JP2017146033A - Feedwater heating system - Google Patents

Feedwater heating system Download PDF

Info

Publication number
JP2017146033A
JP2017146033A JP2016028647A JP2016028647A JP2017146033A JP 2017146033 A JP2017146033 A JP 2017146033A JP 2016028647 A JP2016028647 A JP 2016028647A JP 2016028647 A JP2016028647 A JP 2016028647A JP 2017146033 A JP2017146033 A JP 2017146033A
Authority
JP
Japan
Prior art keywords
water
water supply
temperature
level
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016028647A
Other languages
Japanese (ja)
Other versions
JP6694582B2 (en
Inventor
大沢 智也
Tomoya Osawa
智也 大沢
悠斗 森田
Yuto Morita
悠斗 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miura Co Ltd
Original Assignee
Miura Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miura Co Ltd filed Critical Miura Co Ltd
Priority to JP2016028647A priority Critical patent/JP6694582B2/en
Publication of JP2017146033A publication Critical patent/JP2017146033A/en
Application granted granted Critical
Publication of JP6694582B2 publication Critical patent/JP6694582B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

PROBLEM TO BE SOLVED: To execute a desired tapping temperature constant control according to a water temperature and a water level in a water supply tank in a heat pump-type feedwater heating system.SOLUTION: A heat pump 4 circulates a refrigerant to a compressor 12, a condenser 13, an expansion valve 14 and an evaporator 15 successively annularly connected, and pumps up heat from a heat source water passing through the evaporator 15, to heat the water passing through the condenser 13. Water can be supplied to a water supply tank 3 from a water supply passage 8 through the condenser 13, and also water can be supplied thereto from a makeup water passage 9 without passing through the condenser 13. A feedwater flow rate is adjusted to keep an outlet-side water temperature of the condenser 13 at a target temperature during the water supply to the water supply tank 3 through the water supply passage 8. The target temperature can be changed on the basis of water temperature and/or water level in the water supply tank 3.SELECTED DRAWING: Figure 1

Description

本発明は、ヒートポンプを用いた給水加温システムに関するものである。   The present invention relates to a feed water heating system using a heat pump.

従来、下記特許文献1に開示されるように、ボイラ(2)の給水タンク(3)への給水を、ヒートポンプ(4)を用いて加温できるシステムが知られている。ヒートポンプ(4)は、圧縮機(12)、凝縮器(13)、膨張弁(14)および蒸発器(15)が順次環状に接続されて冷媒を循環させ、蒸発器(15)に通される熱源流体から熱をくみ上げ、凝縮器(13)に通される水を加温する。給水タンク(3)には、凝縮器(13)を介して給水路(8)により給水可能であると共に、凝縮器(13)を介さずに補給水路(9)により給水可能である。給水路(8)を介した給水タンク(3)への給水は、給水タンク(3)内の水位が給水開始水位(H1)を下回ると開始し、この給水開始水位よりも高い給水停止水位(H2)を上回ると停止する。補給水路(9)を介した給水タンク(3)への給水は、給水タンク(3)内の水位が給水開始水位よりも低い補給水開始水位(H3)を下回ると開始し、給水開始水位よりも高いが給水停止水位よりも低い補給水停止水位(H4)を上回ると停止する。   Conventionally, as disclosed in Patent Document 1 below, a system capable of heating water supplied to a water supply tank (3) of a boiler (2) using a heat pump (4) is known. In the heat pump (4), the compressor (12), the condenser (13), the expansion valve (14) and the evaporator (15) are sequentially connected in an annular manner to circulate the refrigerant, and are passed through the evaporator (15). Heat is drawn from the heat source fluid and the water passed through the condenser (13) is heated. The water supply tank (3) can be supplied with water through the condenser (13) through the water supply passage (8) and can be supplied through the replenishment water passage (9) without using the condenser (13). Water supply to the water supply tank (3) via the water supply channel (8) starts when the water level in the water supply tank (3) falls below the water supply start water level (H1), and the water supply stop water level ( Stop when H2) is exceeded. Water supply to the water supply tank (3) via the make-up water channel (9) starts when the water level in the water supply tank (3) falls below the make-up water start water level (H3) lower than the water supply start water level, and from the water supply start water level If it exceeds the makeup water stop water level (H4) lower than the feed water stop water level, it stops.

従って、給水タンク(3)には、給水路(8)を介した給水が優先され、それでは足りない場合に、補給水路(9)を介した給水もなされる。給水路(8)を介した給水タンク(3)への給水中、ヒートポンプ(4)を運転することで、給水タンク(3)への給水を加温することができる。この際、凝縮器(13)の出口側水温(29)を目標温度に維持するように給水流量が調整される(出湯温度一定制御)。一方、補給水路(9)を介した給水は、流量調整されずにオンオフ制御され、またヒートポンプ(4)を介さないので、給水路(8)経由の給水よりも低温(常温)のまま給水タンク(3)へ供給される。   Therefore, priority is given to the water supply tank (3) through the water supply channel (8), and water supply through the replenishment water channel (9) is also performed when this is insufficient. The water supply to the water supply tank (3) can be heated by operating the heat pump (4) while supplying water to the water supply tank (3) via the water supply channel (8). At this time, the feed water flow rate is adjusted so as to maintain the outlet side water temperature (29) of the condenser (13) at the target temperature (constant tapping temperature control). On the other hand, the water supply through the replenishment water channel (9) is on / off controlled without adjusting the flow rate, and does not go through the heat pump (4), so the water supply tank remains at a lower temperature (normal temperature) than the water supply through the water supply channel (8). To (3).

特開2015−78827号公報(請求項1、請求項3、図1)Japanese Patent Laying-Open No. 2015-78827 (Claim 1, Claim 3, FIG. 1)

従来技術では、前記出湯温度一定制御の目標温度は、給水タンク内の水温や水位と関わりなく設定されている。また、従来技術において、給水タンク内の水温を高めようとすれば、出湯温度一定制御の目標温度を高く設定することになる。ところが、出湯温度一定制御では、目標温度を高く設定するほど給水流量が減るので、給水タンク内の水位低下を招き、補給水路を介して比較的低温の水が給水タンクへ供給されやすくなる。一方、給水タンク内の水温を高め過ぎると、給水タンクからボイラなどへの給水ポンプにキャビテーションを引き起こすおそれもある。   In the prior art, the target temperature of the hot water temperature constant control is set regardless of the water temperature and water level in the water supply tank. Further, in the prior art, if the water temperature in the water supply tank is to be raised, the target temperature for the constant tapping temperature control is set high. However, in the hot water temperature constant control, the higher the target temperature is set, the lower the feed water flow rate, so that the water level in the feed water tank is lowered and water at a relatively low temperature is likely to be supplied to the feed water tank via the make-up water channel. On the other hand, if the water temperature in the water supply tank is too high, cavitation may occur in the water supply pump from the water supply tank to the boiler or the like.

そこで、本発明が解決しようとする課題は、給水タンク内の状況(具体的には水温および/または水位)に応じて、所望の出湯温度一定制御を実施することができる給水加温システムを提供することにある。また、給水タンクからボイラなどへの給水ポンプにキャビテーションを引き起こすことなく、給水タンク内の水温低下や貯水不足を防止することができる給水加温システムを提供することを課題とする。   Therefore, the problem to be solved by the present invention is to provide a feed water heating system capable of performing desired hot water temperature constant control depending on the situation (specifically, the water temperature and / or water level) in the water tank. There is to do. It is another object of the present invention to provide a water supply heating system that can prevent a decrease in water temperature and a shortage of water storage in a water supply tank without causing cavitation in a water supply pump from the water supply tank to a boiler or the like.

本発明は、前記課題を解決するためになされたもので、請求項1に記載の発明は、圧縮機、凝縮器、膨張弁および蒸発器が順次環状に接続されて冷媒を循環させ、前記蒸発器に通される熱源流体から熱をくみ上げ、前記凝縮器に通される水を加温するヒートポンプと、前記凝縮器を介して給水路により給水可能であると共に、前記凝縮器を介さずに補給水路により給水可能な給水タンクとを備え、前記給水路を介した前記給水タンクへの給水中、前記凝縮器の出口側水温を目標温度に維持するように給水流量を調整し、前記給水タンク内の水温および/または水位に基づき、前記目標温度を変更することを特徴とする給水加温システムである。   The present invention has been made to solve the above problems, and the invention according to claim 1 is characterized in that a compressor, a condenser, an expansion valve, and an evaporator are sequentially connected in an annular manner to circulate a refrigerant, and the evaporation. A heat pump that draws heat from the heat source fluid that passes through the condenser and heats the water that passes through the condenser, and can be supplied through the condenser through the water supply channel, and is supplied without going through the condenser. A water supply tank capable of supplying water through the water channel, adjusting the water supply flow rate so that the water temperature on the outlet side of the condenser is maintained at a target temperature during water supply to the water supply tank via the water supply channel, and in the water supply tank It is a feed water heating system characterized by changing the target temperature based on the water temperature and / or the water level.

請求項1に記載の発明によれば、給水路を介した給水タンクへの給水中、出湯温度一定制御として、凝縮器の出口側水温を目標温度に維持するように、給水路経由の給水流量を調整する。そして、給水タンク内の水温および/または水位に基づき、出湯温度一定制御の目標温度を変更することで、給水タンク内の水温や水量を調整することができる。   According to the first aspect of the present invention, the water supply flow rate via the water supply channel is maintained so that the outlet water temperature of the condenser is maintained at the target temperature as the constant temperature control of the hot water in the water supply to the water supply tank via the water supply channel. Adjust. And the water temperature and the amount of water in a water supply tank can be adjusted by changing the target temperature of hot water temperature constant control based on the water temperature and / or water level in a water supply tank.

請求項2に記載の発明は、前記凝縮器より上流側の前記給水路の水と、前記凝縮器から前記膨張弁への冷媒とを熱交換する過冷却器と、この過冷却器より上流側の前記給水路の水と、前記蒸発器を通過後の熱源流体とを熱交換する廃熱回収熱交換器とをさらに備え、前記給水路を介した前記給水タンクへの給水は、前記給水タンク内の水位が給水開始水位を下回ると開始し、この給水開始水位よりも高い給水停止水位を上回ると停止し、前記補給水路を介した前記給水タンクへの給水は、前記給水タンク内の水位が前記給水開始水位よりも低い補給水開始水位を下回ると開始し、前記給水開始水位よりも高いが前記給水停止水位よりも低い補給水停止水位を上回ると停止し、前記給水タンク内の水温が上限温度を超えない限り、前記目標温度を前記給水タンク内の水温よりも高い温度とすることを特徴とする請求項1に記載の給水加温システムである。   The invention according to claim 2 is a supercooler for exchanging heat between the water in the water supply channel upstream of the condenser and the refrigerant from the condenser to the expansion valve, and upstream of the supercooler. And a waste heat recovery heat exchanger for exchanging heat between the water in the water supply channel and the heat source fluid after passing through the evaporator, and the water supply to the water supply tank via the water supply channel is the water supply tank When the water level falls below the water supply start water level, the water level stops when the water level exceeds the water supply stop water level higher than the water supply start water level, and the water supply to the water supply tank via the make-up water channel is the water level in the water supply tank. It starts when it falls below the makeup water start water level lower than the feed water start water level, stops when it exceeds the makeup water stop water level that is higher than the feed water start water level but lower than the feed water stop water level, and the water temperature in the feed water tank is the upper limit As long as the temperature does not exceed, the target temperature A water supply warming system of claim 1, characterized in that a temperature higher than the temperature of the supply water tank.

請求項2に記載の発明によれば、給水開始水位、給水停止水位、補給水開始水位および補給水停止水位を所定に設定することで、給水路経由の給水を補給水路経由の給水よりも優先することができる。そして、給水路経由の給水中、出湯温度一定制御を行うが、その制御目標温度(つまり出湯温度)を給水タンク内の水温よりも高い温度とすることで、給水タンク内の水温の低下を防止することができる。但し、給水タンク内の水温が上限温度を超える場合には、目標温度を給水タンク内の水温以下とすることで、給水タンクからボイラなどへの給水ポンプのキャビテーションを防止することができる。   According to the second aspect of the present invention, by setting the water supply start water level, the water supply stop water level, the makeup water start water level, and the makeup water stop water level to a predetermined level, the water supply via the water supply channel has priority over the water supply via the supply water channel. can do. And the hot water temperature constant control is performed during the water supply through the water supply channel, but the control target temperature (that is, the hot water temperature) is set to a temperature higher than the water temperature in the water tank to prevent the water temperature in the water tank from decreasing. can do. However, when the water temperature in the water supply tank exceeds the upper limit temperature, cavitation of the water supply pump from the water supply tank to the boiler or the like can be prevented by setting the target temperature to be equal to or lower than the water temperature in the water supply tank.

さらに、請求項3に記載の発明は、前記凝縮器より上流側の前記給水路の水と、前記凝縮器から前記膨張弁への冷媒とを熱交換する過冷却器と、この過冷却器より上流側の前記給水路の水と、前記蒸発器を通過後の熱源流体とを熱交換する廃熱回収熱交換器とをさらに備え、前記給水路を介した前記給水タンクへの給水は、前記給水タンク内の水位が給水開始水位を下回ると開始し、この給水開始水位よりも高い給水停止水位を上回ると停止し、前記補給水路を介した前記給水タンクへの給水は、前記給水タンク内の水位が前記給水開始水位よりも低い補給水開始水位を下回ると開始し、前記給水開始水位よりも高いが前記給水停止水位よりも低い補給水停止水位を上回ると停止し、前記目標温度は、前記給水タンク内の水位が低くなるほど、段階的にまたは連続的に低下するよう変更されることを特徴とする請求項1または請求項2に記載の給水加温システムである。   Furthermore, the invention according to claim 3 includes a supercooler that exchanges heat between water in the water supply channel upstream of the condenser and refrigerant from the condenser to the expansion valve, and the subcooler. Further comprising a waste heat recovery heat exchanger for exchanging heat between the water in the upstream water supply channel and the heat source fluid after passing through the evaporator, and the water supply to the water supply tank via the water supply channel is as described above. It starts when the water level in the water supply tank falls below the water supply start water level, and stops when it exceeds the water supply stop water level higher than the water supply start water level, and the water supply to the water supply tank via the makeup water channel is within the water supply tank. It starts when the water level falls below the makeup water start water level lower than the feed water start water level, stops when it exceeds the makeup water stop water level higher than the feed water start level but lower than the feed water stop water level, and the target temperature is The lower the water level in the water tank A water supply warming system of claim 1 or claim 2, characterized in that it is changed stepwise or continuously to decrease.

請求項3に記載の発明によれば、給水開始水位、給水停止水位、補給水開始水位および補給水停止水位を所定に設定することで、給水路経由の給水を補給水路経由の給水よりも優先することができる。そして、給水路経由の給水中、出湯温度一定制御を行うが、給水タンク内の水位が低くなるほど、制御目標温度(つまり出湯温度)を下げる。出湯温度一定制御では、目標温度を下げるほど流量を増すことができるので、給水タンク内の水位が下がるほど目標温度を下げることで、給水タンクへの流量を増して水位の回復を図ることができる。これにより、補給水路経由の比較的低温の水が給水タンクへ供給されるのを抑制して、給水タンク内の水温の低下を防止することができる。   According to the invention described in claim 3, by setting the water supply start water level, the water supply stop water level, the makeup water start water level, and the makeup water stop water level to a predetermined level, the water supply via the water supply channel has priority over the water supply via the supply water channel. can do. Then, the hot water temperature constant control is performed during water supply through the water supply channel, but the control target temperature (that is, the hot water temperature) is lowered as the water level in the water supply tank becomes lower. In the hot water temperature constant control, the flow rate can be increased as the target temperature is lowered. Therefore, the target temperature is lowered as the water level in the water supply tank is lowered, so that the flow rate to the water supply tank can be increased to recover the water level. . Thereby, it can suppress that the comparatively low temperature water via a supplementary water channel is supplied to a water supply tank, and can prevent the fall of the water temperature in a water supply tank.

本発明の給水加温システムによれば、給水タンク内の状況(具体的には水温および/または水位)に応じて、所望の出湯温度一定制御を実施することができる。また、給水タンクからボイラなどへの給水ポンプにキャビテーションを引き起こすことなく、給水タンク内の水温低下や貯水不足を防止することができる。   According to the feed water warming system of the present invention, desired constant hot water temperature control can be performed according to the situation in the feed water tank (specifically, the water temperature and / or water level). In addition, it is possible to prevent a decrease in the water temperature in the water supply tank and a shortage of water storage without causing cavitation in the water supply pump from the water supply tank to the boiler or the like.

本発明の一実施例の給水加温システムを示す概略図である。It is the schematic which shows the feed water heating system of one Example of this invention.

以下、本発明の具体的実施例を図面に基づいて詳細に説明する。
図1は、本発明の一実施例の給水加温システム1を示す概略図である。
Hereinafter, specific embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic diagram showing a feed water heating system 1 according to an embodiment of the present invention.

本実施例の給水加温システム1は、ボイラ2の給水タンク3への給水をヒートポンプ4で加温できるシステムであり、ボイラ2への給水を貯留する給水タンク3と、この給水タンク3への給水を貯留する補給水タンク5と、この補給水タンク5から給水タンク3への給水を加温するヒートポンプ4と、このヒートポンプ4の熱源としての熱源水を貯留する熱源水タンク6とを備える。   The feed water warming system 1 of the present embodiment is a system that can heat the feed water to the feed water tank 3 of the boiler 2 with the heat pump 4. The feed water tank 3 that stores the feed water to the boiler 2, and the feed water tank 3 A replenishing water tank 5 that stores water supply, a heat pump 4 that heats water supplied from the replenishing water tank 5 to the water supply tank 3, and a heat source water tank 6 that stores heat source water as a heat source of the heat pump 4 are provided.

ボイラ2は、蒸気ボイラであり、給水タンク3からの給水を加熱して蒸気にする。ボイラ2は、典型的には、蒸気の圧力を所望に維持するように、燃焼量を調整される。また、ボイラ2は、缶体内の水位を所望に維持するように、給水タンク3からボイラ2への給水用のポンプ7が制御される。ボイラ2からの蒸気は、各種の蒸気使用設備(図示省略)へ送られるが、蒸気使用設備からのドレン(蒸気の凝縮水)は、給水タンク3へ戻されてもよい。あるいは、蒸気使用設備からのドレンは、熱源水タンク6へ供給されてもよい。   The boiler 2 is a steam boiler, and heats the feed water from the feed water tank 3 into steam. The boiler 2 is typically adjusted in combustion quantity so as to maintain the desired steam pressure. Moreover, the pump 7 for the water supply from the water supply tank 3 to the boiler 2 is controlled so that the boiler 2 may maintain the water level in a can body as desired. Although the steam from the boiler 2 is sent to various steam use facilities (not shown), the drain (condensate of steam) from the steam use facility may be returned to the water supply tank 3. Alternatively, the drain from the steam using facility may be supplied to the heat source water tank 6.

給水タンク3は、補給水タンク5から、ヒートポンプ4を介して給水路8により給水可能であると共に、ヒートポンプ4を介さずに補給水路9により給水可能である。給水路8に設けた給水ポンプ10と、補給水路9に設けた補給水ポンプ11との作動を制御することで、給水路8と補給水路9との内、一方または双方を介して、補給水タンク5から給水タンク3へ給水可能である。   The water supply tank 3 can be supplied with water from the make-up water tank 5 via the heat pump 4 through the water supply path 8 and can be supplied through the make-up water path 9 without going through the heat pump 4. By controlling the operation of the water supply pump 10 provided in the water supply channel 8 and the makeup water pump 11 provided in the makeup water channel 9, makeup water is supplied via one or both of the water supply channel 8 and the makeup water channel 9. Water can be supplied from the tank 5 to the water supply tank 3.

給水ポンプ10は、本実施例では、モータの駆動周波数ひいては回転数をインバータで変更可能とされる。給水ポンプ10の回転数を変更することで、給水路8を介した給水タンク3への給水流量を調整することができる。一方、補給水ポンプ11は、本実施例では、オンオフ制御される。   In this embodiment, the feed water pump 10 can change the drive frequency of the motor and thus the rotational speed by an inverter. By changing the rotation speed of the water supply pump 10, the water supply flow rate to the water supply tank 3 through the water supply path 8 can be adjusted. On the other hand, the makeup water pump 11 is on / off controlled in this embodiment.

補給水タンク5は、給水タンク3への給水を貯留する。補給水タンク5への給水として、本実施例では軟水が用いられる。すなわち、陽イオン交換樹脂等を用いた硬水軟化装置(図示省略)にて水中の硬度成分を除去された軟水は、補給水タンク5に供給され貯留される。補給水タンク5の水位に基づき硬水軟化装置からの給水を制御することで、補給水タンク5の水位は所望に維持される。   The makeup water tank 5 stores water supplied to the water supply tank 3. In this embodiment, soft water is used as the water supply to the makeup water tank 5. That is, the soft water from which the hardness component in the water has been removed by a hard water softening device (not shown) using a cation exchange resin or the like is supplied to the makeup water tank 5 and stored. By controlling the water supply from the water softening device based on the water level of the makeup water tank 5, the water level of the makeup water tank 5 is maintained as desired.

ヒートポンプ4は、蒸気圧縮式のヒートポンプであり、圧縮機12、凝縮器13、膨張弁14および蒸発器15が順次環状に接続されて構成される。そして、圧縮機12は、ガス冷媒を圧縮して高温高圧にする。また、凝縮器13は、圧縮機12からのガス冷媒を凝縮液化する。さらに、膨張弁14は、凝縮器13からの液冷媒を通過させることで、冷媒の圧力と温度とを低下させる。そして、蒸発器15は、膨張弁14からの冷媒の蒸発を図る。   The heat pump 4 is a vapor compression heat pump, and includes a compressor 12, a condenser 13, an expansion valve 14, and an evaporator 15 that are sequentially connected in an annular shape. The compressor 12 compresses the gas refrigerant to a high temperature and a high pressure. The condenser 13 condenses and liquefies the gas refrigerant from the compressor 12. Furthermore, the expansion valve 14 allows the liquid refrigerant from the condenser 13 to pass therethrough, thereby reducing the pressure and temperature of the refrigerant. The evaporator 15 evaporates the refrigerant from the expansion valve 14.

従って、ヒートポンプ4は、蒸発器15において、冷媒が外部から熱を奪って気化する一方、凝縮器13において、冷媒が外部へ放熱して液化することになる。これを利用して、本実施例では、ヒートポンプ4は、蒸発器15において、熱源水から熱をくみ上げ、凝縮器13において、給水路8の水を加温する。   Therefore, in the heat pump 4, in the evaporator 15, the refrigerant takes heat from the outside and vaporizes, while in the condenser 13, the refrigerant dissipates heat to the outside and liquefies. In this embodiment, the heat pump 4 draws heat from the heat source water in the evaporator 15 and heats the water in the water supply channel 8 in the condenser 13.

ヒートポンプ4は、さらに、凝縮器13と膨張弁14との間に、過冷却器16を備えるのが好ましい。過冷却器16は、凝縮器13より上流側の給水路8の水と、凝縮器13から膨張弁14への冷媒との間接熱交換器である。過冷却器16により、凝縮器13への給水で、凝縮器13から膨張弁14への冷媒を過冷却することができると共に、凝縮器13から膨張弁14への冷媒で、凝縮器13への給水を加温することができる。ヒートポンプ4の冷媒は、好適には、凝縮器13において潜熱を放出し、過冷却器16において顕熱を放出する。   It is preferable that the heat pump 4 further includes a supercooler 16 between the condenser 13 and the expansion valve 14. The supercooler 16 is an indirect heat exchanger between the water in the water supply channel 8 upstream from the condenser 13 and the refrigerant from the condenser 13 to the expansion valve 14. The subcooler 16 can supercool the refrigerant from the condenser 13 to the expansion valve 14 by supplying water to the condenser 13, and can supply the refrigerant to the condenser 13 by the refrigerant from the condenser 13 to the expansion valve 14. The water supply can be heated. The refrigerant of the heat pump 4 preferably releases latent heat in the condenser 13 and releases sensible heat in the subcooler 16.

その他、ヒートポンプ4には、圧縮機12の入口側にアキュムレータを設置したり、圧縮機12の出口側に油分離器を設置したり、凝縮器13の出口側(凝縮器13と過冷却器16との間)に受液器を設置したりしてもよい。   In addition, in the heat pump 4, an accumulator is installed on the inlet side of the compressor 12, an oil separator is installed on the outlet side of the compressor 12, or the outlet side of the condenser 13 (the condenser 13 and the subcooler 16 A receiver may be installed between the two).

ところで、ヒートポンプ4は、その出力を変更可能とされてもよい。たとえば、圧縮機12のモータの駆動周波数ひいては回転数をインバータで変更することで、ヒートポンプ4の出力を変更することができる。但し、以下においては、ヒートポンプ4は、圧縮機12のモータの駆動周波数が一定に維持され、一定出力で運転される例について説明する。   By the way, the heat pump 4 may be capable of changing its output. For example, the output of the heat pump 4 can be changed by changing the drive frequency of the motor of the compressor 12 and thus the rotational speed with an inverter. However, in the following, an example in which the heat pump 4 is operated at a constant output with the driving frequency of the motor of the compressor 12 maintained constant will be described.

本実施例の給水加温システム1は、さらに廃熱回収熱交換器17を備える。この廃熱回収熱交換器17は、過冷却器16より上流側の給水路8の水と、蒸発器15を通過後の熱源水との間接熱交換器である。従って、補給水タンク5からの給水は、給水路8を介して、廃熱回収熱交換器17、過冷却器16および凝縮器13に、順に通される。一方、熱源水タンク6からの熱源水は、熱源供給路18を介して、蒸発器15および廃熱回収熱交換器17に、順に通される。そして、廃熱回収熱交換器17において、蒸発器15を通過後の熱源水により、過冷却器16への給水を加温することができる。   The feed water heating system 1 of the present embodiment further includes a waste heat recovery heat exchanger 17. This waste heat recovery heat exchanger 17 is an indirect heat exchanger between the water in the water supply channel 8 upstream of the subcooler 16 and the heat source water after passing through the evaporator 15. Therefore, the water supply from the makeup water tank 5 is passed through the waste heat recovery heat exchanger 17, the subcooler 16 and the condenser 13 in this order via the water supply path 8. On the other hand, the heat source water from the heat source water tank 6 is sequentially passed through the evaporator 15 and the waste heat recovery heat exchanger 17 via the heat source supply path 18. In the waste heat recovery heat exchanger 17, the water supplied to the supercooler 16 can be heated by the heat source water that has passed through the evaporator 15.

熱源水タンク6は、熱源水を貯留する。熱源水とは、たとえば廃温水(工場などから排出される温水)である。なお、熱源水タンク6には、熱源水の供給路19が設けられると共に、所定以上の熱源水をあふれさせるオーバーフロー路20が設けられている。   The heat source water tank 6 stores heat source water. The heat source water is, for example, waste hot water (hot water discharged from a factory or the like). The heat source water tank 6 is provided with a heat source water supply passage 19 and an overflow passage 20 for overflowing heat source water of a predetermined amount or more.

熱源水タンク6の熱源水は、前述したとおり、熱源供給路18を介して、蒸発器15に通された後、廃熱回収熱交換器17に通される。熱源供給路18には、蒸発器15より上流側に熱源供給ポンプ21が設けられており、この熱源供給ポンプ21を作動させることで、熱源水タンク6からの熱源水を、蒸発器15と廃熱回収熱交換器17とに順に通すことができる。   As described above, the heat source water in the heat source water tank 6 is passed through the heat source supply path 18 to the evaporator 15 and then to the waste heat recovery heat exchanger 17. The heat source supply path 18 is provided with a heat source supply pump 21 on the upstream side of the evaporator 15. By operating the heat source supply pump 21, the heat source water from the heat source water tank 6 is discarded with the evaporator 15. The heat recovery heat exchanger 17 can be sequentially passed.

給水タンク3には、水位検出器22が設けられる。この水位検出器22は、その構成を特に問わないが、本実施例では電極式水位検出器とされる。この場合、給水タンク3には、長さの異なる複数の電極棒23〜28が、その下端部の高さ位置を互いに異ならせて差し込まれて保持されている。本実施例では、給水ポンプ10を制御用の給水開始電極棒23と給水停止電極棒24の他、補給水ポンプ11を制御用の補給水開始電極棒25と補給水停止電極棒26が、給水タンク3に挿入されている。また、詳細は後述するが、必要に応じて、給水路8経由の出湯温度を切り替えるために、一または複数の出湯温度切替電極棒27,28が設けられる。図示例では、第一出湯温度切替電極棒27と第二出湯温度切替電極棒28とが、下端部の高さ位置をずらして給水タンク3に挿入されている。いずれにしても、給水停止電極棒24、補給水停止電極棒26、給水開始電極棒23、補給水開始電極棒25の順に、下端部の高さ位置を低くして、給水タンク3に挿入される。そして、出湯温度切替電極棒27,28を設ける場合、給水開始電極棒23の下端部と補給水開始電極棒25の下端部との間の高さ位置に、各出湯温度切替電極棒27,28の下端部が配置される。   The water supply tank 3 is provided with a water level detector 22. The configuration of the water level detector 22 is not particularly limited, but is an electrode type water level detector in the present embodiment. In this case, a plurality of electrode rods 23 to 28 having different lengths are inserted and held in the water supply tank 3 with their lower end portions having different height positions. In this embodiment, in addition to the water supply start electrode rod 23 and the water supply stop electrode rod 24 for controlling the water supply pump 10, the water supply start electrode rod 25 and the water supply stop electrode rod 26 for controlling the makeup water pump 11 are supplied with water. It is inserted into the tank 3. Moreover, although mentioned later for details, in order to switch the hot water temperature via the water supply path 8, the one or several hot water temperature switching electrode rods 27 and 28 are provided as needed. In the illustrated example, the first hot water temperature switching electrode rod 27 and the second hot water temperature switching electrode rod 28 are inserted into the water supply tank 3 while shifting the height position of the lower end portion. In any case, the water supply stop electrode rod 24, the make-up water stop electrode rod 26, the water supply start electrode rod 23, and the make-up water start electrode rod 25 are inserted into the water supply tank 3 with the lower end lowered in height. The When the hot water temperature switching electrode rods 27 and 28 are provided, the hot water temperature switching electrode rods 27 and 28 are provided at a height position between the lower end portion of the water supply start electrode rod 23 and the lower end portion of the makeup water start electrode rod 25. The lower end of is arranged.

各電極棒23〜28は、その下端部が水に浸かるか否かにより、下端部における水位の有無を検出する。以下において、給水開始電極棒23が検出する水位を給水開始水位H1、給水停止電極棒24が検出する水位を給水停止水位H2、補給水開始電極棒25が検出する水位を補給水開始水位H3、補給水停止電極棒26が検出する水位を補給水停止水位H4、第一出湯温度切替電極棒27が検出する水位を第一出湯温度切替水位H5、第二出湯温度切替電極棒28が検出する水位を第二出湯温度切替水位H6という。   Each electrode rod 23-28 detects the presence or absence of the water level in a lower end part by whether the lower end part is immersed in water. In the following, the water level detected by the water supply start electrode rod 23 is the water supply start water level H1, the water level detected by the water supply stop electrode rod 24 is the water supply stop water level H2, the water level detected by the makeup water start electrode rod 25 is the makeup water start water level H3, The water level detected by the makeup water stop electrode rod 26 is the makeup water stop water level H4, and the water level detected by the first tapping temperature switching electrode rod 27 is detected by the first tapping temperature switching water level H5 and the second tapping temperature switching electrode rod 28. Is referred to as a second tapping temperature switching water level H6.

熱源水タンク6には、熱源水の有無を確認するために、水位検出器29が設けられる。この水位検出器29は、その構成を特に問わないが、本実施例では電極式水位検出器とされる。この場合、熱源水タンク6には、低水位検出電極棒30が差し込まれており、熱源水の水位が設定を下回っていないかを監視する。さらに、所望により、熱源水タンク6または熱源供給路18(蒸発器15の入口側)には、熱源水の温度を検出するために、熱源温度センサ(図示省略)が設けられてもよい。熱源水タンク6の水位が設定を下回った場合、または蒸発器15への熱源水温度が設定を上回った場合、ヒートポンプ4を停止させることができる。   The heat source water tank 6 is provided with a water level detector 29 in order to confirm the presence or absence of the heat source water. The configuration of the water level detector 29 is not particularly limited. In the present embodiment, the water level detector 29 is an electrode type water level detector. In this case, the low water level detection electrode rod 30 is inserted in the heat source water tank 6 and it is monitored whether the water level of the heat source water is below the setting. Furthermore, if desired, a heat source temperature sensor (not shown) may be provided in the heat source water tank 6 or the heat source supply path 18 (on the inlet side of the evaporator 15) in order to detect the temperature of the heat source water. When the water level in the heat source water tank 6 falls below the setting, or when the temperature of the heat source water to the evaporator 15 exceeds the setting, the heat pump 4 can be stopped.

給水路8には、凝縮器13の出口側に、出湯温度センサ31が設けられる。出湯温度センサ31は、凝縮器13を通過後の水温を検出する。出湯温度センサ31の検出温度に基づき、給水ポンプ10が制御される。ここでは、給水ポンプ10は、その作動中(つまり給水タンク3内の水位との関係で作動中)、出湯温度センサ31の検出温度を目標温度に維持するようにインバータ制御される。これにより、給水路8を介した給水タンク3への給水は、出湯温度センサ31の検出温度を目標温度に維持するように、流量が調整される。   In the water supply path 8, a tapping temperature sensor 31 is provided on the outlet side of the condenser 13. The hot water temperature sensor 31 detects the water temperature after passing through the condenser 13. Based on the temperature detected by the hot water temperature sensor 31, the feed water pump 10 is controlled. Here, during operation of the feed water pump 10 (that is, operation in relation to the water level in the feed water tank 3), inverter control is performed so that the temperature detected by the tapping temperature sensor 31 is maintained at the target temperature. Thereby, the flow rate of the water supply to the water supply tank 3 through the water supply path 8 is adjusted so that the temperature detected by the tapping temperature sensor 31 is maintained at the target temperature.

給水タンク3には、貯留水温度センサ32が設けられる。貯留水温度センサ32は、給水タンク3内の貯留水の水温を検出する。給水タンク3内の水位が変動することを考慮して、貯留水温度センサ32は、水位変動に拘わらず常時貯留水に接触する位置に設けられる。   The water supply tank 3 is provided with a stored water temperature sensor 32. The stored water temperature sensor 32 detects the temperature of the stored water in the water supply tank 3. Considering that the water level in the water supply tank 3 fluctuates, the stored water temperature sensor 32 is provided at a position that always contacts the stored water regardless of the water level fluctuation.

次に、本実施例の給水加温システム1の制御(運転方法)について説明する。以下に説明する一連の制御は、図示しない制御器を用いて自動でなされる。すなわち、制御器は、ヒートポンプ4、給水ポンプ10、補給水ポンプ11、熱源供給ポンプ21、給水タンク3の水位検出器22、熱源水タンク6の水位検出器29、出湯温度センサ31および貯留水温度センサ32などに接続されており、以下の一連の制御を実行する。以下、まずは、本発明の特徴的制御の前提となる基本的制御について説明し、その後、本発明の特徴的制御について具体的に説明する。   Next, control (operation method) of the feed water heating system 1 of the present embodiment will be described. A series of control described below is automatically performed using a controller (not shown). That is, the controller includes a heat pump 4, a feed water pump 10, a makeup water pump 11, a heat source supply pump 21, a water level detector 22 in the feed water tank 3, a water level detector 29 in the heat source water tank 6, a tapping temperature sensor 31, and a stored water temperature. It is connected to the sensor 32 and the like, and executes the following series of controls. Hereinafter, first, basic control which is a premise of characteristic control of the present invention will be described, and then characteristic control of the present invention will be specifically described.

給水タンク3への給水は、給水タンク3に設けた水位検出器22の検出信号に基づき、給水ポンプ10と補給水ポンプ11とを制御することでなされる。つまり、給水路8を介した給水タンク3への給水は、給水タンク3内の水位が給水開始水位H1を下回ると開始し、この給水開始水位H1よりも高い給水停止水位H2を上回ると停止する。また、補給水路9を介した給水タンク3への給水は、給水タンク3内の水位が補給水開始水位H3を下回ると開始し、この補給水開始水位H3よりも高い補給水停止水位H4を上回ると停止する。ここで、補給水開始水位H3は、給水開始水位H1よりも低く設定され、補給水停止水位H4は、給水開始水位H1よりも高いが給水停止水位H2よりも低く設定される。   Water supply to the water supply tank 3 is performed by controlling the water supply pump 10 and the makeup water pump 11 based on the detection signal of the water level detector 22 provided in the water supply tank 3. That is, the water supply to the water supply tank 3 through the water supply path 8 starts when the water level in the water supply tank 3 falls below the water supply start water level H1, and stops when the water level exceeds the water supply stop water level H2 higher than the water supply start water level H1. . Further, the water supply to the water supply tank 3 via the makeup water channel 9 starts when the water level in the water supply tank 3 falls below the makeup water start water level H3, and exceeds the makeup water stop water level H4 higher than the makeup water start water level H3. And stop. Here, the makeup water start water level H3 is set lower than the feed water start water level H1, and the makeup water stop water level H4 is set higher than the feed water start water level H1 but lower than the feed water stop water level H2.

このような構成であるから、いま、給水停止電極棒24が水位を検知しているとすると、給水タンク3の水位が十分にあるとして、給水ポンプ10を停止すると共に、補給水ポンプ11も停止している。給水タンク3からボイラ2への給水により、給水タンク3の水位が下がり、給水開始電極棒23が水位を検知しなくなると、給水ポンプ10を作動させる。これにより、給水路8を介して給水タンク3に給水されるが、給水停止電極棒24が水位を検知すると、給水ポンプ10を停止する。一方、給水ポンプ10を作動させても、給水タンク3の水位を回復できず、給水タンク3の水位がさらに下がり、補給水開始電極棒25が水位を検知しなくなると、補給水ポンプ11も作動させる。これにより、補給水路9を介しても給水タンク3に給水されるが、給水タンク3の水位が回復して、補給水停止電極棒26が水位を検知すると、補給水ポンプ11を停止し、さらに水位が回復して、給水停止電極棒24が水位を検知すると、給水ポンプ10を停止する。なお、給水ポンプ10を作動させて、給水路8を介した給水タンク3への給水中、熱源供給ポンプ21も作動させる。   With this configuration, if the water supply stop electrode rod 24 detects the water level, the water supply pump 10 is stopped and the makeup water pump 11 is also stopped, assuming that the water level in the water supply tank 3 is sufficient. doing. When the water level in the water supply tank 3 drops due to the water supply from the water supply tank 3 to the boiler 2 and the water supply start electrode rod 23 no longer detects the water level, the water supply pump 10 is operated. Thus, water is supplied to the water supply tank 3 through the water supply path 8, but when the water supply stop electrode rod 24 detects the water level, the water supply pump 10 is stopped. On the other hand, when the water supply pump 10 is operated, the water level of the water supply tank 3 cannot be recovered, the water level of the water supply tank 3 is further lowered, and the makeup water start electrode rod 25 no longer detects the water level, the makeup water pump 11 is also activated. Let As a result, water is supplied to the water supply tank 3 also through the supply water channel 9, but when the water level in the water supply tank 3 recovers and the supply water stop electrode rod 26 detects the water level, the supply water pump 11 is stopped, When the water level recovers and the water supply stop electrode rod 24 detects the water level, the water supply pump 10 is stopped. In addition, the water supply pump 10 is operated and the water supply to the water supply tank 3 through the water supply path 8 and the heat source supply pump 21 are also operated.

ヒートポンプ4は、本実施例では、給水路8を介した給水中(それに伴い熱源供給路18に熱源水を通水中)に作動する。但し、前述したように、熱源水タンク6に設けた水位検出器29や、熱源水タンク6または熱源供給路18に設けた熱源温度センサの検出信号に基づき、ヒートポンプ4の発停を制御してもよい。なお、ヒートポンプ4は、その圧縮機12の作動の有無により、運転と停止が切り替えられる。ヒートポンプ4の運転中、圧縮機12は、モータの駆動周波数が一定に維持され、一定出力を維持される。   In this embodiment, the heat pump 4 operates in the water supply via the water supply path 8 (accordingly, the heat source water passes through the heat source supply path 18). However, as described above, the start / stop of the heat pump 4 is controlled based on the detection signal of the water level detector 29 provided in the heat source water tank 6 or the heat source temperature sensor provided in the heat source water tank 6 or the heat source supply path 18. Also good. The heat pump 4 is switched between operation and stop depending on whether or not the compressor 12 is activated. During the operation of the heat pump 4, the compressor 12 maintains a constant driving power and a constant output.

給水ポンプ10は、作動中、出湯温度センサ31の検出温度を目標温度に維持するように、回転数をインバータ制御される(出湯温度一定制御)。この出湯温度一定制御の目標温度は、状況に応じて変更される。すなわち、本実施例の給水加温システム1では、給水タンク3内の水温および/または水位に基づき、出湯温度一定制御の目標温度が変更される。具体的には、(a)給水タンク3内の水温に基づく変更制御、(b)給水タンク3内の水位に基づく変更制御、または(c)給水タンク3内の水温および水位に基づく変更制御がなされる。以下、これら各制御について説明する。   During operation, the feed water pump 10 is inverter-controlled at the rotation speed so as to maintain the temperature detected by the tapping temperature sensor 31 at the target temperature (constant tapping temperature control). The target temperature of this hot water temperature constant control is changed according to the situation. That is, in the feed water warming system 1 of the present embodiment, the target temperature for the constant tapping temperature control is changed based on the water temperature and / or water level in the feed water tank 3. Specifically, (a) change control based on the water temperature in the water supply tank 3, (b) change control based on the water level in the water supply tank 3, or (c) change control based on the water temperature and the water level in the water supply tank 3 Made. Hereinafter, each of these controls will be described.

≪(a)給水タンク3内の水温に基づく変更制御≫
出湯温度一定制御の目標温度を、給水タンク3内の水温に基づき変更する。本実施例では、給水タンク3内の水温が上限温度を超えない限り、前記目標温度を給水タンク3内の水温よりも高い温度とする。具体的には、給水路8を介した給水中、給水タンク3内の水温を貯留水温度センサ32により監視(たとえば所定時間ごとに給水タンク3内の水温を取得)し、貯留水温度センサ32の検出温度が上限温度を超えない限り、前記目標温度を貯留水温度センサ32の検出温度よりも高い温度にして、出湯温度一定制御を実施する。
≪ (a) Change control based on the water temperature in the water supply tank 3 ≫
The target temperature of the hot water temperature constant control is changed based on the water temperature in the water supply tank 3. In the present embodiment, the target temperature is set higher than the water temperature in the water supply tank 3 unless the water temperature in the water supply tank 3 exceeds the upper limit temperature. Specifically, during water supply through the water supply path 8, the water temperature in the water supply tank 3 is monitored by the stored water temperature sensor 32 (for example, the water temperature in the water supply tank 3 is acquired every predetermined time), and the stored water temperature sensor 32 is monitored. Unless the detected temperature exceeds the upper limit temperature, the target temperature is set to a temperature higher than the detected temperature of the stored water temperature sensor 32, and the hot water temperature constant control is performed.

たとえば、給水タンク3内の水温が上限温度を超えない限り、前記目標温度を給水タンク3内の水温よりも所定温度だけ高い温度とする。この際、その所定温度は、給水タンク3内の水位に基づき変更してもよく、たとえば、給水タンク3内の水位が低くなるほど小さな値に変更してもよい。   For example, unless the water temperature in the water supply tank 3 exceeds the upper limit temperature, the target temperature is set higher than the water temperature in the water supply tank 3 by a predetermined temperature. At this time, the predetermined temperature may be changed based on the water level in the water supply tank 3, for example, may be changed to a smaller value as the water level in the water supply tank 3 becomes lower.

具体例として、前記上限温度が80℃、前記所定温度が10℃であるとすると、給水タンク3内の水温が80℃以下なら、給水タンク3内の水温に10℃を加算した値を目標温度にして、出湯温度一定制御を実施すればよい。たとえば、貯留水温度センサ32の検出温度が40℃であれば、給水ポンプ10の作動中、出湯温度センサ31の検出温度を50℃にするように、給水ポンプ10をインバータ制御して、給水路8を介した給水流量を調整する。また、貯留水温度センサ32の検出温度が50℃であれば、給水ポンプ10の作動中、出湯温度センサ31の検出温度を60℃にするように、給水ポンプ10をインバータ制御して、給水路8を介した給水流量を調整する。一方、貯留水温度センサ32の検出温度が上限温度としての80℃を超えると、前記目標温度を上限温度(80℃)またはそれよりも規定温度だけ低い温度(たとえば75℃)に設定して、出湯温度一定制御を実施するのがよい。なお、ここで述べた上限温度80℃や所定温度10℃は一例であって、適宜に変更可能である。但し、上限温度は、給水タンク3からボイラ2への送水用のポンプ7に、キャビテーションを生じさせない範囲で設定される。   As a specific example, when the upper limit temperature is 80 ° C. and the predetermined temperature is 10 ° C., if the water temperature in the water supply tank 3 is 80 ° C. or less, a value obtained by adding 10 ° C. to the water temperature in the water supply tank 3 is set as the target temperature. Thus, the hot water temperature constant control may be performed. For example, if the detected temperature of the stored water temperature sensor 32 is 40 ° C., the feed water pump 10 is inverter-controlled so that the detected temperature of the tapping temperature sensor 31 is 50 ° C. during operation of the feed water pump 10, and the water supply channel Adjust the feed water flow rate through 8. If the temperature detected by the stored water temperature sensor 32 is 50 ° C., the water feed pump 10 is inverter-controlled so that the temperature detected by the tapping water temperature sensor 31 is 60 ° C. during operation of the water feed pump 10, Adjust the feed water flow rate through 8. On the other hand, when the detected temperature of the stored water temperature sensor 32 exceeds 80 ° C. as the upper limit temperature, the target temperature is set to the upper limit temperature (80 ° C.) or a temperature lower by a specified temperature (for example, 75 ° C.), It is preferable to carry out constant tapping temperature control. The upper limit temperature of 80 ° C. and the predetermined temperature of 10 ° C. described here are examples, and can be changed as appropriate. However, the upper limit temperature is set in a range that does not cause cavitation in the pump 7 for water supply from the water supply tank 3 to the boiler 2.

このように、出湯温度一定制御の目標温度を給水タンク3内の水温よりも高い温度とすることで、給水タンク3内の水温の低下を防止することができる。但し、給水タンク3内の水温が上限温度を超える場合には、目標温度を給水タンク3内の水温以下とすることで、給水タンク3からボイラ2などへの送水用のポンプ7のキャビテーションを防止することができる。   In this way, by setting the target temperature of the hot water temperature constant control to a temperature higher than the water temperature in the water supply tank 3, it is possible to prevent the water temperature in the water supply tank 3 from being lowered. However, when the water temperature in the water supply tank 3 exceeds the upper limit temperature, the target temperature is set to be equal to or lower than the water temperature in the water supply tank 3 to prevent cavitation of the pump 7 for water supply from the water supply tank 3 to the boiler 2 or the like. can do.

なお、出湯温度一定制御の目標温度を給水タンク3内の水温に基づき変更制御する場合、給水タンク3の水位検出器22は、出湯温度切替水位H5,H6の検出は不要である。言い換えれば、図1において、各出湯温度切替電極棒27,28の設置は省略可能である。   In addition, when changing and controlling the target temperature of the hot water temperature constant control based on the water temperature in the water supply tank 3, the water level detector 22 of the water supply tank 3 does not need to detect the hot water temperature switching water levels H5 and H6. In other words, in FIG. 1, the installation of each tapping temperature switching electrode rod 27, 28 can be omitted.

≪(b)給水タンク3内の水位に基づく変更制御≫
出湯温度一定制御の目標温度を、給水タンク3内の水位に基づき変更する。本実施例では、給水タンク3内の水位が低くなるほど、前記目標温度を段階的にまたは連続的に低い温度とする。具体的には、給水路8を介した給水中、給水タンク3内の水位を水位検出器22により監視し、給水タンク3内の水位が低くなるほど、前記目標温度を下げて、出湯温度一定制御を実施する。
<< (b) Change control based on the water level in the water supply tank 3 >>
The target temperature of the hot water temperature constant control is changed based on the water level in the water supply tank 3. In this embodiment, the lower the water level in the water supply tank 3, the lower the target temperature in steps or continuously. Specifically, the water level in the water supply tank 3 during water supply through the water supply path 8 is monitored by the water level detector 22, and as the water level in the water supply tank 3 becomes lower, the target temperature is lowered and the hot water temperature constant control is performed. To implement.

本実施例では、給水タンク3内の水位が給水開始水位を下回ると、給水路8を介した給水を開始し、その際、出湯温度一定制御を行う。そして、その出湯温度一定制御の目標温度を第一目標温度(たとえば90℃)とする。その後、第一出湯温度切替水位H5を下回ると、前記目標温度を第一目標温度よりも低い第二目標温度(たとえば75℃)に変更する。出湯温度一定制御では、目標温度を下げるほど、流量を増すことができる。   In this embodiment, when the water level in the water supply tank 3 falls below the water supply start water level, water supply via the water supply path 8 is started, and at that time, the hot water temperature constant control is performed. And let the target temperature of the tapping temperature constant control be a 1st target temperature (for example, 90 degreeC). Thereafter, when the temperature falls below the first hot water temperature switching water level H5, the target temperature is changed to a second target temperature (for example, 75 ° C.) lower than the first target temperature. In the hot water temperature constant control, the flow rate can be increased as the target temperature is lowered.

さて、第二目標温度にて出湯温度一定制御を実施することにより、水位が回復し、給水開始水位H1を上回れば、目標温度を第一目標温度に戻し、さらに給水停止水位H2を上回れば、給水を停止する。一方、第二目標温度にて出湯温度一定制御を実施しても、給水タンク3内の水位が回復せず、さらに水位が低下して第二出湯温度切替水位H6を下回れば、目標温度を第二目標温度よりも低い第三目標温度(たとえば55℃)に変更する。これにより水位が回復し、第一出湯温度切替水位H5を上回れば、目標温度を第二目標温度に戻し、給水開始水位H1を上回れば、目標温度を第一目標温度に戻し、給水停止水位H2を上回れば、給水を停止する。   Now, by carrying out the hot water temperature constant control at the second target temperature, if the water level recovers and exceeds the water supply start water level H1, the target temperature is returned to the first target temperature, and if it exceeds the water supply stop water level H2, Stop water supply. On the other hand, even if the hot water temperature constant control is performed at the second target temperature, if the water level in the feed water tank 3 does not recover and the water level further falls below the second hot water temperature switching water level H6, the target temperature is set to the first temperature. The temperature is changed to a third target temperature (for example, 55 ° C.) lower than the second target temperature. As a result, the water level recovers, and if the first hot water temperature switching water level H5 is exceeded, the target temperature is returned to the second target temperature, and if the water supply start water level H1 is exceeded, the target temperature is returned to the first target temperature and the water supply stop water level H2 If it exceeds, water supply is stopped.

なお、ここでは、給水開始水位H1、第一出湯温度切替水位H5および第二出湯温度切替水位H6の三段階で、目標温度を切り替える例を説明したが、何段階で切り替えるかは適宜に変更可能である。また、給水タンク3内の水位が低くなるほど目標温度を下げるのであれば、各段階の目標温度を何度にするかは適宜に変更可能である。   In addition, although the example which switches target temperature in three steps, the water supply start water level H1, the 1st hot water temperature switching water level H5, and the 2nd hot water temperature switching water level H6 was demonstrated here, it can change suitably in what step. It is. Further, if the target temperature is lowered as the water level in the water supply tank 3 is lowered, it is possible to appropriately change how many times the target temperature in each stage is set.

たとえば、図1において、第二出湯温度切替電極棒28の設置を省略して、第一目標温度と第二目標温度との二段階で目標温度を切り替えてもよい。あるいは、図1において、第二出湯温度切替水位H6と補給水開始水位H3との間に、第三出湯温度切替水位を検出可能に第三出湯温度切替電極棒を追加して、四段階で目標温度を切り替えてもよい。また、後述するように、給水タンク3内の水位を連続的に検出できる水位センサを用いる場合、給水タンク3内の水位低下に伴い連続的にまたは設定高さごとに目標温度を下げるように制御してもよい。   For example, in FIG. 1, the installation of the second hot water temperature switching electrode rod 28 may be omitted, and the target temperature may be switched in two stages of the first target temperature and the second target temperature. Alternatively, in FIG. 1, a third tapping temperature switching electrode bar is added between the second tapping temperature switching water level H6 and the makeup water start water level H3 so that the third tapping temperature switching water level can be detected, and the target is set in four stages. The temperature may be switched. Further, as will be described later, when a water level sensor capable of continuously detecting the water level in the water supply tank 3 is used, the target temperature is controlled to decrease continuously or at every set height as the water level in the water supply tank 3 decreases. May be.

このように、出湯温度一定制御の目標温度を、給水タンク3内の水位が低くなるほど下げることができる。出湯温度一定制御では、目標温度を下げるほど流量を増すことができるので、給水タンク3内の水位が下がるほど目標温度を下げることで、給水タンク3への流量を増して水位の回復を図ることができる。これにより、補給水路9経由の比較的低温の水(常温水)が給水タンク3へ供給されるのを抑制して、給水タンク3内の水温の低下を防止することができる。   Thus, the target temperature of the hot water temperature constant control can be lowered as the water level in the water supply tank 3 becomes lower. In the hot water temperature constant control, the flow rate can be increased as the target temperature is lowered. Therefore, the target temperature is lowered as the water level in the feed water tank 3 is lowered, so that the flow rate to the feed water tank 3 is increased to restore the water level. Can do. Thereby, it can suppress that the comparatively low temperature water (normal temperature water) via the supplementary water channel 9 is supplied to the feed water tank 3, and can prevent the fall of the water temperature in the feed water tank 3. FIG.

ところで、出湯温度一定制御の目標温度を下げることは、次のようなメリットもある。まず、前提として、蒸発器15入口側の熱源水温度は一定であるとし、また、凝縮器13出口側の水温(前記目標温度)は蒸発器15入口側の熱源水温度よりも高い。この場合において、凝縮器13出口側の水温と蒸発器15の入口側熱源水温度との温度差が小さいほど(つまり汲み上げる温度差が小さいほど)、圧縮機12の消費電力は少なく、COPは向上する。従って、出湯温度一定制御の目標温度を下げることは、給水加温システム1を省エネルギで運転できることになる。また、前記目標温度を下げると通水量を増すことができるが、その結果、廃熱回収熱交換器17おける給水の加温量を増すことができる。従って、この点からも、出湯温度一定制御の目標温度を下げることは、給水加温システム1を省エネルギで運転できることになる。   By the way, lowering the target temperature of the hot water temperature constant control has the following merit. First, it is assumed that the heat source water temperature at the inlet side of the evaporator 15 is constant, and the water temperature at the outlet side of the condenser 13 (the target temperature) is higher than the heat source water temperature at the inlet side of the evaporator 15. In this case, the smaller the temperature difference between the water temperature at the outlet side of the condenser 13 and the inlet side heat source water temperature of the evaporator 15 (that is, the smaller the temperature difference to be pumped), the smaller the power consumption of the compressor 12 and the COP. To do. Therefore, lowering the target temperature of the hot water temperature constant control can operate the feed water heating system 1 with energy saving. Further, when the target temperature is lowered, the amount of water flow can be increased, but as a result, the amount of water supplied in the waste heat recovery heat exchanger 17 can be increased. Therefore, also from this point, lowering the target temperature of the hot water temperature constant control can operate the feed water heating system 1 with energy saving.

≪(c)給水タンク3内の水温および水位に基づく変更制御≫
出湯温度一定制御の目標温度を、給水タンク3内の水温および水位に基づき変更する。この場合、前記(a)と前記(b)の各制御を組み合わせればよい。すなわち、基本的には、前記(b)のとおり、水位に応じて、出湯温度一定制御の目標温度を変更する。たとえば、給水開始水位H1を下回ると第一目標温度(たとえば90℃)での出湯とし、第一出湯温度切替水位H5を下回ると第二目標温度(たとえば75℃)での出湯に切り替え、第二出湯温度切替水位H6を下回ると第三目標温度(たとえば55℃)での出湯に切り替えればよい。もちろん、前記(b)で述べたように、二段階の水位で目標温度を切り替えてもよいし、三段階以上の水位で目標温度を切り替えてもよいし、連続的に目標温度を切り替えてもよい。
<< (c) Change control based on water temperature and water level in the water supply tank 3 >>
The target temperature of the hot water temperature constant control is changed based on the water temperature and water level in the water supply tank 3. In this case, the controls (a) and (b) may be combined. That is, basically, as shown in (b), the target temperature of the hot water temperature constant control is changed according to the water level. For example, when it falls below the water supply start water level H1, the hot water is discharged at the first target temperature (for example, 90 ° C.), and when it falls below the first hot water temperature switching water level H5, it is switched to the hot water at the second target temperature (for example, 75 ° C.). If it falls below the tapping temperature switching water level H6, it may be switched to tapping at the third target temperature (for example, 55 ° C.). Of course, as described in (b) above, the target temperature may be switched at two stages of water levels, the target temperature may be switched at three or more stages, or the target temperature may be switched continuously. Good.

そして、給水タンク3内の水位だけでなく水温でも目標温度を変更するには、給水タンク3内の水温に応じて、出湯温度に制限をかければよい。つまり、前記(a)で述べたように、給水タンク3内の水温が上限温度を超えない限り、目標温度を給水タンク3内の水温よりも高い温度とすればよい。たとえば、給水タンク3内の水位が第二出湯温度切替水位H6を下回ると、上述の例では第三目標温度(たとえば55℃)に切り替えるのが本来であるが、給水タンク3内の水温が65℃であるとすると、第二目標温度(たとえば75℃)のままとする。   In order to change the target temperature not only at the water level in the water supply tank 3 but also at the water temperature, the hot water temperature may be limited according to the water temperature in the water supply tank 3. That is, as described in the above (a), the target temperature may be set higher than the water temperature in the water supply tank 3 as long as the water temperature in the water supply tank 3 does not exceed the upper limit temperature. For example, when the water level in the water supply tank 3 falls below the second hot water temperature switching water level H6, in the above example, the water temperature in the water supply tank 3 is 65, although it is originally switched to the third target temperature (for example, 55 ° C.). If it is ° C., the second target temperature (for example, 75 ° C.) is maintained.

このように、基本的には給水タンク3内の水位に基づいて、出湯温度一定制御の目標温度を設定するが、給水タンク3内の水温がその目標温度(水位による目標温度)よりも高ければ、給水タンク3内の水温よりも高い目標温度とするのがよい。その際、給水タンク3内の水温に所定温度を加算した温度を目標温度してもよいし、水位から段階的に設定される目標温度(第一目標温度〜第三目標温度)の内、給水タンク3内の水温よりも高い温度を採用してもよい。但し、前記(a)で述べたように、給水タンク3内の水温が上限温度を超える場合、その上限温度以下で目標温度を設定するのがよい。   Thus, basically, the target temperature of the hot water temperature constant control is set based on the water level in the water supply tank 3, but if the water temperature in the water supply tank 3 is higher than the target temperature (target temperature depending on the water level). The target temperature is preferably higher than the water temperature in the water supply tank 3. At that time, a temperature obtained by adding a predetermined temperature to the water temperature in the water supply tank 3 may be set as a target temperature, or water supply within a target temperature (first target temperature to third target temperature) set stepwise from the water level. A temperature higher than the water temperature in the tank 3 may be adopted. However, as described in (a) above, when the water temperature in the water supply tank 3 exceeds the upper limit temperature, the target temperature should be set below the upper limit temperature.

本発明の給水加温システム1は、前記実施例の構成に限らず、適宜変更可能である。特に、ヒートポンプ4と給水タンク3とを備えた給水加温システム1において、ヒートポンプ4を介した給水タンク3への給水中、凝縮器13の出口側水温を目標温度に維持するように給水流量を調整し、給水タンク3内の水温および/または水位に基づき、前記目標温度を変更するのであれば、その他の構成および制御は適宜に変更可能である。   The feed water warming system 1 of the present invention is not limited to the configuration of the above embodiment, and can be changed as appropriate. In particular, in the feed water heating system 1 including the heat pump 4 and the feed water tank 3, the feed water flow rate is adjusted so that the water temperature to the feed water tank 3 through the heat pump 4 and the outlet water temperature of the condenser 13 are maintained at the target temperature. If the target temperature is adjusted and changed based on the water temperature and / or water level in the water supply tank 3, other configurations and controls can be changed as appropriate.

たとえば、前記実施例において、過冷却器16と廃熱回収熱交換器17との内、一方または双方の設置を省略してもよい。   For example, in the embodiment, installation of one or both of the supercooler 16 and the waste heat recovery heat exchanger 17 may be omitted.

また、前記実施例において、補給水停止水位H4と給水開始水位H1とを入れ替えてもよい。つまり、給水停止電極棒24、給水開始電極棒23、補給水停止電極棒26、補給水開始電極棒25の順に、下端部の高さ位置を低くして、給水タンク3に挿入してもよい。   In the embodiment, the makeup water stop water level H4 and the water supply start water level H1 may be interchanged. That is, the water supply stop electrode rod 24, the water supply start electrode rod 23, the makeup water stop electrode rod 26, and the makeup water start electrode rod 25 may be inserted into the water supply tank 3 with the lower end lowered in height. .

また、前記実施例では、給水タンク3の水位検出器22として、電極式水位検出器を用いたが、水位に応じた連続的な出力を得られるアナログ式水位検出器を用いてもよい。具体的には、給水タンク3内の水位に応じて水圧が変わることを利用した水圧式の水位検出器を用いることができるが、これに代えて圧力センサを用いることもできる。あるいは、静電容量式の水位検出器を用いることもできる。いずれの場合も、前記実施例と同様の制御を実施することができる。   Moreover, in the said Example, although the electrode type water level detector was used as the water level detector 22 of the water supply tank 3, you may use the analog type water level detector which can obtain the continuous output according to a water level. Specifically, a water pressure type water level detector using the fact that the water pressure changes according to the water level in the water supply tank 3 can be used, but a pressure sensor can be used instead. Alternatively, a capacitive water level detector can be used. In either case, the same control as in the above embodiment can be performed.

また、前記実施例では、給水路8を介した給水タンク3への給水流量を調整するために、給水ポンプ10をインバータ制御したが、給水ポンプ10をオンオフ制御しつつ、給水路8に設けた弁の開度を調整してもよい。つまり、出湯温度センサ31の検出温度などに基づき給水路8を介した給水の流量を調整可能であれば、その流量調整方法は適宜に変更可能である。   Moreover, in the said Example, in order to adjust the water supply flow volume to the water supply tank 3 via the water supply path 8, the water supply pump 10 was inverter-controlled, However, The water supply pump 10 was provided in the water supply path 8 while performing on-off control. You may adjust the opening degree of a valve. That is, if the flow rate of the water supply through the water supply channel 8 can be adjusted based on the temperature detected by the tapping temperature sensor 31, the flow rate adjustment method can be changed as appropriate.

また、前記実施例の場合、給水タンク3に、凝縮器13を介して給水路8により給水可能であると共に、凝縮器13を介さずに補給水路9により給水可能であれば、給水路8や補給水路9の具体的構成は、前記実施例の構成に限らず適宜変更可能である。たとえば、前記実施例では、給水路8と補給水路9とは、それぞれ補給水タンク5と給水タンク3とを接続するように並列に設けたが、給水路8と補給水路9との一端部(補給水タンク5側の端部)と他端部(給水タンク3側の端部)の一方または双方は、共通の管路としてもよい。言い換えれば、補給水路9の一端部は、補給水タンク5に接続するのではなく、給水路8から分岐するように設けてもよいし、補給水路9の他端部は、給水タンク3に接続するのではなく、給水タンク3の手前において給水路8に合流するように設けてもよい。補給水路9の一端部を、補給水タンク5に接続するのではなく、給水路8から分岐するように設ける場合、その分岐部より下流において、給水路8に給水ポンプ10を設ける一方、補給水路9に補給水ポンプ11を設ければよいが、分岐部よりも上流側の共通管路にのみポンプを設けて、分岐部より下流の給水路8および補給水路9に設けた弁の開閉や開度を調整することで、給水路8や補給水路9への通水の有無や流量を調整してもよい。   In the case of the above embodiment, if the water supply tank 3 can be supplied with water by the water supply path 8 through the condenser 13 and can be supplied by the replenishment water path 9 without through the condenser 13, the water supply path 8 or The specific configuration of the replenishment water channel 9 is not limited to the configuration of the above embodiment, and can be changed as appropriate. For example, in the above-described embodiment, the water supply channel 8 and the supply water channel 9 are provided in parallel so as to connect the supply water tank 5 and the water supply tank 3, respectively, but one end portion of the water supply channel 8 and the supply water channel 9 ( One or both of the end portion on the make-up water tank 5 side and the other end portion (the end portion on the water supply tank 3 side) may be a common conduit. In other words, one end of the makeup water channel 9 may be provided so as to branch from the water supply channel 8 instead of being connected to the makeup water tank 5, and the other end of the makeup water channel 9 is connected to the water supply tank 3. Instead, it may be provided so as to join the water supply path 8 before the water supply tank 3. When one end portion of the replenishment water channel 9 is provided so as to branch from the water supply channel 8 instead of being connected to the replenishment water tank 5, the water supply pump 10 is provided in the water supply channel 8 downstream from the branching unit, while the replenishment water channel 9 may be provided with a supplementary water pump 11, but a pump is provided only in the common pipe upstream of the branch portion, and the valves provided in the water supply passage 8 and the supplementary water passage 9 downstream of the branch portion are opened and closed and opened. By adjusting the degree, the presence / absence of water flow to the water supply channel 8 and the supply water channel 9 and the flow rate may be adjusted.

また、前記実施例では、給水タンク3への給水を貯留するために補給水タンク5を設置したが、場合により補給水タンク5の設置を省略して、給水源から直接に給水路8および補給水路9に水を通してもよい。   Moreover, in the said Example, although the supplementary water tank 5 was installed in order to store the water supply to the water supply tank 3, installation of the supplementary water tank 5 may be abbreviate | omitted by the case, and the water supply path 8 and the supplement may be directly from a water supply source. Water may be passed through the water channel 9.

また、前記実施例では、給水路8および/または補給水路9を介して、補給水タンク5から給水タンク3へ給水可能としたが、これら給水は、硬水軟化装置から直接に行ってもよい。たとえば、図1において、給水路8および補給水路9の基端部をまとめて硬水軟化装置に接続し、給水ポンプ10の設置を省略する代わりに給水路8に設けた電動弁(モータバルブ)の開度を調整し、補給水ポンプ11の設置を省略する代わりに補給水路9に設けた電磁弁の開閉を制御すればよい。   Moreover, in the said Example, although it was made possible to supply water to the water supply tank 3 from the makeup water tank 5 via the water supply path 8 and / or the makeup water path 9, these water supply may be performed directly from a hard water softening apparatus. For example, in FIG. 1, instead of omitting the installation of the water supply pump 10, the base end portions of the water supply path 8 and the replenishment water path 9 are collectively connected to the water softening device, and an electric valve (motor valve) provided in the water supply path 8 is used. Instead of adjusting the opening and omitting the installation of the makeup water pump 11, the opening and closing of the electromagnetic valve provided in the makeup water channel 9 may be controlled.

また、前記実施例では、ボイラ2の給水タンク3への給水をヒートポンプ4で加温できるシステムについて説明したが、給水タンク3の貯留水の利用先は、ボイラ2に限らず適宜に変更可能である。   Moreover, although the said Example demonstrated the system which can heat the water supply to the feed water tank 3 of the boiler 2 with the heat pump 4, the utilization place of the stored water of the feed water tank 3 is not restricted to the boiler 2, and can be changed suitably. is there.

また、前記実施例では、ヒートポンプ4の熱源として熱源水を用いた例について説明したが、ヒートポンプ4の熱源流体として、熱源水に限らず、空気や排ガスなど各種の流体を用いることができる。   Moreover, although the said Example demonstrated the example using heat-source water as a heat source of the heat pump 4, as a heat-source fluid of the heat pump 4, not only heat-source water but various fluids, such as air and waste gas, can be used.

また、前記実施例では、ヒートポンプ4を運転する際、圧縮機12のモータの駆動周波数を一定に維持したが、場合により、圧縮機12の吐出圧を所定に維持するように制御してもよい。あるいは、蒸発器15への熱源流体温度に基づき、圧縮機12の出力を調整してもよい。   Moreover, in the said Example, when operating the heat pump 4, the drive frequency of the motor of the compressor 12 was maintained constant, but you may control so that the discharge pressure of the compressor 12 may be maintained by the case. . Alternatively, the output of the compressor 12 may be adjusted based on the heat source fluid temperature to the evaporator 15.

また、ヒートポンプ4は、単段に限らず複数段とすることもできる。ヒートポンプ4を複数段にする場合、隣接する段のヒートポンプ同士は、間接熱交換器を用いて接続されてもよいし、直接熱交換器(中間冷却器)を用いて接続されてもよい。後者の場合、低段ヒートポンプの圧縮機からの冷媒と高段ヒートポンプの膨張弁からの冷媒とを受けて、両冷媒を直接に接触させて熱交換する中間冷却器を備え、この中間冷却器が低段ヒートポンプの凝縮器であると共に高段ヒートポンプの蒸発器とされる。このように、複数段(多段)のヒートポンプには、一元多段のヒートポンプの他、複数元(多元)のヒートポンプ、あるいはそれらの組合せのヒートポンプが含まれる。   Further, the heat pump 4 is not limited to a single stage, and may be a plurality of stages. When the heat pump 4 has a plurality of stages, adjacent stage heat pumps may be connected using an indirect heat exchanger, or may be connected using a direct heat exchanger (intercooler). In the latter case, an intermediate cooler that receives the refrigerant from the compressor of the low stage heat pump and the refrigerant from the expansion valve of the high stage heat pump and exchanges heat by directly contacting both refrigerants is provided. It is a low-stage heat pump condenser and a high-stage heat pump evaporator. As described above, the multi-stage (multi-stage) heat pump includes a single-stage multi-stage heat pump, a multi-element (multi-element) heat pump, or a combination thereof.

さらに、前記実施例では、ヒートポンプ4の圧縮機12は、電気モータにより駆動されたが、圧縮機12の駆動源は特に問わない。たとえば、圧縮機12は、電気モータに代えてまたはそれに加えて、蒸気を用いて動力を起こすスチームモータ(蒸気エンジン)に駆動されたり、ガスエンジンにより駆動されたりしてもよい。   Furthermore, in the said Example, although the compressor 12 of the heat pump 4 was driven by the electric motor, the drive source of the compressor 12 is not ask | required in particular. For example, the compressor 12 may be driven by a steam motor (steam engine) that generates power using steam instead of or in addition to the electric motor, or may be driven by a gas engine.

1 給水加温システム
2 ボイラ
3 給水タンク
4 ヒートポンプ
5 補給水タンク
6 熱源水タンク
7 ポンプ
8 給水路
9 補給水路
10 給水ポンプ
11 補給水ポンプ
12 圧縮機
13 凝縮器
14 膨張弁
15 蒸発器
16 過冷却器
17 廃熱回収熱交換器
18 熱源供給路
19 熱源水の供給路
20 オーバーフロー路
21 熱源供給ポンプ
22 水位検出器
23 給水開始電極棒
24 給水停止電極棒
25 補給水開始電極棒
26 補給水停止電極棒
27 第一出湯温度切替電極棒
28 第二出湯温度切替電極棒
29 水位検出器
30 低水位検出電極棒
31 出湯温度センサ
32 貯留水温度センサ
H1 給水開始水位
H2 給水停止水位
H3 補給水開始水位
H4 補給水停止水位
H5 第一出湯温度切替水位
H6 第二出湯温度切替水位
DESCRIPTION OF SYMBOLS 1 Supply water heating system 2 Boiler 3 Supply water tank 4 Heat pump 5 Supply water tank 6 Heat source water tank 7 Pump 8 Supply water path 9 Supply water path 10 Supply water pump 11 Supply water pump 12 Compressor 13 Condenser 14 Expansion valve 15 Evaporator 16 Supercooling Equipment 17 Waste heat recovery heat exchanger 18 Heat source supply path 19 Heat source water supply path 20 Overflow path 21 Heat source supply pump 22 Water level detector 23 Water supply start electrode rod 24 Water supply stop electrode rod 25 Supply water start electrode rod 26 Supply water stop electrode Rod 27 First hot water temperature switching electrode rod 28 Second hot water temperature switching electrode rod 29 Water level detector 30 Low water level detection electrode rod 31 Hot water temperature sensor 32 Reservoir temperature sensor H1 Water supply start water level H2 Water supply stop water level H3 Supply water start water level H4 Makeup water stop water level H5 First hot water temperature switching water level H6 Second hot water temperature switching water level

Claims (3)

圧縮機、凝縮器、膨張弁および蒸発器が順次環状に接続されて冷媒を循環させ、前記蒸発器に通される熱源流体から熱をくみ上げ、前記凝縮器に通される水を加温するヒートポンプと、
前記凝縮器を介して給水路により給水可能であると共に、前記凝縮器を介さずに補給水路により給水可能な給水タンクとを備え、
前記給水路を介した前記給水タンクへの給水中、前記凝縮器の出口側水温を目標温度に維持するように給水流量を調整し、
前記給水タンク内の水温および/または水位に基づき、前記目標温度を変更する
ことを特徴とする給水加温システム。
A compressor, a condenser, an expansion valve, and an evaporator are sequentially connected in an annular manner to circulate the refrigerant, draw up heat from a heat source fluid that passes through the evaporator, and heat water that passes through the condenser When,
A water supply tank capable of supplying water through the condenser through the water supply channel and capable of supplying water through the replenishment channel without using the condenser;
During the water supply to the water supply tank via the water supply path, the water supply flow rate is adjusted so as to maintain the outlet side water temperature of the condenser at a target temperature,
The target water heating system, wherein the target temperature is changed based on a water temperature and / or a water level in the water tank.
前記凝縮器より上流側の前記給水路の水と、前記凝縮器から前記膨張弁への冷媒とを熱交換する過冷却器と、
この過冷却器より上流側の前記給水路の水と、前記蒸発器を通過後の熱源流体とを熱交換する廃熱回収熱交換器とをさらに備え、
前記給水路を介した前記給水タンクへの給水は、前記給水タンク内の水位が給水開始水位を下回ると開始し、この給水開始水位よりも高い給水停止水位を上回ると停止し、
前記補給水路を介した前記給水タンクへの給水は、前記給水タンク内の水位が前記給水開始水位よりも低い補給水開始水位を下回ると開始し、前記給水開始水位よりも高いが前記給水停止水位よりも低い補給水停止水位を上回ると停止し、
前記給水タンク内の水温が上限温度を超えない限り、前記目標温度を前記給水タンク内の水温よりも高い温度とする
ことを特徴とする請求項1に記載の給水加温システム。
A subcooler for exchanging heat between water in the water supply channel upstream of the condenser and refrigerant from the condenser to the expansion valve;
A waste heat recovery heat exchanger for exchanging heat between the water in the water supply channel upstream of the subcooler and the heat source fluid after passing through the evaporator;
Water supply to the water supply tank via the water supply channel starts when the water level in the water supply tank falls below the water supply start water level, and stops when the water supply stop water level is higher than the water supply start water level,
Water supply to the water supply tank via the make-up water channel starts when the water level in the water supply tank falls below a make-up water start water level lower than the water supply start water level, and is higher than the water supply start water level, but the water supply stop water level Stops when the lower makeup water stop water level is exceeded,
The feed water heating system according to claim 1, wherein the target temperature is set to a temperature higher than the water temperature in the feed water tank as long as the water temperature in the feed water tank does not exceed an upper limit temperature.
前記凝縮器より上流側の前記給水路の水と、前記凝縮器から前記膨張弁への冷媒とを熱交換する過冷却器と、
この過冷却器より上流側の前記給水路の水と、前記蒸発器を通過後の熱源流体とを熱交換する廃熱回収熱交換器とをさらに備え、
前記給水路を介した前記給水タンクへの給水は、前記給水タンク内の水位が給水開始水位を下回ると開始し、この給水開始水位よりも高い給水停止水位を上回ると停止し、
前記補給水路を介した前記給水タンクへの給水は、前記給水タンク内の水位が前記給水開始水位よりも低い補給水開始水位を下回ると開始し、前記給水開始水位よりも高いが前記給水停止水位よりも低い補給水停止水位を上回ると停止し、
前記目標温度は、前記給水タンク内の水位が低くなるほど、段階的にまたは連続的に低下するよう変更される
ことを特徴とする請求項1または請求項2に記載の給水加温システム。
A subcooler for exchanging heat between water in the water supply channel upstream of the condenser and refrigerant from the condenser to the expansion valve;
A waste heat recovery heat exchanger for exchanging heat between the water in the water supply channel upstream of the subcooler and the heat source fluid after passing through the evaporator;
Water supply to the water supply tank via the water supply channel starts when the water level in the water supply tank falls below the water supply start water level, and stops when the water supply stop water level is higher than the water supply start water level,
Water supply to the water supply tank via the make-up water channel starts when the water level in the water supply tank falls below a make-up water start water level lower than the water supply start water level, and is higher than the water supply start water level, but the water supply stop water level Stops when the lower makeup water stop water level is exceeded,
The feed water heating system according to claim 1 or 2, wherein the target temperature is changed stepwise or continuously as the water level in the feed water tank becomes lower.
JP2016028647A 2016-02-18 2016-02-18 Water supply heating system Active JP6694582B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016028647A JP6694582B2 (en) 2016-02-18 2016-02-18 Water supply heating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016028647A JP6694582B2 (en) 2016-02-18 2016-02-18 Water supply heating system

Publications (2)

Publication Number Publication Date
JP2017146033A true JP2017146033A (en) 2017-08-24
JP6694582B2 JP6694582B2 (en) 2020-05-20

Family

ID=59682176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016028647A Active JP6694582B2 (en) 2016-02-18 2016-02-18 Water supply heating system

Country Status (1)

Country Link
JP (1) JP6694582B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020051644A (en) * 2018-09-25 2020-04-02 三浦工業株式会社 Water supply heating unit
JP2020051651A (en) * 2018-09-25 2020-04-02 三浦工業株式会社 Boiler system
JP2020051643A (en) * 2018-09-25 2020-04-02 三浦工業株式会社 Hot water manufacturing system
JP2020133949A (en) * 2019-02-14 2020-08-31 三浦工業株式会社 Hot water producing system
JP2020133948A (en) * 2019-02-14 2020-08-31 三浦工業株式会社 Hot water producing system
JP2021134937A (en) * 2020-02-21 2021-09-13 三浦工業株式会社 Hot water manufacturing device and hot water manufacturing system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014169823A (en) * 2013-03-04 2014-09-18 Miura Co Ltd Feedwater heating system
JP2014169817A (en) * 2013-03-04 2014-09-18 Miura Co Ltd Feedwater heating system
JP2014169845A (en) * 2013-03-05 2014-09-18 Miura Co Ltd Water supply warming system
JP2015078827A (en) * 2013-09-13 2015-04-23 三浦工業株式会社 Feed-water heating system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014169823A (en) * 2013-03-04 2014-09-18 Miura Co Ltd Feedwater heating system
JP2014169817A (en) * 2013-03-04 2014-09-18 Miura Co Ltd Feedwater heating system
JP2014169845A (en) * 2013-03-05 2014-09-18 Miura Co Ltd Water supply warming system
JP2015078827A (en) * 2013-09-13 2015-04-23 三浦工業株式会社 Feed-water heating system

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020051644A (en) * 2018-09-25 2020-04-02 三浦工業株式会社 Water supply heating unit
JP2020051651A (en) * 2018-09-25 2020-04-02 三浦工業株式会社 Boiler system
JP2020051643A (en) * 2018-09-25 2020-04-02 三浦工業株式会社 Hot water manufacturing system
JP7103114B2 (en) 2018-09-25 2022-07-20 三浦工業株式会社 Boiler system
JP7167593B2 (en) 2018-09-25 2022-11-09 三浦工業株式会社 Water supply heating unit
JP2020133949A (en) * 2019-02-14 2020-08-31 三浦工業株式会社 Hot water producing system
JP2020133948A (en) * 2019-02-14 2020-08-31 三浦工業株式会社 Hot water producing system
JP7379826B2 (en) 2019-02-14 2023-11-15 三浦工業株式会社 hot water production system
JP7379825B2 (en) 2019-02-14 2023-11-15 三浦工業株式会社 hot water production system
JP2021134937A (en) * 2020-02-21 2021-09-13 三浦工業株式会社 Hot water manufacturing device and hot water manufacturing system
JP7435011B2 (en) 2020-02-21 2024-02-21 三浦工業株式会社 Hot water production equipment and hot water production system

Also Published As

Publication number Publication date
JP6694582B2 (en) 2020-05-20

Similar Documents

Publication Publication Date Title
JP5263421B1 (en) Water heating system
JP2017146033A (en) Feedwater heating system
JP2014194315A (en) Water supply and heating system
JP6132188B2 (en) Water heating system
JP6065213B2 (en) Water heating system
JP6164565B2 (en) Water heating system
JP6066072B2 (en) Water heating system
JP2009300055A (en) Heat pump water heater
JP6090568B2 (en) Water heating system
JP6237109B2 (en) Water heating system
JP2013238337A (en) Water supply heating system
JP2015081708A (en) Water supply heating system
JP6249282B2 (en) Water heating system
JP2017146032A (en) Feedwater heating system
JP6066071B2 (en) Water heating system
JP6610950B2 (en) Water heating system
JP6083509B2 (en) Water heating system
JP6065212B2 (en) Water heating system
JP6210204B2 (en) Water heating system
JP2016048126A (en) Supply water heating system
JP2017146034A (en) Feedwater heating system
JP2013238336A (en) Water supply heating system
JP2014169822A (en) Feedwater heating system
JP2015132445A (en) Feedwater heating system
JP6187813B2 (en) Water heating system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200401

R150 Certificate of patent or registration of utility model

Ref document number: 6694582

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250