JP4771201B2 - Production equipment for stabilized hypochlorous acid aqueous solution - Google Patents

Production equipment for stabilized hypochlorous acid aqueous solution Download PDF

Info

Publication number
JP4771201B2
JP4771201B2 JP2005081374A JP2005081374A JP4771201B2 JP 4771201 B2 JP4771201 B2 JP 4771201B2 JP 2005081374 A JP2005081374 A JP 2005081374A JP 2005081374 A JP2005081374 A JP 2005081374A JP 4771201 B2 JP4771201 B2 JP 4771201B2
Authority
JP
Japan
Prior art keywords
pipe
dilution
reaction
water
hypochlorous acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005081374A
Other languages
Japanese (ja)
Other versions
JP2006264996A (en
Inventor
秀孝 逸見
宗司 逸見
健治 田村
Original Assignee
株式会社逸見電機エンジニアリング
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社逸見電機エンジニアリング filed Critical 株式会社逸見電機エンジニアリング
Priority to JP2005081374A priority Critical patent/JP4771201B2/en
Publication of JP2006264996A publication Critical patent/JP2006264996A/en
Application granted granted Critical
Publication of JP4771201B2 publication Critical patent/JP4771201B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、殺菌力に優れた次亜塩素酸が安定して存在する安定化次亜塩素酸水溶液の製造装置に関する。 The present invention relates to an apparatus for producing a stabilized hypochlorous acid aqueous solution in which hypochlorous acid having excellent sterilizing power is stably present.

一般に、殺菌力があるとして知られている次亜塩素酸は、水に塩素を通じることによって無色の水溶液として生成されるもので、式(1)に示すように、副生する塩化水素と共存してのみ存在可能であるとされている。   In general, hypochlorous acid, which is known to have bactericidal activity, is produced as a colorless aqueous solution by passing chlorine through water. As shown in formula (1), it coexists with by-product hydrogen chloride. And can only exist.

Cl2+H2O→HClO+HCl…(1)
このような次亜塩素酸水溶液においては、塩素−酸素結合が酸素−水素結合よりも切断され易いため、著しい弱酸である。また、次亜塩素酸の収率を向上させるためには、触媒として毒性を有する塩化水銀を用いる必要がある。さらに、不安定なので冷暗所に貯蔵することとされているが、実際には貯蔵は困難であり、生成後すぐに使用することが必要なため、試薬として市販されていない状況である。
Cl 2 + H 2 O → HClO + HCl (1)
In such a hypochlorous acid aqueous solution, the chlorine-oxygen bond is more easily broken than the oxygen-hydrogen bond, and thus it is a very weak acid. In order to improve the yield of hypochlorous acid, it is necessary to use toxic mercury chloride as a catalyst. Furthermore, since it is unstable, it is supposed to be stored in a cool and dark place, but in reality it is difficult to store, and it is necessary to use it immediately after generation, so it is not commercially available as a reagent.

さらにまた、次亜塩素酸の生成には塩化水素の副生を伴うため、式(2)(3)に示すように、生成後は必然的に強酸性水溶液となる。この強酸性水溶液の水素イオン指数(pH値)を上昇させると、ルシャトリエの法則に従い、原系(次亜塩素酸)側に片寄っていた式(3)の平衡状態は、生成系側に片寄り水素イオンと次亜塩素酸イオンへの電離がより促進され、分解反応式(4)が生じる。   Furthermore, since the generation of hypochlorous acid is accompanied by the by-production of hydrogen chloride, as shown in the formulas (2) and (3), it is inevitably a strongly acidic aqueous solution after the generation. When the hydrogen ion exponent (pH value) of this strongly acidic aqueous solution is increased, the equilibrium state of the formula (3) that has been shifted to the original system (hypochlorous acid) side is shifted to the production system side according to Le Chatelier's law. Ionization into hydrogen ions and hypochlorite ions is further promoted, and decomposition reaction formula (4) is generated.

HCl→H++Cl-…(2)
HClO→H++ClO-…(3)
2HClO+ClO-→ClO3+2HCl…(4)
すなわち、従来法によって生成した次亜塩素酸は、塩化水素共存下の強酸性領域でのみしか存在し得ない。そして、このような塩化水素が共存する次亜塩素酸水溶液を使用した場合には、塩素ガスの発生や塩素ガス反応による錆の発生が生じるし、特にアルカリ領域での殺菌効果は期待出来ないとされている。現に、アルカリ領域での殺菌が問題になっていることもその一例である。
HCl → H + + Cl (2)
HClO → H + + ClO (3)
2HClO + ClO → ClO 3 + 2HCl (4)
That is, hypochlorous acid produced by the conventional method can exist only in a strongly acidic region in the presence of hydrogen chloride. And when such a hypochlorous acid aqueous solution coexisting with hydrogen chloride is used, generation of chlorine gas and generation of rust due to chlorine gas reaction occur, and a sterilizing effect in the alkaline region cannot be expected. Has been. One example is the fact that sterilization in the alkaline region is actually a problem.

そこで、近年においては、水に次亜塩素酸ナトリウム及びpH値調整用の希塩酸を添加することで、次亜塩素酸が多く存在するとされる弱酸性領域に調整した次亜塩素酸水溶液を生成するといった試みがなされている。例えば、特許文献1及び2にも、水に次亜塩素酸ナトリウム及び塩酸を添加して次亜塩素酸水溶液を製造する方法について開示されている。   Therefore, in recent years, by adding sodium hypochlorite and dilute hydrochloric acid for adjusting pH value to water, a hypochlorous acid aqueous solution adjusted to a weakly acidic region where a large amount of hypochlorous acid is present is generated. Attempts have been made. For example, Patent Documents 1 and 2 disclose a method for producing a hypochlorous acid aqueous solution by adding sodium hypochlorite and hydrochloric acid to water.

特開2001−321778号公報JP 2001-321778 A 特開平11−188083号公報JP-A-11-188083

しかしながら、水に次亜塩素酸ナトリウム及び希塩酸を添加して生成される従来の次亜塩素酸水溶液は、pH値を安定させることが困難であった。次亜塩素酸水溶液のpH値が高くてアルカリ領域になる場合には、次亜塩素酸があまり存在せずに次亜塩素酸ナトリウムの状態のままで多く存在して殺菌力の低下を招いていた。また、pH値が低くて強酸性領域になる場合には、水に塩素を通じて生成した次亜塩素酸水溶液と同様に塩素ガスが発生するといった不具合があった。   However, it has been difficult to stabilize the pH value of a conventional hypochlorous acid aqueous solution produced by adding sodium hypochlorite and dilute hydrochloric acid to water. When the pH value of the hypochlorous acid aqueous solution is high and it is in the alkaline region, there is not much hypochlorous acid, and it remains in the form of sodium hypochlorite, leading to a decrease in sterilizing power. It was. In addition, when the pH value is low and a strong acidic region is reached, there is a problem that chlorine gas is generated in the same manner as a hypochlorous acid aqueous solution generated by chlorine in water.

さらに、生成時の次亜塩素酸水溶液のpH値が弱酸性領域に調整されていても、時間経過とともに塩素ガスが発生したり、アルカリ領域での殺菌に対して効果を発揮しないといった傾向が見受けられる。   Furthermore, even when the pH value of the hypochlorous acid aqueous solution at the time of production is adjusted to a weakly acidic region, there is a tendency that chlorine gas is generated over time and the effect is not exerted on sterilization in the alkaline region. It is done.

このような不具合が発生する原因としては、次亜塩素酸水溶液の生成に際して、水による次亜塩素酸ナトリウムの希釈反応や、次亜塩素酸ナトリウムと塩酸との中和反応が的確に行われておらず、次亜塩素酸が生成されていても塩化水素と共存した不安定な状態となっており、次亜塩素酸を安定した化合物として生成することが困難であると推察される。   The cause of such problems is that when the aqueous hypochlorous acid solution is produced, the sodium hypochlorite dilution reaction with water and the neutralization reaction between sodium hypochlorite and hydrochloric acid are performed accurately. In addition, even if hypochlorous acid is produced, it is in an unstable state coexisting with hydrogen chloride, and it is assumed that it is difficult to produce hypochlorous acid as a stable compound.

従って、水に次亜塩素酸ナトリウム及び希塩酸を添加して生成される次亜塩素酸水溶液については、殺菌水等として詳しく研究されているが、今だ十分な実用化がなされていないのが実情である。   Therefore, the hypochlorous acid aqueous solution produced by adding sodium hypochlorite and dilute hydrochloric acid to water has been studied in detail as sterilizing water, but the actual situation is that it has not yet been put to practical use. It is.

この発明は、上記の不具合を解消して、塩素ガスが発生せず、しかもアルカリ領域においても優れた殺菌力を発揮する安定した状態の次亜塩素酸を含有する安定化次亜塩素酸水溶液を製造するための製造装置の提供を目的とする。 The present invention eliminates the above-mentioned problems, and provides a stabilized hypochlorous acid aqueous solution containing hypochlorous acid in a stable state that does not generate chlorine gas and exhibits excellent sterilizing power even in an alkaline region. An object is to provide a manufacturing apparatus for manufacturing .

上記課題を解決するため、この発明の安定化次亜塩素酸水溶液の製造装置は、次亜塩素酸ナトリウムを水で均質に希釈する均質化希釈手段と、その希釈水に希塩酸を反応させてpH値を5.0〜6.8の弱酸性領域に調整し、塩化水素を共存させることなく次亜塩素酸と塩化ナトリウムとを含有してなる安定化次亜塩素酸水溶液を生成する安定化反応手段とを備えたことを特徴とする。 In order to solve the above-mentioned problems, the apparatus for producing a stabilized hypochlorous acid aqueous solution of the present invention comprises a homogenizing dilution means for uniformly diluting sodium hypochlorite with water, and reacting the diluted water with diluted hydrochloric acid to adjust the pH. Stabilization reaction that adjusts the value to a weakly acidic region of 5.0 to 6.8 and produces a stabilized hypochlorous acid aqueous solution containing hypochlorous acid and sodium chloride without coexisting hydrogen chloride Means.

具体的に、前記均質化希釈手段は、水と次亜塩素酸ナトリウムとを混合させる混合希釈管路と、その混合希釈管路よりも拡径して、混合後の希釈水を自然拡散させる拡径希釈管路と、その拡径希釈管路の下流側に設けられて、拡散後の希釈水の流れ込みによって渦流を発生させて希釈を促進させる曲がり希釈管路と、その曲がり希釈管路よりも下流側に設けられて、希釈促進後の希釈水を滞留させる滞留希釈管路とを備えている。   Specifically, the homogenization dilution means includes a mixing dilution line for mixing water and sodium hypochlorite, and an expansion for naturally diffusing the diluted water after mixing by expanding the diameter of the mixing dilution pipe. A diameter dilution pipe, a bent dilution pipe that is provided downstream of the enlarged dilution pipe, generates a vortex by the flow of diluted water after diffusion, and promotes dilution, and more than the bent dilution pipe. A retention dilution pipe that is provided on the downstream side and retains the diluted water after the promotion of dilution.

そして、前記拡径希釈管路及び前記滞留希釈管路が上下方向に沿って配置されて、それらの下端部同士が前記曲がり希釈管路によって連結されて全体的に略U字形に連続され、前記拡径希釈管路の上端部に前記混合希釈管路が接続され、前記曲がり希釈管路の底部に希釈水を排出する電磁弁付きの排水管路が接続されている。 And the said diameter expansion dilution channel and the said stay dilution channel are arrange | positioned along an up-down direction, those lower end parts are connected by the said curve dilution channel, and are continued substantially U-shaped as a whole, The mixed dilution pipe is connected to the upper end of the enlarged dilution pipe, and a drain pipe with a solenoid valve for discharging dilution water is connected to the bottom of the bent dilution pipe.

また、前記安定化反応手段は、排出された希釈水と希塩酸とを混合させる混合反応管路と、その混合反応管路よりも拡径して、混合後の反応水を自然拡散させる拡径反応管路と、その拡径反応管路の下流側に設けられて、拡散後の反応水の流れ込みにより渦流を発生させて反応を促進させる曲がり反応管路と、その曲がり反応管路よりも下流側に設けられて、反応促進後の反応水を滞留させる滞留反応管路とを備えている。 In addition, the stabilization reaction means includes a mixed reaction pipe for mixing the discharged diluted water and dilute hydrochloric acid, and a diameter expansion reaction for expanding the diameter of the mixed reaction pipe to naturally diffuse the mixed reaction water A curved reaction line that is provided downstream of the pipe and its enlarged diameter reaction pipe, generates a vortex by the flow of reaction water after diffusion, and promotes the reaction; and downstream of the curved reaction pipe And a residence reaction line for retaining the reaction water after the promotion of the reaction.

そして、前記拡径反応管路及び前記滞留反応管路が上下方向に沿って配置されて、それらの下端部同士が前記曲がり反応管路によって連結されて全体的に略U字形に連続され、前記拡径反応管路の上端部に前記混合反応管路が接続され、前記曲がり反応管路の底部に生成水を排出する電磁弁付きの排水管路が接続されている。 And the said diameter expansion reaction line and the said staying reaction line are arrange | positioned along an up-down direction, those lower end parts are connected by the said bending reaction line, and are continued substantially U-shaped as a whole, The mixed reaction pipe is connected to the upper end of the expanded reaction pipe, and a drain pipe with an electromagnetic valve for discharging generated water is connected to the bottom of the bent reaction pipe.

この発明の製造装置によって製造した安定化次亜塩素酸水溶液は、従来の次亜塩素酸水溶液と同様の次亜塩素酸を含有しているものの、その含有に際して塩化水素を共存させておらず、従来の次亜塩素酸水溶液とは共存物質が決定的に異なっている。 Although the stabilized hypochlorous acid aqueous solution produced by the production apparatus of the present invention contains hypochlorous acid similar to the conventional hypochlorous acid aqueous solution, it does not coexist with hydrogen chloride in its inclusion, The coexisting substances are decisively different from conventional hypochlorous acid aqueous solutions.

このため、従来の次亜塩素酸水溶液では、塩化水素が共存するために次亜塩素酸が不安定な状態となっていたが、この安定化次亜塩素酸水溶液では、次亜塩素酸が安定した化合物として存在することから、使用に際して塩素ガスが発生せず、しかもアルカリ領域においても優れた殺菌力を発揮することができる。これにより、殺菌力に優れた安定化次亜塩素酸水溶液を安定して流通させることができ、実用化を図ることができる。   For this reason, in the conventional hypochlorous acid aqueous solution, hypochlorous acid was in an unstable state due to the coexistence of hydrogen chloride, but in this stabilized hypochlorous acid aqueous solution, hypochlorous acid was stable. Therefore, no chlorine gas is generated during use, and excellent sterilizing power can be exhibited even in the alkaline region. Thereby, the stabilized hypochlorous acid aqueous solution excellent in sterilizing power can be circulated stably, and practical use can be achieved.

また、安定化次亜塩素酸水溶液を、次亜塩素酸ナトリウムを水で均質に希釈して、その希釈水に希塩酸を安定して反応させて製造することで、毒性を有する塩素ガスや塩化水銀を用いることなく、穏和な条件下で安全に製造することができる。   In addition, a stable hypochlorous acid aqueous solution is produced by uniformly diluting sodium hypochlorite with water and reacting the diluted water with dilute hydrochloric acid in a stable manner to produce toxic chlorine gas or mercury chloride. It can be safely produced under mild conditions without using.

さらに、安定化次亜塩素酸水溶液の製造装置において、拡径希釈管路と滞留希釈管路の下端部同士を曲がり希釈管路によって連結し、また拡径反応管路と滞留反応管路の下端部同士を曲がり反応管路によって連結することで、これら管路全体に希釈水や反応水が緩やかに溜まって、希釈や反応を時間をかけて安定して行わせることができる。従って、希釈水や反応水を安定して行わせるための管路の管路長を短縮して、装置の小型化を図ることができる。   Furthermore, in the manufacturing apparatus of the stabilized hypochlorous acid aqueous solution, the lower end portions of the enlarged diameter dilution pipe and the staying dilution pipe are connected with each other by bending the dilution pipe, and the lower end of the enlarged diameter reaction pipe and the staying reaction pipe By bending the parts and connecting them with a reaction pipe, dilution water and reaction water are gently accumulated in the whole pipe, and dilution and reaction can be performed stably over time. Accordingly, it is possible to reduce the apparatus size by shortening the pipe length of the pipe for stably carrying out the dilution water and the reaction water.

以下、本発明の一実施形態を図面に基づいて説明する。図1は、この発明の一実施形態に係る安定化次亜塩素酸水溶液の製造装置を示している。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows an apparatus for producing a stabilized hypochlorous acid aqueous solution according to an embodiment of the present invention.

図1において、(1)は原水供給管路であり、その途中に、流路を開閉する第1電磁弁(2)と、原水流量を測定する流量計(3)が設けられている。   In FIG. 1, reference numeral (1) denotes a raw water supply pipe, and a first electromagnetic valve (2) for opening and closing the flow path and a flow meter (3) for measuring the raw water flow rate are provided in the middle.

(6)は、次亜塩素酸ナトリウム貯留タンク、(7)は、第1注入ポンプであり、次亜塩素酸ナトリウム貯留タンク(6)内の次亜塩素酸ナトリウムを、第1注入ポンプ(7)によって次亜塩素酸ナトリウム供給管路(8)へ送り出すようになっている。   (6) is a sodium hypochlorite storage tank, (7) is a first injection pump, and sodium hypochlorite in the sodium hypochlorite storage tank (6) is supplied to the first injection pump (7 ) To the sodium hypochlorite supply line (8).

原水供給管路(1)と次亜塩素酸ナトリウム供給管路(8)は、第1合流部(9)を介して合流されており、この第1合流部(9)において原水に次亜塩素酸ナトリウムが添加されて、次亜塩素酸ナトリウムを原水で均質に希釈するための均質化希釈手段(10)へ送り出すようになっている。   The raw water supply pipe (1) and the sodium hypochlorite supply pipe (8) are joined via the first junction (9), and hypochlorite is added to the raw water at the first junction (9). Sodium acid is added to feed sodium hypochlorite to the homogenizing dilution means (10) for homogeneous dilution with raw water.

均質化希釈手段(10)は、第1合流部(9)の下流側に設けられた混合希釈管路(11)と、その混合希釈管路(11)の下流側に設けられた拡径希釈管路(12)と、その拡径希釈管路(12)の下流側に設けられた曲がり希釈管路(13)と、その曲がり希釈管路(13)よりも下流側に設けられた滞留希釈管路(14)とを備えている。   The homogenization dilution means (10) includes a mixing dilution pipe (11) provided on the downstream side of the first merging section (9) and a diameter expansion dilution provided on the downstream side of the mixing dilution pipe (11). The pipe (12), the bending dilution pipe (13) provided downstream of the enlarged dilution pipe (12), and the stay dilution provided downstream of the bending dilution pipe (13) And a conduit (14).

拡径希釈管路(12)及び滞留希釈管路(14)は、上下方向に沿って配置されており、それらの下端部同士が曲がり希釈管路(13)によって連結され、これら管路(12)(13)(14)が全体的に略U字形に連続している。   The enlarged dilution dilution line (12) and the stay dilution dilution line (14) are arranged along the vertical direction, and their lower ends are bent and connected by a dilution dilution line (13). ), (13) and (14) are generally continuous in a U-shape.

これら管路(12)(14)(13)は、上下方向に沿った1つの希釈槽(15)の内部に、上下方向に沿った仕切板(16)を設けて、その仕切板(16)の下端部と希釈槽(15)の底部との間に流水用の隙間(17)を形成することによって構成されている。なお、管路(12)(13)(14)は、このように1つの希釈槽(15)内部に構成するだけに限らず、例えば夫々の管路(12)(13)(14)を管路構成用の管材で構成して、それら管材を接続するようにしても良い。   These pipes (12), (14) and (13) are provided with a partition plate (16) along the vertical direction inside one dilution tank (15) along the vertical direction, and the partition plate (16) Is formed by forming a gap (17) for running water between the lower end of the dilution tank and the bottom of the dilution tank (15). Note that the pipes (12), (13), and (14) are not limited to being configured inside the single dilution tank (15) as described above, and for example, the pipes (12), (13), and (14) are piped. You may make it comprise with the pipe material for a road structure, and connect these pipe materials.

そして、拡径希釈管路(12)の上端部に混合希釈管路(11)が接続され、曲がり希釈管路(13)の底部に希釈水を排出する排水管路(18)が接続されている。排水管路(18)には、その流路を開閉する第2電磁弁(19)が設けられている。また、排出管路(18)から分岐した分岐管路(20)が、拡径希釈管路(12)及び滞留希釈管路(14)の上端部よりも高い位置まで立ち上げれており、その分岐管路(20)の上端部には、滞留希釈管路(14)の上端部から延びる空気抜き用管路(21)が接続されている。分岐管路(20)には第3電磁弁(22)が、空気抜き用管路(21)には第4電磁弁(23)が夫々設けられている。   Then, the mixed dilution pipe (11) is connected to the upper end portion of the enlarged diameter dilution pipe (12), and the drain pipe (18) for discharging dilution water is connected to the bottom of the bent dilution pipe (13). Yes. The drain pipe (18) is provided with a second electromagnetic valve (19) for opening and closing the channel. Further, the branch pipe (20) branched from the discharge pipe (18) is raised to a position higher than the upper ends of the enlarged dilution pipe (12) and the stay dilution pipe (14). An air vent pipe (21) extending from the upper end of the stay dilution pipe (14) is connected to the upper end of the pipe (20). The branch line (20) is provided with a third solenoid valve (22), and the air vent line (21) is provided with a fourth solenoid valve (23).

(25)は、希塩酸貯留タンク、(26)は、第2注入ポンプであり、希塩酸貯留タンク(25)内の希塩酸を、第2注入ポンプ(26)によって希塩酸供給管路(27)へ送り出すようになっている。   (25) is a dilute hydrochloric acid storage tank, (26) is a second injection pump, and dilute hydrochloric acid in the dilute hydrochloric acid storage tank (25) is sent to the dilute hydrochloric acid supply line (27) by the second injection pump (26). It has become.

排水管路(18)と希塩酸供給管路(27)は、第2合流部(28)を介して合流されており、この第2合流部(28)において希釈水に希塩酸が添加されて、安定化次亜塩素酸水溶液を生成するための安定化反応手段(30)へ送り出すようになっている。   The drain pipe (18) and the dilute hydrochloric acid supply pipe (27) are joined via the second junction (28), and diluted hydrochloric acid is added to the dilution water at the second junction (28) to stabilize It sends out to the stabilization reaction means (30) for producing | generating a hypochlorous acid aqueous solution.

安定化反応手段(30)は、第2合流部(28)の下流側に設けられた混合反応管路(31)と、その混合反応管路(31)の下流側に設けられた拡径反応管路(32)と、その拡径反応管路(32)の下流側に設けられた曲がり反応管路(33)と、その曲がり反応管路(33)よりも下流側に設けられた滞留反応管路(34)とを備えている。   The stabilization reaction means (30) includes a mixed reaction pipe (31) provided on the downstream side of the second merging section (28), and a diameter expansion reaction provided on the downstream side of the mixed reaction pipe (31). Pipe (32), a bent reaction pipe (33) provided downstream of the expanded reaction pipe (32), and a staying reaction provided downstream of the bent reaction pipe (33) And a conduit (34).

拡径反応管路(32)及び滞留反応管路(34)は、上下方向に沿って配置されており、それらの下端部同士が曲がり反応管路(33)によって連結され、これら管路(32)(33)(34)が全体的に略U字形に連続している。   The expanded reaction pipe (32) and the residence reaction pipe (34) are arranged along the vertical direction, and their lower ends are bent and connected by the reaction pipe (33), and these pipes (32 ) (33) (34) are generally continuous in a U-shape.

これら管路(32)(33)(34)は、上下方向に沿った1つの反応槽(35)の内部に、上下方向に沿った仕切板(36)を設けて、その仕切板(36)の下端部と反応槽(35)の底部との間に流水用の隙間(37)を形成することによって構成されている。なお、管路(32)(33)(34)は、このように1つの反応槽(35)内部に構成するだけに限らず、例えば夫々の管路(32)(33)(34)を管路構成用の管材で構成して、それら管材を接続するようにしても良い。   These pipes (32), (33) and (34) are provided with a partition plate (36) along the vertical direction inside one reaction tank (35) along the vertical direction, and the partition plate (36) A gap (37) for running water is formed between the lower end of the reactor and the bottom of the reaction tank (35). Note that the pipes (32), (33), and (34) are not limited to being configured in one reaction tank (35) as described above, and, for example, the pipes (32), (33), and (34) are piped. You may make it comprise with the pipe material for a road structure, and connect these pipe materials.

そして、拡径反応管路(32)の上端部に混合反応管路(31)が接続され、曲がり反応管路(33)の底部に生成水を排出する排水管路(38)が接続されている。排水管路(38)には、その流路を開閉する第5電磁弁(39)が設けられている。また、排水管路(38)から分岐した分岐管路(40)が、拡径反応管路(32)及び滞留反応管路(34)の上端部よりも高い位置まで立ち上げれており、その分岐管路(40)の上端部には、滞留反応管路(34)の上端部から延びる空気抜き用管路(41)が接続されている。分岐管路(40)には第6電磁弁(42)が、空気抜き用管路(41)には第7電磁弁(43)が夫々設けられている。   The mixed reaction pipe (31) is connected to the upper end of the diameter-expanded reaction pipe (32), and the drain pipe (38) for discharging generated water is connected to the bottom of the bent reaction pipe (33). Yes. The drain pipe (38) is provided with a fifth electromagnetic valve (39) for opening and closing the channel. Further, the branch pipe (40) branched from the drain pipe (38) is raised to a position higher than the upper ends of the diameter-expanded reaction pipe (32) and the staying reaction pipe (34). An air vent pipe (41) extending from the upper end of the staying reaction pipe (34) is connected to the upper end of the pipe (40). A sixth solenoid valve (42) is provided in the branch pipe (40), and a seventh solenoid valve (43) is provided in the air vent pipe (41).

(50)(51)は、次亜塩素酸ナトリウム貯留タンク(6)に設けられて、タンク(6)内の次亜塩素酸ナトリウムの高さレベルを検知する第1、第2液面レベルセンサ、(52)(53)は、希塩酸貯留タンク(25)に設けられて、タンク(25)内の希塩酸の高さレベルを検知する第3、第4液面レベルセンサである。(54)(55)(56)は、分岐管路(20)に設けられて、分岐管路(20)内の希釈水の高さレベルを検知する第5〜第7液面レベルセンサ、(57)(58)(59)は、分岐管路(40)に設けられて、分岐管路(40)内の生成水の高さレベルを検知する第8〜第10液面レベルセンサである。   (50) and (51) are first and second liquid level sensors which are provided in the sodium hypochlorite storage tank (6) and detect the height level of sodium hypochlorite in the tank (6). , (52) and (53) are third and fourth liquid level sensors which are provided in the dilute hydrochloric acid storage tank (25) and detect the height level of dilute hydrochloric acid in the tank (25). (54) (55) (56) is provided in the branch pipe (20), fifth to seventh liquid level sensors for detecting the height level of the dilution water in the branch pipe (20), 57, 58 and 59 are eighth to tenth liquid level sensors which are provided in the branch pipe (40) and detect the height level of the produced water in the branch pipe (40).

これら液面レベルセンサ(50)〜(59)は、信号線(60)を介してマイクロコンピュータ等からなる制御部(61)に接続されている。さらに、流量計(3)、第1〜7電磁弁(2)(19)(22)(23)(39)(42)(43)、及び第1、第2注入ポンプ(7)(26)が信号線(60)を介して制御部(61)に接続されている。この制御部(61)は、液面レベルセンサ(50)〜(59)及び流量計(3)からの検知信号により、第1、第2注入ポンプ(7)(26)及び第1〜7電磁弁(2)(19)(22)(23)(39)(42)(43)の駆動を制御するようになっている。   These liquid level sensors (50) to (59) are connected to a control unit (61) composed of a microcomputer or the like via a signal line (60). Furthermore, the flow meter (3), the first to seventh solenoid valves (2), (19), (22), (23), (39), (42), (43), and the first and second infusion pumps (7), (26) Is connected to the control unit (61) via the signal line (60). The controller (61) detects the first and second infusion pumps (7) and (26) and the first to seventh electromagnetics according to the detection signals from the liquid level sensors (50) to (59) and the flow meter (3). The drive of the valves (2) (19) (22) (23) (39) (42) (43) is controlled.

次に、上記構成の製造装置による安定化次亜塩素酸の製造について説明する。   Next, production of stabilized hypochlorous acid using the production apparatus having the above-described configuration will be described.

まず、第1、第3、第4電磁弁(2)(22)(23)を開状態、第2、第5〜第7電磁弁(19)(39)(42)(43)を閉状態として、原水を原水供給管路(1)へ送り出す。これと同時に、第1注入ポンプ(7)が作動して、次亜塩素酸ナトリウムを次亜塩素酸ナトリウム供給管路(8)へ送り出す。このときの次亜塩素酸ナトリウムの流出量は、流量計(3)によって検知された原水流量に基づいて制御されている。   First, the first, third and fourth solenoid valves (2), (22) and (23) are opened, and the second, fifth to seventh solenoid valves (19), (39), (42) and (43) are closed. The raw water is sent out to the raw water supply pipe (1). At the same time, the first injection pump (7) is operated to send out sodium hypochlorite to the sodium hypochlorite supply line (8). The outflow amount of sodium hypochlorite at this time is controlled based on the raw water flow rate detected by the flow meter (3).

そして、これら原水及び次亜塩素酸ナトリウムは、第1合流部(9)を通って混合希釈管路(11)へ流入する。この混合希釈管路(11)において、原水と次亜塩素酸ナトリウムとが混合して、次亜塩素酸ナトリウムの原水による希釈が開始するとともに、次亜塩素酸ナトリウムの粘度や比重を考慮した流水を作り、混合希釈管路(11)よりも拡径した拡径希釈管路(12)へ流入する。   And these raw | natural water and sodium hypochlorite flow into a mixing dilution pipe line (11) through a 1st confluence | merging part (9). In this mixed dilution pipe (11), the raw water and sodium hypochlorite are mixed to start dilution of the sodium hypochlorite with the raw water, and the running water in consideration of the viscosity and specific gravity of sodium hypochlorite. And flows into the enlarged dilution dilution pipe (12) having a diameter larger than that of the mixed dilution pipe (11).

このとき、拡径希釈管路(12)においては、混合希釈管路(11)よりも負圧となって圧がかかりにくい状態となっているので、混合後の希釈水は緩やかに自然に拡散する。すなわち、撹拌機による強制的な撹拌や、邪魔板等を使用して故意に脈流を発生させて撹拌するのではなく、希釈水の自然な流れに任せた拡散が行われる。   At this time, the expanded dilution pipe (12) has a negative pressure and is less likely to be pressurized than the mixed dilution pipe (11), so the diluted water after mixing gradually diffuses naturally. To do. That is, instead of compulsorily stirring with a stirrer or intentionally generating a pulsating flow using a baffle plate or the like, stirring is performed while leaving the natural flow of dilution water.

拡散後の希釈水は、滝状に流れて曲がり希釈管路(13)へ流入し、その流れ込みよって曲がり希釈管路(13)の底部において渦流が発生して、希釈水の希釈が促進される。   The diluted dilution water flows in a waterfall shape and flows into the bending dilution pipe (13), and the vortex is generated at the bottom of the bending dilution pipe (13) due to the flow, and the dilution of the dilution water is promoted. .

希釈促進後の希釈水は、滞留希釈管路(14)の下端部から上端部へ向けてゆっくりと穏やかに溜まって、滞留希釈管路(14)において滞留し、次亜塩素酸ナトリウムの濃度勾配がほとんどない均質化した状態となって希釈工程が完了する。   The dilution water after the promotion of dilution accumulates slowly and gently from the lower end to the upper end of the stay dilution pipe (14) and stays in the stay dilution pipe (14), resulting in a sodium hypochlorite concentration gradient. The dilution process is completed in a homogenized state with almost no slag.

このとき、拡径希釈管路(12)にも希釈水が滞留することになる。また、排水管路(18)から分岐管路(20)へ希釈水が流入して、この希釈水を第5液面レベルセンサ(54)が検知すると、制御部(61)が管路(12)(13)(14)内に希釈水が溜まっていると判断して、第1電磁弁(2)が閉状態となり、原水の供給が停止する。   At this time, the dilution water also stays in the enlarged diameter dilution pipe (12). Further, when diluted water flows from the drain pipe (18) into the branch pipe (20) and this diluted water is detected by the fifth liquid level sensor (54), the controller (61) causes the pipe (12 ) (13) It is determined that dilution water has accumulated in (14), the first electromagnetic valve (2) is closed, and the supply of raw water is stopped.

なお、希釈開始から希釈完了までの希釈反応に要する時間(△t)は、希釈の均質化を実現する上で重要であり、希釈濃度に応じて各管路の管内径や管長を適宜調整することで設定されている。   Note that the time (Δt) required for the dilution reaction from the start of dilution to the completion of dilution is important for realizing homogenization of dilution, and appropriately adjusts the inner diameter and length of each pipe line according to the dilution concentration. It is set by that.

この均質化希釈工程においては、希釈水を自然な流れに近い状態で導いて希釈反応を行わせることで、次亜塩素酸ナトリウムを原水で均質に希釈するようになっている。   In this homogenization dilution step, the sodium hypochlorite is homogeneously diluted with raw water by introducing the dilution water in a state close to a natural flow to cause the dilution reaction.

このような均質化希釈工程が完了すると、第2、第3、第4、第6、第7電磁弁(19)(22)(23)(42)(43)を開状態、第1及び第5電磁弁(2)(39)を閉状態として、希釈水を排水管路(18)から送り出す。これと同時に、第2注入ポンプ(26)が作動して、pH調整用の希塩酸を希塩酸供給管路(27)へ送り出す。このとき、制御部(61)が第2注入ポンプ(26)を制御することで、希釈水の量や濃度に応じて予め設定されている規定量の希塩酸が流出する。   When the homogenization dilution process is completed, the second, third, fourth, sixth, and seventh solenoid valves (19), (22), (23), (42), and (43) are opened, and the first and first solenoid valves are opened. 5 With the solenoid valves (2) and (39) closed, diluting water is sent out from the drain pipe (18). At the same time, the second injection pump (26) is operated to send pH-adjusted dilute hydrochloric acid to the dilute hydrochloric acid supply line (27). At this time, the control unit (61) controls the second injection pump (26), so that a predetermined amount of dilute hydrochloric acid set in advance according to the amount and concentration of the diluted water flows out.

そして、これら希釈水及び希塩酸は、第2合流部(28)を通って混合反応管路(31)へ流入する。この混合反応管路(31)において、希釈水と希塩酸とが混合して、これらの反応が開始する。この混合後の反応水は、混合反応管路(31)よりも拡径した拡径反応管路(32)へ流入する。   These diluted water and dilute hydrochloric acid flow into the mixed reaction pipe (31) through the second junction (28). In the mixed reaction line (31), the diluted water and dilute hydrochloric acid are mixed to start these reactions. The mixed reaction water flows into the expanded reaction pipe (32) having a diameter larger than that of the mixed reaction pipe (31).

このとき、拡径反応管路(32)においては、混合反応管路(31)よりも負圧となって圧がかかりにくい状態となっているので、混合後の反応水は緩やかに自然に拡散する。すなわち、撹拌機による強制的な撹拌や、邪魔板等を使用して故意に脈流を発生させて撹拌するのではなく、反応水の自然な流れに任せた拡散が行われる。   At this time, the expanded reaction pipe (32) has a negative pressure and is less likely to be pressurized than the mixed reaction pipe (31), so the reaction water after mixing gradually diffuses naturally. To do. That is, instead of forcibly stirring with a stirrer or intentionally generating a pulsating flow using a baffle plate or the like, stirring is performed instead of the natural flow of reaction water.

拡散後の反応水は、滝状に流れて曲がり反応管路(33)へ流入し、その流れ込みよって曲がり反応管路(33)の底部において渦流が発生して、反応水の反応が促進される。   The reaction water after diffusion flows in a waterfall shape and flows into the bent reaction pipe (33), and the vortex is generated at the bottom of the bent reaction pipe (33) by the flow, and the reaction of the reaction water is promoted. .

反応促進後の反応水は、滞留反応管路(34)の下端部から上端部へ向けてゆっくりと穏やかに溜まって、滞留反応管路(34)において滞留し、希釈水と希塩酸とが緩やかに安定した状態で反応して、反応工程が完了する。   After the reaction is promoted, the reaction water slowly and gently accumulates from the lower end to the upper end of the staying reaction pipe (34) and stays in the staying reaction pipe (34). The reaction process is completed by reacting in a stable state.

このとき、拡径反応管路(32)にも反応水が滞留することになる。また、排水管路(38)から分岐管路(40)へ反応水が流入して、この反応水を第8液面レベルセンサ(57)が検知するか、若しくは、第7液面レベルセンサ(56)が分岐管路(20)における希釈水の排出を検知すると、制御部(61)が管路(32)(33)(34)内に反応水が溜まっていると判断して、第2〜第4電磁弁(19)(22)(23)が閉状態となり、次回の希釈工程に備える。   At this time, the reaction water also stays in the expanded diameter reaction pipe (32). Further, the reaction water flows from the drain pipe (38) into the branch pipe (40), and the eighth liquid level sensor (57) detects this reaction water, or the seventh liquid level sensor ( When 56) detects the discharge of the dilution water in the branch pipe (20), the control unit (61) determines that the reaction water has accumulated in the pipes (32), (33) and (34), and the second The fourth solenoid valves (19), (22) and (23) are closed to prepare for the next dilution step.

なお、反応開始から反応完了までに要する時間(△t′)は、反応の安定化を実現する上で重要であり、生成水の設定pH値に応じて各管路の管内径や管長を適宜調整することで設定されている。   The time (Δt ′) required from the start of the reaction to the completion of the reaction is important for realizing the stabilization of the reaction, and the pipe inner diameter and the pipe length of each pipe line are appropriately set according to the set pH value of the produced water. It is set by adjusting.

この安定化反応工程においては、希釈水と希塩酸を自然な流れに近い状態で導いてこれらの反応を安定して行わせることで、pH値6.5の弱酸性領域に調整され、且つ、塩化水素を共存させることなく次亜塩素酸と塩化ナトリウムとを含有してなる50ppmの安定化次亜塩素酸水溶液を生成する。なお、希釈水と反応させる希塩酸の量を適宜調節することで、安定化次亜塩素酸水溶液のpH値を5.0〜6.8の弱酸性領域に調整可能である。   In this stabilization reaction step, diluting water and dilute hydrochloric acid are guided in a state close to a natural flow, and these reactions are performed stably, so that the pH is adjusted to a weakly acidic region of 6.5, and chloride is added. A 50 ppm stabilized hypochlorous acid aqueous solution containing hypochlorous acid and sodium chloride is produced without coexisting hydrogen. In addition, the pH value of the stabilized hypochlorous acid aqueous solution can be adjusted to a weakly acidic region of 5.0 to 6.8 by appropriately adjusting the amount of diluted hydrochloric acid to be reacted with the dilution water.

生成された安定化次亜塩素酸水溶液は、第5電磁弁(39)を開状態とすることで、排水管路(38)から取り出される。上記の希釈工程及び反応工程を繰り返し行うことにより、不連続生成ではあるが、安定化次亜塩素酸水溶液を安定して製造することができる。   The generated stabilized hypochlorous acid aqueous solution is taken out from the drain pipe (38) by opening the fifth solenoid valve (39). By repeating the above dilution step and reaction step, a stabilized hypochlorous acid aqueous solution can be stably produced although it is a discontinuous formation.

なお、制御部(61)による制御によって、希釈工程と反応工程を連続して行う連続生成も可能である。この場合、液面レベルセンサとしては、第6液面レベルセンサ(55)及び第9液面レベルセンサ(58)を使用する。   In addition, the continuous production | generation which performs a dilution process and a reaction process continuously by control by a control part (61) is also possible. In this case, the sixth liquid level sensor (55) and the ninth liquid level sensor (58) are used as the liquid level sensors.

上記のように生成された安定化次亜塩素酸水溶液を使用して、鉄の発錆試験を行った結果、従来の混合方式や電気分解方式によって生成した従来の弱酸性水溶液(弱酸性領域に調整したとされている次亜塩素酸水溶液)と比較して、明らかに発錆を抑えることができた。   As a result of iron rusting test using the stabilized hypochlorous acid aqueous solution generated as described above, the conventional weak acidic aqueous solution (in the weak acidic region) generated by the conventional mixing method and electrolysis method. Compared with the hypochlorous acid aqueous solution which was said to have been adjusted, rusting was clearly suppressed.

また、装置に取り付けている砲金製の継手部分の発錆試験では、上記の安定化次亜塩素酸水溶液においては、緑青は無く、内面が黒く酸化皮膜が形成されている状態となったが、上記の従来のものにおいては、装置内に緑青と錆の発生が見受けられた。   In addition, in the rust test of the joint made of gunmetal attached to the device, in the above-mentioned stabilized hypochlorous acid aqueous solution, there was no patina, the inner surface was black and an oxide film was formed, In the above-described conventional one, generation of patina and rust was observed in the apparatus.

これらの試験結果から明らかなように、安定化次亜塩素酸水溶液を使用することで発錆を確実に抑えることができることから、安定化次亜塩素酸水溶液の使用に際して発錆の原因となる塩素ガスが発生していないことが判り、よって安定化次亜塩素酸水溶液中に塩化水素を共存させることなく次亜塩素酸が化合物として安定して存在していると推測することができる。   As is clear from these test results, rusting can be reliably suppressed by using a stabilized hypochlorous acid aqueous solution, so that chlorine that causes rusting when using a stabilized hypochlorous acid aqueous solution is used. It can be seen that no gas is generated, and therefore it can be assumed that hypochlorous acid is stably present as a compound in the stabilized hypochlorous acid aqueous solution without coexisting hydrogen chloride.

また、上記の安定化次亜塩素酸水溶液(200ppm、pH値6.5)を、pH値9.1の源泉を有するアルカリ温泉に注入することで、殺菌灯や塩素殺菌剤等を使用した各種殺菌方法でも実現不能であったレジオネラ菌の殺菌対策が可能となった。なお、この場合、温泉湯量1000Lに対して、1Lの安定化次亜塩素酸水溶液を注入した。   In addition, by injecting the above-mentioned stabilized hypochlorous acid aqueous solution (200 ppm, pH value 6.5) into an alkaline hot spring having a pH value of 9.1, various types of sterilization lamps, chlorine disinfectants, and the like are used. It became possible to sterilize Legionella, which was impossible to achieve with sterilization methods. In this case, 1 L of stabilized hypochlorous acid aqueous solution was injected for 1000 L of hot spring water.

この結果からも明らかなように、アルカリ温泉等のアルカリ領域でも、安定化次亜塩素酸水溶液中の次亜塩素酸の殺菌力が有効に作用することが判り、よって安定化次亜塩素酸水溶液中に塩化水素を共存させることなく次亜塩素酸が化合物として安定して存在していると推測することができる。   As is clear from this result, it was found that the sterilizing power of hypochlorous acid in the stabilized hypochlorous acid aqueous solution works effectively even in an alkaline region such as an alkaline hot spring, and thus the stabilized hypochlorous acid aqueous solution. It can be presumed that hypochlorous acid exists stably as a compound without coexisting hydrogen chloride therein.

さらに、pH計を使用して、安定化次亜塩素酸水溶液のpH値が経時的に安定しているか否かを計測することによっても、安定化次亜塩素酸水溶液中に存在する次亜塩素酸が安定していることを実証することが可能である。何故ならば、従来の次亜塩素酸は、塩化水素を共存させて存在しているので、経時変化によって残留塩素濃度が薄くなり、pH値が酸性側に進むからである。   Furthermore, by using a pH meter to determine whether the pH value of the stabilized hypochlorous acid aqueous solution is stable over time, hypochlorous acid present in the stabilized hypochlorous acid aqueous solution is also measured. It is possible to demonstrate that the acid is stable. This is because conventional hypochlorous acid exists in the presence of hydrogen chloride, so that the residual chlorine concentration decreases with time and the pH value advances to the acidic side.

この発明は、上記実施形態に限定されるものではなく、この発明の範囲内で上記実施形態に多くの修正及び変更を加え得ることは勿論である。   The present invention is not limited to the above embodiment, and it is needless to say that many modifications and changes can be made to the above embodiment within the scope of the present invention.

この発明の一実施形態に係る安定化次亜塩素酸水溶液の製造装置の概略図である。It is the schematic of the manufacturing apparatus of the stabilized hypochlorous acid aqueous solution which concerns on one Embodiment of this invention.

符号の説明Explanation of symbols

(10) 均質化希釈手段
(11) 混合希釈管路
(12) 拡径希釈管路
(13) 曲がり希釈管路
(14) 滞留希釈管路
(18)(38) 電磁弁付き排水管路
(30) 安定化反応手段
(31) 混合反応管路
(32) 拡径反応管路
(33) 曲がり反応管路
(34) 滞留反応管路
(10) Homogenization dilution method
(11) Mixed dilution pipe
(12) Expansion dilution pipe
(13) Bending dilution pipeline
(14) Residence dilution pipeline
(18) (38) Drain pipe with solenoid valve
(30) Stabilization reaction means
(31) Mixed reaction line
(32) Expanded reaction pipeline
(33) Curved reaction pipeline
(34) Residence reaction line

Claims (1)

次亜塩素酸ナトリウムを水で均質に希釈する均質化希釈手段と、その希釈水に希塩酸を反応させてpH値を5.0〜6.8の弱酸性領域に調整し、塩化水素を共存させることなく次亜塩素酸と塩化ナトリウムとを含有してなる安定化次亜塩素酸水溶液を生成する安定化反応手段とを備え、Homogenizing dilution means for homogeneously diluting sodium hypochlorite with water and dilute hydrochloric acid to react with the diluted water to adjust the pH value to a weakly acidic region of 5.0 to 6.8 and to coexist with hydrogen chloride And a stabilizing reaction means for producing a stabilized hypochlorous acid aqueous solution containing hypochlorous acid and sodium chloride without any
前記均質化希釈手段は、水と次亜塩素酸ナトリウムとを混合させる混合希釈管路と、その混合希釈管路よりも拡径して、混合後の希釈水を自然拡散させる拡径希釈管路と、その拡径希釈管路の下流側に設けられて、拡散後の希釈水の流れ込みによって渦流を発生させて希釈を促進させる曲がり希釈管路と、その曲がり希釈管路よりも下流側に設けられて、希釈促進後の希釈水を滞留させる滞留希釈管路とを備え、The homogenization dilution means includes a mixing dilution pipe for mixing water and sodium hypochlorite, and a diameter expansion dilution pipe for expanding the diameter of the mixed dilution pipe and allowing the diluted water after mixing to diffuse naturally. And a bent dilution pipe that is provided downstream of the enlarged dilution dilution pipe and generates a vortex by the flow of diluted water after diffusion to promote dilution, and is provided downstream of the bent dilution pipe. And a retention dilution line for retaining the diluted water after the promotion of dilution,
前記拡径希釈管路及び前記滞留希釈管路が上下方向に沿って配置されて、それらの下端部同士が前記曲がり希釈管路によって連結されて全体的に略U字形に連続され、前記拡径希釈管路の上端部に前記混合希釈管路が接続され、前記曲がり希釈管路の底部に希釈水を排出する電磁弁付きの排水管路が接続されており、The enlarged dilution pipe and the stay dilution pipe are arranged along the vertical direction, and their lower ends are connected to each other by the bent dilution pipe and are continuously continued in a substantially U shape. The mixed dilution pipe is connected to the upper end of the dilution pipe, and the drain pipe with a solenoid valve for discharging dilution water is connected to the bottom of the bent dilution pipe,
前記安定化反応手段は、排出された希釈水と希塩酸とを混合させる混合反応管路と、その混合反応管路よりも拡径して、混合後の反応水を自然拡散させる拡径反応管路と、その拡径反応管路の下流側に設けられて、拡散後の反応水の流れ込みによって渦流を発生させて反応を促進させる曲がり反応管路と、その曲がり反応管路よりも下流側に設けられて、反応促進後の反応水を滞留させる滞留反応管路とを備え、The stabilizing reaction means includes a mixed reaction line for mixing the discharged diluted water and dilute hydrochloric acid, and a diameter-expanded reaction line for expanding the diameter of the mixed reaction line and allowing the reaction water after mixing to diffuse naturally. And a bent reaction pipe that is provided downstream of the expanded reaction pipe to generate a vortex by the flow of reaction water after diffusion and promotes the reaction, and is provided downstream of the bent reaction pipe. And a retention reaction line for retaining the reaction water after promoting the reaction,
前記拡径反応管路及び前記滞留反応管路が上下方向に沿って配置されて、それらの下端部同士が前記曲がり反応管路によって連結されて全体的に略U字形に連続され、前記拡径反応管路の上端部に前記混合反応管路が接続され、前記曲がり反応管路の底部に生成水を排出する電磁弁付きの排水管路が接続されていることを特徴とする安定化次亜塩素酸水溶液の製造装置。The expanded reaction pipe and the staying reaction pipe are arranged along the vertical direction, and their lower ends are connected to each other by the bent reaction pipe and are continuously continued in a substantially U shape, The stabilization reaction line is characterized in that the mixed reaction line is connected to the upper end of the reaction line, and a drain line with a solenoid valve for discharging generated water is connected to the bottom of the bent reaction line. Chloric acid aqueous solution manufacturing equipment.
JP2005081374A 2005-03-22 2005-03-22 Production equipment for stabilized hypochlorous acid aqueous solution Expired - Fee Related JP4771201B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005081374A JP4771201B2 (en) 2005-03-22 2005-03-22 Production equipment for stabilized hypochlorous acid aqueous solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005081374A JP4771201B2 (en) 2005-03-22 2005-03-22 Production equipment for stabilized hypochlorous acid aqueous solution

Publications (2)

Publication Number Publication Date
JP2006264996A JP2006264996A (en) 2006-10-05
JP4771201B2 true JP4771201B2 (en) 2011-09-14

Family

ID=37201347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005081374A Expired - Fee Related JP4771201B2 (en) 2005-03-22 2005-03-22 Production equipment for stabilized hypochlorous acid aqueous solution

Country Status (1)

Country Link
JP (1) JP4771201B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5307351B2 (en) * 2007-04-24 2013-10-02 株式会社タクミナ Weakly acidic chlorine water production equipment
CN113713645A (en) * 2021-09-09 2021-11-30 宁波铧洲科技有限公司 Machine for producing high-concentration hypochlorous acid water

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3573185B2 (en) * 1996-12-20 2004-10-06 サイテック株式会社 Method for enhancing the sterilizing power of sodium hypochlorite
JP4809535B2 (en) * 2001-02-21 2011-11-09 株式会社エイチ・エス・ピー Continuous sterilization water generator
JP3438880B2 (en) * 2001-03-23 2003-08-18 逸見 伸雄 Disinfection water production equipment

Also Published As

Publication number Publication date
JP2006264996A (en) 2006-10-05

Similar Documents

Publication Publication Date Title
JP2009056442A (en) Ozone water production apparatus
US9492804B2 (en) System and methods for generating chlorine dioxide
MX2011005050A (en) Method for treating water and aqueous systems in pipelines with chlorine dioxide.
RU2010129471A (en) METHOD FOR WATER TREATMENT WITH CHLORINE DIOXIDE
US20150203388A1 (en) Monochloramine water disinfection system and method
US10046994B2 (en) Method for treating liquids with gaseous ozone
JP4771201B2 (en) Production equipment for stabilized hypochlorous acid aqueous solution
US20120070365A1 (en) Process and apparatus for preparing molecular bromine
JPWO2008047864A1 (en) Monopersulfuric acid production method and monopersulfuric acid continuous production apparatus
TW528609B (en) Sterilizing water making apparatus and sterilizing water making method
Mensah et al. Kinetic modelling of the bromine-ammonia system: Formation and decomposition of bromamines
JP3085356U (en) Sterilization water production equipment
KR20110044582A (en) Generator and process for aqueous solution of chlorine dioxide
JP2005161142A (en) Apparatus for producing sterilizing water continuously
JP2002220207A (en) Method and device for manufacturing chlorine dioxide water
JP3438880B2 (en) Disinfection water production equipment
JPH1192104A (en) High-purity chlorine dioxide aqueous composition, its production and producing device
JP4388550B2 (en) Disinfection water production equipment
US11572276B2 (en) Plant for the controlled production of monochloramine for sanitizing fluids
JP2000264606A (en) Production of chlorine dioxide aqueous solution and apparatus therefor
JP2005058991A (en) Intermittent type automatic electrolytic apparatus for preparing hypochlorous acid water
JP2006089332A (en) Chlorine dioxide water production device
JP7156572B1 (en) Apparatus for producing stabilized halogen and method for producing stabilized halogen
KR102565677B1 (en) System and method for producing an aqueous chlorine dioxide solution using reactor and dissolver under atmospheric pressure
KR20140034305A (en) Electrolyzed water production device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110318

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110609

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees