JP4768405B2 - 光ファイバセンサー及び歪・温度観測システム - Google Patents

光ファイバセンサー及び歪・温度観測システム Download PDF

Info

Publication number
JP4768405B2
JP4768405B2 JP2005324967A JP2005324967A JP4768405B2 JP 4768405 B2 JP4768405 B2 JP 4768405B2 JP 2005324967 A JP2005324967 A JP 2005324967A JP 2005324967 A JP2005324967 A JP 2005324967A JP 4768405 B2 JP4768405 B2 JP 4768405B2
Authority
JP
Japan
Prior art keywords
strain
optical fiber
temperature
strand
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005324967A
Other languages
English (en)
Other versions
JP2007132746A (ja
Inventor
泰久 阿部
千浩 検見崎
帆高 萱野
友三 西本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
East Japan Railway Co
Dai Ichi High Frequency Co Ltd
Original Assignee
East Japan Railway Co
Dai Ichi High Frequency Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East Japan Railway Co, Dai Ichi High Frequency Co Ltd filed Critical East Japan Railway Co
Priority to JP2005324967A priority Critical patent/JP4768405B2/ja
Publication of JP2007132746A publication Critical patent/JP2007132746A/ja
Application granted granted Critical
Publication of JP4768405B2 publication Critical patent/JP4768405B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Transform (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

この発明は、構造体や構造部材に装着されてその変形量や温度の検出に用いられる光ファイバセンサー及びこれを光データ解析装置に接続して構成された、歪分布と温度分布を観測するための歪・温度観測システムに関する。
光ファイバセンサーは、その可撓性に基づいて装着対象物の外面形状に適合するので広範囲のセンサーとして使い易いものであり、例えば、光ファイバ中のブリルアン散乱光を利用して、光ファイバの長手方向に沿って生じた測定対象物の歪み分布を測定するBOTDR(Brillouin Optical Time Domain Reflectometry)、或いは、光ファイバ中のラマン散乱光を利用して、光ファイバの長手方向に沿って生じた測定対象物の温度分布を測定するROTDR(Raman Optical Time Domain Reflectometry)等を行うときの観測端(検出子・検出端・プローブ)として有用である。
地滑り等の環境条件変動を観測するために観測対象箇所に長い光ファイバを設置する技術として、光ファイバに長手方向の伸び歪を与えた状態で即ち張力を付与した状態で固定するものや(例えば特許文献1参照)、光ファイバに張力を掛けたままで構造物表面に骨材入反応硬化性樹脂で覆装するものが(例えば特許文献2参照)、知られている。これらは、何れも、可撓性の長尺保持体を具備しておらず、固定するときや覆装するときには光ファイバを直に両側から引っ張って張力を付与し、固定後・覆装後に装着対象物が支持体の役目をするようになっている。
また、光ファイバを粘着剤の付いたテープで被覆して構成した光ファイバ入粘着テープも知られている(例えば特許文献3参照)。この光ファイバ入粘着テープは、踏切遮断棹等に貼着して用いられるが、このケースでは貼着後の光ファイバに張力や圧縮力が掛るようにはなっていない。使用目的も遮断棹の折損等に伴って光ファイバが破断したらそのことを検出するに止まり、そのため、破断しない状態で光ファイバの長手方向の歪分布や温度分布を測定できるようにはなっていない。
さらに、光ファイバをセンシング区間では変形可能に湾曲させた形態で長尺の支持体に取り付けたものや(例えば特許文献4参照)、センシングのための長尺区間では光ファイバを条材に固定し渡り部となる短尺区間では条材から自由にして折り畳み運搬を可能にしたもの(例えば特許文献5参照)、樹脂チューブからなる可撓性の長尺保持体に複数条の光ファイバ素線を埋蔵した光ファイバセンサーも(例えば特許文献6参照)、開発されている。これは、樹脂チューブと光ファイバ素線とを一緒に押出機にかける共押し出し方式で安価に製造され、それに組み込まれた光ファイバは何れも歪測定に用いられ、複数本の平行配置により伸張側と圧縮側の区別も可能なものとなっている。すなわち、観測対象への光ファイバセンサーの取り付けについては、関心も高く多くの進展を見ている。
特開2001−296112号公報(第1頁、図2−3) 特開2002−131024号公報(第1−2頁、図1) 特開昭63−304205号公報 特開2004−191142号公報 特開2004−109039号公報 特開2004−101414号公報
ところで、光ファイバによる歪分布や温度分布の観測に関しては更なる問題点が残されている。
その1の問題点は、観測データ特に歪データの正確度の問題である。たとえば、光ファイバセンサーとロードセルとの比較試験を行ったところ、光ファイバセンサーによる歪値とロードセルによる歪値との間に無視できない誤差(−10%程度)が存在し、しかも、その誤差が温度変化やセンサーの変形履歴によって変動することが判った。ついては、この誤差は定数換算補正によって消去できないのである。ここで、上記比較試験に用いた光ファイバセンサーは、光通信に常用され延いては歪分布観測にも常用されている光ファイバ素線にポリエチレン被覆を施したものである。
因に、この光ファイバ素線にあっては、この素線を構成する光ファイバ裸線(このケースではガラス)と樹脂製の保護被覆とが相互非接着態様で複合された緩複合素線である。これは、線膨張係数に大差(ガラス製裸線は10−7/゜Kオーダーなのに対し樹脂製被覆は10−4/゜Kオーダーという10の比率)があるという事情の下で複合界面に作用する熱歪剪断力起因のファイバ破断を、複合界面の滑りにより上記剪断力を逃がすことで、回避するためである。
温度データに関しても真値との間の誤差が認められる。但し、この誤差は、概ね一貫していて定数換算補正になじむものの、好ましいものではない。
その2の問題点は、観測データの信憑性に関するものである。光ファイバセンサーによる歪や温度の観測は、広域を対象とする観測をいわゆるリモコンで而も非破壊で行えるという大きな利点を有することと引換えに、飛行機に喩えれば有視界飛行ではなく計器飛行に類するものとなっている。ついては、光ファイバ観測によって異状が発見されたとき、それが被観測系に係る真の異状か或いはセンサーラインに生じた見かけの異状かを見分けるために都度当該現場を実地検証するということになりかねず、それでは前記リモコン等のメリットが失われてしまう。
その3の問題点は、センサーラインの機能保全の問題点である。光ファイバは優れた多感性を有する一方、極めて脆弱である。すなわち、光ファイバセンサーのガラス製裸線は、例えば、その外径が0.125mmという太めの毛髪に相当する細さであり、しかも破断伸び率が高々5%という脆弱材質である。ついては、保護被覆が施されることとなるが、歪・温度観測では光ファイバの外周面自体がセンシング面となるから、光通信の場合と違って被覆厚さを可及的に薄く(たとえば片肉0.125〜0.2mm)することとなる。よって、被覆素線といえども、破断の懸念から解放されておらず、破断等の不具合に備えたバックアップ手段が切望されることとなる。
すなわち、データの正確度,信憑性,システムの保全といった観測に係る各種の信頼性を要求に応じて適切に充足することのできる光ファイバ利用の歪・温度観測システムの提供が課題となる。
本発明の歪・温度観測システム(請求項1)は、上述の課題を解決するために創案されたものであり、テープ状の長尺保持体に光ファイバ素線を埋蔵した光ファイバセンサーと、前記素線を光伝播の線路とする送・受信光のデータに基づいて該センサー沿いの歪分布データならびに温度分布データを導出する光データ解析装置とを備えた歪・温度観測システムであって、 前記光ファイバセンサーにあっては、前記光ファイバ素線として該素線の構成要素である光ファイバ裸線と保護被覆とが相互接着態様で複合された強複合素線と相互非接着態様で複合された緩複合素線の2種類が用いられ、該2種類を取り混ぜた3本以上の素線群が各種類毎に前記長尺保持体の中心線に関して線対称に位置する位置取りにて相互離間平行配列されており、 該素線群のうちの1本の強複合素線を一番手の素線として起用し該素線をブリルアン散乱光解析装置に接続して歪分布観測機構が構成され、前記素線群のうちの1本の緩複合素線を二番手の素線として起用し該素線をラマン散乱光解析装置に接続して温度分布観測機構が構成されるとともに、該歪分布観測機構と温度分布観測機構の一方または双方の機能を補助ないし強化するための観測機能支援機構が、前記素線群のうちの残りの素線を用いた構成にて配備されている、ことを特徴とする。
更に、前記観測機能支援機構は、前記歪分布観測機構と温度分布観測機構の双方の機能を支援する機構であって、前記一番手起用の強複合素線を入力素線択一形式の光路スイッチを介して前記ブリルアン散乱光解析装置に接続するとともに該光路スイッチの残りの入力端子には前記残りの素線のうちの1本の緩複合素線を追加接続することで該一番手と追加接続の素線を代る代る起用する強複合・緩複合2素線仕立の歪分布観測機構が構成されており、更に、該一番手の素線に係る歪分布データにおける温度分布起因の誤差を前記二番手の素線に係る温度分布データに基づいて修正するための歪データ修正演算手段と、前記一番手と追加接続の素線に係る歪分布データに基づいて温度分布データを算出する連立演算手段と、この連立演算手段の温度分布データと前記二番手の素線に係る温度分布データとに基づいて異状の有無を確認する温度データ確認手段とが配備されている、ことも特徴とする。
また、本発明の歪・温度観測システム(請求項2)は、上記の請求項1記載の歪・温度観測システムであって更に、前記一番手の素線に不具合が生じたときに該一番手の素線に係る歪分布データを前記追加接続の素線に係る歪分布データを以てバックアップするための2データ間関係式演算手段が配備されている、ことを特徴とする。
このような本発明の歪・温度観測システム(請求項1)にあっては、歪観測ラインに強複合素線を用いることで歪観測の正確度が先ず確保される。因に、歪観測ラインの素線を従来の緩複合素線から相互接着態様の強複合素線に変えたことで、真の歪値との誤差が前記−10%レベルから−1〜−2%レベルに軽減されて前記その1の問題点に係る歪データの正確度が確保される。強複合素線は緩複合素線と比べて破断のリスクがかなり高いから、上記強複合素線の導入は前記その3の保全性の点では減点要因をもたらすが、残りの素線を利用したバックアップ構成によって適宜支援しうる。
温度観測ラインには緩複合素線を用いることで、破断リスクが低位に抑えられた。但し、この緩複合素線と歪観測ラインの強複合素線が長尺保持体内に平行に配置された形で共存することで、両素線の間の力学特性差に起因して、共押し出し法で製造したセンサーに曲り(例えば5mm巾のセンサーで半径200mm前後の曲り)が生じるという問題点が派生したが、この問題点は、3本以上の素線を強複合/緩複合という種類別に対称配置する構成によって解消されている。なお、温度観測ラインにも強複合素線を充てて2本構成で対称性を確保して曲りを防ぐことも考えられたが、これは上記破断リスクが歪観測ラインだけでなく温度観測ラインにも及んで倍増し結局はバックアップラインの増設ニーズをもたらすことから、温度観測ラインには緩複合素線を充てた構成のままで3本以上の素線編成とすることがトータルとして得策となるのである。
しかも、本発明の歪・温度観測システム(請求項1)にあっては、そのような3本以上の素線群から温度観測ライン用と歪観測ライン用の2本を除いた残りの素線を用いて、歪分布観測機構や温度分布観測機構の機能が補助ないし強化される。そして、観測機構の機能補助により観測データの信憑性が向上して前記その2の問題点も解消・軽減され(請求項2)、観測機構の機能強化により前記その1の問題点に係る観測データの正確度が一段と向上する(請求項2)。
本発明の光ファイバセンサー及び歪・温度観測システムの一実施形態(第1形態)について図面を引用して説明する。先ず、図1を引用しながら光ファイバセンサー20の構造等を説明し、次に、図2,図3を引用しながら光データ解析装置30の構成を説明し、それから、図4を引用しながら歪・温度観測システム40の構成と使用態様を説明し、最後に、図5,図6を引用しながら動作状態等を説明する。
先ず、光ファイバセンサー20(第1形態)について図面を引用して説明する。図1は、(a)が光ファイバ素線10,15の側面図、(b)が相互非接着態様の緩複合素線である光ファイバ素線10の端面図、(c)が相互接着態様の強複合素線である光ファイバ素線15の端面図、(d)が光ファイバセンサー20の斜視図、(e)がその端面図、(f)が光ファイバセンサー20を紙管27に巻き取ったところの側面図である。
この光ファイバセンサー20は、合計3本の光ファイバ素線10,15を長尺保持体24に埋蔵したものなので、2種類の光ファイバ素線10,15の構造を説明してから(図1(a)〜(c)参照)、それを長尺保持体24に埋蔵した光ファイバセンサー20を説明する(図1(d)〜(f)参照)。
光ファイバ素線10,15は(図1(a)〜(c)参照)、BOTDRでの歪測定やROTDRでの温度計測などに適した光ファイバセンサーに用いられる一般的なもので(図1(a)参照)、例えば直径0.125mmのクラッド構造の光ファイバ用ガラス裸線11(光ファイバ裸線)に樹脂等の保護被覆を被せて直径が0.25mmないし0.4mm太くなったものである。
光ファイバ素線10と光ファイバ素線15は保護被覆が相違しており、光ファイバ素線10は(図1(b)参照)、光ファイバ裸線11に例えば紫外線硬化樹脂による上塗り接着性のない極薄のプライマー層を介してナイロンなどの樹脂層が被せられた構成の保護被覆12を有しており、光ファイバ裸線11と保護被覆12とが相互にスリップしうる相互非接着態様(即ち、力学的には分離された態様)で複合された緩複合素線となっている。これに対し、光ファイバ素線15は(図1(c)参照)、光ファイバ裸線11に例えばポリイミド樹脂などの下地接着性を有する樹脂が被せられた構成の保護被覆16を有しており、光ファイバ裸線11と保護被覆16とが相互にスリップしえない相互接着態様(即ち、力学的にも一体化された態様)で複合された強複合素線となっている。このような光ファイバ素線10は、何れも、可撓性があり、曲率半径数十mm以上であれば曲げが許容されている。
光ファイバセンサー20は(図1(d)〜(f)参照)、テープ状の長尺保持体24に3本の光ファイバ素線21,22,23を平行な状態で埋蔵したものであり(図1(d)参照)、共押し出し方式や反応硬化樹脂(例えばウレタンなど)によるモールド方式で安価に製造される(例えば特許文献6参照)。因に、反応硬化樹脂による場合は、硬化収縮歪が熱歪と同様に作用して前記川状曲りの問題が生じる。長尺保持体24の片面には装着作業容易化のため貼着部材25が付けられ更に保存や取扱のため剥離紙26も付けられる(図1(e)参照)。
長尺保持体24は、例えば架橋ポリエチレン樹脂からなる断面長方形のテープ状部材であり、その典型的なサイズは、Z方向における厚さが0.5〜2.0mm程度,X方向における幅が3〜30mm程度,Y方向における長さが3m以上であるが、それ以外もありうる。
3本の光ファイバ素線21〜23のうち真ん中の光ファイバ素線21には前記強複合素線が充てられ、この素線21が歪分布観測を受け持つ前記一番手の素線となる。これは、光ファイバ裸線11と保護被覆16とが相互にスリップしえないという前記特性により、長尺保持体24に生じた歪や応力がほとんど緩和されることなく光ファイバ裸線11に忠実に伝達されるので、BOTDRでの歪分布観測に適しているからである。
3本の光ファイバ素線21〜23のうち光ファイバ素線22には前記緩複合素線が充てられ、この素線22が温度分布観測を受け持つ前記二番手の素線となる。これは、光ファイバ裸線11と保護被覆12とが相互にスリップしうるという前記特性により、長尺保持体24に生じた歪や応力の光ファイバ裸線11への伝達が断絶ないし緩和されることで光ファイバ裸線11が破断しにくいという事情が、歪や応力の伝達を要しないROTDRでの温度計測にとっては専ら利点となるからである。
3本の光ファイバ素線21〜23のうち残りの光ファイバ素線23(追加接続の緩複合素線)にも、光ファイバ素線22と同じ緩複合の光ファイバ素線10が充てられる。これは、長尺保持体24の中心線に関する、光ファイバ素線の対称配置のためである。すなわち、長尺保持体24の中心線位置に(図1(e)参照)、光ファイバ裸線11−長尺保持体24間に伸縮反力の生じる強複合の光ファイバ素線21が配置され、その両脇に図示のように左右に等距離だけ離れて上記伸縮力の生じにくい緩複合の光ファイバ素線22,23が配置されている。
これは、上述した2種類の光ファイバ素線10,15を取り混ぜた3本以上の素線群が21,22,23各種類毎に長尺保持体24の中心線に関して線対称に位置する位置取りにて相互離間平行配列された配置の典型例であり、このような配置であれば、光ファイバセンサー制作時に生じる熱歪(熱可塑性樹脂を保持体とした押出施工時などに発生)や硬化収縮歪(反応硬化性樹脂を保持体とする注型施工時などに発生)によって保持体が光ファイバ裸線から受ける長手方向伸縮反力に係る保持体巾方向のアンバランスが避けられて、光ファイバ製品における曲り歪が防止される。
因に、このような光ファイバセンサー20では、押出成形後の常温状態で、光ファイバ裸線11と保持体24の線膨張係数差に由来する長手方向の圧縮応力が光ファイバ素線21には生じるが、光ファイバ素線22,23にはほどんど応力が生じない。云い換えれば、保持体24には上記と同じ巾方向分布の引張応力が延いては引張歪が生じる。センサー20では、この応力分布が中心線に関して対称となるから川状の曲りが生じておらず、紙管27に耳を揃えて(両エッジ位置が揃った重層態様で)巻き取れる上(図1(f)参照)、紙管27から解いて軽く引っ張れば真っ直ぐになるので、観測対象物への装着作業も容易である。貼着部材25は装着作業容易化のため予め長尺保持体24に付けておかれるが、剥離紙26は、装着に先立って剥がされるものなので、保管や運搬に不都合がなければ、付けなくても良い。
次に、本発明の光データ解析装置30(第1形態)について、その構成を図面を引用して説明する。図2は、(a)が光データ解析装置30の外観斜視図、(b)が制御演算部32の概要構成図、(c)が光データ解析装置30の機能ブロック図である。また、図3は、光データ解析装置30の演算手順を示すフローチャートである。
光データ解析装置30は(図2(a)参照)、スイッチやキー等の操作部材とディスプレイ等の表示部とを纏めた操作表示部31と、その操作指示等に応じて温度分布測定や歪分布測定を行ってその結果等を操作表示部31に表示させる制御演算部32と、その筐体外面に付設された光コネクタ33とを具えたものである。光コネクタ33は、3個のコネクタを纏めたものであり、光ファイバセンサー20に含まれる3本の光ファイバ素線21〜23それぞれの接続を一緒に行えるようになっている。
制御演算部32は(図2(b),(c)参照)、光コネクタ33経由の送・受信光を光ファイバ素線21〜23に振り分ける光路スイッチを具えた送受光分配器32dと、それを介する送・受信光に基づいて温度分布データT22を得るラマン散乱光解析装置32aと、やはりその送・受信光に基づいて正規の歪分布データε21と予備の歪分布データε23とを得るブリルアン散乱光解析装置32bと、それらの温度分布データT22と歪分布データε21と歪分布データε23とから温度分布データTと歪分布データεを求めて操作表示部31に表示させたり記録データを蓄積したりする二次演算手段32cとを具えている。
この実施形態では、光路スイッチ32dによって、ラマン散乱光解析装置32aが二番手の光ファイバ素線22(緩複合素線10)に常時接続されているので、それで構成される温度分布観測機構を作動させれば二番手の素線22に係る温度分布データT22が得られるようになっている。また、ブリルアン散乱光解析装置32bが送受光分配器32dにおける入力素線択一形式のスイッチを介して一番手の光ファイバ素線21(強複合素線15)と追加接続の光ファイバ素線23(緩複合素線10)とに接続されているので、光路スイッチの切替に対応して時分割で二つの歪分布観測機構が構成される。そして、光ファイバ素線群21〜23のうち強複合素線15を充てた光ファイバ素線21がブリルアン散乱光解析装置32bに接続されているモードで歪分布観測機構を作動させれば一番手の素線21に係る歪分布データε21が得られ、緩複合素線10を充てた光ファイバ素線23がブリルアン散乱光解析装置32bに接続されているモードで歪分布観測機構を作動させれば追加接続の素線23に係る歪分布データε23が得られるようになっている。
ブリルアン散乱光解析装置32bやラマン散乱光解析装置32aは、市販品や公知の従来品と同じで良いので(例えば特許文献1参照)、掻い摘んで説明すると、前者のブリルアン散乱光解析装置32bは、一次元配列の歪分布データε21,ε23を得るため、光ファイバにパルス光を入射し、光ファイバ中の任意の位置で散乱されて発生したブリルアン散乱光のうち光ファイバを逆行して戻ってきた後方ブリルアン散乱光を測定する。そして、入射パルス光と後方ブリルアン散乱光との周波数シフトの測定値を解析することにより、各位置における光ファイバの歪の相対的な変化を求めるようになっている(例えば特開2003−97921号公報を参照)。
後者のラマン散乱光解析装置32aは、一次元配列の温度分布データT22を得るため、やはり光ファイバにパルス光を入射して後方散乱光を測定するが、上述したブリルアン散乱光でなく、温度依存性の高いラマン散乱光を分離・受信して、対数変換や温度変換の演算を行うようになっている(例えば特開2002−340697号公報を参照)。
これらで得られる分布データε21,T22,ε23は何れも光ファイバセンサー20の長手方向Yにおける所定ピッチ例えば1000mm毎のサンプリングデータを連ねた一次元配列データなので、配列の各要素を参照するときには括弧付き番号を添えて示す。例えば温度分布データT22のi番目の要素はT22(i) のように示す。括弧付き番号が付いてなければ、配列全体を指す。
二次演算手段32cは、例えばプログラマブルなコンピュータやデジタルシグナルプログラム等からなり、一次元配列の温度分布データTを算出する温度データ演算手段と、一次元配列の歪分布データεを算出する歪データ修正演算手段と、一次元配列の温度データ確認結果Aを算出する連立演算手段および温度データ確認手段とが、プログラムで具現化されてインストールされている。
温度データ演算手段は、入力した温度分布データT22をそのまま最終的な温度分布データTとするものであり、歪データ修正演算手段は、歪分布データε21における温度分布起因の誤差を温度分布データT22に基づいて修正するものであり、例えば、ブリルアン散乱光の特性上のみかけの歪と温度依存性とに関する、実験的な又は公知の定数である相関係数Kを用いて、修正式[ε(i) =ε21(i)−K・T22(i) ]を演算することにより、最終的な歪分布データεを算出するようになっている。
連立演算手段は、歪分布データε21,ε23から一次元配列の温度分布データT28を中間算出するものであるが、その演算に際して、光ファイバ素線等の材料で決まる定数である線膨張係数αと上記の相関係数Kと、2種類の光ファイバ素線10,15の歪の関係を示す分率θを使用する。分率θは、光ファイバ素線の被覆態様の相違に起因して歪み方も相違する緩複合素線10の歪ε10と強複合素線15の歪ε15との間に、線膨張係数由来の歪成分も含めて、関係式[ε10+α・T28(i) = θ・ε15+θ・α・T28(i) ]が概ね成り立つことに基づき、温度管理下の試験測定結果から統計的処理にて予め求められ、相関係数Kや線膨張係数αと共に既知の値として二次演算手段32cに設定されている。
これらの定数K,αと分率θを用いると、強複合素線に係る歪分布データε21については、式[ε21(i) =ε15+α・T28(i)+K・T28(i) ]が成立する。それに上記関係式[ε10+α・T28(i) = θ・ε15+θ・α・T28(i) ]を代入すると、式[ε21(i) =ε10/θ+α・T28(i)/θ+K・T28(i)]が成立する。また、緩複合素線に係る歪分布データε23には、式[ε23(i) =ε10+α・T28(i)+K・T28(i)]が成立する。
そして、これらの式を連立させて温度分布データT28について解くと、α・T28(i) に係る項は消えて解式[T28(i) ={ε23(i)−θ・ε21(i)}/{(1−θ)・K}]が成立する。
連立演算手段は、この解式を演算することにより、歪分布データε21,ε23から温度分布データT28を算出するようになっている。
なお、上例では、前記分率θを予め試験的に求めておくケースについて述べたが、分率θを{ε21(i),ε23(i)}データ(その場データ)から求め、この分率θを用いるようにしても良い。更には、予め求めたθでスタートし、その後、その場データによる補正を加味するようにしても良い。
温度データ確認手段は、この連立演算手段の温度分布データT28と二番手の素線22に係る温度分布データT22とに基づいて異状の有無を確認するものであり、例えば温度分布データT22,T28を各要素毎に比較して大差がなければ正常と判定し大差があれば異状と判定するようになっている。異状は強複合素線の光ファイバ素線21の一部に発生することが多いので、光ファイバセンサー20長手方向Yにおける異状位置が分かるよう、この温度データ確認手段は、温度データ確認結果Aを式[A(i) =|T22(i) −T28(i) |]にて算出するようになっている。
これらの送受光や演算は、コンピュータプログラム等に従って例えば次のような手順で実行され、その一連の処理が数十分や数時間の一定周期で繰り返えされるようになっている。
すなわち(図3参照)、光コネクタ33に光ファイバセンサー20の一端が繋がれて光ファイバ素線21が光コネクタ33を介して光路スイッチ32dに接続されているものとして、光路スイッチ32dの切替にて光ファイバ素線21が送受光の対象に選択され(ステップS11)、それからブリルアン散乱光解析装置32bによる歪分布測定が行われて正規の歪分布データε21(一番手の強複合素線21に係る歪分布データ)が得られるようになっている(ステップS12)。
また、光ファイバ素線22がラマン散乱光解析装置32aに接続されているので、ラマン散乱光解析装置32aによる温度分布測定が行われて温度分布データT22(二番手の緩複合素線22に係る温度分布データ)が得られ(ステップS13)、さらに、光路スイッチ32dの切替にて光ファイバ素線23が送受光の対象に選択され(ステップS14)、それからブリルアン散乱光解析装置32bによる歪分布測定が行われて歪分布データε23(追加接続の強複合素線23に係る歪分布データ)が得られるようになっている(ステップS15)。なお、各測定には数分以上掛かるので、温度分布データT22の測定と歪分布データε21,ε23の測定は並列・並行で行っても良い。また、歪分布データε21,ε23の測定順序が入れ替わってもよい。
これらの測定データε21,T22,ε23が二次演算手段32cに揃ったら、温度データ演算手段によっ温度分布データT22が温度分布データTとされ、歪データ修正演算手段によって歪分布データε21と温度分布データT22とから歪分布データεが求められ(ステップS16)、連立演算手段によって歪分布データε21,ε23から温度分布データT28が求められ(ステップS17)、温度データ確認手段によって温度分布データT22,T28から温度データ確認結果Aが求められる(ステップSS18)。なお、温度データ確認結果Aは歪分布データε21,ε23におけるピークやその近傍に限定して算出するようにしても良い。また、得られた歪分布データεや,温度分布データT,温度データ確認結果Aは、図示しない二次記憶装置や外部記憶装置に蓄積されたり、操作指示等に応じて操作表示部31に表示されるようになっている。
このような光ファイバセンサー20及び光データ解析装置30からなる本発明の歪・温度観測システム40(第1形態)について、その構成と使用態様を、図面を引用しながら説明する。図4は光ファイバセンサー20と光データ解析装置30を組み合わせて歪・温度観測システム40を構成し、それを用いて歪分布と温度分布を観測する方法を示し、(a)が光データ解析装置30に接続できるようにした光ファイバセンサー20の斜視図、(b)が歪・温度観測システム40で観測対象物50の歪分布と温度分布を観測しているところの斜視図である。
光ファイバセンサー20は(図4(a)参照)、必要な長さに切断されて、一端に光コネクタ41が装着される。光コネクタ41は、光コネクタ33に対応したものであり、長尺保持体24を剥いで代わりに柔らかい保護カバーを被せたファイバ引出部42で、光ファイバ素線21〜23に接続される。光ファイバセンサー20の他端には遮光と保護のためファイバ終端部材43が装着される。
それから(図4(b)参照)、光ファイバセンサー20が観測対象物50の表面に貼り付けられ、光コネクタ41が光コネクタ33に装着されて、光データ解析装置30と光ファイバセンサー20とから歪・温度観測システム40ができあがり、温度分布測定と歪分布測定の測定準備が調う。
観測対象物50は、例えば橋梁などの長い構造物であり、その長手方向に光ファイバセンサー20が貼付され、それに沿ってY方向に分布する歪と温度の測定が行われる。
このような本発明の歪・温度観測システム40(第1形態)で観測対象物50の歪分布や温度分布を測定したときの動作等を、図面を引用して説明する。
図5,図6は、何れも、(a)が観測対象物50に光ファイバセンサー20を貼り付けたところの側面図、(b)が生の歪分布データε21と歪分布データε23と温度分布データT22とのグラフ表示、(c)が二次演算を施した歪分布データεと温度分布データT,T28と温度データ確認結果Aのグラフ表示であり、図5は歪や局所昇温の無いときの測定状況を示し、図6は歪や局所昇温の有るときの測定状況を示している。なお、各グラフは重ならないよう上下方向へ適度にずらして表示している。
測定開始直後は(図5参照)、観測対象物50にも光ファイバセンサー20にも未だ歪や温度変化が生じていないことから(図5(a)参照)、正規の歪分布データε21も温度分布データT22も予備の歪分布データε23もほぼ一定値となり(図5(b)参照)、温度分布データT22がそのまま採用された温度分布データTも、温度分布データT22で歪分布データε21を修正して得られた歪分布データεも、歪分布データε21,ε23から算出された温度分布データT28も、温度分布データT22,T28から算出された温度データ確認結果Aも、ほぼ一定値となる(図5(c)参照)。この一定値は、歪や温度変化の無いことに対応しているので、表示等のためのオフセットを除けば、通常はゼロである。
また、観測対象物50の表面温度が変化しても、温度変化がセンサー長手方向Yに一様であれば、各分布データが上下には移動するが一定値であり同様の状態となる(図5参照)。これに対し、観測対象物50の一部だけが温度変化して局所に高温部52が生じたとすると(図6(a)Y2参照)、そのとき、温度分布データT22は、観測対象物50の表面の温度分布に対応して高温部52の位置で高くなる(図6(b)Y2参照)。これは望ましいことであり、温度分布データTも同じグラフ形状の適正なものとなるが、そのとき、歪分布データε21,ε23のグラフ形状にも似た不所望な変形が発現する(図6(b)Y2参照)。これは温度分布起因の誤差なので好ましくないが、温度分布データT22で歪分布データε21を修正して得られた歪分布データεにおいては取り除かれている(図6(c)Y2参照)。また、歪分布データε21,ε23から算出された温度分布データT28は温度分布データT22と概ね同様になり、温度分布データT22,T28から算出された温度データ確認結果Aはほぼ一定値となり(図5(c)Y2参照)、異状の無いことが分かる。
ところで(図6参照)、観測対象物50にクラック等の大歪51が発生すると(図6(a)Y1参照)、光ファイバセンサー20のうち該当箇所の部分にも大きな歪が随伴して生じる。そのため、正規の歪分布データε21の該当箇所には鋭い突上げパターンが発現する(図6(b)Y1参照)。この状態でも、温度分布データT22から温度分布データTが得られ、光ファイバ素線21が損傷や破断しないうちは、温度分布データT22で温度の影響を除去して歪分布データε21から適切な歪分布データεが得られ(図6(c)Y1参照)、多少の誤差や変動は生じるが概ね一定の温度分布データT28が得られ、ひいては同様の温度データ確認結果Aが得られる(図6(c)Y1参照)。
こうして、観測対象物50に大歪51や高温部52が発生したとき、不所望な温度の影響を除去した適正な歪分布データεや温度分布データTが得られ、それを例えば操作表示部31にグラフ表示させる等のことにより、大歪51の発生位置Y1や高温部52の発生位置Y2を容易に把握することができる。
また、大歪51に起因する光ファイバ素線群21〜23の破断は光ファイバ素線21に発生しやすいが、破断すれば勿論のこと、破断に至る前であっても分率θに係る関係式[ε10=θ・ε15]の適用限界を超えるほど損傷がひどければ、温度データ確認結果Aにおける該当箇所に大きな変動が発現するので(図6(c)Y1の細い波線を参照)、それを操作表示部31に警報色で表示したり、図示しないブザー等で警報音を出す等のことにより、注意を促すことができる。
本発明の歪・温度観測システムの他の実施形態(第2形態)について、その構成を、図面を引用して説明する。図7は、光データ解析装置の二次演算手段32cの機能ブロック図であり、図8は、その光データ解析装置の演算手順を示すフローチャートである。
この歪・温度観測システムは、上述した歪・温度観測システム40に組み込まれていた光データ解析装置30のハードウェアや光ファイバセンサー20を引き継いでおり、歪・温度観測システム40と相違するのは、歪分布データε21と温度分布データT22から歪分布データεを算出する歪データ修正演算手段がアンインストールにて取り除かれ、その代りに、歪分布データε21と温度分布データT22から一次元配列の歪分布データε26を中間算出する歪データ修正演算手段と、歪分布データε23と温度分布データT22から一次元配列の歪分布データε27を中間算出する歪データ修正演算手段とがインストールされた点である。これらの歪データ修正演算手段は何れも同様の演算を行うようになっている。
また、一番手の強複合素線である光ファイバ素線21に不具合が生じたときに、その一番手の光ファイバ素線21に係る歪分布データε21を追加接続の緩複合素線である光ファイバ素線23に係る歪分布データε23を以てバックアップするために、歪分布データε26,ε27から何れも一次元配列の関係式規定係数β,γを中間算出する2データ間関係式演算手段と、係数β,γと歪分布データε23から一次元配列の歪分布データε28を中間算出するバックアップ演算手段と、歪分布データε21,ε23に基づいてエラーフラグEを上げ下げする不具合検知手段とが、追加インストールされているのも、相違点である。
不具合検知手段は、歪分布データε21,ε23を各要素毎に比較して、大差が有るとき例えば差が既定の閾値を超えているようなときにはエラーフラグEを上げ(オン状態,不具合有り状態にする)、大差無いとき例えば差が既定の閾値を超えていないようなときにはエラーフラグEを下げる(オフ状態,不具合無し状態にする)ようになっている。
また、二次演算手段32cは、後の演算手順の説明でも述べるように、エラーフラグEの状態に応じて歪分布データεの算出手法を切り替える。具体的には、エラーフラグEがオフのときには歪分布データε26を歪分布データεに採用するとともに2データ間関係式演算手段にて係数β,γを算出しておき、エラーフラグEがオフのときには、バックアップ演算手段にて歪分布データε28を算出し、これε28を歪分布データεに採用するようになっている。
2データ間関係式演算手段は、歪分布データε21から温度分布起因の誤差を取り除いた歪分布データε26(強複合素線である一番手の光ファイバ素線21に係る歪分布データ)と、歪分布データε23から温度分布起因の誤差を取り除いた歪分布データε27(緩複合素線である追加接続の光ファイバ素線23に係る歪分布データ)とから、その2データε26,ε27間の関係式を表す係数β,γを配列の各要素毎に求めて記憶保持しておくようになっている。
その関係式は、例えば一次式の場合、測定にて得られた歪分布データの配列要素毎に、数回分のデータε26,ε27を用いた最小自乗近似法にて一次式[ε26(i) = β(i) ×ε27(i) +γ(i) ]の係数β(i) ,γ(i) を算出する等のことで、定められる。なお、係数γを試験測定等にて予め決定できる場合には、一回の測定分の歪分布データε26,ε27から単純に式[β(i) = {ε26(i) −γ(i) }/ε27(i) ]を演算することで係数β(i) を算出しておけば良い。
バックアップ演算手段は、この係数β,γを用いて関係式[ε28(i) = β(i) ×ε23(i) +γ(i) ]を演算することで歪分布データε28を算出するようになっている。
これらの演算等も、コンピュータプログラム等に従って例えば次のような手順で実行され、その一連の処理が数十分や数時間の一定周期で繰り返えされるようになっている。
すなわち(図8参照)、先ず、第1形態の説明で上述したのと同様にして、温度分布データT22や歪分布データε21,ε23が観測されるとともに(ステップS11〜S15)、最終的な温度分布データTや温度データ確認結果Aが算出される(ステップS17〜S18)。なお、歪分布データについては少しだけ異なり、最終的な歪分布データεではなく、中間の歪分布データε26,ε27が算出されるようになっている(ステップS16)。
この第2形態では、それで終わらずに、次のような処理も行われて(ステップS20〜S25)、最終的な歪分布データεが算出されるようになっている。
すなわち、不具合検知手段によって一番手の光ファイバ素線21に不具合が無いと判定されたときには(ステップS20のNo側)、エラーフラグEが下げられ、2データ間関係式演算手段によって係数β,γが算出され(ステップS21)、この歪分布データε26が歪分布データεに採用されるようになっている。一方、一番手の光ファイバ素線21に不具合が有ると判定されたときには(ステップS20のYes側)、アラーム出力等のためエラーフラグEが上げられ(ステップS23)、バックアップ演算手段によって歪分布データε28が算出され(ステップS24)、この歪分布データε28が歪分布データεに採用されるようになっている。
この実施形態(第2形態)の歪・温度観測システムについて、その使用態様及び動作を、図面を引用して説明する。
図9,図10は、何れも、(a)が観測対象物50に光ファイバセンサー20を貼り付けたところの側面図、(b)が生の温度分布データT22と歪分布データε21と歪分布データε23のグラフ表示、(c)が二次演算を施した温度分布データTと歪分布データεのグラフ表示であり、図9は歪の有るときの測定状況を示し、図10は光ファイバ素線21破断時の測定状況を示している。各グラフは重ならないよう一定量だけ上下方向にずらして表示している。
観測対象物50に大歪51が発生しても(図9(a)参照)、光ファイバ素線21が損傷や破断しないうちは、図6を引用して上述したように、その歪みを反映した歪分布データε21や(図9(b)参照)、不所望な温度の影響を除去した適切な歪分布データεが得られる(図9(c)参照)。なお、ここでは説明の簡単化・明瞭化のため、説明対象を歪分布データεの算出に絞って、温度変化(T)や温度データ確認(A)の説明を割愛するが、それらも上述したようにして適切に処理される。また、エラーフラグEが下がっていて、2データ間関係式演算手段による係数β,γの算出も行われる。
そして、観測対象物50の大歪51が成長すると(図10(a)参照)、大抵は光ファイバセンサー20における光ファイバ素線群21〜23のうち強複合素線の光ファイバ素線21が破断する。応力が緩和される緩複合素線の光ファイバ素線22,23の破断は遅れる。その場合(図10(b)参照)、光ファイバ素線21を利用する正規の歪分布データε21は少なくとも破断箇所より先のところが得られなくなるが、光ファイバ素線23を利用した予備の歪分布データε23は全範囲に亘って得られ、その歪分布データε23のうち大歪51該当箇所には突上げパターンが発現する。そのピーク値は破断歪に達しないが(図10(b)参照)、光ファイバ素線21が破断してエラーフラグEが上がるので、歪分布データεが係数β,γを用いて歪分布データε23から算出され、その該当箇所にはピーク値が破断歪を上回る鋭い突上げパターンが発現する(図10(c)参照)。
こうして、光ファイバ素線21を破断させる大歪51が観測対象物50に発生しても、歪分布観測が継続されて、破断歪を超える大きな歪まで測定することができる。
また、エラーフラグEが上がったのに応じて例えば操作表示部31にアラーム表示を行ったり図示しないブザーを鳴動させる等のことにより、観測不能に至る前に余裕を持って光ファイバセンサーの修理・交換等を促すことができる。
本発明のファイバセンサー及び歪・温度観測システムの他の実施形態(第3形態)について、その構成を、図面を引用して説明する。図11は、歪・温度観測システム60の機能ブロック図である。
この歪・温度観測システム60が上述した第1形態の歪・温度観測システム40と相違するのは、光ファイバセンサー20について、光ファイバ素線21,22が入れ替わって光ファイバ素線22が長尺保持体24の中心に位置し光ファイバ素線21が光ファイバ素線23の対称位置に来た点と、光ファイバ素線23が緩複合素線10から強複合素線15になった点である。これは、上述した2種類の光ファイバ素線10,15を取り混ぜた3本以上の素線群が21,22,23各種類毎に長尺保持体24の中心線に関して線対称に位置する位置取りにて相互離間平行配列された配置の他の例である。
また、二次演算手段32cについてもプログラムが修正・変更されている。二次演算手段32cについて歪・温度観測システム60が歪・温度観測システム40と相違するのは、歪データ修正演算手段の上流に歪データ統合演算手段がインストールされた点と、連立演算手段と温度データ確認手段に代えて2データ間差信号演算手段と異状感知手段とがインストールされた点である。なお、温度データ演算手段はそのまま引き継がれている。
歪データ統合演算手段は、一番手の光ファイバ素線21と追加接続の光ファイバ素線23を代る代る起用する強複合・強複合2素線仕立の歪分布観測機構にて得られた歪分布データε21,ε23から、例えば要素毎に平均を採ったり何れか一方を採択する等のことにより、光ファイバ素線21,23の2素線に係る一次元配列の歪分布データε27を中間算出するようになっている。
歪データ修正演算手段は、歪分布データε27と温度分布データT22から、上述したのと同様の演算を行って、温度分布起因の誤差を取り除いた一次元配列の歪分布データε28を中間算出するようになっている。
2データ間差信号演算手段は、歪分布データε21,ε23から、各要素毎に差を演算して、一次元配列の差信号データΔを中間算出するようになっている。
異状感知手段は、差信号データΔにおける最大値やその正負を調べて、光ファイバ素線21も光ファイバ素線23も正常か、光ファイバ素線21に異状が見られるか、光ファイバ素線23に異状が見られるか、といった判定を行い、それに応じた異状判別結果Bを出すようになっている。
この場合(第3形態)、歪分布データε21も歪分布データε23も強複合素線による正規の歪分布データで精度の良いものであるが、歪の成長によって光ファイバ素線21,23の何れが先に重大損傷や破断するのか不明である。
これに対し、光ファイバ素線21,23が共に正常であれば、正規の歪分布データから温度分布起因の影響を取り除いた歪分布データε28が最終的な歪分布データεに採用され、光ファイバ素線21に異状が見られたときには光ファイバ素線23に係る正規の歪分布データε23が最終的な歪分布データεに採用され、光ファイバ素線23に異状が見られたときには光ファイバ素線21に係る正規の歪分布データε21が最終的な歪分布データεに採用される。
そのため、光ファイバ素線を破断させる大歪が発生しても、その破断が光ファイバ素線21,23の何れか一方にとどまっている間は、歪分布観測が継続されるので、この場合も、異状判別結果Bに応じて例えば操作表示部31にアラーム表示を行ったり図示しないブザーを鳴動させる等のことにより、観測不能に至る前に余裕を持って光ファイバセンサーの修理・交換等を促すことができる。
本発明の歪・温度観測システムの他の実施形態(第4形態)について、その構成を、図面を引用して説明する。図12は歪・温度観測システム70の機能ブロック図である。
この歪・温度観測システム70が上述した第1形態の歪・温度観測システム40と相違するのは、レイリー散乱光を利用して接続線路の損失を測定する受信光送信光強度比測定装置32eが追加された点と、光路スイッチ32dが無くなって光ファイバ素線21がブリルアン散乱光解析装置32bに常時接続されるとともに光ファイバ素線23が受信光送信光強度比測定装置32eに常時接続されるようになった点と、二次演算手段32cについては、温度データ演算手段がプログラム改造されて温度データ修正演算手段になった点と、連立演算手段と温度データ確認手段に代えて劣化データ演算手段がインストールされた点である。なお、歪データ修正演算手段はそのまま引き継がれている。
受信光送信光強度比測定装置32eは、強複合か緩複合かの複合の種類は問わない1本の空き素線としての光ファイバ素線23を接続されて線路損失測定機構を構成するものであり、光ファイバ素線23に対する光の送・受信を行って、光ファイバ素線23の長手方向Yにおける各部位の線路損失を表す一次元配列の線路損失分布データλ23を得るために、光ファイバに光パルスを入射して後方散乱光のうちからレイリー散乱光を取り出し(例えば特開平6−109585号公報を参照)、光ファイバの各位置における受信光と送信光との強度比を測定するようになっている。
劣化データ演算手段は、線路損失分布データλ23の時系列データに基づいて光ファイバ素線23の劣化に関する一次元配列の劣化データλを得るようになっている。
温度データ修正演算手段は、この劣化データλに基づいて二番手の光ファイバ素線22に係る温度分布データT22における線路損失起因の誤差を修正して温度分布データTを算出するようになっている(例えば特開平7−218353号公報を参照)。
この場合(第4形態)、温度分布データT22を用いて歪分布データε21から温度分布起因の誤差が取り除かれて適正な歪分布データεが得られるのに加えて、劣化データλを用いて温度分布データT22から線路損失起因の誤差が取り除かれて適正な温度分布データTが得られる。
なお、温度分布データT22に代えて温度分布データTを用いるように歪データ修正演算手段を改造したり、歪分布データε21にも劣化データλによる修正演算を施してから歪データ修正演算手段に供するようにプログラムを追加インストールする等のことにより、歪分布データεについても線路損失起因の誤差が取り除かれるようにしても良い。
本発明の光ファイバセンサー及び歪・温度観測システムの他の実施形態(各種変形例)について図面を引用して説明する。図13は、(a)〜(c)何れも、光ファイバセンサー20の端面図および解析装置・測定装置32a,32b,32cとの対応図である。
図13(a)に示した態様は、他の態様の理解容易化のため、上述した第4形態の歪・温度観測システム70の要部を示したものである。
これに対し、図13(b)に示した態様では、光ファイバセンサー20が上述した第3形態の歪・温度観測システム60のものと同じで、光ファイバ素線群21〜23と解析装置・測定装置32b,32a,32eとの接続が上述した第4形態の歪・温度観測システム70のものと同じである。
また、図13(c)に示した態様では、光ファイバセンサー20に4本の光ファイバ素線21,22,23,28が等ピッチで平行に並べて埋蔵されている。両端の光ファイバ素線21,28には強複合素線15が採用され、中心線寄りの光ファイバ素線22,23には緩複合素線10が採用されている。これも、上述した2種類の光ファイバ素線10,15を取り混ぜた4本の素線群21,22,23,28が各種類毎に長尺保持体24の中心線に関して線対称に位置する位置取りにて相互離間平行配列された配置の例である。そして、光ファイバ素線21,22,23,28それぞれに解析装置・測定装置32b,32a,32e,32bが対応づけられて、上述の第1〜第3形態と第4形態との併存形態となっている。
上述のように、本発明にあっては、光ファイバセンサーに追加配備した光ファイバ素線を多様な形態で利用して、歪・温度観測に関する各種の信頼性向上を図ることができる。
本発明の一実施形態(第1形態)について、光ファイバセンサーの構造を示し、(a)が光ファイバ素線の側面図、(b)が相互非接着態様の緩複合素線の端面図、(c)が相互接着態様の強複合素線の端面図、(d)が光ファイバセンサーの斜視図、(e)がその端面図、(f)が光ファイバセンサーを紙管に巻き取ったところの側面図である。 光データ解析装置の構造を示し、(a)が外観斜視図、(b)が制御演算部の概要構成図、(c)が機能ブロック図である。 光データ解析装置の演算手順を示すフローチャートである。 歪・温度観測システムの構成とそれを用いた測定方法を示し、(a)が光データ解析装置に接続できるようにした光ファイバセンサーの斜視図、(b)が歪・温度観測システムで測定しているところの斜視図である。 歪のや局部昇温の無いときに歪・温度観測システムで測定した状況を示し、(a)が観測対象物に光ファイバセンサーを貼り付けたところの側面図、(b)が生の温度分布データ及び歪分布データのグラフ表示、(c)が二次演算を施した歪分布データと温度分布データと温度データ確認結果のグラフ表示である。 歪や局部昇温の有るときに歪・温度観測システムで測定した状況を示し、(a)が観測対象物に光ファイバセンサーを貼り付けたところの側面図、(b)が生の温度分布データ及び歪分布データのグラフ表示、(c)が二次演算を施した歪分布データと温度分布データと温度データ確認結果のグラフ表示である。 本発明の他の実施形態(第2形態)について、光データ解析装置の機能ブロック図である。 その光データ解析装置の演算手順を示すフローチャートである。 歪の有るときに歪・温度観測システムで測定した状況を示し、(a)が観測対象物に光ファイバセンサーを貼り付けたところの側面図、(b)が生の温度分布データ及び歪分布データのグラフ表示、(c)が二次演算を施した温度分布データ及び歪分布データのグラフ表示である。 光ファイバ素線が破断したときに歪・温度観測システムで測定した状況を示し、(a)が観測対象物に光ファイバセンサーを貼り付けたところの側面図、(b)が生の温度分布データ及び歪分布データのグラフ表示、(c)が二次演算を施した温度分布データ及び歪分布データのグラフ表示である。 本発明の他の実施形態(第3形態)について、歪・温度観測システムの機能ブロック図である。 本発明の他の実施形態(第4形態)について、歪・温度観測システムの機能ブロック図である。 本発明の他の実施形態(各種変形例)について、(a)〜(c)何れも、光ファイバセンサーの端面図および解析装置・測定装置との対応図である。
符号の説明
10…光ファイバ素線(相互非接着態様の緩複合素線)、
15…光ファイバ素線(相互接着態様の強複合素線)、
20…光ファイバセンサー、21,22,23…光ファイバ素線、
24…長尺保持体、25…貼着部材、26…剥離紙、27…紙管、
30…光データ解析装置、31…操作表示部、32…制御演算部、
32a…ラマン散乱光解析装置、32b…ブリルアン散乱光解析装置、
32c…二次演算手段、32d…光路スイッチ、
32e…受信光送信光強度比測定装置、33…光コネクタ、
40…歪・温度観測システム、41…光コネクタ、
42…ファイバ引出部、43…ファイバ終端部材、
50…観測対象物、51…大歪、52…高温部、
60…歪・温度観測システム、70…歪・温度観測システム

Claims (2)

  1. テープ状の長尺保持体に光ファイバ素線を埋蔵した光ファイバセンサーと、前記素線を光伝播の線路とする送・受信光のデータに基づいて該センサー沿いの歪分布データならびに温度分布データを導出する光データ解析装置とを備えた歪・温度観測システムであって、
    前記光ファイバセンサーにあっては、前記光ファイバ素線として該素線の構成要素である光ファイバ裸線と保護被覆とが相互接着態様で複合された強複合素線と相互非接着態様で複合された緩複合素線の2種類が用いられ、該2種類を取り混ぜた3本以上の素線群が各種類毎に前記長尺保持体の中心線に関して線対称に位置する位置取りにて相互離間平行配列されており、
    該素線群のうちの1本の強複合素線を一番手の素線として起用し該素線をブリルアン散乱光解析装置に接続して歪分布観測機構が構成され、前記素線群のうちの1本の緩複合素線を二番手の素線として起用し該素線をラマン散乱光解析装置に接続して温度分布観測機構が構成されるとともに、該歪分布観測機構と温度分布観測機構の一方または双方の機能を補助ないし強化するための観測機能支援機構が、前記素線群のうちの残りの素線を用いた構成にて配備されており、
    前記観測機能支援機構は、前記歪分布観測機構と温度分布観測機構の双方の機能を支援する機構であって、前記一番手起用の強複合素線を入力素線択一形式の光路スイッチを介して前記ブリルアン散乱光解析装置に接続するとともに該光路スイッチの残りの入力端子には前記残りの素線のうちの1本の緩複合素線を追加接続することで該一番手と追加接続の素線を代る代る起用する強複合・緩複合2素線仕立の歪分布観測機構が構成されており、更に、該一番手の素線に係る歪分布データにおける温度分布起因の誤差を前記二番手の素線に係る温度分布データに基づいて修正するための歪データ修正演算手段と、前記一番手と追加接続の素線に係る歪分布データに基づいて温度分布データを算出する連立演算手段と、この連立演算手段の温度分布データと前記二番手の素線に係る温度分布データとに基づいて異状の有無を確認する温度データ確認手段とが配備されている、
    ことを特徴とする歪・温度観測システム
  2. 更に、前記一番手の素線に不具合が生じたときに該一番手の素線に係る歪分布データを前記追加接続の素線に係る歪分布データを以てバックアップするための2データ間関係式演算手段が配備されている、ことを特徴とする請求項1記載の歪・温度観測システム。
JP2005324967A 2005-11-09 2005-11-09 光ファイバセンサー及び歪・温度観測システム Active JP4768405B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005324967A JP4768405B2 (ja) 2005-11-09 2005-11-09 光ファイバセンサー及び歪・温度観測システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005324967A JP4768405B2 (ja) 2005-11-09 2005-11-09 光ファイバセンサー及び歪・温度観測システム

Publications (2)

Publication Number Publication Date
JP2007132746A JP2007132746A (ja) 2007-05-31
JP4768405B2 true JP4768405B2 (ja) 2011-09-07

Family

ID=38154540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005324967A Active JP4768405B2 (ja) 2005-11-09 2005-11-09 光ファイバセンサー及び歪・温度観測システム

Country Status (1)

Country Link
JP (1) JP4768405B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5222513B2 (ja) * 2007-09-26 2013-06-26 日本電信電話株式会社 光ファイバ測定方法、光ファイバ測定システムおよび光ファイバ測定装置
DE102008060032A1 (de) * 2008-07-31 2010-02-04 Sms Siemag Aktiengesellschaft Gießspiegelmessung in einer Kokille durch ein faseroptisches Messverfahren
JP5305032B2 (ja) * 2009-09-07 2013-10-02 横河電機株式会社 光ファイバ分布型温度測定装置
GB0919902D0 (en) * 2009-11-13 2009-12-30 Qinetiq Ltd Improvements in fibre optic cables for distributed sensing
JP6270195B1 (ja) * 2016-03-11 2018-01-31 大日本印刷株式会社 センサーモジュール及びシートモジュール
CN105758326A (zh) * 2016-05-05 2016-07-13 智性纤维复合加固南通有限公司 一种用于变形监测的分布式光纤带及其制备方法
CN113532380B (zh) * 2021-08-01 2023-06-23 北京工业大学 一种组合式重型机床基础沉降精密检测装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07218353A (ja) * 1994-02-04 1995-08-18 Nkk Corp Otdrによる温度分布計測方法及び装置
JP4236771B2 (ja) * 1999-08-16 2009-03-11 株式会社フジクラ 光監視装置
JP3939081B2 (ja) * 2000-08-01 2007-06-27 株式会社フジクラ 光ファイバケーブル
JP2002048516A (ja) * 2000-08-01 2002-02-15 Fujikura Ltd 光ファイバセンサおよびその施工方法

Also Published As

Publication number Publication date
JP2007132746A (ja) 2007-05-31

Similar Documents

Publication Publication Date Title
JP4768405B2 (ja) 光ファイバセンサー及び歪・温度観測システム
RU2510865C2 (ru) Электрический кабель с тензометрическим датчиком и системой контроля, и способ для обнаружения растяжения, по меньшей мере, в одном электрическом кабеле
US8064738B2 (en) Leak detector using an optical fibre
EP0640824A1 (en) Fibre optic damage detection system
EP2821831B1 (en) Optical fiber ribbon
JP2006250647A (ja) ワイヤケーブル、並びに張力測定システム及び張力測定方法
RU2686839C2 (ru) Устройство и способ для индикатора перенапряжения электромеханического кабеля
CN113008127B (zh) 液冷充电线缆的监测方法、液冷充电线缆和充电站
CN103926061A (zh) 用于测量电缆的拉伸应变的变形监视方法和系统
JP2004512492A (ja) ケーブル監視システム
CN113691307A (zh) 基于botdr和otdr的opgw故障定位及预警方法
EP1217350B1 (en) Stress sensor based on periodically inserted color-changing tactile films to detect mishandling fiber optic cables
JP6773810B2 (ja) スチールケーブル
US20230115205A1 (en) Optical-fiber-embedding sheet, method for placing optical fiber, and application device
JP2001066117A (ja) トンネルひび割れおよび補強材剥離検知方法及び装置
EP4118407A1 (en) Conductor for bare overhead power line with composite material core and real-time monitoring system for monitoring the structural integrity of the conductor during production, laying and installation
JP2002081061A (ja) グラウンドアンカーの荷重管理方法
JP3860488B2 (ja) 広域ひずみ分布測定システム
JP3759144B2 (ja) トンネル補強材剥離検知方法及び装置
JP2000018981A (ja) 光ファイバセンサ
ES2529615T3 (es) Procedimiento para vigilar un conducto de alimentación
JP2017110921A (ja) ケーブル診断システムおよびセンシング・ケーブル
JPH11101617A (ja) 構造体ひずみ監視方法およびその監視装置
US10746629B2 (en) Inspection device of optical fiber unit and method of manufacturing optical fiber unit
JP6709241B2 (ja) 診断装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080728

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110614

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110616

R150 Certificate of patent or registration of utility model

Ref document number: 4768405

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250