JP4809535B2 - Continuous sterilization water generator - Google Patents

Continuous sterilization water generator Download PDF

Info

Publication number
JP4809535B2
JP4809535B2 JP2001044548A JP2001044548A JP4809535B2 JP 4809535 B2 JP4809535 B2 JP 4809535B2 JP 2001044548 A JP2001044548 A JP 2001044548A JP 2001044548 A JP2001044548 A JP 2001044548A JP 4809535 B2 JP4809535 B2 JP 4809535B2
Authority
JP
Japan
Prior art keywords
sodium
aqueous solution
water
acid aqueous
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001044548A
Other languages
Japanese (ja)
Other versions
JP2002241209A (en
Inventor
雅之 重本
光治 山下
Original Assignee
株式会社エイチ・エス・ピー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エイチ・エス・ピー filed Critical 株式会社エイチ・エス・ピー
Priority to JP2001044548A priority Critical patent/JP4809535B2/en
Publication of JP2002241209A publication Critical patent/JP2002241209A/en
Application granted granted Critical
Publication of JP4809535B2 publication Critical patent/JP4809535B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Apparatus For Disinfection Or Sterilisation (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Description

【0001】
【発明の属する技術分野】
この発明はpH値が弱酸性域に保たれた次亜(又は亜)塩素酸ナトリウム希釈水からなる殺菌水の連続生成装置に関するものである。
【0002】
【従来の技術】
医療施設や食品業では、次亜塩素酸ナトリウムを水道水などで一定濃度に希釈して形成した次亜塩素酸ナトリウム希釈水が殺菌水として広く使用されている。そして、この次亜塩素酸ナトリウム希釈水に食酢を少量添加し、そのpH値を弱酸性にすることで殺菌力が増強されることが知られている。このことは、食品衛生指導書や、「浄水の技術」丹保憲仁・小笠原紘一 共著 技報堂出版の中でも紹介されている。
【0003】
この従来から知られている技術をプラント化したものが特開平9−295911号公報、特開平10−182325号公報、特開平4−94793号公報などに提案されている。
【0004】
【発明が解決しようとする課題】
ところで、次亜塩素酸ナトリウム希釈水の殺菌力はpHが弱酸性域で大きく、pHがアルカリ性になるに従って大きく低下するので、所望の殺菌効果を得るためには次亜塩素酸ナトリウム希釈水のpHを弱酸性域に厳格に保っておかなければならない。
【0005】
しかし、上記従来の装置を医療施設や食品業などで実際に使用する場合、希釈水である水道水などの水圧や水量などに変動があることが多く、水圧や水量などが変動するたびに薬液注入のタイミングがずれ、生成する次亜塩素酸ナトリウム希釈水の濃度やpH値が変化し、生成された殺菌水の持つ殺菌力が著しく低下している場合がある。
【0006】
また、殺菌水の連続生成装置で生成された殺菌水が複数個の蛇口から吐出されるようになっている場合、複数個の蛇口を同時に開いたり、1個の蛇口だけを開いたりするので、吐水側の流速の変化などが大きく変化し、薬液注入のタイミングがずれ、次亜塩素酸ナトリウム希釈水の濃度やpH値が変化し、生成された殺菌水の持つ殺菌力が著しく低下している場合がある。
【0007】
ところが、医療従事者や食品業従事者等は、殺菌水の殺菌力を信じて殺菌水を使用しているので、そのような場合は結果的に殺菌されていない手で作業を行なってしまったり、殺菌力の著しく低い殺菌水で器具や食品等を洗浄することになり、院内感染や食中毒などの事故を生じさせてしまうおそれがある。
【0008】
また、殺菌水を低流量で使用している場合、次亜塩素酸ナトリウムとpH調整用の酸では、比重や粘性が違うため、混合比率が変化し、希釈水に溶けやすく比重が軽い酸が先行して混合される傾向があり、その際は水溶液のpH値が極端に低下し、危険な塩素ガスを発生させるおそれがある。
【0009】
また、注入薬剤として使用している次亜塩素酸ナトリウムは、それ自体の性質として、含有する塩素濃度が時間とともに急激に低下し、特に使用繁忙期である夏季には温度上昇により塩素濃度劣化速度が著しく速まり、生成された殺菌水が所望の殺菌力を有していないおそれがある。
【0010】
また、次亜塩素酸ナトリウム水溶液の殺菌力の要であるpH値を測定するpH値測定装置は、接液部に使用する比較電極が一年程度の期間で寿命になるか、定期的な標準pH値校正作業が必要となるが、いまだその時期を自動検知する技術が確立されていないため、予測的な作業しかなく、pH値測定装置に対する信頼性に問題があり、従って、殺菌水の殺菌力に対する信頼性に問題がある。
【0011】
また、従来の次亜塩素酸ナトリウム水溶液で効果があまり無いとされたカビ類、真菌類の殺菌は、同水溶液をpH調整することで改善はしているが、衛生管理上でカビ類、真菌類の安定した殺菌は今後不可欠であり、なお一層の効果増強が急務である。
【0012】
また、次亜塩素酸ナトリウムは希釈水である水道水などに含まれる炭酸水素カルシウム等と次亜塩素酸ナトリウム溶液中の水酸化ナトリウムとの反応によって、カルシウム成分等の析出が起こり、次亜塩素酸ナトリウムの注入部に析出・固着し、注入部を閉塞させるという問題がある。
【0013】
【課題を解決するための手段】
この発明に係る殺菌水の連続生成装置は、水を供給する水供給源と、含次亜(又は亜)塩素酸ナトリウム水溶液を貯蔵している次亜(又は亜)塩素酸ナトリウムタンクと、該次亜(又は亜)塩素酸ナトリウムタンクの含次亜(又は亜)塩素酸ナトリウム水溶液を供給する次亜(又は亜)塩素酸ナトリウム注入ポンプと、該水供給源から供給された水及び該次亜(又は亜)塩素酸ナトリウムタンクから供給された含次亜(又は亜)塩素酸ナトリウム水溶液を混合させる次亜(又は亜)塩素酸ナトリウム希釈部と、酸水溶液を貯蔵している酸水溶液タンクと、該酸水溶液タンクの酸水溶液を供給する酸水溶液注入ポンプと、該水供給源から供給された水及び該酸水溶液タンクから供給された酸水溶液を混合させる酸水溶液希釈部と、該水供給源から該次亜(又は亜)塩素酸ナトリウム希釈部及び該酸水溶液希釈部に供給される水量を測定する流量計と、該流量計で得られた水の流量データと、あらかじめ定めた水量及び含次亜(又は亜)塩素酸ナトリウム水溶液供給量との関係から必要な含次亜(又は亜)塩素酸ナトリウム水溶液の供給量を算出して該次亜(又は亜)塩素酸ナトリウム注入ポンプから必要な量の含次亜(又は亜)塩素酸ナトリウム水溶液を供給させる次亜(又は亜)塩素酸ナトリウム注入ポンプ制御部と、該流量計で得られた水の流量データと、あらかじめ定めた水量及び酸水溶液供給量との関係から必要な酸水溶液の供給量を算出して酸水溶液注入ポンプから必要な量の酸水溶液を供給させる酸水溶液注入ポンプ制御部と、該次亜(又は亜)塩素酸ナトリウム希釈部から供給された次亜(又は亜)塩素酸ナトリウム希釈水及び該酸水溶液希釈部から供給された酸水溶液希釈水を混合・反応させる混合反応部と、該混合反応部で生成された殺菌水のpH値を測定するpH値測定装置と、該水供給源から該次亜(又は亜)塩素酸ナトリウム希釈部及び該酸水溶液希釈部に供給される水の給水を停止させる給水停止弁と、該pH値測定装置によって得られたpH値が所定値以下又は所定値以上となった場合に該給水停止弁を閉状態にさせる給水停止弁制御部とを備えたことを特徴とするものである。
【0014】
ここで、前記含次亜(又は亜)塩素酸ナトリウム水溶液としては低食塩タイプのものが好ましい。また、前記酸水溶液としては例えば希塩酸、酢酸、クエン酸等の水溶液を使用することができるが、人体に無害なものであればこれら以外の酸水溶液を使用してもよい。
【0015】
前記次亜(又は亜)塩素酸ナトリウム希釈部及び前記酸水溶液希釈部としては、外殻筒と、該外殻筒内に略同軸に挿入された内殻筒とを備え、該内殻筒が周面に複数個の孔を有し、薬液{含次亜(又は亜)塩素酸ナトリウム水溶液又は酸水溶液}と水が該内殻筒の一方の端部から内部に入り、該複数個の孔を通って該内殻筒と該外殻筒の間の空間内に放出されるようになっているものを使用することができる。
【0016】
また、前記混合反応部としては、外殻筒と、該外殻筒内に略同軸に挿入された内殻筒とを備え、該内殻筒が周面に複数個の孔を有し、該内殻筒の一方の端部側が前記次亜(又は亜)塩素酸ナトリウム希釈部につながり、該外殻筒の側部が前記酸水溶液希釈部につながり、該次亜(又は亜)塩素酸ナトリウム希釈部で生成された次亜(又は亜)塩素酸ナトリウム希釈水が該内殻筒の一方の端部から内部に入り、該複数個の孔を通って該内殻筒と該外殻筒の間の空間内に放出され、該酸水溶液希釈部で生成された酸水溶液希釈水が該内殻筒と該外殻筒の間の空間内に直接流入するようになっているものを使用することができる。
【0017】
また、前記混合反応部としては、外殻筒と、該外殻筒内に略同軸に挿入された内殻筒とを備え、該内殻筒が周面に複数個の孔を有し、該内殻筒の一方の端部側が前記酸水溶液希釈部につながり、該外殻筒の側部が次亜(又は亜)塩素酸ナトリウム希釈部につながり、前記酸水溶液希釈部で生成された酸水溶液希釈水が該内殻筒の一方の端部から内部に入り、該複数個の孔を通って該内殻筒と該外殻筒の間の空間内に放出され、前記次亜(又は亜)塩素酸ナトリウム希釈部で生成された次亜(又は亜)塩素酸ナトリウム希釈水が該内殻筒と該外殻筒の間の空間内に直接流入するようになっているものを使用してもよい。
【0018】
また、前記次亜(又は亜)塩素酸ナトリウムポンプから前記次亜(又は亜)塩素酸ナトリウムタンクに含次亜(又は亜)塩素酸ナトリウム水溶液を戻す次亜(又は亜)塩素酸ナトリウム戻し管路と、該次亜(又は亜)塩素酸ナトリウム戻し管路に設けられた次亜(又は亜)塩素酸ナトリウム戻し弁と、前記pH値測定装置によって得られたpH値が所定値以下となった場合に該次亜(又は亜)塩素酸ナトリウム戻し弁を所定時間開状態にした後、閉状態にする次亜(又は亜)塩素酸ナトリウム戻し弁制御部とを備えてもよい。
【0019】
また、前記酸水溶液ポンプから前記酸水溶液タンクに酸水溶液を戻す酸水溶液戻し管路と、該酸水溶液戻し管路に設けられた酸水溶液戻し弁と、前記pH値測定装置によって得られたpH値が所定値以上となった場合に該酸水溶液戻し弁を所定時間開状態にした後、閉状態にする酸水溶液戻し弁制御部とを備えてもよい。
【0020】
また、設定した所定の時間帯に前記次亜(又は亜)塩素酸ナトリウムポンプを停止させた状態で、前記酸水溶液ポンプを駆動させて一定流量の酸水溶液を注入させ、殺菌水を一定流量で生成・排出させ、該殺菌水のpH値を前記pH測定装置で測定し、予め設定した基準pH値からのずれを検出した場合に、該pH測定装置に関する指示及び/又は警報を表示部に表示させるpH測定装置管理部を備えてもよい。
【0021】
また、設定した所定の時間帯に前記酸水溶液ポンプを駆動させて一定流量の酸水溶液を注入させ、前記次亜(又は亜)塩素酸ナトリウムポンプを駆動させて一定流量の含次亜(又は亜)塩素酸ナトリウム水溶液を注入させ、殺菌水を一定流量で生成・排出させ、該殺菌水のpH値を前記pH測定装置で測定し、予め設定した基準pH値になるように含次亜(又は亜)塩素酸ナトリウム水溶液の注入量を調整する次亜(又は亜)塩素酸ナトリウム量制御部を備えてもよい。
【0022】
また、炭酸水素ナトリウムを貯蔵している炭酸水素ナトリウムタンクと、前記水供給源から供給された水及び該炭酸水素ナトリウムタンクから供給された炭酸水素ナトリウムを混合して炭酸水素ナトリウム希釈水を生成し、該炭酸水素ナトリウム希釈水を前記次亜(又は亜)塩素酸ナトリウム希釈部に供給する炭酸水素ナトリウム希釈部と、該炭酸水素ナトリウムタンクから該炭酸水素ナトリウム希釈部に炭酸水素ナトリウム水溶液を供給する炭酸水素ナトリウム注入ポンプと、流量計の計測値と、あらかじめ定めた水量及び炭酸水素ナトリウム水溶液の量との関係から必要な炭酸水素ナトリウム水溶液の量を算出して該炭酸水素ナトリウム注入ポンプから該炭酸水素ナトリウム希釈部に必要な量の炭酸水素ナトリウム水溶液を供給させる炭酸水素ナトリウム注入ポンプ制御部とを次亜(又は亜)塩素酸ナトリウム希釈部の前に設けてもよい。
【0023】
また、前記炭酸水素ナトリウム希釈部は、外殻筒と、該外殻筒内に略同軸に挿入された内殻筒とを備え、該内殻筒は周面に複数個の孔を有し、炭酸水素ナトリウム水溶液と水は該内殻筒の該複数個の孔を通って該内殻筒と該外殻筒の間の空間内に放出されるようにしてもよい。
【0024】
また、前記次亜(又は亜)塩素酸ナトリウムタンク、前記酸水溶液タンク及び前記炭酸水素ナトリウムタンクの全部又は一部に液無しセンサーが各々取り付けられ、少なくともいずれかの液無しセンサーが液無しを検知した場合、前記給水停止弁制御部が液無しセンサーからの液無しの信号で前記給水停止弁を閉状態にするようにしてもよい。
【0025】
【発明の実施の形態】
図1はこの発明の一実施の形態に係る殺菌水の連続生成装置の構成を示す説明図、図2はこの発明の一実施の形態に係る殺菌水の連続生成装置の炭酸水素ナトリウム希釈部、次亜(又は亜)塩素酸ナトリウム希釈部又は酸水溶液希釈部の内部構造を示す説明図、図3はこの発明の一実施の形態に係る殺菌水の連続生成装置の戻し配管に関する説明図、図4はこの発明の一実施の形態に係る殺菌水の連続生成装置の混合反応部の説明図である。
【0026】
以下、この発明の一実施の形態に係る殺菌水の連続生成装置の構成を図1を中心にし、他の図を補助的に用いながら説明する。
【0027】
図1において、10は水供給源(例:水道配管の端部)であり、水供給源10から所定の長さに亘って第1配管12が設けられている。第1配管12には水供給源10に近い方から、減圧弁14、フィルター16、流量計18及び給水停止弁20がこの順に設けられている。
【0028】
減圧弁14は第1配管12及び後述する各配管の管内の圧力を所定圧力以下、例えば2.5kg以下に保ち、後述するpH値測定装置94の電極の破損を防止したり、薬液(炭酸水素ナトリウム水溶液、含次亜(又は亜)塩素酸ナトリウム水溶液、希塩酸水溶液)注入のタイミングのずれによる殺菌水の成分組成やpH値のずれを防止するために設けられている。
【0029】
フィルター16は水供給源10から供給された水の中のゴミを除去し、主として下流に設けられた流量計18が計測誤差を生じさせないようにするために設けられている。
【0030】
流量計18はこの殺菌水の連続生成装置に供給される全水量を計測するために設けられており、後述する制御装置100に接続されている。流量計18は、この例では羽根車式の電子式流量測定機を使用し、流量計18で得られた流量データは後述する制御装置100にパルス信号で送られるようになっている。
【0031】
給水停止弁20は、生成された殺菌水のpH値が所定範囲を外れた場合、殺菌水の生成・供給を止めさせるために設けられている。給水停止弁20は後述する制御装置100に接続され、制御されている。
【0032】
第1配管12の先端部は2つに分岐し、一方は炭酸水素ナトリウム希釈部22の入側に至る第2配管24に、他方は酸水溶液希釈部26の入側に至る第3配管28になっている。
【0033】
第2配管24には水供給源10に近い方から、逆流防止弁30及び炭酸水素ナトリウム注入チャッキ32がこの順に設けられている。
【0034】
逆流防止弁30は、炭酸水素ナトリウム注入チャッキ32から注入された炭酸水素ナトリウム水溶液(比重が水より大きい)が第2配管24内を逆流し、流量計等の計測機類を痛めたり、水道配管内に入ってしまう事故を防ぐために設けられている。
【0035】
炭酸水素ナトリウム注入チャッキ32には炭酸水素ナトリウムタンク34から配設された第4配管36の一方の端部が接続されている。第4配管36の途中には炭酸水素ナトリウムポンプ38が設けられ、第4配管36の他方の端部は炭酸水素ナトリウムタンク34内の炭酸水素ナトリウム水溶液中に浸漬されている。炭酸水素ナトリウムポンプ38は後述する制御装置100に接続され、制御されている。
【0036】
炭酸水素ナトリウム希釈部22は、図2に示すように、外殻筒40と、外殻筒40内に略同軸に挿入された内殻筒42とからなる。内殻筒42は周面に複数個の孔44を有し、内殻筒42の一方の端部は第2配管24につながり、他方の端部は閉塞されている。
【0037】
炭酸水素ナトリウム希釈部22の出側には次亜(又は亜)塩素酸ナトリウム希釈部46に至る第5配管48が設けられ、第5配管48には逆流防止弁50及び次亜(又は亜)塩素酸ナトリウム注入チャッキ52がこの順に設けられている。
【0038】
逆流防止弁50は、次亜(又は亜)塩素酸ナトリウム注入チャッキ52から注入された含次亜(又は亜)塩素酸ナトリウム水溶液(比重が水より大きい)が第5配管48内を逆流し、流量計等の計測機類を痛めたり、水道配管内に入ってしまう事故を防ぐために設けられている。
【0039】
次亜(又は亜)塩素酸ナトリウム注入チャッキ52には次亜(又は亜)塩素酸ナトリウムタンク54から配設された第6配管56の一方の端部が接続されている。第6配管56の途中には次亜(又は亜)塩素酸ナトリウム注入ポンプ58が設けられ、第6配管56の他方の端部は次亜(又は亜)塩素酸ナトリウムタンク54内の含次亜(又は亜)塩素酸ナトリウム水溶液中に浸漬されている。次亜(又は亜)塩素酸ナトリウムポンプ60は後述する制御装置100に接続され、制御されている。
【0040】
第6配管56には、図3に示すように、次亜(又は亜)塩素酸ナトリウムポンプ60と次亜(又は亜)塩素酸ナトリウム注入チャッキ52の間で分岐し、次亜(又は亜)塩素酸ナトリウムタンク54に戻す次亜(又は亜)塩素酸ナトリウム戻し管路60が設けられ、次亜(又は亜)塩素酸ナトリウム戻し管路60の途中には次亜(又は亜)塩素酸ナトリウム戻し弁62が設けられ、次亜(又は亜)塩素酸ナトリウム戻し弁62は後述する制御装置100に接続され、制御されている。
【0041】
次亜(又は亜)塩素酸ナトリウム希釈部46は、図2に示すように、外殻筒40と、外殻筒40内に略同軸に挿入された内殻筒42とからなる。内殻筒42は周面に複数個の孔44を有し、内殻筒42の一方の端部は第5配管48につながり、他方の端部は閉塞されている。
【0042】
第1配管12の先端部から分岐した第3配管28には水供給源10に近い方から、逆流防止弁64及び酸水溶液注入チャッキ66がこの順に設けられている。
【0043】
逆流防止弁64は、酸水溶液注入チャッキ66から注入された酸水溶液(例えば、希塩酸が使用されるが、希塩酸の比重は水より大きい)が第3配管28内を逆流し、流量計等の計測機類を痛めたり、水道配管内に入ってしまう事故を防ぐために設けられている。
【0044】
酸水溶液注入チャッキ66には酸水溶液タンク68から配設された第7配管70の一方の端部が接続されている。第7配管70の途中には酸水溶液ポンプ74が設けられ、第7配管70の他方の端部は酸水溶液タンク68内の酸水溶液(希塩酸)中に浸漬されている。酸水溶液ポンプ74は後述する制御装置100に接続され、制御されている。
【0045】
第7配管70には、図3に示すように、酸水溶液ポンプ74と酸水溶液注入チャッキ66の間で分岐し、酸水溶液タンク68に戻す酸水溶液戻し管路74が接続され、酸水溶液戻し管路74の途中には酸水溶液戻し弁76が設けられ、酸水溶液戻し弁76は後述する制御装置100に接続され、制御されている。
【0046】
酸水溶液希釈部26は、図2に示すように、外殻筒40と、外殻筒40内に略同軸に挿入された内殻筒42とを備え、内殻筒42は周面に複数個の孔44を有し、内殻筒42の一方の端部側は第3配管28につながっている。
【0047】
次亜(又は亜)塩素酸ナトリウム希釈部46の出側には混合反応部78に至る第8配管80が、酸水溶液希釈部26の出側には混合反応部78に至る第9配管82が各々設けられている。
【0048】
混合反応部78は、図4に示すように、外殻筒84と、外殻筒84内に略同軸に挿入された内殻筒86とを備え、内殻筒86は周面に複数個の孔88を有し、内殻筒86の一方の端部側は第8配管80につながり、外殻筒84の側部は第9配管82につながっている。
【0049】
そして、次亜(又は亜)塩素酸ナトリウム希釈部46で生成された次亜(又は亜)塩素酸ナトリウム希釈水は内殻筒86の複数個の孔88を通って内殻筒86と外殻筒84の間の空間内に放出され、酸水溶液希釈部26で生成された酸水溶液希釈水(希塩酸希釈水)は内殻筒86と外殻筒84の間の空間内に直接流入するようになっている。
【0050】
混合反応部78は、酸水溶液希釈部26で生成された酸水溶液希釈水(希塩酸希釈水)が内殻筒86の複数個の孔88を通って内殻筒86と外殻筒84の間の空間内に放出され、次亜(又は亜)塩素酸ナトリウム希釈部46で生成された次亜(又は亜)塩素酸ナトリウム希釈水が内殻筒86と外殻筒84の間の空間内に直接流入するようにしてもよい。
【0051】
混合反応部78から吐出口90までは第10配管92が設けられ、第10配管92にはpH値測定装置94が設けられ、生成された殺菌水のpHが測定されるようになっている。そして、pH値測定装置94で得られたpH値データは後述する制御装置100にパルス信号で送られるようになっている。また、第10配管92には吐出口90の手前に排水ドレン用の三方弁128が設けられている。
【0052】
次亜(又は亜)塩素酸ナトリウムタンク54、酸水溶液タンク68及び炭酸水素ナトリウムタンク34には液なしセンサー126が各々取り付けられ、少なくともいずれかの液なしセンサー126が液無しを検知した場合、給水停止弁制御部112が液なしセンサー126からの液無しの信号で給水停止弁20を閉状態にするようになっている。
【0053】
次に、この殺菌水の連続生成装置によって殺菌水を生成する場合の生成工程について説明する。
【0054】
まず、水供給源10から第1配管12に供給された水は減圧弁14で2.5kgf程度の圧力に減圧され、フィルター16でゴミを濾過された後、流量計18を通過する。流量計18では通過する水の流量が電子的に計測され、計測された水の流量データは制御装置100に送られる。
【0055】
流量計8を通過した水は給水停止弁20を通り、その先で第2配管24と第3配管28に分岐し、各配管24,28に各々入る。
【0056】
第2配管24に入った水は逆流防止弁30及び炭酸水素ナトリウム注入チャッキ32を通り、炭酸水素ナトリウム希釈部22に入る。炭酸水素ナトリウム注入チャッキ32では第2配管24内を通過する水の中に所定量の炭酸水素ナトリウム水溶液が連続的に注入される。炭酸水素ナトリウム水溶液は炭酸水素ナトリウムタンク34に貯蔵されており、第4配管36及び炭酸水素ナトリウムポンプ38により炭酸水素ナトリウム注入チャッキ32に供給される。
【0057】
炭酸水素ナトリウム注入チャッキ32で炭酸水素ナトリウム水溶液を注入された水は炭酸水素ナトリウム希釈部22の内殻筒42内に入り、内殻筒42内から複数個の孔44を通って内殻筒42と外殻筒40の間の空間内に放出され、拡散・混合する。
【0058】
炭酸水素ナトリウム水溶液を加えた水は第5配管48に入り、逆流防止弁50、次亜(又は亜)塩素酸ナトリウム注入チャッキ52を通り、次亜(又は亜)塩素酸ナトリウム希釈部46に入る。次亜(又は亜)塩素酸ナトリウム注入チャッキ52では第5配管48内を通過する水の中に所定量の含次亜(又は亜)塩素酸ナトリウム水溶液が連続的に注入される。含次亜(又は亜)塩素酸ナトリウム水溶液は次亜(又は亜)塩素酸ナトリウムタンク54に貯蔵されており、第6配管56及び次亜(又は亜)塩素酸ナトリウムポンプ60により次亜(又は亜)塩素酸ナトリウム注入チャッキ52に供給される。
【0059】
含次亜(又は亜)塩素酸ナトリウム水溶液を次亜(又は亜)塩素酸ナトリウム注入チャッキ52に注入した際に、水の中に含まれるカルシウム等が析出し、次亜(又は亜)塩素酸ナトリウム注入チャッキ52を閉塞させるおそれがあるが、供給されている水に炭酸水素ナトリウム水溶液が予め溶解させてあるので、そのような不具合は生じない。
【0060】
次亜(又は亜)塩素酸ナトリウム注入チャッキ52で含次亜(又は亜)塩素酸ナトリウム水溶液を注入された水は、図2に矢印で示すように、次亜(又は亜)塩素酸ナトリウム希釈部46の内殻筒42内に入り、内殻筒42内から複数個の孔44を通って内殻筒42と外殻筒40の間の空間内に放出され、拡散・混合する。
【0061】
次亜(又は亜)塩素酸ナトリウム希釈部46で含次亜(又は亜)塩素酸ナトリウム水溶液を注入された水は第8配管80を通って混合反応部78に送られる。
【0062】
他方、第3配管28に入った水は逆流防止弁30及び酸水溶液注入チャッキ66を通って酸水溶液希釈部26に入る。酸水溶液注入チャッキ66では第3配管28を通過する水の中に酸水溶液(例えば、希塩酸又は酢酸等)が注入される。酸水溶液は酸水溶液タンク68に貯蔵されており、第7配管70及び酸水溶液ポンプ74によって酸水溶液注入チャッキ66に供給される。
【0063】
酸水溶液注入チャッキ66で酸水溶液を注入された水は、図2に矢印で示すように、酸水溶液希釈部26の内殻筒42内に入り、内殻筒42内から複数個の孔44を通って内殻筒42と外殻筒40の間の空間内に放出され、拡散・混合する。
【0064】
酸水溶液希釈部26で酸水溶液を注入された水は第9配管82を通って混合反応部78に送られる。
【0065】
混合反応部78では次亜(又は亜)塩素酸ナトリウムを注入された水及び酸水溶液を注入された水が混合され、所定のpH範囲の殺菌水が生成される。生成された殺菌水は混合反応部78から第10配管92に連続的に供給され、吐出口(蛇口)90を開けると所望の殺菌能力を有する水が連続的に提供される。
【0066】
なお、次亜(又は亜)塩素酸ナトリウム希釈部46から供給された水には予め炭酸水素ナトリウムが含まれており、混合反応部78で酸と反応して炭酸イオンを生成させるので、この炭酸イオンがカビ類や真菌類の増殖を抑制する。
【0067】
図5はこの発明の一実施の形態に係る殺菌水の連続生成装置の制御装置の説明図である。次に、この殺菌水の連続生成装置の制御機構について、図5を参照しながら説明する。
【0068】
まず、水供給源10からこの装置に供給された水の流量が流量計18により計測され、得られた水の流量データが制御装置100に送られる。また、生成された殺菌水のpH値がpH値測定装置94により測定され、この測定によって得られたpH値データが制御装置100に送られる。
【0069】
制御装置100の炭酸水素ナトリウム注入ポンプ制御部102では、流量計18から送られてきた流量データと、あらかじめ定めた水量及び炭酸水素ナトリウム量との関係から必要な炭酸水素ナトリウム量を算出して炭酸水素ナトリウム注入ポンプ38で第2配管24内に必要な量の炭酸水素ナトリウム水溶液を連続的に注入させる。
【0070】
制御装置100の次亜(又は亜)塩素酸ナトリウム注入ポンプ制御部104では、流量計18の計測値と、あらかじめ定めた水量及び含次亜(又は亜)塩素酸ナトリウム水溶液供給量との関係から必要な含次亜(又は亜)塩素酸ナトリウム水溶液供給量を算出し、次亜(又は亜)塩素酸ナトリウム注入ポンプ58で第5配管48内に必要な量の含次亜(又は亜)塩素酸ナトリウム水溶液を連続的に注入させる。
【0071】
制御装置100の酸水溶液注入ポンプ制御部106では、流量計18の計測値と、あらかじめ定めた水量及び酸水溶液供給量との関係から必要な酸水溶液供給量を算出して酸水溶液注入ポンプ72で第3配管28内に必要な量の酸水溶液を連続的に注入させる。
【0072】
pH値測定装置94によって測定されたpH値が所定値以下となった場合は、制御装置100のpH値管理部108が次亜(又は亜)塩素酸ナトリウム戻し弁制御部110に次亜(又は亜)塩素酸ナトリウム戻し弁62を一時的に開状態にさせた後、閉状態にさせる。
【0073】
次亜(又は亜)塩素酸ナトリウム戻し弁62を一時的に開状態にさせると、次亜(又は亜)塩素酸ナトリウム注入ポンプ58及び次亜(又は亜)塩素酸ナトリウム戻し管路60内を含次亜(又は亜)塩素酸ナトリウム水溶液が大量に流れ、次亜(又は亜)塩素酸ナトリウム注入ポンプ58を空転させてpH異常を生じさせている可能性のあるエアーが押し流されて排除されるのでpH異常が解消することになる。
【0074】
この操作によってpH異常が解消しない場合は、制御装置100のpH値管理部108が給水停止弁制御部112に給水停止弁20を閉状態にさせる。
【0075】
pH値測定装置94によって測定されたpH値が所定値以上となった場合は、制御装置100のpH値管理部108が酸水溶液戻し弁制御部114に酸水溶液戻し弁76を一時的に開状態にさせた後、閉状態にさせる。
【0076】
酸水溶液戻し弁76を一時的に開状態にさせると、酸水溶液注入ポンプ72及び酸水溶液戻し管路74内を酸水溶液(希塩酸希釈水)が大量に流れ、酸水溶液注入ポンプ72を空転させてpH異常を生じさせている可能性のあるエアーが押し流されて排除されるのでpH異常が解消することになる。
【0077】
この操作によってpH異常が解消しない場合は、制御装置100のpH値管理部108が給水停止弁制御部112に給水停止弁20を閉状態にさせる。
【0078】
pH値測定装置管理部116では、タイマー118を用い、設定した所定の時間帯、例えば夜中、に次亜(又は亜)塩素酸ナトリウム注入ポンプ58を停止させ、三方弁128を排水ドレン側に切換え、酸水溶液注入ポンプ72を駆動させて一定流量の酸水溶液を注入させ、殺菌水を一定流量で生成・排出させ、生成された殺菌水のpH値をpH値測定装置94で測定し、基準pH値からのずれを検出した場合に、pH値測定装置94の再校正の指示を校正表示部120に表示させる。
【0079】
次亜(又は亜)塩素酸ナトリウム量制御部122では、タイマー124を用い、設定した所定の時間帯に酸水溶液注入ポンプ72を駆動させて一定流量の酸水溶液を注入させ、次亜(又は亜)塩素酸ナトリウム注入ポンプ58を駆動させて一定流量の含次亜(又は亜)塩素酸ナトリウム水溶液を注入させ、殺菌水を一定流量で生成・排出させ、生成された殺菌水のpH値をpH値測定装置94で測定し、基準pHになるように含次亜(又は亜)塩素酸ナトリウム水溶液の注入量を調整する。
【0080】
【発明の効果】
この発明は、供給される水の圧力変動や生成された殺菌水の吐出量に変動があっても生成された殺菌水のpHを弱酸性域に保っておくことができるので、殺菌水の殺菌力の低下を防止して院内感染や食中毒などの事故を防止することができるという効果がある。
【0081】
また、この発明は、次亜(又は亜)塩素酸ナトリウム希釈水とpH調整用の酸水溶液希釈水とを混合反応させる際に、次亜(又は亜)塩素酸ナトリウム希釈水とpH調整用の酸水溶液希釈水が穏やかに且つ均一に拡散・反応するので、水溶液のpH値が極端に低下し、危険な塩素ガスを発生するおそれがないという効果がある。
【0082】
また、この発明は、薬剤として使用している含次亜(又は亜)塩素酸ナトリウム水溶液の劣化があっても、所望の殺菌力を有する殺菌水を生成させることができるという効果がある。
【0083】
また、この発明は、pH値測定装置の接液部に使用する比較電極の交換時期又は校正時期を自動的に検知することができるという効果がある。
【0084】
また、この発明は、炭酸水素ナトリウムを注入する場合、カビ類、真菌類に対して安定した殺菌効果を有する殺菌水を生成することができるという効果がある。
【0085】
また、この発明は、炭酸水素ナトリウムを注入する場合、殺菌水に炭酸水素ナトリウムによる緩衝作用が生じ、弱酸性域でpH値が制御し易くなり、pH値を安定化させることができるという効果がある。
【0086】
また、この発明は、逆流防止弁を付けた場合、含次亜(又は亜)塩素酸ナトリウム水溶液の逆流を防止し、計測機の損傷を防止するとともに、次亜(又は亜)塩素酸ナトリウム入りの水が水道配管内に逆流するのを防止することができるという効果がある。
【図面の簡単な説明】
【図1】この発明の一実施の形態に係る殺菌水の連続生成装置の構成を示す説明図である。
【図2】この発明の一実施の形態に係る殺菌水の連続生成装置の炭酸水素ナトリウム希釈部、次亜(又は亜)塩素酸ナトリウム希釈部又は酸水溶液希釈部の内部構造を示す説明図である。
【図3】この発明の一実施の形態に係る殺菌水の連続生成装置の戻し配管に関する説明図である。
【図4】この発明の一実施の形態に係る殺菌水の連続生成装置の混合反応部の説明図である。
【図5】この発明の一実施の形態に係る殺菌水の連続生成装置の制御装置の説明図である。
【符号の説明】
10 水供給源
12 第1配管
14 減圧弁
16 フィルター
18 流量計
20 給水停止弁
22 炭酸水素ナトリウム希釈部
24 第2配管
26 酸水溶液希釈部
28 第3配管
30 逆流防止弁
32 炭酸水素ナトリウム注入チャッキ
34 炭酸水素ナトリウムタンク
36 第4配管
38 炭酸水素ナトリウム注入ポンプ
40 外殻筒
42 内殻筒
44 孔
46 次亜(又は亜)塩素酸ナトリウム希釈部
48 第5配管
50 逆流防止弁
52 次亜(又は亜)塩素酸ナトリウム注入チャッキ
54 次亜(又は亜)塩素酸ナトリウムタンク
56 第6配管
58 次亜(又は亜)塩素酸ナトリウム注入ポンプ
60 次亜(又は亜)塩素酸ナトリウム戻し管路
62 次亜(又は亜)塩素酸ナトリウム戻し弁
64 逆流防止弁
66 酸水溶液注入チャッキ
68 酸水溶液タンク
70 第7配管
72 酸水溶液注入ポンプ
74 酸水溶液戻し管路
76 酸水溶液戻し弁
78 混合反応部
80 第8配管
82 第9配管
84 外殻筒
86 内殻筒
88 孔
90 吐出口
92 第10配管
94 pH値測定装置
100 制御装置
102 炭酸水素ナトリウム注入ポンプ制御部
104 次亜(又は亜)塩素酸ナトリウム注入ポンプ制御部
106 酸水溶液注入ポンプ制御部
108 pH値管理部
110 次亜(又は亜)塩素酸ナトリウム戻し弁制御部
112 給水停止弁制御部
114 酸水溶液戻し弁制御部
116 pH値測定装置管理部
118 タイマー
120 校正表示部
122 次亜(又は亜)塩素酸ナトリウム量制御部
124 タイマー
126 液なしセンサー
128 三方弁
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a continuous production apparatus for sterilizing water composed of dilute water of hypochlorous acid (or sodium chlorite) whose pH value is maintained in a weakly acidic range.
[0002]
[Prior art]
In medical facilities and the food industry, sodium hypochlorite diluted water formed by diluting sodium hypochlorite to a certain concentration with tap water or the like is widely used as sterilizing water. And it is known that sterilization power will be enhanced by adding a small amount of vinegar to this sodium hypochlorite diluted water to make its pH value weakly acidic. This is also introduced in the Food Sanitation Instructions and the “Technology for Water Purification” by Norihito Tanbo and Junichi Ogasawara, published by Gihodo.
[0003]
Japanese Patent Laid-Open Nos. 9-295911, 10-182325, and 4-94793 have proposed proposals obtained by planting this conventionally known technique.
[0004]
[Problems to be solved by the invention]
By the way, the sterilizing power of sodium hypochlorite-diluted water is large in a weakly acidic region, and greatly decreases as the pH becomes alkaline. In order to obtain a desired sterilizing effect, the pH of sodium hypochlorite-diluted water is low. Must be kept strictly in a weakly acidic range.
[0005]
However, when the above-mentioned conventional devices are actually used in medical facilities or food industries, there are many fluctuations in the water pressure and the amount of water such as tap water as dilution water, and every time the water pressure or the amount of water fluctuates, the chemical solution There are cases where the injection timing is shifted, the concentration or pH value of the produced sodium hypochlorite diluted water is changed, and the sterilizing power of the generated sterilizing water is significantly reduced.
[0006]
In addition, when the sterilizing water generated by the continuous sterilizing water generator is to be discharged from a plurality of faucets, open a plurality of faucets at the same time, or open only one faucet, The change in the flow rate on the water discharge side changes greatly, the timing of chemical injection is shifted, the concentration and pH value of dilute sodium hypochlorite water change, and the sterilizing power of the generated sterilizing water is significantly reduced There is a case.
[0007]
However, medical workers, food workers, etc. use sterilized water because they believe in the sterilizing power of sterilized water. In such cases, they may end up working with unsterilized hands. In this case, instruments and foods are washed with sterilized water having extremely low sterilizing power, which may cause hospital infections and food poisoning.
[0008]
Also, when sterilizing water is used at a low flow rate, sodium hypochlorite and acid for pH adjustment have different specific gravity and viscosity, so the mixing ratio changes, and an acid that is easily soluble in dilution water and has a low specific gravity. There is a tendency to be mixed in advance, in which case the pH value of the aqueous solution is extremely lowered, and there is a risk of generating dangerous chlorine gas.
[0009]
In addition, sodium hypochlorite used as an infusion drug has its own properties, the chlorine concentration of which decreases rapidly with time, especially during summer when it is busy, the rate of chlorine concentration deterioration due to temperature rise. However, the sterilized water produced may not have the desired sterilizing power.
[0010]
In addition, the pH value measuring device that measures the pH value, which is the key to the sterilizing power of the sodium hypochlorite aqueous solution, is a regular standard whether the reference electrode used for the wetted part reaches the end of its life in about one year. pH value calibration work is required, but technology for automatically detecting the timing has not yet been established, so there is only a predictive work, and there is a problem with the reliability of the pH value measurement device. There is a problem with reliability of force.
[0011]
In addition, the sterilization of fungi and fungi, which are considered to be less effective with the conventional aqueous sodium hypochlorite solution, has been improved by adjusting the pH of the aqueous solution. Stable sterilization of the kind is indispensable in the future, and further enhancement of the effect is urgent.
[0012]
In addition, sodium hypochlorite precipitates calcium components and the like due to the reaction of calcium hydrogen carbonate, etc., contained in tap water as dilution water and sodium hydroxide in the sodium hypochlorite solution. There is a problem that the injection portion deposits and adheres to the injection portion of sodium acid and closes the injection portion.
[0013]
[Means for Solving the Problems]
An apparatus for continuously producing sterilized water according to the present invention includes a water supply source for supplying water, a hypochlorous acid (or sodium chlorite) tank storing a hypochlorous acid (or sodium chlorite) aqueous solution, A hypochlorous acid (or hypochlorite) sodium chlorite tank containing a hypochlorous acid (or hypochlorite) sodium chlorate infusion pump for supplying an aqueous solution of sodium hypochlorite (or hypochlorite), water supplied from the water source, and the next A hypochlorous acid (or sodium chlorite) diluting part for mixing the sodium hypochlorite (or chlorite) aqueous solution supplied from the sodium (or chlorite) sodium chlorate tank, and an acid aqueous solution tank storing the acid aqueous solution An acid aqueous solution injection pump for supplying an acid aqueous solution in the acid aqueous solution tank, water supplied from the water supply source, an acid aqueous solution diluting unit for mixing the acid aqueous solution supplied from the acid aqueous solution tank, and the water supply Source A flow meter for measuring the amount of water supplied to the sodium hypochlorite (or sodium chlorite) dilution section and the acid aqueous solution dilution section, water flow data obtained by the flow meter, a predetermined water amount and content Calculate the necessary amount of sodium hypochlorite (or sodium chlorite) aqueous solution supplied from the relationship with the amount of sodium chlorite (or sodium chlorite) aqueous solution supplied, and supply from the sodium hypochlorite (or sodium chlorite) injection pump. Sodium hypochlorite infusion pump controller for supplying a quantity of sodium hypochlorite (or sodium chlorite) aqueous solution, water flow rate data obtained by the flow meter, predetermined water quantity and acid An acid aqueous solution injection pump controller that calculates the supply amount of the required acid aqueous solution from the relationship with the aqueous solution supply amount and supplies the required amount of the acid aqueous solution from the acid aqueous solution injection pump, and the sodium hypochlorite (or sodium chlorite) Dilution section A mixing reaction section for mixing and reacting the diluted sodium hypochlorite (or hypochlorite) sodium chlorite dilution solution and the acid aqueous solution dilution water supplied from the acid aqueous solution dilution section, and the sterilizing water generated in the mixing reaction section a pH value measuring device for measuring the pH value, a water supply stop valve for stopping the supply of water supplied from the water supply source to the sodium hypochlorite (or sodium chlorite) dilution section and the acid aqueous solution dilution section, and a water supply stop valve control unit that closes the water supply stop valve when the pH value obtained by the pH value measuring device is equal to or lower than a predetermined value or higher than a predetermined value.
[0014]
Here, the sodium hypochlorite (or hypochlorite) sodium chlorite aqueous solution is preferably a low salt type. As the acid aqueous solution, for example, an aqueous solution of dilute hydrochloric acid, acetic acid, citric acid or the like can be used. However, other acid aqueous solutions may be used as long as they are harmless to the human body.
[0015]
The sodium hypochlorite (or sodium chlorite) dilution section and the acid aqueous solution dilution section include an outer shell cylinder and an inner shell cylinder inserted substantially coaxially into the outer shell cylinder. There are a plurality of holes on the peripheral surface, and a chemical solution {containing hypochlorous acid (or sodium chlorite aqueous solution or acid aqueous solution)} and water enter from one end of the inner shell cylinder, and the plurality of holes It is possible to use those that are discharged through the inner shell cylinder and into the space between the outer shell cylinder.
[0016]
The mixing reaction section includes an outer shell tube and an inner shell tube inserted substantially coaxially into the outer shell tube, the inner shell tube having a plurality of holes on a peripheral surface, One end side of the inner shell cylinder is connected to the sodium hypochlorite (or sodium chlorite) dilution part, and a side part of the outer shell cylinder is connected to the acid aqueous solution dilution part, and the sodium hypochlorite (or sodium chlorite) Diluted water of sodium hypochlorite (or sodium chlorite) generated in the dilution section enters the inside from one end of the inner shell cylinder, passes through the plurality of holes, and forms the inner shell cylinder and the outer shell cylinder. A solution in which the acid aqueous solution diluted water discharged into the space between the inner shell cylinder and the outer shell cylinder flows directly into the space between the inner shell cylinder and the outer shell cylinder is used. Can do.
[0017]
The mixing reaction section includes an outer shell tube and an inner shell tube inserted substantially coaxially into the outer shell tube, the inner shell tube having a plurality of holes on a peripheral surface, One end side of the inner shell cylinder is connected to the acid aqueous solution dilution part, and the side part of the outer shell cylinder is connected to a sodium hypochlorite (or sodium chlorite) dilution part, and the acid aqueous solution generated in the acid aqueous solution dilution part Dilution water enters the inside from one end of the inner shell cylinder, is discharged into the space between the inner shell cylinder and the outer shell cylinder through the plurality of holes, and Even if it uses what the hypochlorous acid (or sodium chlorite) dilution water produced | generated in the sodium chlorate dilution part flows directly into the space between this inner shell cylinder and this outer shell cylinder Good.
[0018]
Further, a hypochlorous acid (or sodium chlorite) return pipe for returning a sodium hypochlorite (or hypochlorite) aqueous solution containing sodium hypochlorite (or chlorite) from the hypochlorous acid (or sodium chlorite) pump to the sodium hypochlorite (or chlorite) tank. The pH value obtained by the channel, the sodium hypochlorite (or hypochlorite) sodium chlorate return valve provided in the sodium hypochlorite (or sodium hypochlorite return conduit), and the pH value measuring device becomes a predetermined value or less. A sodium hypochlorite (or sodium chlorite) return valve control unit for opening the sodium hypochlorite (or sodium chlorite) return valve for a predetermined time and then closing it.
[0019]
Further, an acid aqueous solution return pipe for returning the acid aqueous solution from the acid aqueous solution pump to the acid aqueous solution tank, an acid aqueous solution return valve provided in the acid aqueous solution return pipe, and a pH value obtained by the pH value measuring device The acid aqueous solution return valve may be provided with a closed state after the acid aqueous solution return valve is opened for a predetermined time when the value becomes equal to or greater than a predetermined value.
[0020]
In addition, in a state where the sodium hypochlorite (or hypochlorite) sodium chlorate pump is stopped at a predetermined time zone set, the acid aqueous solution pump is driven to inject a constant flow rate of the acid aqueous solution, and sterilizing water is flown at a constant flow rate. Generate and discharge, measure the pH value of the sterilizing water with the pH measurement device, and display an instruction and / or alarm regarding the pH measurement device on the display unit when a deviation from a preset reference pH value is detected You may provide the pH measurement apparatus management part to be made.
[0021]
In addition, the acid aqueous solution pump is driven to inject a constant flow rate of acid aqueous solution at a predetermined time period set, and the hypochlorous acid (or sodium chlorite) pump is driven to drive a constant flow rate of subaqueous (or sublimation). ) Injecting an aqueous solution of sodium chlorate, generating and discharging sterilizing water at a constant flow rate, measuring the pH value of the sterilizing water with the pH measuring device, You may provide the hypochlorous acid (or sodium chlorite amount control part) which adjusts the injection quantity of sodium chlorite aqueous solution.
[0022]
Further, a sodium hydrogen carbonate tank storing sodium hydrogen carbonate, water supplied from the water supply source, and sodium hydrogen carbonate supplied from the sodium hydrogen carbonate tank are mixed to produce dilute sodium hydrogen carbonate water. A sodium hydrogen carbonate dilution section for supplying the sodium hydrogen carbonate dilution water to the sodium hypochlorite (or sodium chlorite dilution section), and a sodium hydrogen carbonate aqueous solution from the sodium hydrogen carbonate tank to the sodium hydrogen carbonate dilution section. The amount of sodium bicarbonate aqueous solution required is calculated from the relationship between the sodium hydrogen carbonate injection pump, the flow meter measurement value, the predetermined amount of water and the amount of sodium bicarbonate aqueous solution, and the amount of sodium bicarbonate is calculated from the sodium bicarbonate injection pump. Charcoal for supplying sodium hydrogen carbonate solution in the required amount to the sodium hydrogen dilution section And sodium hydrogen injection pump control unit may be provided in front of hypophosphorous (or nitrite) sodium chlorate dilution unit.
[0023]
The sodium hydrogen carbonate dilution part includes an outer shell tube and an inner shell tube inserted substantially coaxially into the outer shell tube, and the inner shell tube has a plurality of holes on a peripheral surface thereof, The aqueous sodium hydrogen carbonate solution and water may be discharged into the space between the inner shell cylinder and the outer shell cylinder through the plurality of holes of the inner shell cylinder.
[0024]
In addition, a liquid-free sensor is attached to all or part of the hypochlorous acid (or hypochlorite) sodium chlorate tank, the acid aqueous solution tank, and the sodium hydrogen carbonate tank, and at least one liquid-free sensor detects the absence of liquid. In this case, the water supply stop valve control unit may close the water supply stop valve with a signal indicating no liquid from the no liquid sensor.
[0025]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is an explanatory diagram showing a configuration of a continuous sterilizing water generator according to an embodiment of the present invention, and FIG. 2 is a sodium hydrogen carbonate dilution unit of the continuous sterilizing water generator according to an embodiment of the present invention. FIG. 3 is an explanatory view showing the internal structure of a sodium hypochlorite (or hypochlorite) sodium chlorate dilution part or an acid aqueous solution dilution part, FIG. 3 is an explanatory view related to the return pipe of the continuous sterilizing water generator according to one embodiment of the present invention, and FIG. 4 is explanatory drawing of the mixing reaction part of the continuous production | generation apparatus of the sterilization water based on one Embodiment of this invention.
[0026]
Hereinafter, the structure of the continuous production | generation apparatus of the sterilizing water based on one Embodiment of this invention is demonstrated centering on FIG. 1, and using other figures auxiliary.
[0027]
In FIG. 1, reference numeral 10 denotes a water supply source (eg, an end portion of a water pipe), and a first pipe 12 is provided from the water supply source 10 over a predetermined length. The first pipe 12 is provided with a pressure reducing valve 14, a filter 16, a flow meter 18 and a water supply stop valve 20 in this order from the side closer to the water supply source 10.
[0028]
The pressure reducing valve 14 keeps the pressure in the pipes of the first pipe 12 and each pipe to be described later at a predetermined pressure or lower, for example, 2.5 kg or lower, to prevent damage to the electrodes of the pH value measuring device 94 to be described later, It is provided to prevent deviations in the composition of the sterilizing water and the pH value due to the deviation in the timing of injection of the sodium aqueous solution, the hypochlorous acid (or sodium chlorite aqueous solution, dilute hydrochloric acid aqueous solution).
[0029]
The filter 16 is provided in order to remove dust in the water supplied from the water supply source 10 and prevent the flow meter 18 provided mainly downstream from causing a measurement error.
[0030]
The flow meter 18 is provided to measure the total amount of water supplied to the sterilizing water continuous generation device, and is connected to the control device 100 described later. In this example, the flow meter 18 uses an impeller-type electronic flow meter, and the flow rate data obtained by the flow meter 18 is sent to the control device 100 described later as a pulse signal.
[0031]
The water supply stop valve 20 is provided to stop the generation and supply of the sterilizing water when the pH value of the generated sterilizing water is out of the predetermined range. The water supply stop valve 20 is connected to and controlled by a control device 100 described later.
[0032]
The tip of the first pipe 12 branches into two, one to the second pipe 24 that reaches the entry side of the sodium bicarbonate dilution section 22 and the other to the third pipe 28 that reaches the entry side of the acid aqueous solution dilution section 26. It has become.
[0033]
The second pipe 24 is provided with a backflow prevention valve 30 and a sodium hydrogen carbonate injection check 32 in this order from the side closer to the water supply source 10.
[0034]
The backflow prevention valve 30 has a sodium hydrogen carbonate aqueous solution (specific gravity greater than water) injected from the sodium hydrogen carbonate injection check 32, and backflows in the second pipe 24, damaging measuring instruments such as a flow meter or water pipe. It is provided in order to prevent accidents that can enter.
[0035]
One end of a fourth pipe 36 provided from the sodium hydrogen carbonate tank 34 is connected to the sodium hydrogen carbonate injection check 32. A sodium hydrogen carbonate pump 38 is provided in the middle of the fourth pipe 36, and the other end of the fourth pipe 36 is immersed in an aqueous sodium hydrogen carbonate solution in the sodium hydrogen carbonate tank 34. The sodium hydrogen carbonate pump 38 is connected to and controlled by a control device 100 described later.
[0036]
As shown in FIG. 2, the sodium hydrogen carbonate dilution unit 22 includes an outer shell 40 and an inner shell 42 inserted substantially coaxially in the outer shell 40. The inner shell cylinder 42 has a plurality of holes 44 on the peripheral surface, one end of the inner shell cylinder 42 is connected to the second pipe 24, and the other end is closed.
[0037]
On the outlet side of the sodium hydrogen carbonate dilution unit 22, a fifth pipe 48 leading to the sodium hypochlorite (or sodium chlorite) dilution part 46 is provided, and the fifth pipe 48 includes a backflow prevention valve 50 and a hypoxia (or sub). A sodium chlorate injection check 52 is provided in this order.
[0038]
In the backflow prevention valve 50, a sodium hypochlorite (or chlorite) aqueous solution containing sodium hypochlorite (or a specific gravity greater than water) injected from the sodium hypochlorite (or hypochlorite) injection check 52 flows back through the fifth pipe 48, It is provided to prevent accidents that damage measuring instruments such as flow meters or enter water pipes.
[0039]
One end of a sixth pipe 56 provided from a sodium hypochlorite (or sodium chlorite) tank 54 is connected to the sodium hypochlorite (or sodium chlorite) injection check 52. A hypochlorous acid (or hypochlorite) sodium chlorate injection pump 58 is provided in the middle of the sixth pipe 56, and the other end of the sixth pipe 56 is a hypochlorous acid (or hypochlorite) sodium chlorate tank 54. It is immersed in (or) sodium chlorite aqueous solution. The hypochlorous acid (or sodium chlorite) pump 60 is connected to and controlled by a control device 100 described later.
[0040]
As shown in FIG. 3, the sixth pipe 56 branches between a hypochlorous acid (or hypochlorous acid) sodium chlorate pump 60 and a hypochlorous acid (or hypochlorous acid) sodium chlorate injection check 52, and A sodium hypochlorite (or sodium chlorite) return line 60 that returns to the sodium chlorate tank 54 is provided, and sodium hypochlorite (or sodium chlorite) is placed in the middle of the sodium hypochlorite (or sodium chlorite) return line 60. A return valve 62 is provided, and the sodium hypochlorite (or sodium chlorite) return valve 62 is connected to and controlled by the control device 100 described later.
[0041]
As shown in FIG. 2, the sodium hypochlorite (or sodium chlorite) dilution section 46 includes an outer shell 40 and an inner shell 42 inserted substantially coaxially into the outer shell 40. The inner shell cylinder 42 has a plurality of holes 44 on its peripheral surface, one end of the inner shell cylinder 42 is connected to the fifth pipe 48, and the other end is closed.
[0042]
The third pipe 28 branched from the tip of the first pipe 12 is provided with a backflow prevention valve 64 and an acid aqueous solution injection check 66 in this order from the side closer to the water supply source 10.
[0043]
The backflow prevention valve 64 backflows the acid aqueous solution (for example, dilute hydrochloric acid is used, but the specific gravity of the dilute hydrochloric acid is larger than that of water) injected from the acid aqueous solution injection check 66 and is measured by a flow meter or the like. It is provided to prevent accidents that damage machinery or enter water pipes.
[0044]
One end of a seventh pipe 70 disposed from the acid aqueous solution tank 68 is connected to the acid aqueous solution injection check 66. An acid aqueous solution pump 74 is provided in the middle of the seventh pipe 70, and the other end of the seventh pipe 70 is immersed in an acid aqueous solution (dilute hydrochloric acid) in the acid aqueous solution tank 68. The acid aqueous solution pump 74 is connected to and controlled by a control device 100 described later.
[0045]
As shown in FIG. 3, an acid aqueous solution return pipe 74 that branches between the acid aqueous solution pump 74 and the acid aqueous solution injection check 66 and returns to the acid aqueous solution tank 68 is connected to the seventh pipe 70. An acid aqueous solution return valve 76 is provided in the middle of the path 74, and the acid aqueous solution return valve 76 is connected to and controlled by a control device 100 described later.
[0046]
As shown in FIG. 2, the acid aqueous solution dilution section 26 includes an outer shell 40 and an inner shell 42 inserted substantially coaxially in the outer shell 40, and a plurality of inner shells 42 are provided on the circumferential surface. The one end side of the inner shell cylinder 42 is connected to the third pipe 28.
[0047]
An eighth pipe 80 leading to the mixing reaction section 78 is provided on the outlet side of the sodium hypochlorite (or sodium chlorite) dilution section 46, and a ninth pipe 82 leading to the mixing reaction section 78 is provided on the outlet side of the acid aqueous solution dilution section 26. Each is provided.
[0048]
As shown in FIG. 4, the mixing reaction unit 78 includes an outer shell 84 and an inner shell 86 inserted substantially coaxially in the outer shell 84. The inner shell 86 has a plurality of peripheral surfaces. There is a hole 88, one end of the inner shell 86 is connected to the eighth pipe 80, and the side of the outer shell 84 is connected to the ninth pipe 82.
[0049]
The sodium hypochlorite (or sodium chlorite) diluted water generated in the sodium hypochlorite (or sodium chlorite) dilution section 46 passes through the plurality of holes 88 of the inner shell 86 and the inner shell 86 and the outer shell. The acid aqueous solution dilution water (diluted hydrochloric acid dilution water) discharged into the space between the cylinders 84 and generated in the acid aqueous solution dilution section 26 flows directly into the space between the inner shell cylinder 86 and the outer shell cylinder 84. It has become.
[0050]
In the mixing reaction unit 78, the acid aqueous solution dilution water (dilute hydrochloric acid dilution water) generated in the acid aqueous solution dilution unit 26 passes between the inner shell 86 and the outer shell 84 through the plurality of holes 88 of the inner shell 86. Diluted water of sodium hypochlorite (or sodium chlorite) released in the space and generated in the sodium hypochlorite (or sodium chlorite) dilution section 46 directly enters the space between the inner shell 86 and the outer shell 84. It may be allowed to flow in.
[0051]
A tenth pipe 92 is provided from the mixing reaction unit 78 to the discharge port 90, and a pH value measuring device 94 is provided in the tenth pipe 92 so as to measure the pH of the generated sterilized water. The pH value data obtained by the pH value measuring device 94 is sent as a pulse signal to the control device 100 described later. The tenth pipe 92 is provided with a three-way valve 128 for drainage drain before the discharge port 90.
[0052]
The hypoxia (or hypochlorite) sodium chlorate tank 54, the acid aqueous solution tank 68, and the sodium hydrogen carbonate tank 34 are each provided with a no-liquid sensor 126, and when at least one of the no-liquid sensors 126 detects no liquid, The stop valve control unit 112 closes the water supply stop valve 20 in response to a signal indicating no liquid from the no liquid sensor 126.
[0053]
Next, the production | generation process in the case of producing | generating sterilization water with this continuous production apparatus of sterilization water is demonstrated.
[0054]
First, the water supplied from the water supply source 10 to the first pipe 12 is depressurized to a pressure of about 2.5 kgf by the pressure reducing valve 14, and dust is filtered by the filter 16, and then passes through the flow meter 18. The flow meter 18 electronically measures the flow rate of the passing water, and the flow rate data of the measured water is sent to the control device 100.
[0055]
The water that has passed through the flow meter 8 passes through the water supply stop valve 20, branches to the second pipe 24 and the third pipe 28, and enters the pipes 24 and 28, respectively.
[0056]
The water that has entered the second pipe 24 passes through the backflow prevention valve 30 and the sodium hydrogen carbonate injection check 32 and enters the sodium hydrogen carbonate dilution section 22. In the sodium hydrogen carbonate injection check 32, a predetermined amount of aqueous sodium hydrogen carbonate solution is continuously injected into the water passing through the second pipe 24. The aqueous sodium hydrogen carbonate solution is stored in the sodium hydrogen carbonate tank 34 and is supplied to the sodium hydrogen carbonate injection check 32 by the fourth pipe 36 and the sodium hydrogen carbonate pump 38.
[0057]
The water into which the sodium hydrogen carbonate aqueous solution has been injected by the sodium hydrogen carbonate injection check 32 enters the inner shell cylinder 42 of the sodium hydrogen carbonate dilution section 22, and passes through the plurality of holes 44 from the inner shell cylinder 42. And is diffused and mixed into the space between the outer shell 40 and the outer shell 40.
[0058]
The water to which the aqueous sodium hydrogen carbonate solution has been added enters the fifth pipe 48, passes through the backflow prevention valve 50, the sodium hypochlorite (or hypochlorite) sodium chloride injection check 52, and enters the sodium hypochlorite (or sodium hypochlorite diluting section 46). . In the sodium hypochlorite (or sodium chlorite) injection check 52, a predetermined amount of sodium hypochlorite (or sodium chlorite) aqueous solution is continuously injected into the water passing through the fifth pipe 48. The hypochlorous acid (or hypochlorite) sodium chlorite aqueous solution is stored in a hypochlorous acid (or hypochlorite) sodium chlorate tank 54, and hypochlorous acid (or hypochlorite (or hypochlorite) sodium chlorate pump 60) A) Sodium chlorate injection check 52 is supplied.
[0059]
When the hypochlorous acid (or sodium chlorite) aqueous solution is injected into the hypochlorous acid (or sodium chlorite) injection check 52, calcium contained in the water precipitates, and hypochlorous acid (or hypochlorite). There is a possibility that the sodium injection check 52 may be clogged, but such a problem does not occur because the sodium hydrogen carbonate aqueous solution is dissolved in advance in the supplied water.
[0060]
The water injected with the sodium hypochlorite (or sodium chlorite) aqueous solution in the sodium hypochlorite injection check 52 is diluted with sodium hypochlorite (or sodium chlorite) as shown by arrows in FIG. It enters the inner shell cylinder 42 of the portion 46, is discharged from the inner shell cylinder 42 through the plurality of holes 44, and is diffused and mixed into the space between the inner shell cylinder 42 and the outer shell cylinder 40.
[0061]
The water injected with the sodium hypochlorite (or sodium chlorite) aqueous solution in the sodium hypochlorite (or sodium chlorite) dilution section 46 is sent to the mixing reaction section 78 through the eighth pipe 80.
[0062]
On the other hand, the water that has entered the third pipe 28 enters the acid aqueous solution dilution section 26 through the backflow prevention valve 30 and the acid aqueous solution injection check 66. In the acid aqueous solution injection check 66, an acid aqueous solution (for example, dilute hydrochloric acid or acetic acid) is injected into the water passing through the third pipe 28. The acid aqueous solution is stored in the acid aqueous solution tank 68 and is supplied to the acid aqueous solution injection check 66 by the seventh pipe 70 and the acid aqueous solution pump 74.
[0063]
The water into which the acid aqueous solution has been injected by the acid aqueous solution injection check 66 enters the inner shell cylinder 42 of the acid aqueous solution diluting portion 26 as shown by the arrow in FIG. It is discharged into the space between the inner shell cylinder 42 and the outer shell cylinder 40 and diffuses and mixes.
[0064]
The water into which the acid aqueous solution has been injected by the acid aqueous solution dilution unit 26 is sent to the mixing reaction unit 78 through the ninth pipe 82.
[0065]
In the mixing reaction unit 78, water injected with sodium hypochlorite (or sodium chlorite) and water injected with an aqueous acid solution are mixed to produce sterilized water having a predetermined pH range. The produced sterilizing water is continuously supplied from the mixing reaction unit 78 to the tenth pipe 92, and when the discharge port (faucet) 90 is opened, water having a desired sterilizing ability is continuously provided.
[0066]
The water supplied from the sodium hypochlorite (or sodium chlorite) dilution section 46 contains sodium hydrogen carbonate in advance and reacts with the acid in the mixing reaction section 78 to generate carbonate ions. Ions suppress the growth of molds and fungi.
[0067]
FIG. 5 is an explanatory diagram of the control device of the continuous sterilizing water generator according to one embodiment of the present invention. Next, the control mechanism of the sterilizing water continuous production apparatus will be described with reference to FIG.
[0068]
First, the flow rate of water supplied to the device from the water supply source 10 is measured by the flow meter 18, and the flow rate data of the obtained water is sent to the control device 100. Further, the pH value of the generated sterilized water is measured by the pH value measuring device 94, and the pH value data obtained by this measurement is sent to the control device 100.
[0069]
The sodium hydrogen carbonate injection pump control unit 102 of the control device 100 calculates the required amount of sodium hydrogen carbonate from the relationship between the flow rate data sent from the flow meter 18 and the predetermined amount of water and sodium hydrogen carbonate, and carbonation. The sodium hydrogen injection pump 38 continuously injects a required amount of aqueous sodium hydrogen carbonate solution into the second pipe 24.
[0070]
In the hypochlorous acid (sodium chlorite) infusion pump control unit 104 of the control device 100, the relationship between the measured value of the flow meter 18, the predetermined amount of water and the amount of sodium hypochlorite (or chlorite) aqueous solution supplied. Calculate the required amount of aqueous solution containing sodium hypochlorite (or sodium chlorite) and use the sodium hypochlorite (or sodium chlorite) injection pump 58 to fill the fifth pipe 48 with the required amount of sodium hypochlorite (or sodium chlorite). An aqueous sodium acid solution is continuously injected.
[0071]
The acid aqueous solution injection pump control unit 106 of the control device 100 calculates the necessary acid aqueous solution supply amount from the relationship between the measured value of the flow meter 18 and the predetermined amount of water and the acid aqueous solution supply amount, and the acid aqueous solution injection pump 72 A necessary amount of the aqueous acid solution is continuously injected into the third pipe 28.
[0072]
When the pH value measured by the pH value measuring device 94 becomes equal to or less than a predetermined value, the pH value management unit 108 of the control device 100 supplies the hypochlorous (or sodium hypochlorite return valve control unit 110 to the hypochlorous (or The sub-) sodium chlorate return valve 62 is temporarily opened and then closed.
[0073]
When the hypochlorous acid (or hypochlorite) sodium chlorate return valve 62 is temporarily opened, the hypochlorous acid (or hypochlorite) sodium chlorate infusion pump 58 and the hypochlorous acid (or sodium chlorite) return line 60 pass through. A large amount of sodium hypochlorite (or hypochlorite) aqueous solution containing sodium chlorite flows and the hypochlorite (or hypochlorite) sodium chlorite injection pump 58 is idled to remove the air that may cause pH abnormality. Therefore, the pH abnormality is eliminated.
[0074]
If the pH abnormality is not resolved by this operation, the pH value management unit 108 of the control device 100 causes the water supply stop valve control unit 112 to close the water supply stop valve 20.
[0075]
When the pH value measured by the pH value measuring device 94 exceeds a predetermined value, the pH value management unit 108 of the control device 100 temporarily opens the acid aqueous solution return valve 76 in the acid aqueous solution return valve control unit 114. And let it close.
[0076]
When the acid aqueous solution return valve 76 is temporarily opened, a large amount of acid aqueous solution (diluted hydrochloric acid diluted water) flows through the acid aqueous solution injection pump 72 and the acid aqueous solution return pipe 74, causing the acid aqueous solution injection pump 72 to idle. Since the air that may cause the pH abnormality is pushed away and eliminated, the pH abnormality is eliminated.
[0077]
If the pH abnormality is not resolved by this operation, the pH value management unit 108 of the control device 100 causes the water supply stop valve control unit 112 to close the water supply stop valve 20.
[0078]
In the pH value measuring device management unit 116, the timer 118 is used to stop the sodium hypochlorite (or hypophosphite) sodium chlorate injection pump 58 in a predetermined time zone, for example, at night, and the three-way valve 128 is switched to the drainage drain side. Then, the acid aqueous solution injection pump 72 is driven to inject the acid aqueous solution at a constant flow rate, to generate and discharge the sterilized water at a constant flow rate, and to measure the pH value of the generated sterilized water with the pH value measuring device 94, When a deviation from the value is detected, a recalibration instruction for the pH value measuring device 94 is displayed on the calibration display unit 120.
[0079]
The sodium hypochlorite (or sodium chlorite) amount control unit 122 uses the timer 124 to drive the acid aqueous solution injection pump 72 to inject a constant flow rate of the aqueous acid solution during the predetermined time period set, and then subsist the hypochlorous acid (or sub-alkaline). ) The sodium chlorate injection pump 58 is driven to inject a constant flow of sodium hypochlorite (or sodium chlorite) aqueous solution, to generate and discharge sterilization water at a constant flow rate, and to adjust the pH value of the generated sterilization water to pH It measures with the value measuring apparatus 94, and adjusts the injection quantity of a hypochlorous acid (or sodium chlorite) aqueous solution so that it may become reference | standard pH.
[0080]
【The invention's effect】
Since the present invention can maintain the pH of the generated sterilizing water in a weakly acidic region even if the pressure fluctuation of the supplied water or the discharge amount of the generated sterilizing water varies, It has the effect of preventing power loss and preventing accidents such as hospital infections and food poisoning.
[0081]
In addition, the present invention provides a solution for diluting hypochlorous acid (or sodium chlorite) and dilute water for adjusting pH of sodium hypochlorite and dilute water for acid adjustment for adjusting pH. Since the acid aqueous solution diluted water diffuses and reacts gently and uniformly, there is an effect that the pH value of the aqueous solution is extremely lowered and there is no possibility of generating dangerous chlorine gas.
[0082]
In addition, the present invention has an effect that sterilizing water having a desired sterilizing power can be generated even if the aqueous sodium hypochlorite (or chlorite) solution used as a medicine is deteriorated.
[0083]
Further, the present invention has an effect that it is possible to automatically detect replacement time or calibration time of the reference electrode used in the liquid contact portion of the pH value measuring device.
[0084]
Moreover, this invention has the effect that when inject | pouring sodium hydrogencarbonate, the bactericidal water which has the stable bactericidal effect with respect to molds and fungi can be produced | generated.
[0085]
In addition, when injecting sodium hydrogen carbonate, the present invention has an effect that the bactericidal water is buffered by sodium hydrogen carbonate, the pH value can be easily controlled in a weakly acidic region, and the pH value can be stabilized. is there.
[0086]
In addition, when the backflow prevention valve is attached, the present invention prevents backflow of the aqueous sodium hypochlorite (or sodium chlorite) solution, prevents damage to the measuring instrument, and contains sodium hypochlorite (or sodium hypochlorite). It is possible to prevent the water from flowing back into the water pipe.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing a configuration of a continuous sterilizing water generator according to an embodiment of the present invention.
FIG. 2 is an explanatory diagram showing the internal structure of a sodium bicarbonate dilution section, a sodium hypochlorite (or hypochlorite) sodium chlorate dilution section, or an acid aqueous solution dilution section of the continuous sterilizing water generator according to one embodiment of the present invention. is there.
FIG. 3 is an explanatory diagram relating to a return pipe of a continuous sterilizing water generator according to an embodiment of the present invention.
FIG. 4 is an explanatory diagram of a mixing reaction unit of a continuous sterilizing water generator according to an embodiment of the present invention.
FIG. 5 is an explanatory diagram of a control device for a continuous sterilizing water generation device according to an embodiment of the present invention.
[Explanation of symbols]
10 Water source
12 First piping
14 Pressure reducing valve
16 filters
18 Flow meter
20 Water supply stop valve
22 Sodium bicarbonate dilution section
24 Second piping
26 Acid aqueous solution dilution section
28 3rd piping
30 Check valve
32 Sodium bicarbonate injection check
34 Sodium bicarbonate tank
36 4th piping
38 Sodium bicarbonate injection pump
40 outer shell
42 Inner shell
44 holes
46 Hypochlorous acid sodium chlorate dilution section
48 5th piping
50 Check valve
52 Hypochlorite (or hypochlorite) sodium chlorate injection check
54 Hypochlorous acid sodium chlorate tank
56 6th piping
58 Sodium hypochlorite infusion pump
60 Hypochlorous sodium chlorate return line
62 Hypochlorite (or hypochlorite) sodium chlorate return valve
64 Backflow prevention valve
66 Acid aqueous solution injection check
68 Acid aqueous solution tank
70 7th piping
72 Acid aqueous solution injection pump
74 Acid aqueous solution return line
76 Acid solution return valve
78 Mixing reaction section
80 8th piping
82 9th piping
84 Outer shell
86 Inner shell
88 holes
90 Discharge port
92 10th piping
94 pH value measuring device
100 Control device
102 Sodium bicarbonate injection pump controller
104 Hypochlorous sodium chlorate injection pump controller
106 Acid aqueous solution injection pump controller
108 pH value management department
110 Hypochlorous sodium chlorate return valve control unit
112 Water supply stop valve control unit
114 Acid aqueous solution return valve control unit
116 pH value measuring device management unit
118 timer
120 Calibration display
122 Sodium hypochlorite amount control unit
124 timer
126 Sensor without liquid
128 three-way valve

Claims (11)

水を供給する水供給源と、次亜(又は亜)塩素酸ナトリウム水溶液を貯蔵している次亜(又は亜)塩素酸ナトリウムタンクと、該次亜(又は亜)塩素酸ナトリウムタンクの含次亜(又は亜)塩素酸ナトリウム水溶液を供給する次亜(又は亜)塩素酸ナトリウム注入ポンプと、該水供給源から供給された水及び該次亜(又は亜)塩素酸ナトリウムタンクから供給された含次亜(又は亜)塩素酸ナトリウム水溶液を混合させる次亜(又は亜)塩素酸ナトリウム希釈部と、酸水溶液を貯蔵している酸水溶液タンクと、該酸水溶液タンクの酸水溶液を供給する酸水溶液注入ポンプと、該水供給源から供給された水及び該酸水溶液タンクから供給された酸水溶液を混合させる酸水溶液希釈部と、炭酸水素ナトリウムを貯蔵している炭酸水素ナトリウムタンクと、該炭酸水素ナトリウムタンクから炭酸水素ナトリウム水溶液を供給する炭酸水素ナトリウム注入ポンプと、該水供給源から供給された水及び該炭酸水素ナトリウムタンクから供給された炭酸水素ナトリウムを混合して炭酸水素ナトリウム希釈水を生成し、該炭酸水素ナトリウム希釈水を前記次亜(又は亜)塩素酸ナトリウム希釈部に供給する炭酸水素ナトリウム希釈部と、該水供給源から該次亜(又は亜)塩素酸ナトリウム希釈部及び該酸水溶液希釈部に供給される水量を測定する流量計と、該流量計で得られた水の流量データと、あらかじめ定めた水量及び含次亜(又は亜)塩素酸ナトリウム水溶液供給量との関係から必要な含次亜(又は亜)塩素酸ナトリウム水溶液の供給量を算出して該次亜(又は亜)塩素酸ナトリウム注入ポンプから必要な量の含次亜(又は亜)塩素酸ナトリウム水溶液を供給させる次亜(又は亜)塩素酸ナトリウム注入ポンプ制御部と、該流量計で得られた水の流量データと、あらかじめ定めた水量及び酸水溶液供給量との関係から必要な酸水溶液の供給量を算出して酸水溶液注入ポンプから必要な量の酸水溶液を供給させる酸水溶液注入ポンプ制御部と、該流量計の計測値と、あらかじめ定めた水量及び炭酸水素ナトリウム水溶液の量との関係から必要な炭酸水素ナトリウム水溶液の量を算出して該炭酸水素ナトリウム注入ポンプから必要な量の炭酸水素ナトリウム水溶液を供給させる炭酸水素ナトリウム注入ポンプ制御部と、該次亜(又は亜)塩素酸ナトリウム希釈部から供給された次亜(又は亜)塩素酸ナトリウム希釈水及び該酸水溶液希釈部から供給された酸水溶液希釈水を混合・反応させる混合反応部と、該混合反応部で生成された殺菌水のpH値を測定するpH値測定装置と、該水供給源から該次亜(又は亜)塩素酸ナトリウム希釈部及び該酸水溶液希釈部に供給される水の給水を停止させる給水停止弁と、該pH値測定装置によって得られたpH値が所定値以下又は所定値以上となった場合に該給水停止弁を閉状態にさせる給水停止弁制御部とを備えたことを特徴とする殺菌水の連続生成装置。Water supply source for supplying water, sodium hypochlorite (or sodium chlorite) tank storing a sodium hypochlorite (or sodium chlorite) aqueous solution, and the content of the sodium hypochlorite (or sodium chlorite) tank A hypochlorous acid (or sodium chlorite) infusion pump for supplying a sodium (or hypochlorite) sodium chlorite solution, water supplied from the water source, and a sodium hypochlorite (or sodium chlorite) tank A hypochlorous acid (or sodium chlorite) diluting part for mixing a hypochlorous acid (or sodium chlorite) aqueous solution, an acid aqueous solution tank for storing the acid aqueous solution, and an acid for supplying the acid aqueous solution in the acid aqueous solution tank aqueous solution and infusion pump, an acid aqueous solution diluted part to mix the supplied aqueous acid from the supplied water and the acid aqueous solution tank from the water supply source, sodium bicarbonate data that stores the sodium bicarbonate And a sodium hydrogen carbonate injection pump for supplying a sodium hydrogen carbonate aqueous solution from the sodium hydrogen carbonate tank, water supplied from the water supply source, and sodium hydrogen carbonate supplied from the sodium hydrogen carbonate tank. A sodium hydrogen carbonate dilution section for generating sodium hydrogen dilution water and supplying the sodium hydrogen carbonate dilution water to the sodium hypochlorite (or hypochlorite) dilution section; and the hypochlorous acid (or sub-chlorine) chlorine from the water source. A flow meter for measuring the amount of water supplied to the sodium acid dilution section and the acid aqueous solution dilution section, the flow rate data of the water obtained by the flow meter, a predetermined water amount, and sodium hypochlorite (or sodium chlorite) Calculate the required amount of sodium hypochlorite (or sodium chlorite) aqueous solution supplied from the relationship with the amount of aqueous solution supplied, and add the sodium hypochlorite (or sodium chlorite) injection A hypochlorous acid (or sodium chlorite) infusion pump controller for supplying a required amount of aqueous sodium hypochlorite (or chlorite) solution from the pump, flow rate data of water obtained by the flow meter, and a predetermined amount. An acid aqueous solution injection pump control unit for calculating the supply amount of the required acid aqueous solution from the relationship between the amount of water and the acid aqueous solution supply amount, and supplying the required amount of the acid aqueous solution from the acid aqueous solution injection pump, and the measured value of the flow meter And a predetermined amount of water and a sodium bicarbonate aqueous solution to calculate the amount of the required sodium bicarbonate aqueous solution and supply the required amount of the sodium bicarbonate aqueous solution from the sodium bicarbonate injection pump. Infusion pump control unit, sodium hypochlorite (or sodium chlorite) diluted water supplied from sodium hypochlorite (or sodium chlorite) dilution unit, and aqueous acid solution dilution A mixing reaction unit for mixing and reacting the acid aqueous solution diluted water supplied from the unit, a pH value measuring device for measuring the pH value of the sterilizing water generated in the mixing reaction unit, Or, the pH value obtained by the water supply stop valve for stopping the supply of water supplied to the sodium chlorate diluting part and the acid aqueous solution diluting part and the pH value measuring device becomes a predetermined value or less or a predetermined value or more. And a water supply stop valve control section for closing the water supply stop valve in a case where the water supply stop valve is closed. 前記次亜(又は亜)塩素酸ナトリウム希釈部が、外殻筒と、該外殻筒内に略同軸に挿入された内殻筒とを備え、該内殻筒が周面に複数個の孔を有し、含次亜(又は亜)塩素酸ナトリウム水溶液と水が該内殻筒の該複数個の孔を通って該内殻筒と該外殻筒の間の空間内に放出されるようになっていることを特徴とする請求項1に記載の殺菌水の連続生成装置。  The hypochlorous acid (or sodium chlorite diluting portion) includes an outer shell tube and an inner shell tube inserted substantially coaxially in the outer shell tube, and the inner shell tube has a plurality of holes on the circumferential surface. The aqueous sodium hypochlorite (or sodium chlorite) solution and water are discharged into the space between the inner shell cylinder and the outer shell cylinder through the plurality of holes of the inner shell cylinder. The continuous production | generation apparatus of the sterilization water of Claim 1 characterized by the above-mentioned. 前記酸水溶液希釈部が、外殻筒と、該外殻筒内に略同軸に挿入された内殻筒とを備え、該内殻筒が周面に複数個の孔を有し、酸水溶液と水が該内殻筒の該複数個の孔を通って該内殻筒と該外殻筒の間の空間内に放出されるようになっていることを特徴とする請求項1又は2に記載の殺菌水の連続生成装置。  The acid aqueous solution diluting section includes an outer shell cylinder and an inner shell cylinder inserted substantially coaxially into the outer shell cylinder, the inner shell cylinder having a plurality of holes on the circumferential surface, The water is discharged into the space between the inner shell tube and the outer shell tube through the plurality of holes of the inner shell tube. Continuous sterilizing water generator. 前記混合反応部が、外殻筒と、該外殻筒内に略同軸に挿入された内殻筒とを備え、該内殻筒が周面に複数個の孔を有し、該内殻筒の一方の端部側が前記次亜(又は亜)塩素酸ナトリウム希釈部につながり、該外殻筒の側部が前記酸水溶液希釈部につながり、該次亜(又は亜)塩素酸ナトリウム希釈部で生成された次亜(又は亜)塩素酸ナトリウム希釈水が該内殻筒の該複数個の孔を通って該内殻筒と該外殻筒の間の空間内に放出され、該酸水溶液希釈部で生成された酸水溶液希釈水が該内殻筒と該外殻筒の間の空間内に直接流入するようになっていることを特徴とする請求項1〜3のいずれかに記載の殺菌水の連続生成装置。  The mixing reaction section includes an outer shell tube and an inner shell tube inserted substantially coaxially into the outer shell tube, and the inner shell tube has a plurality of holes on its peripheral surface, and the inner shell tube One end side of the outer shell is connected to the sodium hypochlorite (or sodium chlorite) dilution portion, the side portion of the outer shell tube is connected to the aqueous acid solution dilution portion, and the sodium hypochlorite (or sodium chlorite) dilution portion The produced hypochlorous acid (or sodium chlorite) diluted water is discharged into the space between the inner shell cylinder and the outer shell cylinder through the plurality of holes of the inner shell cylinder, and diluted with the acid aqueous solution. The sterilization solution according to any one of claims 1 to 3, wherein the acid aqueous solution dilution water generated in the section flows directly into a space between the inner shell cylinder and the outer shell cylinder. A continuous water generator. 前記混合反応部が、外殻筒と、該外殻筒内に略同軸に挿入された内殻筒とを備え、該内殻筒が周面に複数個の孔を有し、該内殻筒の一方の端部側が前記酸水溶液希釈部につながり、該外殻筒の側部が次亜(又は亜)塩素酸ナトリウム希釈部につながり、前記酸水溶液希釈部で生成された酸水溶液希釈水が該内殻筒の該複数個の孔を通って該内殻筒と該外殻筒の間の空間内に放出され、前記次亜(又は亜)塩素酸ナトリウム希釈部で生成された次亜(又は亜)塩素酸ナトリウム希釈水が該内殻筒と該外殻筒の間の空間内に直接流入するようになっていることを特徴とする請求項1〜3のいずれかに記載の殺菌水の連続生成装置。  The mixing reaction section includes an outer shell tube and an inner shell tube inserted substantially coaxially into the outer shell tube, and the inner shell tube has a plurality of holes on its peripheral surface, and the inner shell tube One end side of the acid aqueous solution dilution part is connected to the acid aqueous solution dilution part, the outer shell side part is connected to a sodium hypochlorite (or sodium hypochlorite dilution part), and the acid aqueous solution dilution water generated in the acid aqueous solution dilution part is Hypochlorite (or hypochlorous acid) produced in the hypochlorous acid (or sodium chlorite diluting portion) is discharged into the space between the inner shell cylinder and the outer shell cylinder through the plurality of holes of the inner shell cylinder. The sterilized water according to any one of claims 1 to 3, wherein the sodium chlorite-diluted water directly flows into the space between the inner shell tube and the outer shell tube. Continuous generation device. 前記次亜(又は亜)塩素酸ナトリウムポンプから前記次亜(又は亜)塩素酸ナトリウムタンクに含次亜(又は亜)塩素酸ナトリウム水溶液を戻す次亜(又は亜)塩素酸ナトリウム戻し管路と、該次亜(又は亜)塩素酸ナトリウム戻し管路に設けられた次亜(又は亜)塩素酸ナトリウム戻し弁と、前記pH値測定装置によって得られたpH値が所定値以下となった場合に該次亜(又は亜)塩素酸ナトリウム戻し弁を所定時間開状態にした後、閉状態にする次亜(又は亜)塩素酸ナトリウム戻し弁制御部とを備えたことを特徴とする請求項1〜5のいずれかに記載の殺菌水の連続生成装置。  A hypochlorous acid (or sodium chlorite) return line for returning a sodium hypochlorite (or hypochlorite) aqueous solution containing sodium hypochlorite (or hypochlorite) from the hypochlorous acid (or sodium chlorite) pump to the sodium hypochlorite (or chlorite) tank When the pH value obtained by the hypochlorite (or sodium chlorite) return valve provided in the hypochlorous acid (or sodium chlorite return pipe) and the pH value measuring device is not more than a predetermined value And a sodium hypochlorite (or sodium chlorite) return valve control unit that opens the sodium hypochlorite (or sodium chlorite) return valve for a predetermined time and then closes the valve. The continuous production | generation apparatus of sterilization water in any one of 1-5. 前記酸水溶液ポンプから前記酸水溶液タンクに酸水溶液を戻す酸水溶液戻し管路と、該酸水溶液戻し管路に設けられた酸水溶液戻し弁と、前記pH値測定装置によって得られたpH値が所定値以上となった場合に該酸水溶液酸水溶液戻し弁を所定時間開状態にした後、閉状態にする酸水溶液戻し弁制御部とを備えたことを特徴とする請求項1〜6のいずれかに記載の殺菌水の連続生成装置。  An acid aqueous solution return pipe for returning the acid aqueous solution from the acid aqueous solution pump to the acid aqueous solution tank, an acid aqueous solution return valve provided in the acid aqueous solution return pipe, and a pH value obtained by the pH value measuring device are predetermined. 7. An acid aqueous solution return valve control unit that, when the acid aqueous solution acid aqueous solution return valve is opened for a predetermined period of time when the value is exceeded, is closed. The continuous production | generation apparatus of disinfection water as described in 2. 設定した所定の時間帯に前記次亜(又は亜)塩素酸ナトリウムポンプを停止させた状態で、前記酸水溶液ポンプを駆動させて一定流量の酸水溶液を注入させ、殺菌水を一定流量で生成・排出させ、該殺菌水のpH値を前記pH測定装置で測定し、予め設定した基準pH値からのずれを検出した場合に、該pH測定装置に関する指示及び/又は警報を表示部に表示させるpH測定装置管理部を備えたことを特徴とする請求項1〜7のいずれかに記載の殺菌水の連続生成装置。  In a state where the sodium hypochlorite (or hypochlorite) sodium chlorate pump is stopped at a predetermined time zone set, the acid aqueous solution pump is driven to inject a constant flow rate of the aqueous acid solution to generate sterilizing water at a constant flow rate. PH to discharge, measure pH value of the sterilizing water with the pH measurement device, and display an instruction and / or alarm regarding the pH measurement device on the display unit when a deviation from a preset reference pH value is detected The continuous production | generation apparatus of the sterilization water in any one of Claims 1-7 provided with the measurement apparatus management part. 設定した所定の時間帯に前記酸水溶液ポンプを駆動させて一定流量の酸水溶液を注入させ、前記次亜(又は亜)塩素酸ナトリウムポンプを駆動させて一定流量の含次亜(又は亜)塩素酸ナトリウム水溶液を注入させ、殺菌水を一定流量で生成・排出させ、該殺菌水のpH値を前記pH測定装置で測定し、予め設定した基準pH値になるように含次亜(又は亜)塩素酸ナトリウム水溶液の注入量を調整する次亜(又は亜)塩素酸ナトリウム量制御部を備えたことを特徴とする請求項1〜8のいずれかに記載の殺菌水の連続生成装置。  The acid aqueous solution pump is driven to inject a constant flow of acid aqueous solution at a set predetermined time zone, and the hypochlorous acid (or sodium chlorite) pump is driven to drive a constant flow of hypochlorous acid (or sub) chlorine. Sodium acid aqueous solution is injected, sterilizing water is generated and discharged at a constant flow rate, the pH value of the sterilizing water is measured with the pH measuring device, and the pH value is set to a preset reference pH value. The apparatus for continuously producing sterilizing water according to any one of claims 1 to 8, further comprising a sodium hypochlorite (or sodium chlorite) amount control unit for adjusting an injection amount of the sodium chlorate aqueous solution. 前記炭酸水素ナトリウム希釈部が、外殻筒と、該外殻筒内に略同軸に挿入された内殻筒とを備え、該内殻筒が周面に複数個の孔を有し、炭酸水素ナトリウム水溶液と水が該内殻筒の該複数個の孔を通って該内殻筒と該外殻筒の間の空間内に放出されるようになっていることを特徴とする請求項1〜9のいずれかに記載の殺菌水の連続生成装置。 The sodium hydrogen carbonate dilution section includes an outer shell tube and an inner shell tube inserted substantially coaxially into the outer shell tube, the inner shell tube having a plurality of holes on the peripheral surface, The aqueous sodium solution and water are discharged into the space between the inner shell tube and the outer shell tube through the plurality of holes of the inner shell tube . The continuous production | generation apparatus of the sterilization water in any one of 9. 前記次亜(又は亜)塩素酸ナトリウムタンク、前記酸水溶液タンク及び前記炭酸水素ナトリウムタンクの全部又は一部に液なしセンサーが各々取り付けられ、少なくともいずれかの液なしセンサーが液なしを検知した場合、前記給水停止弁制御部が液なしセンサーからの液なしの信号で前記給水停止弁を閉状態にするようになっていることを特徴とする請求項1〜10のいずれかに記載の殺菌水の連続生成装置。 A liquid-free sensor is attached to all or part of the sodium hypochlorite (or sodium chlorite) tank, the acid aqueous solution tank, and the sodium hydrogen carbonate tank, and at least one of the liquid-free sensors detects no liquid. The sterilizing water according to any one of claims 1 to 10 , wherein the water supply stop valve control unit is configured to close the water supply stop valve in response to a no-liquid signal from a no-liquid sensor. Continuous generation device.
JP2001044548A 2001-02-21 2001-02-21 Continuous sterilization water generator Expired - Lifetime JP4809535B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001044548A JP4809535B2 (en) 2001-02-21 2001-02-21 Continuous sterilization water generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001044548A JP4809535B2 (en) 2001-02-21 2001-02-21 Continuous sterilization water generator

Publications (2)

Publication Number Publication Date
JP2002241209A JP2002241209A (en) 2002-08-28
JP4809535B2 true JP4809535B2 (en) 2011-11-09

Family

ID=18906521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001044548A Expired - Lifetime JP4809535B2 (en) 2001-02-21 2001-02-21 Continuous sterilization water generator

Country Status (1)

Country Link
JP (1) JP4809535B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060015581A (en) * 2003-05-12 2006-02-17 다츠오 오카자키 Method for forming bactericidal water containing hypochlorous acid or chlorous acid, raw bactericidal material package and kit for forming bactericidal water, and method and apparatus for sterilizing space
JP4771201B2 (en) * 2005-03-22 2011-09-14 株式会社逸見電機エンジニアリング Production equipment for stabilized hypochlorous acid aqueous solution
US20090114353A1 (en) * 2005-06-22 2009-05-07 Hsp Hanbai Kabushiki Kaisha Method of Papermaking
JP5307351B2 (en) * 2007-04-24 2013-10-02 株式会社タクミナ Weakly acidic chlorine water production equipment
JP5843600B2 (en) * 2011-12-19 2016-01-13 水道機工株式会社 Method for generating and injecting dilute aqueous sodium hypochlorite solution
KR101436311B1 (en) * 2012-09-28 2014-11-03 주식회사 파이노 Functional water manufacturing apparatus with self-generated electric power
KR102443325B1 (en) * 2021-10-05 2022-09-14 안형일 In-Line Mixer for Uniformization 3D Distribution of Concectration in Fluid
KR102372224B1 (en) * 2021-10-05 2022-03-07 안형일 Dosing Device Include In-Line Mixer

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5115265A (en) * 1974-07-25 1976-02-06 Erehon Kakoki Kk RAINMI KISAA
JPH0624357B2 (en) * 1989-07-27 1994-03-30 日本電気株式会社 Frame sync detection method
JPH11188083A (en) * 1997-12-25 1999-07-13 Yoshiya Okazaki Sterilized water maker
ATA49899A (en) * 1999-03-19 2002-06-15 Immuno Ag METHOD AND DEVICE FOR MIXING COMPONENTS

Also Published As

Publication number Publication date
JP2002241209A (en) 2002-08-28

Similar Documents

Publication Publication Date Title
JP4809535B2 (en) Continuous sterilization water generator
US20040211731A1 (en) Method for monitoring and controlling chlorine levels in an aqueous medium
KR101543299B1 (en) The Inputting Apparatus of Chemicals and Intergrated Management System for Water Supply
KR100761311B1 (en) Apparatus and method for automatic manufacturing
EP1773480B1 (en) Dosing system for dosing of a liquid additive into a pressurized water supply line
US20060051285A1 (en) Chlorine dioxide generation
JP6667845B2 (en) Method for producing hypochlorous acid water and generator
KR102217544B1 (en) Storing type manufacturing apparatus of aqueous solution of chlorine dioxide
JP3257450B2 (en) Chemical injection control method and chemical injection control device for hydrogen sulfide remover
JP4755836B2 (en) Disinfection water generation method and apparatus
KR101754740B1 (en) Ict based ballast water residual chlorine measurement module for flux, fluid speed reliability
WO2005054138A1 (en) Apparatus for continuously producing sterilizing water
JP4390473B2 (en) Chemical solution injection control device and chemical solution injection device
WO2001044126A1 (en) Chlorine injection device for dental tap water and chlorine injection pressurized supply device
JP6028179B2 (en) Sodium hypochlorite injection device
KR200435395Y1 (en) High tension air the system which commits the Naocl in the use water pipe
TWM555355U (en) System for adding disinfectant
JP2002273452A (en) Method and device for manufacturing sterilized and deodorized water
JP4195435B2 (en) Sterilizing water production apparatus and chemical injection valve used therefor
CN205933338U (en) Sodium hypochlorite dosing system of water treatment plant
CN221235217U (en) Sodium hypochlorite adding system for sewage treatment
CN219098849U (en) Bactericide dosing device for water treatment
JP2003290338A (en) Dialysis solution preparation apparatus
CN217016536U (en) Raw material adding unit of chlorine dioxide preparation device for drinking water disinfection
JP7442715B2 (en) blood purification device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110425

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110816

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110819

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140826

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4809535

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term