JP4771825B2 - Circulating water exchanging method and circulating water exchanging apparatus in water circulation type compressor - Google Patents
Circulating water exchanging method and circulating water exchanging apparatus in water circulation type compressor Download PDFInfo
- Publication number
- JP4771825B2 JP4771825B2 JP2006041298A JP2006041298A JP4771825B2 JP 4771825 B2 JP4771825 B2 JP 4771825B2 JP 2006041298 A JP2006041298 A JP 2006041298A JP 2006041298 A JP2006041298 A JP 2006041298A JP 4771825 B2 JP4771825 B2 JP 4771825B2
- Authority
- JP
- Japan
- Prior art keywords
- water
- circulating water
- electrical conductivity
- water supply
- reference value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
- Control Of Positive-Displacement Pumps (AREA)
Description
本発明は水循環式コンプレッサの循環水交換方法及び循環水交換装置に関し,より詳細には,純水器によって不純物が除去された水を循環水として使用する水循環式コンプレッサにおいて,循環水の水質を維持するための循環水交換方法及び装置に関する。 The present invention relates to a circulating water exchanging method and a circulating water exchanging apparatus for a water circulating compressor, and more particularly, to maintain the quality of circulating water in a water circulating compressor that uses water from which impurities have been removed by a deionizer as circulating water. It is related with the circulating water exchange method and apparatus for performing.
油分を含む圧縮空気の供給を嫌う空気作業機や,油分を含む圧縮空気を使用できない例えば食品製造等の分野において使用する圧縮空気を得るために,一般に冷却,密封,潤滑のために使用される油に代えて,空気と共に水を吸い込んで吸入空気の圧縮を行う水循環式コンプレッサが存在する。 It is generally used for cooling, sealing, and lubrication to obtain compressed air that is used in fields such as food manufacturing machines that cannot use compressed air containing oil, or that cannot use compressed air containing oil. There is a water circulation type compressor that compresses intake air by sucking water together with air instead of oil.
この水循環式コンプレッサにおいて,空気と共に圧縮機本体内に供給された水は,圧縮空気と共に吐出されてセパレータレシーバタンク内に導入され,該セパレータレシーバタンク内で圧縮空気と水とに分離される。そして,セパレータレシーバタンク内で圧縮空気と分離された循環水は,ラジエータやフィルタなどを経て再度圧縮機本体に供給されて,圧縮作業の際の冷却,密封等に使用される。 In this water circulation compressor, the water supplied into the compressor body together with the air is discharged together with the compressed air, introduced into the separator receiver tank, and separated into compressed air and water in the separator receiver tank. The circulating water separated from the compressed air in the separator receiver tank is supplied again to the compressor body through a radiator, a filter, etc., and used for cooling, sealing, etc. during the compression work.
以上のように,水循環式コンプレッサでは,圧縮機本体,セパレータレシーバタンク,ラジエータ及びこれらを連通する管路等により形成された循環水の循環系が形成されていると共に,この循環水の循環系には,外部給水源に連通された給水回路が連結され,この給水回路に設けた開閉弁の開閉により循環水の循環系内に給水を行うことができるように構成されている。 As described above, in the water circulation type compressor, a circulating water circulation system formed by the compressor body, the separator receiver tank, the radiator and the pipes connecting these is formed. Is configured such that a water supply circuit connected to an external water supply source is connected, and water can be supplied into the circulation system of the circulating water by opening and closing an on-off valve provided in the water supply circuit.
ところで,このような給水に使用する外部給水源としては,一般に水道水(上水道)が使用されるが,このような外部給水源より導入された水には金属イオン等の不純物が含まれている。そのため,このような不純物を含んだままの水を循環水の循環系内に導入すると,圧縮作業の際の熱等によって循環水が蒸発して減少した際に,循環水中の金属イオンが濃縮され,濃縮された金属イオンが結晶化して析出し,配管詰まりの原因となる等の問題が発生する。 By the way, as an external water supply source used for such water supply, tap water (water supply) is generally used, but water introduced from such an external water supply source contains impurities such as metal ions. . For this reason, when water containing such impurities is introduced into the circulation system of the circulating water, the metal ions in the circulating water are concentrated when the circulating water evaporates and decreases due to heat during compression work. The concentrated metal ions crystallize and precipitate, causing problems such as clogging of piping.
そのため,このような金属イオンの析出等による弊害を是正するために,水循環式コンプレッサに純水器を設け,外部給水源からの供給水中に含まれる不純物を予めこの純水器によって除去して純水に近付けた後,前記循環系に導入することが行われている。 Therefore, in order to correct such harmful effects caused by the deposition of metal ions, a water circulation compressor is provided with a deionizer, and impurities contained in the water supplied from the external water supply source are removed in advance by this deionizer. After approaching water, it is introduced into the circulatory system.
しかし,このようにして純水器を通過させた純水を循環水として導入したとしても,コンプレッサの配管等に使用している金属材料がイオンとなって循環水に溶解する等して,循環水中の金属イオン等の不純物が増加して,循環水の水質が悪化する。 However, even if the pure water that has passed through the deionizer is introduced as circulating water in this way, the metal material used in the compressor piping, etc., becomes ions and dissolves in the circulating water. Impurities such as metal ions in the water increase and the quality of the circulating water deteriorates.
そのため,コンプレッサの累積運転時間が所定時間に達する毎に,循環水を交換して循環水の水質を改善する方法が提案されている。 Therefore, a method has been proposed in which the quality of the circulating water is improved by replacing the circulating water every time the cumulative operation time of the compressor reaches a predetermined time.
また,別の方法としては,前記循環水の循環系にバイパス回路を設け,循環系内の循環水を純水器に導入して不純物を除去した後,再度循環系に戻すことにより,循環水の水質を維持することが提案されている(特許文献1参照)。 Another method is to provide a bypass circuit in the circulating water circulation system, introduce the circulating water in the circulation system into the deionizer, remove impurities, and then return to the circulation system again. It has been proposed to maintain the water quality (see Patent Document 1).
この発明の先行技術文献情報としては次のものがある。
水循環式コンプレッサにおいて,循環水の水質悪化は,前述したように配管等に使用されている金属材料が循環水中に溶出することに起因するだけでなく,吸入する外気によっても悪化する。 In the water circulation type compressor, the deterioration of the quality of the circulating water is not only caused by the elution of the metal material used in the piping and the like into the circulating water as described above, but also by the outside air to be sucked.
すなわち,吸入した外気に不純物が含まれていると,この不純物が圧縮等の際に循環水中に溶け込み,この作業を繰り返すことにより,循環水中に不純物が徐々に蓄積されて,水質が悪化する。 That is, if impurities are contained in the inhaled outside air, these impurities dissolve in the circulating water during compression and the like, and by repeating this operation, the impurities are gradually accumulated in the circulating water and the water quality deteriorates.
そして,このような水質の悪化は,コンプレッサが吸入する外気の状態に影響され,吸入する外気が不純物を多く含むものである場合には循環水の水質低下は比較的短時間で起こり,一方,吸入する外気に含まれる不純物が少なければ,循環水の水質は,比較的長時間低下しない。 Such deterioration of the water quality is affected by the state of the outside air sucked by the compressor, and when the outside air sucked contains a large amount of impurities, the quality of the circulating water is lowered in a relatively short time, while being sucked. If there are few impurities in the outside air, the quality of the circulating water will not decrease for a relatively long time.
このように,循環水の水質悪化の進行が,コンプレッサの累積運転時間以外の要因によって変化するものでありながら,コンプレッサの累積運転時間により一律に循環水の交換を行う前記従来技術の方法によれば,循環水の水質が既に交換が必要な程度に悪化していたとしても,コンプレッサの累積運転時間が設定時間に満たないときには交換されずにそのまま使用されることになり,前述のような配管詰まり等の弊害が生じる原因となる。 As described above, the progress of the deterioration of the quality of the circulating water changes depending on factors other than the cumulative operation time of the compressor, but the method of the prior art in which the circulating water is uniformly replaced by the cumulative operation time of the compressor. For example, even if the quality of the circulating water has already deteriorated to the extent that it needs to be replaced, it will be used without being replaced when the cumulative operating time of the compressor is less than the set time. This may cause problems such as clogging.
また逆に,循環水の水質が低下していないにも拘わらず,設定された累積運転時間の経過により循環水の交換が行われれば,循環水が過剰に交換されることとなり,外部給水源からの供給水を処理するための純水器の使用頻度も増し,比較的高価な純水器,又は純水器のイオン交換樹脂カートリッジの交換頻度も高くなり経済的でない。 Conversely, if the circulating water is replaced over the set cumulative operating time even though the quality of the circulating water has not deteriorated, the circulating water will be excessively replaced, and the external water supply source The frequency of use of the deionizer for treating the water supplied from the plant increases, and the frequency of replacement of the relatively expensive deionizer or the ion exchange resin cartridge of the deionizer increases, which is not economical.
一方,前述の特許文献1として挙げた従来技術にあっては,循環水の一部を純水器にバイパスさせることにより,循環水の水質を維持することができるものであるが,回路構成が複雑となるという問題がある。
On the other hand, in the prior art cited as the above-mentioned
そこで本発明は,上記従来技術における欠点を解消するためになされたものであり,比較的簡単な構成により,循環水の水質が交換を必要とする程度に悪化したときに,随時,必要量だけ交換を行うことができる循環水の交換方法及び装置を提供することで,循環水の交換不足による配管詰まり等の発生を好適に防止することができると共に,循環水を経済的に交換可能とすることを目的とする。 Therefore, the present invention has been made to eliminate the above-mentioned drawbacks of the prior art. When the water quality of the circulating water has deteriorated to such an extent that it needs to be replaced by a relatively simple configuration, only the necessary amount is required at any time. By providing a circulating water replacement method and device that can be replaced, it is possible to suitably prevent occurrence of clogging of piping due to insufficient replacement of circulating water, and to make it possible to replace circulating water economically. For the purpose.
上記目的を達成するために,本発明の水循環式コンプレッサにおける循環水交換方法は,吸入空気を循環水と共に圧縮する圧縮機本体10と,前記圧縮機本体10の吐出口11と連通し,圧縮機本体10より吐出された圧縮空気と循環水とを導入して圧縮空気と循環水とに分離・貯溜するセパレータレシーバタンク20を備え,前記圧縮機本体10とセパレータレシーバタンク20間で前記循環水の循環系が形成された水循環式コンプレッサ1において,
前記循環系内の循環水の電気伝導率Smが予め設定された第1基準値Ss1以上となったとき,純水器45を通過させた外部給水源からの供給水を前記循環系に導入する給水と,前記循環系内の循環水の一部を排出する排水とを交互に行い,
前記循環水の電気伝導率が前記第1基準値Ss1に対して所定の低い値に設定された第2基準値Ss2未満となる迄,前記給排水を繰り返すことを特徴とする(請求項1)。
In order to achieve the above object, a circulating water exchange method in a water circulation type compressor of the present invention communicates with a
When the electrical conductivity Sm of the circulating water in the circulation system becomes equal to or higher than the first reference value Ss1 set in advance, the supply water from the external water supply source that has passed through the
The water supply / drainage is repeated until the electrical conductivity of the circulating water becomes less than a second reference value Ss2 set to a predetermined low value with respect to the first reference value Ss1 (Claim 1).
前述の循環水交換方法において,前記循環系に対する給排水は,好ましくは以下の段階に従って行う。 In the above circulating water exchange method, the water supply / drainage to the circulation system is preferably performed according to the following steps.
前記循環水の電気伝導率Smが前記第1基準値Ss1以上となったとき,前記循環系に対する給水を開始する第1段階と,
前記セパレータレシーバタンク20内の水位が所定の上限位置Lhとなったとき,前記第1段階で開始した給水を停止すると共に,循環水の排水を開始する第2段階と,
前記セパレータレシーバタンク20内の水位が所定の下限位置Llとなったとき,前記第2段階で開始した排水を停止すると共に,前記循環系に対する給水を再開する第3段階と,
前記セパレータレシーバタンク20内の水位が所定の中間位置Lmとなったときの前記循環水の電気伝導率Smが,前記第2基準値Ss2未満であるとき,前記3段階で開始した給水を停止して給排水処理を終了する段階,又は,前記第2基準値Ss2以上であるとき,前記第3段階で開始した給水を継続すると共に,前記第2段階以降の処理を繰り返す段階(請求項2)。
When the electrical conductivity Sm of the circulating water becomes equal to or higher than the first reference value Ss1, a first stage of starting water supply to the circulating system;
A second stage in which when the water level in the
When the water level in the
When the electrical conductivity Sm of the circulating water when the water level in the
なお,以上説明した循環水交換方法において,前記循環水の電気伝導率Smは,これを所定時間毎に所定回数測定し,前記所定回数測定された電気伝導率の平均値を求めると共に,求めた電気伝導率の平均値を,前記第1及び第2基準値と比較するものとしても良い(請求項3)。 In the circulating water exchanging method described above, the electrical conductivity Sm of the circulating water is obtained by measuring this a predetermined number of times every predetermined time and obtaining an average value of the electrical conductivity measured the predetermined number of times. An average value of electrical conductivity may be compared with the first and second reference values.
また,本発明の水循環式コンプレッサにおける循環水交換装置は,前記同様の基本構成を備えた水循環式コンプレッサ1に,
純水器45を備え,外部給水源と前記循環系とを連通する給水回路50と,
前記循環系に連通された排水回路33と,
前記循環系内の循環水の電気伝導率を測定する,例えば電気伝導率計や抵抗計等の電気伝導率測定手段61と,
前記給水回路50及び前記排水回路33の開閉手段(図示の例では電磁開閉弁SV1,SV2)をそれぞれ設けると共に,
前記電気伝導率測定手段61により測定された電気伝導率Smを,予め設定された第1基準値Ss1,及び前記第1基準値Ss1に対して所定の値低く設定された第2基準値Ss2と比較し,測定された電気伝導率Smが前記第1基準値Ss1以上であるときに前記給水回路50及び排水回路33に設けた前記開閉手段SV1,SV2を開閉制御して,前記循環系に対する給水と,前記循環水の一部排水とを交互に行わせると共に,前記循環水の電気伝導率Smが前記第2基準値Ss2未満となる迄,前記給排水を繰り返させる制御手段70を設けたことを特徴とする(請求項4)。
Further, the circulating water exchange device in the water circulation compressor of the present invention includes a
A
A
An electrical conductivity measuring means 61 such as an electrical conductivity meter or a resistance meter for measuring the electrical conductivity of the circulating water in the circulation system;
Opening and closing means (electromagnetic on-off valves SV1 and SV2 in the illustrated example) for the
The electrical conductivity Sm measured by the electrical conductivity measuring means 61 is set to a first reference value Ss1, which is set in advance, and a second reference value Ss2, which is set lower than the first reference value Ss1, by a predetermined value. In comparison, when the measured electrical conductivity Sm is equal to or higher than the first reference value Ss1, the opening and closing means SV1 and SV2 provided in the
上記構成の循環水交換装置において,さらに,前記セパレータレシーバタンク20内の水位を検知する水位検知手段(図示の例ではレベルスイッチ62)を設けると共に,前記制御手段70が,以下の各段階に従って前記開閉手段SV1,SV2の開閉制御を行うように構成することができる。
In the circulating water exchanging apparatus having the above-described configuration, a water level detecting means (a
前記電気伝導率測定手段61により測定された電気伝導率Smを,前記第1基準値Ss1と比較し,測定された電気伝導率Smが前記第1基準値Ss1以上であるときに前記給水回路50の開閉手段SV1を開く第1段階と,
前記水位検知手段62により所定の上限位置Lhの水位が検知されたとき,前記給水回路50の前記開閉手段SV1を閉じると共に,前記排水回路33の前記開閉手段SV2を開く第2段階と,
前記水位検知手段62により,所定の下限位置Llの水位が検知されたとき,前記排水回路33の前記開閉手段SV2を閉じる共に,前記給水回路50の前記開閉手段SV1を開く第3段階と,
前記水位検知手段62により所定の中間位置Lmの水位が検知されたとき,前記電気伝導率測定手段61により測定された電気伝導率Smを,前記第2基準値Ss2と比較して,測定された電気伝導率Smが前記第2基準値Ss2未満であるとき,前記給水回路50の開閉手段SV1を閉じて給排水を終了させる段階,又は前記第2基準値Ss2以上であるとき,前記給水回路50の開閉手段SV1の開状態を維持して前記第2段階以降の制御を繰り返す段階(請求項5)。
The electric conductivity Sm measured by the electric conductivity measuring means 61 is compared with the first reference value Ss1, and when the measured electric conductivity Sm is greater than or equal to the first reference value Ss1, the water supply circuit 50 A first stage of opening the opening / closing means SV1 of
When the water level detecting means 62 detects a water level at a predetermined upper limit position Lh, a second stage of closing the opening / closing means SV1 of the
A third stage of closing the opening / closing means SV2 of the
When the water level detecting means 62 detects the water level at the predetermined intermediate position Lm, the electric conductivity Sm measured by the electric conductivity measuring means 61 is measured by comparing with the second reference value Ss2. When the electrical conductivity Sm is less than the second reference value Ss2, the step of closing the water supply / drainage by closing the opening / closing means SV1 of the
なお,前記制御手段70は,前記電気伝導率測定手段61が測定した電気伝導率を,所定の時間隔毎に所定回数取得して,該取得した所定回数の電気伝導率の平均値を算出すると共に,前記平均値を前記第1及び第2電気伝導率と比較するように構成しても良い(請求項6)。 The control unit 70 acquires the electrical conductivity measured by the electrical conductivity measuring unit 61 a predetermined number of times at predetermined time intervals, and calculates the average value of the acquired predetermined times of electrical conductivity. At the same time, the average value may be compared with the first and second electrical conductivities.
以上説明した本発明の構成により,本発明の循環水交換方法及び循環水交換装置によれば,コンプレッサ1の累積運転時間に拘わらず,測定された循環水の電気伝導率Smに基づき循環水の水質が交換が必要な程度に悪化したとき,随時,循環水の交換を行うと共に,必要量のみの循環水の交換を行うことが可能であり,循環水の交換不足や,過剰な交換を防止することができた。
With the configuration of the present invention described above, according to the circulating water exchanging method and the circulating water exchanging apparatus of the present invention, the circulating water is based on the measured electrical conductivity Sm of the circulating water regardless of the cumulative operation time of the
その結果,循環水の交換不足による金属イオン等の不純物の析出,及びこれに基づく配管詰まり等を好適に防止することができると共に,循環水の過剰な交換による純水器45のイオン交換樹脂の能力低下を防止して,経済的な循環水の交換を行うことが可能となった。
As a result, it is possible to suitably prevent the precipitation of impurities such as metal ions due to insufficient replacement of circulating water and the clogging of piping based on this, and the ion exchange resin of the
また,循環系に対する給水,排水を繰り返すと共に,循環水を一部ずつ置き換える構成としたことから,水循環式コンプレッサ1の運転中における循環水の交換が可能であり,循環水の交換に際して作業を停止する必要がない。
In addition, since the water supply and drainage for the circulation system are repeated and the circulation water is replaced part by part, the circulation water can be exchanged during the operation of the
さらに,前記循環水の交換を,セパレータレシーバタンク20内の水位に対応して行うことにより,循環系内の循環水を好適な量に維持することが可能である。
Furthermore, by exchanging the circulating water in accordance with the water level in the
なお,循環水の電気伝導率Smを所定の時間毎に所定回数測定し,前記所定回数測定された電気伝導率の平均値に基づいて循環水の電気伝導率を基準値と比較することとした場合には,電気伝導率の測定値の正確性を担保することができ,一時的な変動による作動等を好適に防止することができた。 The electrical conductivity Sm of the circulating water is measured a predetermined number of times every predetermined time, and the electrical conductivity of the circulating water is compared with a reference value based on the average value of the electrical conductivity measured the predetermined number of times. In this case, the accuracy of the measured value of electrical conductivity could be ensured, and the operation due to temporary fluctuation could be suitably prevented.
次に,本発明の実施形態につき添付図面を参照しながら以下説明する。 Next, embodiments of the present invention will be described below with reference to the accompanying drawings.
〔水循環式コンプレッサの基本構成〕
図1において,1は,水循環式コンプレッサであり,この水循環式コンプレッサは,循環水と共に圧縮空気を圧縮する圧縮機本体10を備えると共に,この圧縮機本体10の吐出口11に吐出回路31を介して連通され,圧縮機本体10より循環水との気液混合流体として吐出された圧縮空気を導入するセパレータレシーバタンク20を備えている。
[Basic configuration of water circulation compressor]
In FIG. 1,
また,このセパレータレシーバタンク20には,セパレータレシーバタンク20内で圧縮空気と分離された循環水を,前記圧縮機本体10の給水口12に導入するリターン回路32が設けられ,前記圧縮機本体10,セパレータレシーバタンク20及び両者間を連通する吐出回路31,リターン回路32によって,前述の循環水が循環する系(循環系)が形成されている。
The
なお,図1において,リターン回路32中に示す符号41はラジエータ,符号42は水フィルタであり,前記セパレータレシーバタンク20内の循環水を冷却すると共に,濾過して,圧縮機本体10の給水口12に導入する。
In FIG. 1,
〔循環水交換装置〕
以上のような基本構成を備えた水循環式コンプレッサ1において,本発明の循環水交換装置は,循環系に対する給水を行うための構成(給水部),循環系からの排水を行うための構成(排水部),及び,前記給排水を制御するための構成(制御部)として,以下の構成を備えている。
[Circulating water exchanger]
In the
1.給水部
前記循環水の循環系に対する給水を行うために,外部給水源からの供給水を前記循環系に導入するための給水回路50が設けられている。
1. Water supply unit In order to supply water to the circulation system of the circulating water, a
この給水回路50は,循環水の循環系に対して外部供給源からの供給水を導入し得るものであればその接続位置は適宜変更可能であるが,本実施形態にあってはこの給水回路50の一端を,開閉弁43を介して上水道等の外部給水源に連通すると共に,他端を圧縮機本体10の吸気側に連通することで,コンプレッサ1の運転中における給水を可能とした。
The connection position of the
そして,この給水回路50に,上流側から順に水フィルタ44,純水器45を配置し,外部給水源からの供給水を水フィルタ44で濾過した後,純水器45で純水と成し,循環水の循環系内に,不純物の除去された純水を給水できるように構成した。
Then, a
また,前記給水回路50中には,この給水回路50の開閉手段である電磁開閉弁(本実施形態にあっては常時閉型)SV1を設け,この電磁開閉弁SV1を後述する制御手段70からの電気信号によって制御することで給水回路50を開閉して,循環系に対する給水の開始,停止を行うことができるように構成した。
The
2.排水部
前記循環系内の循環水を機外に排水するために,一端を前記循環系に連結する排水回路33を設けている。
2. Drainage unit In order to drain the circulating water in the circulation system to the outside of the machine, a
図示の実施形態にあっては,この排水回路33の一端をセパレータレシーバタンク20に連通し,このセパレータレシーバタンク20内に貯溜された循環水を,セパレータレシーバタンク20内の圧力によって排水可能とした。
In the illustrated embodiment, one end of the
もっとも,この排水回路33は,循環水の排水を可能とするものであれば,循環系のいずれの位置に連通しても良く,例えばリターン回路32に連通する等,循環系の他の位置に連通するものとしても良い。
However, the
この排水回路33には,図1に示すように,排水回路33を開閉する開閉手段として,電磁開閉弁(本実施形態にあっては常時閉型)SV2を設け,この電磁開閉弁SV2を後述する制御手段70からの電気信号によって制御することで,循環系内の循環水の排水を開始及び停止することができるように構成した。
As shown in FIG. 1, this
3.制御部
前述の給水回路50の開閉手段(電磁開閉弁SV1)及び,排水回路33の開閉手段(電磁開閉弁SV2)を開閉制御して,循環系に対する給排水を,所定の手順で行うために,本発明の循環水交換装置は,循環系内の循環水の電気伝導率(又はその逆数である抵抗率)を測定するための電気伝導率測定手段61,前記セパレータレシーバタンク20内の水位を検知する水位検知手段62,及び,前記電気伝導率測定手段61による測定結果,及び前記水位検知手段62の検知信号に基づいて,前記電磁開閉弁SV1,SV2を所定の段階に従って開閉制御する制御手段70を設けている。
3. Control unit In order to perform opening / closing control of the opening / closing means (electromagnetic opening / closing valve SV1) of the
(1)電気伝導率測定手段
電気伝導率測定手段61は,循環系内の循環水の電気伝導率Smを測定し,測定結果を電気信号として後述する制御手段70に出力する。
(1) Electrical conductivity measurement means The electrical conductivity measurement means 61 measures the electrical conductivity Sm of the circulating water in the circulation system, and outputs the measurement result to the control means 70 described later as an electrical signal.
この電気伝導率測定手段61としては,既知の各種の電気伝導率計を使用することができ,また,電気伝導率は抵抗率の逆数であることから,前記電気伝導率計に代えて抵抗計を設け,これにより供給水の電気伝導率(抵抗率)を測定するものとしてもよい。 As the electrical conductivity measuring means 61, various known electrical conductivity meters can be used, and since the electrical conductivity is the reciprocal of the resistivity, the resistance meter is used instead of the electrical conductivity meter. It is good also as what measures electrical conductivity (resistivity) of feed water by this.
図示の実施形態にあっては,この電気伝導率測定手段61を,セパレータレシーバタンク20で分離された循環水を圧縮機本体10の給水口12に導入するためのリターン回路32中に設けているが,この電気伝導率測定手段61は,循環水の電気伝導率Smを測定可能な位置であれば,循環系内のいずれの位置に設けるものとしても良く,例えばセパレータレシーバタンク20内の循環水の電気伝導率を測定するようにしても良い。
In the illustrated embodiment, the electrical conductivity measuring means 61 is provided in a
(2)水位検知手段
水位検知手段62は,セパレータレシーバタンク20内の水位を検知して後述の制御手段70に出力し,後述する制御手段70は,前述の電気伝導率測定手段61による電気伝導率と共に,この検知信号に基づいて前記電磁開閉弁SV1,SV2を開閉制御する。
(2) Water level detection means The water level detection means 62 detects the water level in the
本実施形態にあっては,この水位測定手段としてレベルスイッチ62をセパレータレシーバタンク20内に配置し,このレベルスイッチ62により,セパレータレシーバタンク20内の水位を,上限位置Lh,中間位置Lm,下限位置Llの三位置で検知可能とした。
In this embodiment, a
本実施形態にあっては,このレベルスイッチ62に設けた上限位置Lh,中間位置Lm,下限位置Llの各位置のスイッチを等間隔に配置し,上限位置Lhと中間位置Lm間,及び,中間位置Lmと下限位置Ll間に,それぞれ同量の循環水を貯溜できるように構成した。従って,このレベルスイッチ62により,水位のみならず,水量の計測が可能となっている。
In the present embodiment, the switches of the upper limit position Lh, the intermediate position Lm, and the lower limit position Ll provided on the
(3)制御手段
制御手段70は,前述した電気伝導率測定手段61及び水位検知手段(レベルスイッチ62)からの電気信号を受信して,受信した電気信号に従って,給水回路50に設けた電磁開閉弁SV1,及び排水回路33に設けた電磁開閉弁SV2を,予め設定されたプログラム等に従って開閉制御するものであり,前記プログラムを記憶した電子制御装置等によって実現される。
(3) Control means The control means 70 receives the electrical signals from the electrical conductivity measurement means 61 and the water level detection means (level switch 62) described above, and electromagnetically opens and closes the
この制御手段70による制御を,図2及び図3に従って説明すれば,以下の通りである。 The control by the control means 70 will be described below with reference to FIGS.
なお,後述するように,本発明の装置による循環水の交換は,循環水を供給水と一部ずつ置き換えることにより行うものであり,給水された純水と循環水とが十分に混ざり合っていない状態では測定される電気伝導率が不安定な場合がある。そこで,本実施形態にあっては,以下における第1,第2基準値との比較を測定された電気伝導率の平均値と比較するものとした。 As will be described later, the replacement of the circulating water by the apparatus of the present invention is performed by replacing the circulating water partly with the supply water, and the supplied pure water and the circulating water are sufficiently mixed. Otherwise, the measured electrical conductivity may be unstable. Therefore, in the present embodiment, the comparison with the first and second reference values below is compared with the measured average value of electrical conductivity.
具体的には,前記制御手段70が前記電気伝導率測定手段61によって測定された電気伝導率Smを取得するに際し,内蔵されたタイマ等によって所定時間毎に測定値を取得し,取得した各測定値を一時的に記憶すると共に,取得した測定値が所定数に達したときに,前記取得した数値の平均値を算出して,この平均値を,循環水の電気伝導率Smとした。
Specifically, when the control unit 70 acquires the electrical conductivity Sm measured by the electrical
(3-1)初期状態
循環水の交換が行われていない状態,すなわち,制御手段70が,給水回路50及び排水回路33に設けられた電磁開閉弁SV1,SV2のいずれに対しても制御信号を出力していない初期状態において,常時閉型の前記電磁開閉弁SV1,SV2は,給水回路50及び排水回路33をいずれも閉じた状態にあり(図1参照),循環系に対する給排水は,行われていない状態にある。
(3-1) Initial state A state in which the circulating water is not exchanged, that is, the control means 70 controls the electromagnetic on-off valves SV1 and SV2 provided in the
なお,セパレータレシーバタンク20内の循環水の水位は,図示せざる水位調整機構によって中間位置Lmとなるように調整されており,この状態において制御手段70は,レベルスイッチ62の下限位置Ll及び中間位置Lmのスイッチからの検知信号を受信した状態にある(図3中のT0)。
Note that the water level of the circulating water in the
(3-2) 第1段階
以上の初期状態から,水循環式コンプレッサ1が外気を吸入して圧縮作業を行うにつれ,循環水中の金属イオン等の不純物量が増加し,これに伴い循環水の電気伝導率が上昇する。
(3-2)
そして,電気伝導率計61により測定された電気伝導率Smが,所定の第1基準値Ss1以上になり,制御手段70がこれを判定すると,電磁開閉弁SV1に制御信号を出力してこれを開く(図3中のT1)。その結果,この電磁開閉弁SV1の開により,給水回路50を介して循環系内に給水が開始される。
When the electrical conductivity Sm measured by the
(3-3) 第2段階
前述の第1段階で開始された給水は,セパレータレシーバタンク20内の水位が,所定の上限位置Lhとなる迄行われ,従って制御手段70は,レベルスイッチ62がセパレータレシーバタンク20内の水位が所定の上限位置Lhに達したことを検知するまで,電磁開閉弁SV1を開と成す制御信号の出力を維持する。
(3-3) Second Stage The water supply started in the first stage is performed until the water level in the
そして,レベルスイッチ62が,セパレータレシーバタンク20内の水位が上限位置Lhであると検知すると,この検知信号を受信した制御手段70は給水回路50の電磁開閉弁SV1を閉じ,循環系に対する給水を停止すると共に,排水回路33の電磁開閉弁SV2を開き,循環水の排水を開始する(図3中のT2)。
When the
(3-4) 第3段階
前述の第2段階で開始された排水は,セパレータレシーバタンク20内の水位が,所定の下限位置Llとなる迄行われ,従って制御手段70は,レベルスイッチ62がセパレータレシーバタンク20内の水位が所定の下限位置Llにあることを検知するまで,電磁開閉弁SV2を開と成す制御信号の出力を維持する。
(3-4) Third stage The drainage started in the second stage is performed until the water level in the
そして,レベルスイッチ62により,セパレータレシーバタンク20内の水位が下限位置Llにあると検知されると,制御手段70は排水回路33の電磁開閉弁SV2を閉じ,循環系からの排水を停止すると共に,給水回路50の電磁開閉弁SV1を開き,循環系に対する給水を再開する(図3中のT3)。
When the
(3-5) 終了又は継続段階
前述の第3段階で開始された給水により,セパレータレシーバタンク20内の水位が上昇し,レベルスイッチ62がセパレータレシーバタンク20内の水位が所定の中間位置Lmにあると検知すると,制御手段70はこの時点における循環水の電気伝導率Smが,第2基準値Ss2未満であるか否かを判定する。
(3-5) Completion or continuation stage The water level in the
そして,電気伝導率計61により測定された電気伝導率Smが前記第2基準値Ss2未満であると判定すると,給水回路50の電磁開閉弁SV1を閉じて給水を停止し,循環系に対する給排水を終了する(図3中のT4’)。
When it is determined that the electrical conductivity Sm measured by the
一方,電気伝導率計61により測定された電気伝導率Smが前記第2基準値Ss2以上であると判定すると,電磁開閉弁SV1に対する制御信号の出力を継続し,循環系に対する給水を継続する(図3中のT4)。
On the other hand, if it is determined that the electrical conductivity Sm measured by the
その後,制御手段70は,前述の第2段階以降の動作を繰り返し,循環水の電気伝導率Smが,第2基準値Ss2未満となる迄,前述した段階に従った給排水が繰り返される。 Thereafter, the control means 70 repeats the operation after the second stage described above, and the water supply / drainage according to the aforementioned stage is repeated until the electrical conductivity Sm of the circulating water becomes less than the second reference value Ss2.
(3-6) その他
以上の説明では,制御手段70は,判定ないしはレベルスイッチ62からの検知信号の受信に同期して電磁開閉弁SV1.SV2を作動するものとして説明したが,例えば判定ないしは検知信号の受信に対して,一方,又は双方の電磁開閉弁SV1,SV2を,所定のタイムラグを持たせて制御するよう構成しても良い。
(3-6) Others In the above description, the control means 70 determines the electromagnetic on-off valves SV1. Although description has been made assuming that SV2 is operated, for example, one or both of the electromagnetic on-off valves SV1 and SV2 may be controlled with a predetermined time lag with respect to reception of a determination or detection signal.
1 水循環式コンプレッサ
10 圧縮機本体
11 吐出口
12 給水口
20 セパレータレシーバタンク
31 吐出回路
32 リターン回路
33 排水回路
41 ラジエータ
42,44 水フィルタ
43 開閉弁
45 純水器
50 給水回路
61 電気伝導率測定手段(電気伝導率計)
62 水位検知手段(レベルスイッチ)
70 制御手段
SV1,SV2 電磁開閉弁
DESCRIPTION OF
62 Water level detection means (level switch)
70 Control means SV1, SV2 Electromagnetic on-off valve
Claims (6)
前記循環系内の循環水の電気伝導率が予め設定された第1基準値以上となったとき,純水器を通過させた外部給水源からの供給水を前記循環系に導入する給水と,前記循環系内の循環水の一部を排出する排水とを交互に行い,
前記循環水の電気伝導率が前記第1基準値に対して所定の低い値に設定された第2基準値未満となる迄,前記給排水を繰り返すことを特徴とする水循環式コンプレッサにおける循環水交換方法。 A compressor body that compresses the intake air together with the circulating water and a discharge port of the compressor body. The compressed air and the circulating water discharged from the compressor body are introduced to separate the compressed air and the circulating water. In a water circulation type compressor comprising a separator receiver tank for storing, wherein the circulating water circulation system is formed between the compressor body and the separator receiver tank,
When the electrical conductivity of the circulating water in the circulation system is equal to or higher than a first reference value set in advance, the supply water that introduces the supply water from the external water supply source that has passed through the deionizer into the circulation system; Alternately performing drainage to discharge a part of the circulating water in the circulation system,
Circulating water exchange method in a water circulation compressor, wherein the water supply and drainage is repeated until the electric conductivity of the circulating water becomes less than a second reference value set to a predetermined low value with respect to the first reference value. .
前記循環水の電気伝導率が前記第1基準値以上となったとき,前記循環系に対する給水を開始する第1段階と,
前記セパレータレシーバタンク内の水位が所定の上限位置となったとき,前記第1段階で開始した給水を停止すると共に,循環水の排水を開始する第2段階と,
前記セパレータレシーバタンク内の水位が所定の下限位置となったとき,前記第2段階で開始した排水を停止すると共に,前記循環系に対する給水を再開する第3段階と,
前記セパレータレシーバタンク内の水位が所定の中間位置となったときの前記循環水の電気伝導率が,前記第2基準値未満であるとき,前記3段階で開始した給水を停止して給排水処理を終了する段階,又は,前記第2基準値以上であるとき,前記第3段階で開始した給水を継続すると共に,前記第2段階以降の処理を繰り返す段階。 2. The circulating water exchange method in a water circulation compressor according to claim 1, wherein water supply and drainage to the circulation system is performed according to the following steps.
When the electrical conductivity of the circulating water is equal to or higher than the first reference value, a first stage of starting water supply to the circulating system;
A second stage in which when the water level in the separator receiver tank reaches a predetermined upper limit position, the water supply started in the first stage is stopped and drainage of the circulating water is started;
When the water level in the separator receiver tank reaches a predetermined lower limit position, the third stage of stopping the drainage started in the second stage and restarting the water supply to the circulation system;
When the electrical conductivity of the circulating water when the water level in the separator receiver tank reaches a predetermined intermediate position is less than the second reference value, the water supply started in the three steps is stopped and the water supply / drainage treatment is performed. A step of ending, or a step of continuing the water supply started in the third step and repeating the processing after the second step when the second reference value or more is reached.
純水器を備え,外部給水源と前記循環系とを連通する給水回路と,
前記循環系に連通された排水回路と,
前記循環系内の循環水の電気伝導率を測定する電気伝導率測定手段と,
前記給水回路及び前記排水回路の開閉手段をそれぞれ設けると共に,
前記電気伝導率測定手段により測定された電気伝導率を,予め設定された第1基準値,及び前記第1基準値に対して所定の値低く設定された第2基準値と比較し,測定された電気伝導率が前記第1基準値以上であるときに前記給水回路及び排水回路に設けた前記開閉手段を開閉制御して,前記循環系に対する給水と,前記循環水の一部排水とを交互に行わせると共に,前記循環水の電気伝導率が前記第2基準値未満となる迄,前記給排水を繰り返させる制御手段70を設けたことを特徴とする水循環式コンプレッサにおける循環水交換装置。 A compressor body that compresses the intake air together with the circulating water and a discharge port of the compressor body. The compressed air and the circulating water discharged from the compressor body are introduced to separate the compressed air and the circulating water. In a water circulation compressor comprising a separator receiver tank for storing, and forming a circulation system of the circulating water between the compressor body and the separator receiver tank,
A water supply circuit comprising a deionizer and communicating between an external water supply source and the circulation system;
A drain circuit communicating with the circulation system;
Electrical conductivity measuring means for measuring the electrical conductivity of circulating water in the circulation system;
Opening and closing means for the water supply circuit and the drain circuit are provided,
The electrical conductivity measured by the electrical conductivity measuring means is measured by comparing with a first reference value set in advance and a second reference value set lower than the first reference value by a predetermined value. When the electrical conductivity is equal to or higher than the first reference value, the open / close means provided in the water supply circuit and the drain circuit are controlled to open and close to alternately supply water to the circulation system and partially drain the circulating water. And a control means 70 that repeats the water supply and drainage until the electrical conductivity of the circulating water becomes less than the second reference value.
前記電気伝導率測定手段により測定された電気伝導率を,前記第1基準値と比較し,測定された電気伝導率が前記第1基準値以上であるときに前記給水回路の開閉手段を開く第1段階と,
前記水位検知手段により所定の上限位置の水位が検知されたとき,前記給水回路の前記開閉手段を閉じると共に,前記排水回路の前記開閉手段を開く第2段階と,
前記水位検知手段により,所定の下限位置の水位が検知されたとき,前記排水回路の前記開閉手段を閉じる共に,前記給水回路の前記開閉手段を開く第3段階と,
前記水位検知手段により所定の中間位置の水位が検知されたとき,前記電気伝導率測定手段により測定された電気伝導率を,前記第2基準値と比較して,測定された電気伝導率が前記第2基準値未満であるとき,前記給水回路の開閉手段を閉じて給排水を終了させる段階,又は前記第2基準値以上であるとき,前記給水回路の開閉手段の開状態を維持して前記第2段階以降の制御を繰り返す段階。 5. The circulation in the water circulation type compressor according to claim 4, wherein water level detection means for detecting the water level in the separator receiver tank is provided, and the control means performs opening / closing control of the opening / closing means according to the following steps. Water exchange device.
The electrical conductivity measured by the electrical conductivity measuring means is compared with the first reference value, and when the measured electrical conductivity is equal to or higher than the first reference value, the opening / closing means of the water supply circuit is opened. One step,
A second stage of closing the open / close means of the water supply circuit and opening the open / close means of the drain circuit when the water level detecting means detects a water level at a predetermined upper limit position;
A third stage of closing the open / close means of the drain circuit and opening the open / close means of the water supply circuit when the water level detecting means detects a water level at a predetermined lower limit position;
When the water level detecting means detects a water level at a predetermined intermediate position, the electric conductivity measured by the electric conductivity measuring means is compared with the second reference value, and the measured electric conductivity is When it is less than the second reference value, the step of closing the water supply circuit opening and closing means to end the water supply and drainage, or when it is equal to or greater than the second reference value, the open state of the water supply circuit opening and closing means is maintained open. A stage where control after the second stage is repeated.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006041298A JP4771825B2 (en) | 2006-02-17 | 2006-02-17 | Circulating water exchanging method and circulating water exchanging apparatus in water circulation type compressor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006041298A JP4771825B2 (en) | 2006-02-17 | 2006-02-17 | Circulating water exchanging method and circulating water exchanging apparatus in water circulation type compressor |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007218209A JP2007218209A (en) | 2007-08-30 |
JP4771825B2 true JP4771825B2 (en) | 2011-09-14 |
Family
ID=38495761
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006041298A Active JP4771825B2 (en) | 2006-02-17 | 2006-02-17 | Circulating water exchanging method and circulating water exchanging apparatus in water circulation type compressor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4771825B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105545705A (en) * | 2016-02-19 | 2016-05-04 | 北京丰电科技股份有限公司 | Electronic automatic water draining device |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102013105895A1 (en) | 2013-06-07 | 2014-12-11 | Gardner Denver Deutschland Gmbh | Water-injected gas compressor and water supply control method |
JP2015045266A (en) * | 2013-08-28 | 2015-03-12 | 三井精機工業株式会社 | Water lubrication type compressor |
JP2015045265A (en) * | 2013-08-28 | 2015-03-12 | 三井精機工業株式会社 | Water lubrication type compressor |
KR200491102Y1 (en) * | 2019-10-30 | 2020-02-20 | 서병우 | Compression System with Automatic Lubricant Changer |
KR102157980B1 (en) * | 2020-02-13 | 2020-09-18 | 서병우 | Single screw compressors and compression systems to prevent leakage of lubricants through half-loaded compressed air exhaust |
JP7409931B2 (en) * | 2020-03-23 | 2024-01-09 | 三井精機工業株式会社 | water lubricated compressor |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19729498A1 (en) * | 1997-07-10 | 1999-02-18 | Kt Kirsten Technologie Entwick | Compressor system |
BE1013574A3 (en) * | 2000-06-27 | 2002-04-02 | Atlas Copco Airpower Nv | Compressor installation with water injected compressor element. |
-
2006
- 2006-02-17 JP JP2006041298A patent/JP4771825B2/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105545705A (en) * | 2016-02-19 | 2016-05-04 | 北京丰电科技股份有限公司 | Electronic automatic water draining device |
Also Published As
Publication number | Publication date |
---|---|
JP2007218209A (en) | 2007-08-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4771825B2 (en) | Circulating water exchanging method and circulating water exchanging apparatus in water circulation type compressor | |
JP2003222447A (en) | Heat pump type water heater | |
EP3273188B1 (en) | Control device, air conditioner, and controlling method | |
JP2003222391A (en) | Heat pump type water heater | |
KR20190021456A (en) | Substrate processing apparatus | |
JP2010266190A (en) | Heat source unit | |
US6279330B1 (en) | Apparatus and method for cleaning pipes of refrigerating unit | |
WO2019207741A1 (en) | Air conditioner | |
JP5811866B2 (en) | Reverse osmosis membrane separator | |
JP2017146033A (en) | Feedwater heating system | |
CN110635151B (en) | Fuel cell system | |
JP4454224B2 (en) | Oil recovery method for air conditioner and air conditioner | |
JP2010002173A (en) | Refrigerator | |
JP3498009B2 (en) | Refrigeration equipment | |
WO2021090806A1 (en) | Hot water supply device | |
JP2010127586A (en) | Refrigerating cycle device | |
KR20210030058A (en) | refrigeration system of cooling and purifing of direct type | |
JP2004278813A (en) | Air-conditioner and its controlling method | |
JP6484197B2 (en) | Liquid temperature controller | |
JP7409931B2 (en) | water lubricated compressor | |
JP2012052736A (en) | Hot water supply system and method of controlling heat pump device | |
JP6417872B2 (en) | Vacuum cooling device | |
JP3723459B2 (en) | Compressor and operation method thereof | |
JP4288699B2 (en) | Control method of vacuum cooling device and vacuum cooling device | |
JP2021156563A (en) | Air conditioner |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090216 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110523 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110527 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110621 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140701 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4771825 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |