し、100℃で24時間乾燥させて、6.2gのサンプル1(Sample 1)を得た。
In order to promote dissolution, the above steel slag was pulverized for 10 minutes with a ball mill having a rotation speed of 650 rpm, and classified to a particle size of 45 μm or less.
10 g of pulverized steel slag is dissolved in 200 mL of 3N hydrochloric acid (manufactured by Wako Pure Chemical Industries, Ltd.), the temperature of the solution is raised to 100 ° C., and stirring is continued for 2 hours. Made it. The obtained gel was filtered and separated into 3.6 g of hydrous silica gel and a filtrate containing metal components other than silicon. The temperature of the obtained filtrate was maintained at 65 ° C., and a 2N aqueous sodium hydroxide solution was added dropwise thereto, the pH of the filtrate was adjusted to 11.5, and a precipitate was produced while stirring. Subsequently, the precipitate was left to age at that temperature for 18 hours. The obtained precipitate was filtered and dried at 100 ° C. for 24 hours to obtain 6.2 g of Sample 1 (Sample 1).
《実施例2~4》
 沈殿を生成させる際のろ液のpHを8.5(実施例2)、9.5(実施例3)または10.5(実施例4)に変更したこと以外、実施例1と同様にして、それぞれサンプル2、3および4を得た。
<< Examples 2 to 4 >>
Similar to Example 1 except that the pH of the filtrate when generating the precipitate was changed to 8.5 (Example 2), 9.5 (Example 3) or 10.5 (Example 4). Samples 2, 3 and 4 were obtained respectively.
《実施例5~6》
 沈殿を生成させる際のろ液の温度を30℃(実施例5)または65℃(実施例6)に変更したこと以外、実施例1と同様にして、それぞれサンプル5および6を得た。
<< Examples 5 to 6 >>
Samples 5 and 6 were obtained in the same manner as in Example 1, except that the temperature of the filtrate when generating the precipitate was changed to 30 ° C. (Example 5) or 65 ° C. (Example 6).
 実施例1で得られた含水シリカゲルの組成をEDXにより測定した。結果を表3に示す。表3中の数値は重量%である。含水シリカの純度は高く、92.2重量%であることが確かめられた。 The composition of the hydrous silica gel obtained in Example 1 was measured by EDX. The results are shown in Table 3. The numerical values in Table 3 are% by weight. The purity of the hydrous silica was high and was confirmed to be 92.2% by weight.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 この含水シリカ3.6gに、2Nの水酸化ナトリウム水溶液100mLおよびアルミン酸ナトリウム2.7gを加えて均一なゲルを得た。その後、得られたゲルをテトラフルオロエチレン製容器に充填して100℃で6時間静置した。得られた生成物をろ過し、洗浄後、乾燥することにより、ゼオライトを得た。 A uniform gel was obtained by adding 100 mL of a 2N aqueous sodium hydroxide solution and 2.7 g of sodium aluminate to 3.6 g of this hydrous silica. Thereafter, the obtained gel was filled in a tetrafluoroethylene container and allowed to stand at 100 ° C. for 6 hours. The obtained product was filtered, washed, and dried to obtain a zeolite.
[物性の評価]
 実施例1~4において、65℃で生成させたサンプル1~4のX線回折パターンと、同サンプル生成時のpHとの関係を図3に示す。なお、比較サンプルとして、ハイドロタルサイト(Mg3Al(OH)8Cl・2H2O:HT)およびハイドロカルマイト(Ca2Al(OH)6Cl・2H2O:HC)のX線回折パターンを同図に示す。
 pH:(a)8.5、(b)9.5、(c)10.5、(d)11.5、(e)ハイドロカルマイト(HC)、(f)ハイドロタルサイト(HT)
[Evaluation of physical properties]
In Examples 1 to 4, the relationship between the X-ray diffraction patterns of Samples 1 to 4 produced at 65 ° C. and the pH at the time of production of the samples is shown in FIG. As comparative samples, X-ray diffraction patterns of hydrotalcite (Mg 3 Al (OH) 8 Cl · 2H 2 O: HT) and hydrocalumite (Ca 2 Al (OH) 6 Cl · 2H 2 O: HC) Is shown in FIG.
pH: (a) 8.5, (b) 9.5, (c) 10.5, (d) 11.5, (e) hydrocalumite (HC), (f) hydrotalcite (HT)
 また、実施例1、5および6において、pH11.5で生成させたサンプル1、5および6のX線回折パターンと同サンプル生成時の温度との関係を図4に示す。 Further, in Examples 1, 5 and 6, FIG. 4 shows the relationship between the X-ray diffraction patterns of Samples 1, 5 and 6 produced at pH 11.5 and the temperature at which the samples were produced.
 各実施例のサンプルのX線回折パターンには、ハイドロタルサイト様化合物であるハイドロカルマイトと同様の回折ピークのみが認められた。ただし、pH8.5で合成したサンプル2ではピークが不鮮明であったことから、pHは9以上とすることが望ましいことを確認した。 In the X-ray diffraction pattern of the sample of each example, only the same diffraction peak as that of hydrocalumite which is a hydrotalcite-like compound was observed. However, since the peak of Sample 2 synthesized at pH 8.5 was unclear, it was confirmed that the pH is desirably 9 or more.
 なお、実施例1のサンプル1の元素分析をX線蛍光分析により行ったところ、下記組成を有することが確認された。
 サンプル1:Ca2.03Mg0.49Fe0.046Mn0.019Si0.025Ti0.026Al1.00(OH)7.15Cl1.01(CO30.11・2.05H2
 全金属元素に占めるFe、Mn、SiおよびTiの割合を表4に示す。表4中の数値はモル%である。
In addition, when the elemental analysis of the sample 1 of Example 1 was performed by the X ray fluorescence analysis, it was confirmed that it has the following composition.
Sample 1: Ca 2.03 Mg 0.49 Fe 0.046 Mn 0.019 Si 0.025 Ti 0.026 Al 1.00 (OH) 7.15 Cl 1.01 (CO 3 ) 0.11 · 2.05H 2 O
Table 4 shows the proportions of Fe, Mn, Si and Ti in the total metal elements. The numerical values in Table 4 are mol%.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 含水シリカから合成されたゼオライト(synthesized zeolite)のX線回折パターンを図5に示す。同図には、シリカ(acid-leached slag)およびフォージャサイト型ゼオライト(standard FAU-zeolite)の標準試料のパターンも示す。 FIG. 5 shows an X-ray diffraction pattern of a zeolite synthesized from hydrous silica. The figure also shows the pattern of standard samples of silica (acid-leached slag) and faujasite type zeolite (standard FAU-zeolite).
 図5より、得られたゼオライトはカチオンとしてNaを含む単一相のフォージャサイト型ゼオライトであることが確認できた。窒素吸着測定の結果からBET法により見積もったところ、ゼオライトの細孔構造に由来する比表面積は770m2/g、平均細孔径は0.7nmであることが確認された。 From FIG. 5, it was confirmed that the obtained zeolite was a single-phase faujasite type zeolite containing Na as a cation. When estimated by the BET method from the results of nitrogen adsorption measurement, it was confirmed that the specific surface area derived from the pore structure of the zeolite was 770 m 2 / g and the average pore diameter was 0.7 nm.
<リン酸イオン吸着実験>
 リン酸水素二ナトリウムを純水に溶解させて、濃度40ppmのリン酸イオン水溶液200mLを調製した。この水溶液に実施例1のサンプル1を50mg投入し、20℃で3時間撹拌した。撹拌後、溶液中のリン酸イオン濃度をUV-vis装置で測定し、リン酸イオンの吸着能力を調べた。また、上記比較サンプルおよび原料の鉄鋼スラグ(Slag)を用いて、同様の測定を行った。結果を図6に示す。
 Mg-Al-Clハイドロタルサイト(HT):Mg3Al(OH)8Cl・2H2
 Ca-Al-Clハイドロカルマイト(HC):Ca2Al(OH)6Cl・2H2
<Phosphate ion adsorption experiment>
Disodium hydrogen phosphate was dissolved in pure water to prepare 200 mL of a phosphate ion aqueous solution having a concentration of 40 ppm. 50 mg of the sample 1 of Example 1 was put into this aqueous solution and stirred at 20 ° C. for 3 hours. After stirring, the phosphate ion concentration in the solution was measured with a UV-vis apparatus, and the phosphate ion adsorption ability was examined. Moreover, the same measurement was performed using the said comparative sample and the raw material steel slag (Slag). The results are shown in FIG.
Mg-Al-Cl hydrotalcite (HT): Mg 3 Al (OH) 8 Cl · 2H 2 O
Ca—Al—Cl hydrocalumite (HC): Ca 2 Al (OH) 6 Cl · 2H 2 O
 図6に示すように、サンプル1はハイドロカルマイトと同等の高いリン酸イオン吸着能力を有し、その吸着能力は陰イオン吸着剤として汎用されているハイドロタルサイトよりも優れていることが確認できた。 As shown in FIG. 6, it is confirmed that sample 1 has a high phosphate ion adsorption capacity equivalent to that of hydrocalumite, and the adsorption capacity is superior to hydrotalcite which is widely used as an anion adsorbent. did it.
<クネフェナゲル縮合反応実験>
 実施例1のサンプル1を固体塩基触媒として用いて、ベンズアルデヒドとシアノ酢酸エチルのクネフェナゲル縮合反応を行った。具体的には、10mLのエタノール中に、ベンズアルデヒド0.217g(2mmol)とシアノ酢酸エチル0.226g(2mmol)、ならびにサンプル1を50mg添加し、液温60℃で8時間攪拌し、反応を進行させた。また、比較サンプル(Mg6Al2(OH)16CO3・4H2O(HT)、Ca2Al(OH)6Cl・2H2O(HC))、原料の鉄鋼スラグ(Slag)および酸化カルシウム(CaO)を用いて、同様の反応を行った。結果を示す表5および図7からわかるように、サンプル1は既存の固体塩基触媒と同等の活性を示すことが確認された。
<Kunefenagel condensation experiment>
Using the sample 1 of Example 1 as a solid base catalyst, a Kunefenagel condensation reaction between benzaldehyde and ethyl cyanoacetate was performed. Specifically, 0.217 g (2 mmol) of benzaldehyde, 0.226 g (2 mmol) of ethyl cyanoacetate and 50 mg of sample 1 were added to 10 mL of ethanol and stirred at a liquid temperature of 60 ° C. for 8 hours to proceed the reaction. I let you. Comparative samples (Mg 6 Al 2 (OH) 16 CO 3 .4H 2 O (HT), Ca 2 Al (OH) 6 Cl.2H 2 O (HC)), raw steel slag (Slag) and calcium oxide A similar reaction was performed using (CaO). As can be seen from Table 5 showing the results and FIG. 7, it was confirmed that Sample 1 showed the same activity as the existing solid base catalyst.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
<エステル交換反応実験>
 実施例1のサンプル1およびその焼成サンプル(sample(CAL)、処理:窒素中450℃)を固体塩基触媒として用いて、酪酸エチルとメタノール(酢酸エチル:メタノール=1:4(モル比))のエステル交換反応を行った。具体的には、2mLのメタノールと酪酸エチル12.4mmolの混合物に、サンプル1またはその焼成サンプルを20mg添加し、液温60℃で12時間攪拌し、反応を進行させた。その結果、理論転化率は100%であった。また、酸化カルシウム(処理:窒素中450℃)、焼成したハイドロタルサイト(HC(CAL)、処理:窒素中450℃)およびNaOHの均一触媒を用いて、同様の反応を行った。結果を図8に示す。
<Transesterification experiment>
Using sample 1 of Example 1 and its calcined sample (sample (CAL), treatment: 450 ° C. in nitrogen) as a solid base catalyst, ethyl butyrate and methanol (ethyl acetate: methanol = 1: 4 (molar ratio)) A transesterification reaction was performed. Specifically, 20 mg of Sample 1 or its calcined sample was added to a mixture of 2 mL of methanol and 12.4 mmol of ethyl butyrate, and stirred at a liquid temperature of 60 ° C. for 12 hours to proceed the reaction. As a result, the theoretical conversion rate was 100%. The same reaction was carried out using a homogeneous catalyst of calcium oxide (treatment: 450 ° C. in nitrogen), calcined hydrotalcite (HC (CAL), treatment: 450 ° C. in nitrogen) and NaOH. The results are shown in FIG.
<バイオディーゼルの製造>
 実施例1のサンプル1を、空気中で、800℃で6時間焼成して得られた固体塩基触媒(Sample(CAL800))を用いて、大豆油210gとメタノール120mLの混合液でエステル交換反応を行った。具体的には、上記混合液10gに、100mg、300mgまたは500mgの固体塩基触媒を添加し、液温60℃で6時間攪拌し、反応を進行させて脂肪酸メチルエステル(FAME)を製造した。また、空気中で800℃で6時間焼成したハイドロタルサイト(HT(CAL800))、ハイドロカルマイト(HC(CAL800))および原料の鉄鋼スラグ(Slag(CAL800))、更に、炭酸カルシウムを、空気中で、900℃で焼成して得られた酸化カルシウム(CaO(CAL900))ならびにNaOHの均一触媒を用いて、同様の反応を行った。結果を表6および図9に示す。
<Manufacture of biodiesel>
Using a solid base catalyst (Sample (CAL800)) obtained by calcining Sample 1 of Example 1 in air at 800 ° C. for 6 hours, a transesterification reaction was performed with a mixture of soybean oil 210 g and methanol 120 mL. went. Specifically, 100 mg, 300 mg, or 500 mg of a solid base catalyst was added to 10 g of the above mixed solution, and the mixture was stirred at a liquid temperature of 60 ° C. for 6 hours to proceed the reaction to produce fatty acid methyl ester (FAME). Also, hydrotalcite (HT (CAL800)), hydrocalumite (HC (CAL800)) and raw steel slag (Slag (CAL800)) calcined at 800 ° C. for 6 hours in air, calcium carbonate, A similar reaction was carried out using calcium oxide (CaO (CAL900)) obtained by baking at 900 ° C. and a homogeneous catalyst of NaOH. The results are shown in Table 6 and FIG.
 図9に示すように、不均一触媒を用いた系の中では、サンプル1から得られた固体塩基触媒を用いた場合に最も高い活性を有することを確認できた。一方、Mgを主成分とするハイドロタルサイトや鉄鋼スラグの焼成物は、触媒活性を示さなかった。 As shown in FIG. 9, in the system using the heterogeneous catalyst, it was confirmed that the highest activity was obtained when the solid base catalyst obtained from Sample 1 was used. On the other hand, the calcined product of hydrotalcite and steel slag containing Mg as a main component did not show catalytic activity.
 次に、空気中で一日放置した後のSample(CAL800)およびHT(CAL800)を用いて、上記と同様の反応を行ったところ、Sample(CAL800)を用いた場合の脂肪酸メチルエステルの収率は92%であるのに対し、HC(CAL800) を用いた場合の収率は3.1%に低下した。このことから、サンプル1から得られた固体塩基触媒が極めて劣化しにくいことを確認できた。 Next, using Sample (CAL800) and HT (CAL800) after standing for one day in the air, the same reaction as described above was performed, and the yield of fatty acid methyl ester when using Sample (CAL800) Was 92%, whereas the yield when using HC (CAL800) was reduced to 3.1%. From this, it was confirmed that the solid base catalyst obtained from Sample 1 was extremely difficult to deteriorate.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
<アルキレン芳香族の酸化反応実験>
 実施例1のサンプル1を固体塩基触媒として用いて、酸素を酸化剤とするジフェニルメタンの酸化反応を行った。反応は1気圧の酸素流通下、160℃で12時間かけて行った。その結果、転化率62.6%、選択率87%を示した。
<Oxidation experiment of alkylene aromatic>
Using Sample 1 of Example 1 as a solid base catalyst, an oxidation reaction of diphenylmethane using oxygen as an oxidizing agent was performed. The reaction was carried out at 160 ° C. for 12 hours under an oxygen flow of 1 atm. As a result, the conversion was 62.6% and the selectivity was 87%.
 本発明により、大量に廃棄される鉄鋼スラグを、有用なハイドロタルサイト様化合物、固体塩基触媒、ケイ素化合物などへと転換可能である。また、原料として更なる金属成分を鉄鋼スラグに添加する必要がなく、安価で簡便なプロセスによりハイドロタルサイト様化合物、固体塩基触媒、ケイ素化合物などを製造でき、大規模な工業的生産も可能である。また、ハイドロタルサイト様化合物の製造過程で生成するシリカは高い純度を有し、高純度シリコンやゼオライトの原料として好適である。本発明のハイドロタルサイト様化合物およびこれを焼成して得られる複合酸化物は、陰イオン吸着剤または固体塩基触媒として高い汎用性がある。 According to the present invention, steel slag discarded in large quantities can be converted into useful hydrotalcite-like compounds, solid base catalysts, silicon compounds, and the like. In addition, it is not necessary to add further metal components to the steel slag as raw materials, and hydrotalcite-like compounds, solid base catalysts, silicon compounds, etc. can be manufactured by an inexpensive and simple process, enabling large-scale industrial production. is there. Silica produced in the process of producing a hydrotalcite-like compound has a high purity and is suitable as a raw material for high-purity silicon and zeolite. The hydrotalcite-like compound of the present invention and the composite oxide obtained by firing the compound have high versatility as an anion adsorbent or a solid base catalyst.
 本発明を現時点での好ましい実施態様に関して説明したが、そのような開示を限定的に解釈してはならない。種々の変形および改変は、上記開示を読むことによって本発明に属する技術分野における当業者には間違いなく明らかになるであろう。したがって、添付の請求の範囲は、本発明の真の精神および範囲から逸脱することなく、すべての変形および改変を包含する、と解釈されるべきものである。 Although the present invention has been described in terms of the presently preferred embodiments, such disclosure should not be construed as limiting. Various changes and modifications will no doubt become apparent to those skilled in the art to which the present invention pertains after reading the above disclosure. Accordingly, the appended claims should be construed to include all variations and modifications without departing from the true spirit and scope of this invention.

Claims (14)

  1.  (i)鉄鋼スラグに酸を添加して前記鉄鋼スラグを溶解させ、溶液を得る工程、
     (ii)得られた前記溶液中にシリカを含むゲルを生成させる工程、
     (iii)前記ゲルを含む溶液を、ゲルと液に分離する工程、および
     (iv)得られた前記液にアルカリを添加し、ハイドロタルサイト様化合物を生成させる工程、を有するハイドロタルサイト様化合物の製造法。
    (I) a step of adding an acid to the steel slag to dissolve the steel slag and obtaining a solution;
    (Ii) producing a gel containing silica in the obtained solution;
    (Iii) a step of separating the solution containing the gel into a gel and a solution, and (iv) a step of adding an alkali to the obtained solution to form a hydrotalcite-like compound. Manufacturing method.
  2.  前記工程(ii)において、前記溶液を60℃~150℃に加熱する、請求項1記載の製造法。 The method according to claim 1, wherein in the step (ii), the solution is heated to 60 ° C to 150 ° C.
  3.  前記工程(iv)において、アルカリを添加した前記液のpHを9~13に調整し、かつ液温を0℃~100℃にする、請求項1または2記載の製造法。 The production method according to claim 1 or 2, wherein, in the step (iv), the pH of the liquid added with alkali is adjusted to 9 to 13 and the liquid temperature is set to 0 ° C to 100 ° C.
  4.  更に、(v)前記ハイドロタルサイト様化合物を焼成し、複合酸化物に変化させる工程を有する、請求項1~3のいずれか1項に記載の製造法。 The method according to any one of claims 1 to 3, further comprising (v) a step of firing the hydrotalcite-like compound to convert it into a composite oxide.
  5.  前記焼成を、空気中で700℃~900℃で行い、前記複合酸化物に酸化カルシウムを生成させる、請求項4記載の製造法。 The method according to claim 4, wherein the firing is performed in air at 700 ° C to 900 ° C to generate calcium oxide in the composite oxide.
  6.  一般式:[Ca2+a-xxAl(OH)6+b]Ay・mH2Oで表され、ただし、Mは、Mg、Fe、Mn、Si、TiおよびCrよりなる群から選択される少なくとも1種であり、Aは、ハロゲンイオン、無機酸アニオンおよび有機酸アニオンよりなる群から選択される少なくとも1種であり、-1≦a≦1、0≦b≦1.5、0.3≦x≦1、0.5≦y≦1.5、1≦m≦3を満たす、ハイドロタルサイト様化合物。 General formula: [Ca 2 + ax M x Al (OH) 6 + b ] A y · mH 2 O, where M is selected from the group consisting of Mg, Fe, Mn, Si, Ti and Cr A is at least one selected from the group consisting of a halogen ion, an inorganic acid anion, and an organic acid anion, and −1 ≦ a ≦ 1, 0 ≦ b ≦ 1.5,. A hydrotalcite-like compound satisfying 3 ≦ x ≦ 1, 0.5 ≦ y ≦ 1.5, and 1 ≦ m ≦ 3.
  7.  全金属元素に占めるFeの含有割合が0.1~3モル%であり、
     全金属元素に占めるMnの含有割合が0.1~3モル%である、請求項6記載のハイドロタルサイト様化合物。
    Fe content in the total metal elements is 0.1 to 3 mol%,
    The hydrotalcite-like compound according to claim 6, wherein the content ratio of Mn in all metal elements is 0.1 to 3 mol%.
  8.  全金属元素に占めるSiの含有割合が0.1~3モル%であり、
     全金属元素に占めるTiの含有割合が0.1~3モル%である、請求項7記載のハイドロタルサイト様化合物。
    The content ratio of Si in all metal elements is 0.1 to 3 mol%,
    The hydrotalcite-like compound according to claim 7, wherein the content ratio of Ti in all metal elements is 0.1 to 3 mol%.
  9.  請求項6~8のいずれか1項に記載のハイドロタルサイト様化合物を焼成して得られた複合酸化物。 A composite oxide obtained by firing the hydrotalcite-like compound according to any one of claims 6 to 8.
  10.  前記焼成を、空気中で700℃~900℃で行い、前記複合酸化物に酸化カルシウムを生成させた、請求項9記載の複合酸化物。 10. The composite oxide according to claim 9, wherein the firing is performed in air at 700 ° C. to 900 ° C. to generate calcium oxide in the composite oxide.
  11.  請求項6~8のいずれか1項に記載のハイドロタルサイト様化合物を含む陰イオン吸着剤または固体塩基触媒。 An anion adsorbent or a solid base catalyst comprising the hydrotalcite-like compound according to any one of claims 6 to 8.
  12.  請求項9または10記載の複合酸化物を含む固体塩基触媒。 A solid base catalyst comprising the composite oxide according to claim 9 or 10.
  13.  請求項11記載の陰イオン吸着剤を、リン酸イオンを含む汚水と混合し、前記リン酸イオンを前記吸着剤に吸着させる、水浄化方法。 A water purification method, wherein the anion adsorbent according to claim 11 is mixed with sewage containing phosphate ions, and the phosphate ions are adsorbed on the adsorbent.
  14.  請求項12記載の固体塩基触媒の存在下で、油脂とアルコールのエステル交換反応を行い、バイオ燃料を生成させる、燃料製造法。 A fuel production method in which a biofuel is produced by performing a transesterification reaction between an oil and an alcohol in the presence of the solid base catalyst according to claim 12.
PCT/JP2011/000707 2010-03-03 2011-02-09 Method for producing hydrotalcite-like compound, hydrotalcite-like compound, complex oxide, anion adsorbent, and solid base catalyst WO2011108195A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-046878 2010-03-03
JP2010046878 2010-03-03

Publications (1)

Publication Number Publication Date
WO2011108195A1 true WO2011108195A1 (en) 2011-09-09

Family

ID=44541866

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/000707 WO2011108195A1 (en) 2010-03-03 2011-02-09 Method for producing hydrotalcite-like compound, hydrotalcite-like compound, complex oxide, anion adsorbent, and solid base catalyst

Country Status (1)

Country Link
WO (1) WO2011108195A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015083840A1 (en) 2013-12-03 2015-06-11 協和化学工業株式会社 Magnetic hydrotalcite composite and process for manufacturing same
CN104772153A (en) * 2014-01-12 2015-07-15 中国科学院过程工程研究所 Preparation method and applications of steel slag-based metal oxide solid base catalyst
CN106732469A (en) * 2017-02-22 2017-05-31 中山市环保产业有限公司 A kind of preparation method of magnetic absorption dephosphorization agent and its renovation process of product
CN110201629A (en) * 2019-07-11 2019-09-06 东华理工大学 Ternary hydrotalcite adsorbent and its preparation method and application
CN112062203A (en) * 2020-09-19 2020-12-11 邵阳天堂助剂化工有限公司 Method for removing humic acid in water by adsorption of roasted Ca-Al hydrotalcite
CN112456638A (en) * 2020-09-29 2021-03-09 江苏环保产业技术研究院股份公司 Modified steel slag filler and preparation method and application thereof
CN114887582A (en) * 2022-05-12 2022-08-12 重庆文理学院 Method for recovering phosphite ions in wastewater

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003507295A (en) * 1999-08-11 2003-02-25 アクゾ ノーベル ナムローゼ フェンノートシャップ Polytype Mg-Al hydrotalcite
JP2004167408A (en) * 2002-11-21 2004-06-17 Aisin Takaoka Ltd Hydrotalcite-like compound for removing phosphoric acid ion and method for producing the same
JP2009263221A (en) * 2008-03-31 2009-11-12 Toda Kogyo Corp Particulate powder of hydrotalcite type compound, chlorinated-resin stabilizer using the particulate powder of hydrotalcite type compound, and chlorinated-resin composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003507295A (en) * 1999-08-11 2003-02-25 アクゾ ノーベル ナムローゼ フェンノートシャップ Polytype Mg-Al hydrotalcite
JP2004167408A (en) * 2002-11-21 2004-06-17 Aisin Takaoka Ltd Hydrotalcite-like compound for removing phosphoric acid ion and method for producing the same
JP2009263221A (en) * 2008-03-31 2009-11-12 Toda Kogyo Corp Particulate powder of hydrotalcite type compound, chlorinated-resin stabilizer using the particulate powder of hydrotalcite type compound, and chlorinated-resin composition

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
AKIKO ITO ET AL.: "Tekko Slag kara no In-Ion Kyuchakuzai no Gosei to sono Kyuchaku Tokusei", SHIZAI SOZAI, 2005, pages 81 - 82 *
JANOS HALASZ ET AL.: "Degradation of pure and waste polyolefins and PVC in the presence of modified porous catalysts", STUDIES IN SURFACE SCIENCE AND CATALYSIS, vol. 174, 2008, pages 1021 - 1026 *
LIJING GAO ET AL.: "Biodiesel synthesis catalyzed by the KF/Ca-Mg-Al hydrotalcite base catalyst", ENERGY FUELS, vol. 24, 21 January 2010 (2010-01-21), pages 646 - 651 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015083840A1 (en) 2013-12-03 2015-06-11 協和化学工業株式会社 Magnetic hydrotalcite composite and process for manufacturing same
KR20160094363A (en) 2013-12-03 2016-08-09 교와 가가꾸고교 가부시키가이샤 Magnetic hydrotalcite composite and process for manufacturing same
US10037839B2 (en) 2013-12-03 2018-07-31 Kyowa Chemical Industry Co., Ltd. Magnetic hydrotalcite composite and production method thereof
CN104772153A (en) * 2014-01-12 2015-07-15 中国科学院过程工程研究所 Preparation method and applications of steel slag-based metal oxide solid base catalyst
CN106732469A (en) * 2017-02-22 2017-05-31 中山市环保产业有限公司 A kind of preparation method of magnetic absorption dephosphorization agent and its renovation process of product
CN110201629A (en) * 2019-07-11 2019-09-06 东华理工大学 Ternary hydrotalcite adsorbent and its preparation method and application
CN112062203A (en) * 2020-09-19 2020-12-11 邵阳天堂助剂化工有限公司 Method for removing humic acid in water by adsorption of roasted Ca-Al hydrotalcite
CN112456638A (en) * 2020-09-29 2021-03-09 江苏环保产业技术研究院股份公司 Modified steel slag filler and preparation method and application thereof
CN114887582A (en) * 2022-05-12 2022-08-12 重庆文理学院 Method for recovering phosphite ions in wastewater
CN114887582B (en) * 2022-05-12 2023-08-15 重庆文理学院 Method for recycling phosphite radical ions in wastewater

Similar Documents

Publication Publication Date Title
WO2011108195A1 (en) Method for producing hydrotalcite-like compound, hydrotalcite-like compound, complex oxide, anion adsorbent, and solid base catalyst
Abukhadra et al. K+ trapped kaolinite (Kaol/K+) as low cost and eco-friendly basic heterogeneous catalyst in the transesterification of commercial waste cooking oil into biodiesel
Yan et al. Preparation, characterization and photocatalytic activity of Si-doped and rare earth-doped TiO2 from mesoporous precursors
Chen et al. Fe3O4/ZnMg (Al) O magnetic nanoparticles for efficient biodiesel production
Das et al. A green and facile production of catalysts from waste red mud for the one-pot synthesis of glycerol carbonate from glycerol
Chang et al. Fe 2 O 3@ SiTi core–shell catalyst for the selective catalytic reduction of NO x with NH 3: activity improvement and HCl tolerance
WO2013108424A1 (en) Exhaust gas purifying catalyst and method for producing same
WO2019042158A1 (en) Calcium oxide-based high temperature co2 adsorbent, and preparation method therefor
Wong et al. Effect of calcination temperatures of CaO/Nb2O5 mixed oxides catalysts on biodiesel production
Chen et al. Production of novel biodiesel from transesterification over KF-modified Ca–Al hydrotalcite catalyst
CN101983765B (en) Catalyst for preparing methyl alcohol by catalytic hydrogenation on assistant modified carbon dioxide and preparation method thereof
JP5459322B2 (en) Redox material for thermochemical water splitting and hydrogen production method
WO2013187323A1 (en) Gold cluster catalyst and method for producing same
Li et al. Direct oxidation esterification of methacrolein with methanol: Oxygen vacancy promotion of Zr‐doped Au/CeO2 nanorods
TWI589351B (en) Carbon adsorbent, the manufacturing method thereof, and the using method thereof
CN110743562B (en) Ni-alpha-MnO for catalyzing toluene combustion 2 Method for synthesizing catalyst
CN106540674B (en) A kind of metal-doped zirconia catalyst and preparation method thereof with catalyzing and synthesizing the application in gas catalyzed conversion
JP5755677B2 (en) Method for producing ZSM-5
Yu et al. Effect of ionic radius and valence state of alkali and alkaline earth metals on promoting the catalytic performance of La2O3 catalysts for glycerol carbonate production
CN113600198A (en) Biomass tar reforming catalyst and preparation method thereof
CN114832770B (en) Method for preparing calcium-based circulating carbon catching material by utilizing steel slag
CN115555030A (en) Preparation method and application of porous layered high-entropy oxide with hindered Lewis pairs
JP5258617B2 (en) Method for producing copper catalyst
CN109092314A (en) A kind of LaFe1-xCuxO3Perovskite material and preparation method
CN110586178A (en) SAPO-34 molecular sieve and Cu/SAPO-34 denitration catalyst, preparation method and application thereof, and denitration method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11750309

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11750309

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP