JP4766222B2 - Light emitting semiconductor coating protective material and light emitting semiconductor device - Google Patents

Light emitting semiconductor coating protective material and light emitting semiconductor device Download PDF

Info

Publication number
JP4766222B2
JP4766222B2 JP2004062047A JP2004062047A JP4766222B2 JP 4766222 B2 JP4766222 B2 JP 4766222B2 JP 2004062047 A JP2004062047 A JP 2004062047A JP 2004062047 A JP2004062047 A JP 2004062047A JP 4766222 B2 JP4766222 B2 JP 4766222B2
Authority
JP
Japan
Prior art keywords
emitting semiconductor
group
light emitting
protective material
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004062047A
Other languages
Japanese (ja)
Other versions
JP2004292807A (en
Inventor
正親 吉野
利夫 塩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2004062047A priority Critical patent/JP4766222B2/en
Publication of JP2004292807A publication Critical patent/JP2004292807A/en
Application granted granted Critical
Publication of JP4766222B2 publication Critical patent/JP4766222B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、発光半導体被覆保護材及びこれを用いて発光半導体素子を被覆してなる発光半導体装置に関するものである。   The present invention relates to a light emitting semiconductor coating protective material and a light emitting semiconductor device formed by coating a light emitting semiconductor element using the same.

発光ダイオード(LED)等の発光半導体装置には素子がリード電極上に配置され、その周囲を透明樹脂で覆われた砲弾型と称される図3のような発光半導体装置が使用されていたが、近年実装工程の簡略化から図1及び図2に示されるような「表面実装型」と称される発光半導体装置が主流になりつつある。   Although a light emitting semiconductor device such as a light emitting diode (LED) is used as a light emitting semiconductor device shown in FIG. 3, which is called a shell type in which an element is disposed on a lead electrode and the periphery thereof is covered with a transparent resin. In recent years, light-emitting semiconductor devices called “surface mount type” as shown in FIGS. 1 and 2 are becoming mainstream due to simplification of the mounting process.

なお、図1〜3において、1はガラス繊維強化エポキシ樹脂製筐体、2は発光素子、3,4はリード電極、5はダイボンド材、6は金線、7は被覆保護材である。   1-3, 1 is a glass fiber reinforced epoxy resin housing, 2 is a light emitting element, 3 and 4 are lead electrodes, 5 is a die bond material, 6 is a gold wire, and 7 is a covering protective material.

発光ダイオード(LED)等の発光半導体素子の被覆保護用樹脂組成物としては、その硬化体が透明性を有することが要求されており、一般にビスフェノールA型エポキシ樹脂又は脂環式エポキシ樹脂等のエポキシ樹脂と酸無水物系硬化剤を用いて得られるものが用いられている(特許文献1:特許第3241338号公報、特許文献2:特開平7−25987号公報参照)。   As a resin composition for protecting a light-emitting semiconductor element such as a light-emitting diode (LED), the cured product is required to have transparency, and is generally an epoxy such as a bisphenol A type epoxy resin or an alicyclic epoxy resin. What is obtained using resin and an acid anhydride type hardening | curing agent is used (patent document 1: patent 3241338 gazette, patent document 2: Unexamined-Japanese-Patent No. 7-25987).

しかし、かかる透明エポキシ樹脂においても、樹脂の吸水率が高いために耐湿耐久性が低い、特に短波長の光に対する光線透過性が低いために耐光耐久性が低い、あるいは光劣化により着色するという欠点を有していた。   However, even in such a transparent epoxy resin, the moisture absorption resistance of the resin is high, so the moisture resistance durability is low, particularly the light resistance to low-wavelength light is low, so the light resistance is low, or it is colored due to light deterioration. Had.

そのため、SiH基と反応性を有する炭素−炭素二重結合を1分子中に少なくとも2個含有する有機化合物、及び1分子中に少なくとも2個のSiH基を含有するケイ素化合物、ヒドロシリル化触媒からなる光半導体素子の被覆保護用樹脂組成物も提案されている(特許文献3:特開2002−327126号公報、特許文献4:特開2002−338833号公報参照)。   Therefore, it consists of an organic compound containing at least two carbon-carbon double bonds reactive with SiH groups in one molecule, a silicon compound containing at least two SiH groups in one molecule, and a hydrosilylation catalyst. Resin compositions for protecting the coating of optical semiconductor elements have also been proposed (see Patent Document 3: Japanese Patent Laid-Open No. 2002-327126, Patent Document 4: Japanese Patent Laid-Open No. 2002-338833).

しかし、このような有機化合物は、硬化反応が遅く、長時間の硬化が必要である上、残留応力も大きいため、耐熱性に劣る熱可塑性樹脂や保存安定性に劣る加水分解性基を有する金属化合物を併用しなければならなかった。そのため、高硬度シリコーン樹脂を保護被覆用に使用したものが提案されている(特許文献5:特開2002−314139号公報、特許文献6:特開2002−314143号公報参照)。   However, such an organic compound has a slow curing reaction, requires long-time curing, and has a large residual stress. Therefore, a metal having a thermoplastic resin having poor heat resistance or a hydrolyzable group having poor storage stability. The compound had to be used in combination. Therefore, what uses the high hardness silicone resin for protective coating is proposed (refer patent document 5: Unexamined-Japanese-Patent No. 2002-314139, patent document 6: Unexamined-Japanese-Patent No. 2002-314143).

しかし、これらの高硬度シリコーン樹脂ではまだ接着性が乏しく、セラミック及び/又はプラスチック筐体内に発光素子が配置され、その筐体内部をシリコーン樹脂で充填したケース型の発光半導体装置では、−40℃〜120℃での熱衝撃試験で、シリコーン樹脂が筐体のセラミックやプラスチックから剥離してしまう問題点が生じていた。   However, these high-hardness silicone resins still have poor adhesion, and in case-type light-emitting semiconductor devices in which light-emitting elements are arranged in a ceramic and / or plastic housing and the inside of the housing is filled with silicone resin, −40 ° C. In the thermal shock test at ˜120 ° C., there was a problem that the silicone resin was peeled off from the ceramic or plastic of the housing.

また更に、発光素子に使用されるSiC、GaAs、GaP、GaAsP、GaAlAs、InAlGaP、InGaN、GaN等の各種の化合物半導体の光学結晶の屈折率が高いため、被覆保護樹脂の屈折率がジメチル系シリコーン樹脂のように低い場合、被覆樹脂と光学結晶との界面で反射して発光効率が低下する欠点があった。   Furthermore, since the refractive index of the optical crystal of various compound semiconductors such as SiC, GaAs, GaP, GaAsP, GaAlAs, InAlGaP, InGaN, and GaN used for the light emitting element is high, the refractive index of the coating protective resin is dimethyl silicone. When it is as low as a resin, there is a drawback in that the light emission efficiency decreases due to reflection at the interface between the coating resin and the optical crystal.

このため、出光率を高めるための手段として反射防止膜をつけるなどの手法が提案されている(特許文献7:特開2001−246236号公報、特許文献8:特開2001−217467号公報参照)。しかし、反射防止膜を作製するためには工程が増え、コスト高になってしまう。   For this reason, methods such as attaching an antireflection film have been proposed as means for increasing the light emission rate (see Patent Document 7: Japanese Patent Laid-Open No. 2001-246236, Patent Document 8: Japanese Patent Laid-Open No. 2001-217467). . However, the number of steps is increased to produce an antireflection film, resulting in an increase in cost.

特許第3241338号公報Japanese Patent No. 3241338 特開平7−25987号公報JP 7-25987 A 特開2002−327126号公報JP 2002-327126 A 特開2002−338833号公報JP 2002-338833 A 特開2002−314139号公報JP 2002-314139 A 特開2002−314143号公報JP 2002-314143 A 特開2001−246236号公報JP 2001-246236 A 特開2001−217467号公報JP 2001-217467 A

本発明は、上記事情に鑑みなされたもので、内部応力が小さく、かつ接着性に優れ、しかも光透過性に優れた発光半導体被覆保護材及びこれを用いて被覆され、発光効率の高い発光半導体装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and a light-emitting semiconductor coating protective material having a low internal stress, excellent adhesion, and excellent light transmission, and a light-emitting semiconductor coated with the same and having high light emission efficiency An object is to provide an apparatus.

本発明者は、上記目的を達成するため鋭意検討を行った結果、分子鎖末端にビニル基を有するフェニル基含有オルガノポリシロキサンをベースポリマーとし、必要によりケイ素原子結合アルコキシ基含有有機ケイ素化合物を配合した付加反応硬化型シリコーン樹脂組成物の硬化物が低応力及び透明性を兼ね備え、接着性も良好であることを知見し、本発明をなすに至ったものである。   As a result of diligent studies to achieve the above object, the present inventor uses a phenyl group-containing organopolysiloxane having a vinyl group at the molecular chain terminal as a base polymer, and if necessary, a silicon atom-bonded alkoxy group-containing organosilicon compound It was found that the cured product of the addition reaction curable silicone resin composition had both low stress and transparency and good adhesiveness, and led to the present invention.

従って、本発明は、下記発光半導体被覆保護材及び発光半導体装置を提供する。
[I](A)分子鎖末端にビニル基を有する下記平均組成式(1)
aSiO(4-a)/2 (1)
(式中、Rは一価有機基を表し、その少なくとも5mol%以上80mol%以下がフェニル基である。aは1.5〜3.0の数である。)
で示されるオルガノポリシロキサン 100質量部、
(B)1分子中に少なくとも2個のケイ素原子に直結した水素原子を有する下記平均組成式(2)
1 bcSiO{4-(b+c)}/2 (2)
(式中、R1は一価有機基を表す。bは0.7≦b≦2.1であり、cは0.001≦c≦1.0であり、0.8≦b+c≦3の正数である。)
で示されるオルガノハイドロジェンポリシロキサン
(A)成分中のビニル基1個に対して、(B)成分中のケイ素原子に直結した水素原子が0.7〜10個になる量、
(C)白金族金属系触媒
白金族金属として(A)成分と(B)成分との合計質量の1〜1,000ppm、
(D)下記式で示されるオルガノシロキサンから選ばれるケイ素原子結合アルコキシ基を有する有機ケイ素化合物 0.5〜10質量部

Figure 0004766222
(式中、m,nは1以上で、かつ一分子中のケイ素原子数を4〜30とする整数である。)
Figure 0004766222
を含有してなり、その硬化物の25℃,589nm(ナトリウムのD線)での屈折率が1.41〜1.56であるとともにデュロメータ・タイプAの硬度が5〜75であることを特徴とする発光半導体被覆保護材。
[II]硬化物の25℃,589nmでの屈折率が1.43〜1.55である[I]記載の発光半導体被覆保護材。
[III]開口部を有する筐体内に配置された発光半導体を覆って筐体内に充填され、硬化される発光半導体被覆用である[I]又は[II]記載の発光半導体被覆保護材。
[IV]発光半導体素子が、開口部を有するセラミック及び/又はプラスチック筐体内に配置された発光半導体装置で、その筐体内部が[I]又は[II]記載の被覆保護材の硬化物で被覆保護された発光半導体装置。
[V]発光半導体素子が、開口部を有するセラミック及び/又はプラスチック筐体内のリード電極上に配置された発光半導体装置で、その筐体内部が[I]又は[II]記載の被覆保護材の硬化物で被覆保護された発光半導体装置。 Accordingly, the present invention provides the following light emitting semiconductor coating protective material and light emitting semiconductor device.
[I] (A) The following average composition formula (1) having a vinyl group at the molecular chain terminal
R a SiO (4-a) / 2 (1)
(In the formula, R represents a monovalent organic group, and at least 5 mol% to 80 mol% is a phenyl group. A is a number of 1.5 to 3.0.)
100 parts by mass of an organopolysiloxane represented by
(B) The following average composition formula (2) having hydrogen atoms directly bonded to at least two silicon atoms in one molecule
R 1 b H c SiO {4- (b + c)} / 2 (2)
(Wherein R 1 represents a monovalent organic group, b is 0.7 ≦ b ≦ 2.1, c is 0.001 ≦ c ≦ 1.0, and 0.8 ≦ b + c ≦ 3) (It is a positive number.)
An amount of 0.7 to 10 hydrogen atoms directly connected to silicon atoms in the component (B), with respect to one vinyl group in the component (A),
(C) Platinum group metal catalyst 1 to 1,000 ppm of the total mass of the component (A) and the component (B) as a platinum group metal,
(D) an organosilicon compound having silicon-bonded alkoxy group selected from an organosiloxane represented by the following formula from 0.5 to 10 parts by weight
Figure 0004766222
(In the formula, m and n are integers of 1 or more and 4 to 30 silicon atoms in one molecule.)
Figure 0004766222
The cured product has a refractive index of 1.41 to 1.56 at 25 ° C. and 589 nm (sodium D line) and a durometer type A hardness of 5 to 75. A light-emitting semiconductor coating protective material.
[II] The light emitting semiconductor coating protective material according to [I], wherein the cured product has a refractive index of 1.43 to 1.55 at 25 ° C. and 589 nm.
[III] The light-emitting semiconductor coating protective material according to [I] or [II], which covers the light-emitting semiconductor disposed in the housing having the opening and is filled into the housing and cured.
[IV] A light-emitting semiconductor device in which a light-emitting semiconductor element is disposed in a ceramic and / or plastic housing having an opening, and the inside of the housing is covered with a cured product of the coating protective material described in [I] or [II] Protected light emitting semiconductor device.
[V] A light emitting semiconductor device in which a light emitting semiconductor element is disposed on a lead electrode in a ceramic and / or plastic housing having an opening, and the inside of the housing is made of the covering protective material according to [I] or [II] A light-emitting semiconductor device coated and protected with a cured product.

本発明の発光半導体被覆保護材で被覆保護された発光半導体装置は、耐熱試験による変色も少なく、発光効率も高いため長寿命で省エネルギーに優れる発光半導体装置を提供することが可能となり、産業上のメリットは多大である。   The light-emitting semiconductor device coated and protected with the light-emitting semiconductor coating protective material of the present invention has little discoloration due to a heat resistance test and has high light emission efficiency, so that it is possible to provide a light-emitting semiconductor device with long life and excellent energy saving. The benefits are tremendous.

本発明の発光半導体を被覆保護する被覆保護材(シリコーン樹脂組成物)の(A)成分は、本発明の被覆保護材の主成分(ベースポリマー)となる成分であり、(C)成分の触媒作用のもと(B)成分により橋かけして硬化する。これは、分子鎖末端、特に各末端にケイ素原子に結合したビニル基を有する下記平均組成式(1)
aSiO(4-a)/2 (1)
(式中、Rは一価有機基を表し、その少なくとも5mol%がフェニル基である。aは1.5〜3.0の数である。)
で示されるオルガノポリシロキサンである。
The component (A) of the coating protective material (silicone resin composition) for coating and protecting the light emitting semiconductor of the present invention is a component that is a main component (base polymer) of the coating protective material of the present invention, and the catalyst of the component (C) Under the action, it is cured by crosslinking with component (B). This is represented by the following average composition formula (1) having vinyl groups bonded to silicon atoms at the molecular chain ends, particularly at each end.
R a SiO (4-a) / 2 (1)
(In the formula, R represents a monovalent organic group, at least 5 mol% of which is a phenyl group. A is a number of 1.5 to 3.0.)
It is the organopolysiloxane shown by these.

ここで、Rとしては、炭素数1〜10、特に1〜8の非置換又は置換一価炭化水素基が挙げられ、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert−ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、シクロヘキシル基、オクチル基、ノニル基、デシル基等のアルキル基、フェニル基、トリル基、キシリル基、ナフチル基等のアリール基、ベンジル基、フェニルエチル基、フェニルプロピル基等のアラルキル基、ビニル基、アリル基、プロペニル基、イソプロペニル基、ブテニル基、ヘキセニル基、シクロヘキセニル基、オクテニル基等のアルケニル基や、これらの基の水素原子の一部又は全部をフッ素、臭素、塩素等のハロゲン原子、シアノ基等で置換したもの、例えばクロロメチル基、クロロプロピル基、ブロモエチル基、トリフロロプロピル基等のハロゲン置換アルキル基やシアノエチル基等が挙げられる。   Here, examples of R include unsubstituted or substituted monovalent hydrocarbon groups having 1 to 10 carbon atoms, particularly 1 to 8 carbon atoms, and specifically include methyl, ethyl, propyl, isopropyl, and butyl groups. Alkyl groups such as isobutyl group, tert-butyl group, pentyl group, neopentyl group, hexyl group, cyclohexyl group, octyl group, nonyl group, decyl group, aryl groups such as phenyl group, tolyl group, xylyl group, naphthyl group, Aralkyl groups such as benzyl, phenylethyl, and phenylpropyl, alkenyl such as vinyl, allyl, propenyl, isopropenyl, butenyl, hexenyl, cyclohexenyl, octenyl, and the like Hydrogen atoms partially or wholly substituted with halogen atoms such as fluorine, bromine and chlorine, cyano groups, etc., such as chloromethyl Group, chloropropyl group, bromoethyl group, and a halogen-substituted alkyl group or cyanoethyl group such trifluoropropyl group.

この場合、Rのうち少なくとも2個はビニル基であり、分子鎖の末端、特に各末端にそれぞれケイ素原子に結合したビニル基を有するものである。なお、これに加えて、側鎖(即ち、分子鎖途中のケイ素原子に結合する一価有機基Rとして)にもビニル基等のアルケニル基を有していてもよい。ビニル基を含むアルケニル基の含有量は、全有機基R中、0.01〜20mol%、特に0.1〜10mol%であることが硬化後の被覆保護材の弾性、伸び、物理的強度等の点より好ましい。   In this case, at least two of R are vinyl groups, and each has a vinyl group bonded to a silicon atom at the end of the molecular chain, particularly at each end. In addition to this, the side chain (that is, the monovalent organic group R bonded to the silicon atom in the middle of the molecular chain) may also have an alkenyl group such as a vinyl group. The content of the alkenyl group including the vinyl group is 0.01 to 20 mol%, particularly 0.1 to 10 mol% in the total organic group R. The elasticity, elongation, physical strength, etc. of the coating protective material after curing It is more preferable than this point.

また、Rのうち、少なくとも5mol%がフェニル基である。フェニル基が5mol%未満である場合、硬化した被覆保護材の耐熱性が悪くなったり低温特性が悪くなり、熱衝撃試験による信頼性の低下を招くため、少なくとも5mol%がフェニル基である必要がある。好ましくは7mol%以上、更に好ましくは10mol%以上がフェニル基であることが好ましい。その上限は80mol%以下、特には60mol%以下である。
Moreover, at least 5 mol% of R is a phenyl group. When the phenyl group is less than 5 mol%, the heat resistance of the cured coating protective material is deteriorated or the low-temperature characteristics are deteriorated, leading to a decrease in reliability by a thermal shock test. Therefore, at least 5 mol% needs to be a phenyl group. is there. Preferably 7 mol% or more, more preferably 10 mol% or more is a phenyl group. The upper limit is 80 mol% or less, particularly 60 mol% or less.

このように、本成分の末端には必ずビニル基が存在しており(即ち、(A)成分の少なくとも1個の分子鎖末端のケイ素原子はビニル基を有しており)、ビニル基のほかにはフェニル基が存在し、特にメチル基とフェニル基の両方が存在していることが好ましい。即ち、本発明のシリコーン樹脂組成物は、このオルガノポリシロキサンの末端ビニル基で架橋するものであるが、フェニル基、ビニル基以外の一価有機基は上記したものの中でメチル基が耐熱性やコスト面で好ましい。   Thus, a vinyl group always exists at the terminal of this component (that is, the silicon atom at the end of at least one molecular chain of component (A) has a vinyl group). There is a phenyl group, and it is particularly preferable that both a methyl group and a phenyl group exist. That is, the silicone resin composition of the present invention crosslinks at the terminal vinyl group of this organopolysiloxane, but the monovalent organic group other than the phenyl group and vinyl group is the above-mentioned one in which the methyl group has heat resistance and It is preferable in terms of cost.

aは1.5〜3.0の正数であり、本成分は鎖状、分岐鎖状、三次元網状のいずれであってもよいが、通常は、主鎖がジオルガノシロキサン単位(R2SiO2/2)の繰り返しからなり、分子鎖両末端がトリオルガノシロキシ基(R3SiO1/2)で封鎖された、基本的に直鎖状のジオルガノポリシロキサンであることが好ましい。aは好ましくは1.8〜2.2の数であり、更に好ましくは1.95〜2.05の数である。 a is a positive number of 1.5 to 3.0, and this component may be any of a chain, a branched chain, and a three-dimensional network, but usually the main chain is a diorganosiloxane unit (R 2 It is preferably a basically linear diorganopolysiloxane consisting of repeating SiO 2/2 ) and having both molecular chain ends blocked with triorganosiloxy groups (R 3 SiO 1/2 ). a is preferably a number of 1.8 to 2.2, more preferably a number of 1.95 to 2.05.

このオルガノポリシロキサンの粘度は、作業性の面から23℃において0.1〜20Pa・s、特に0.5〜10Pa・s程度の範囲であることが好ましい。0.1Pa・s未満では流動し易いため、成形バリなどが多くなる場合があり、20Pa・sを超えると必要成分混合時に混入した空気の泡が抜け難い場合が生じる。   The viscosity of the organopolysiloxane is preferably in the range of about 0.1 to 20 Pa · s, particularly about 0.5 to 10 Pa · s at 23 ° C. from the viewpoint of workability. If it is less than 0.1 Pa · s, it tends to flow, and thus molding burrs may increase, and if it exceeds 20 Pa · s, air bubbles mixed during mixing of necessary components may be difficult to escape.

(A)成分の具体例としては、下記に示すものなどが例示される。

Figure 0004766222

(なお、上記各式において、
Figure 0004766222

等の繰り返し単位の配列はランダムであり、また繰り返し単位の数の合計は上記粘度範囲を満足するように任意の自然数とすることができる。) Specific examples of the component (A) include those shown below.
Figure 0004766222

(In the above equations,
Figure 0004766222

The arrangement of repeating units such as these is random, and the total number of repeating units can be any natural number so as to satisfy the above viscosity range. )

(B)成分は(C)成分の触媒存在下に、(A)成分と付加反応により架橋して硬化物を形成するため必須とされる成分であり、1分子中に少なくとも2個、好ましくは3個以上の、ケイ素原子に直結した水素原子を有する下記平均組成式(2)
1 bcSiO{4-(b+c)}/2 (2)
(式中、R1は一価有機基を表す。bは0.7≦b≦2.1であり、cは0.001≦c≦1.0であり、0.8≦b+c≦3の正数である。)
で示されるオルガノハイドロジェンポリシロキサンである。
Component (B) is an essential component for forming a cured product by crosslinking with component (A) in the presence of a catalyst of component (C) by an addition reaction, and preferably at least 2, preferably in one molecule. The following average composition formula (2) having 3 or more hydrogen atoms directly bonded to silicon atoms
R 1 b H c SiO {4- (b + c)} / 2 (2)
(Wherein R 1 represents a monovalent organic group, b is 0.7 ≦ b ≦ 2.1, c is 0.001 ≦ c ≦ 1.0, and 0.8 ≦ b + c ≦ 3) (It is a positive number.)
It is organohydrogen polysiloxane shown by these.

1の有機基としては、炭素数1〜10、特に1〜8の非置換又は置換一価炭化水素基で、上記式(1)のRと同様の基を挙げることができるが、好ましくは脂肪族不飽和結合を有さないものがよく、特にはメチル基、フェニル基がより好ましい。
b、cは上記の通りの正数であるが、好ましくは0.9≦b≦2、0.01≦c≦2、1≦b+c≦2.6である。
Examples of the organic group represented by R 1 include an unsubstituted or substituted monovalent hydrocarbon group having 1 to 10 carbon atoms, particularly 1 to 8 carbon atoms, and the same groups as R in the above formula (1) can be exemplified. What does not have an aliphatic unsaturated bond is good, and especially a methyl group and a phenyl group are more preferable.
b and c are positive numbers as described above, and preferably 0.9 ≦ b ≦ 2, 0.01 ≦ c ≦ 2, and 1 ≦ b + c ≦ 2.6.

上記オルガノハイドロジェンポリシロキサンとしては、1,1,3,3−テトラメチルジシロキサン、1,3,5,7−テトラメチルシクロテトラシロキサン、両末端トリメチルシロキシ基封鎖メチルハイドロジェンポリシロキサン、両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルポリシロキサン、両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・ジフェニルシロキサン共重合体、両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・ジフェニルシロキサン・ジメチルシロキサン共重合体、(CH32HSiO1/2単位とSiO4/2単位とからなる共重合体、(CH32HSiO1/2単位とSiO4/2単位と(C65)SiO3/2単位とからなる共重合体などが挙げられる。 Examples of the organohydrogenpolysiloxane include 1,1,3,3-tetramethyldisiloxane, 1,3,5,7-tetramethylcyclotetrasiloxane, trimethylsiloxy group-blocked methylhydrogenpolysiloxane, both ends Trimethylsiloxy group-blocked dimethylsiloxane / methylhydrogensiloxane copolymer, both ends dimethylhydrogensiloxy group-blocked dimethylpolysiloxane, both ends dimethylhydrogensiloxy group-blocked dimethylsiloxane / methylhydrogensiloxane copolymer, both ends trimethylsiloxy Blocked methylhydrogensiloxane / diphenylsiloxane copolymer, trimethylsiloxy group-blocked methylhydrogensiloxane / diphenylsiloxane / dimethylsiloxane copolymer on both ends Body, (CH 3) 2 HSiO copolymers consisting of 1/2 units and SiO 4/2 units, and, (CH 3) 2 HSiO 1/2 units, and SiO 4/2 units (C 6 H 5) SiO 3 A copolymer composed of / 2 units.

このオルガノハイドロジェンポリシロキサンの分子構造は、直鎖状、環状、分岐状、三次元網状構造のいずれであってもよいが、1分子中のケイ素原子の数(又は重合度)は3〜1,000、特に3〜300程度のものを使用することができる。また、本成分の粘度は23℃で0.1〜5,000mPa・sであることが好ましい。0.1mPa・s未満では加熱硬化時に揮散し易く、5,000mPa・sを超えると被覆作業性が低下するおそれがある。なお、本成分中のケイ素原子直結水素原子(SiH基)は1分子中に少なくとも2個、好ましくは3個以上あればよいが、あまり多すぎると硬化物が脆くなりすぎるので、上限としては、好ましくは50個以下、更に好ましくは30個以下である。   The molecular structure of the organohydrogenpolysiloxane may be any of linear, cyclic, branched, and three-dimensional network structures, but the number of silicon atoms (or the degree of polymerization) in one molecule is 3 to 1. , Especially about 3 to 300 can be used. Moreover, it is preferable that the viscosity of this component is 0.1-5,000 mPa * s at 23 degreeC. If it is less than 0.1 mPa · s, it is likely to be volatilized at the time of heat curing, and if it exceeds 5,000 mPa · s, the coating workability may be lowered. In addition, silicon atoms directly bonded hydrogen atoms (SiH groups) in this component may be at least 2, preferably 3 or more in one molecule, but if it is too much, the cured product becomes too brittle. Preferably it is 50 or less, more preferably 30 or less.

本成分の配合割合としては、(A)成分のビニル基1個に対して、本成分中のケイ素原子に直結した水素原子が0.7〜10個になる量とされる。0.7個未満では硬化が甘くなり、10個を超えると硬化物が脆くなりすぎるからである。好ましくは0.8〜5個である。   The blending ratio of this component is such that the amount of hydrogen atoms directly bonded to silicon atoms in this component is 0.7 to 10 for one vinyl group of component (A). If it is less than 0.7, the curing becomes sweet, and if it exceeds 10, the cured product becomes too brittle. Preferably it is 0.8-5 pieces.

(C)成分の白金族金属系触媒は、(A)成分のビニル基と(B)成分のケイ素原子直結水素原子とを付加反応させるためのものであり、本成分の作用により本発明の組成物は硬化させることができる。これには微粒子状白金、炭素粉末担体に吸着させた微粒子状白金、塩化白金酸、アルコール変性塩化白金酸、塩化白金酸のオレフィン錯体、塩化白金酸とビニルシロキサンの配位化合物、白金黒などの白金系触媒、パラジウム触媒、ロジウム触媒などが例示される。その使用量としては、(A)成分と(B)成分の合計質量に対し、白金族金属として1〜1,000ppmである。1ppm未満では硬化速度が遅く、1,000ppmを超えると全成分を混合したときの作業可能時間が短くなる上、不経済であるためである。好ましくは5〜500ppmである。   The platinum group metal catalyst of component (C) is for addition reaction of the vinyl group of component (A) and the silicon atom-bonded hydrogen atom of component (B), and the composition of the present invention by the action of this component. The object can be cured. These include particulate platinum, particulate platinum adsorbed on a carbon powder carrier, chloroplatinic acid, alcohol-modified chloroplatinic acid, olefin complexes of chloroplatinic acid, coordination compounds of chloroplatinic acid and vinylsiloxane, platinum black, etc. Examples include platinum-based catalysts, palladium catalysts, rhodium catalysts, and the like. As the usage-amount, it is 1-1000 ppm as a platinum group metal with respect to the total mass of (A) component and (B) component. If it is less than 1 ppm, the curing rate is slow, and if it exceeds 1,000 ppm, the workable time when all the components are mixed is shortened and it is uneconomical. Preferably it is 5-500 ppm.

(D)成分は本発明のシリコーン樹脂組成物を硬化して得られる硬化物の接着性を向上させるための成分であり、ケイ素原子結合アルコキシ基を有するオルガノシラン及びその部分加水分解縮合物、オルガノポリシロキサン等の有機ケイ素化合物である。このような(D)成分の有機ケイ素化合物のうち、オルガノシランとしては、下記一般式(3)
2 pSi(OR34-p (3)
で示されるアルコキシシランが挙げられる。
Component (D) is a component for improving the adhesiveness of a cured product obtained by curing the silicone resin composition of the present invention, an organosilane having a silicon-bonded alkoxy group, a partially hydrolyzed condensate thereof, an organo Organic silicon compounds such as polysiloxane. Among such organosilicon compounds of component (D), as organosilane, the following general formula (3)
R 2 p Si (OR 3 ) 4-p (3)
The alkoxysilane shown by these is mentioned.

この場合、pは0、1又は2、好ましくは0又は1、R2はメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert−ブチル基、ヘキシル基、シクロヘキシル基等のアルキル基、ビニル基、アリル基、プロペニル基、ヘキセニル基、シクロヘキセニル基等のアルケニル基、フェニル基、トリル基、キシリル基等のアリール基などの炭素数1〜10の非置換一価炭化水素基、3−グリシドキシプロピル基、3−メタクリロキシプロピル基、3−アミノプロピル基、N−2(アミノエチル)−3−アミノプロピル基、N−フェニル−3−アミノプロピル基等の、末端にエポキシ基、(メタ)アクリロキシ基、アミノ基、N−置換アミノ基などの置換基を有する炭素数1〜10のエポキシ置換アルキル基、(メタ)アクリロキシ置換アルキル基、アミノ置換アルキル基、(N−置換アミノ)置換アルキル基等の置換一価炭化水素基、R3はメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert−ブチル基等の炭素数1〜4のアルキル基である。 In this case, p is 0, 1 or 2, preferably 0 or 1, and R 2 is methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tert-butyl group, hexyl group, cyclohexyl group, etc. C1-C10 unsubstituted monovalent hydrocarbon groups such as alkyl groups, vinyl groups, allyl groups, propenyl groups, hexenyl groups, cyclohexenyl groups and other alkenyl groups, phenyl groups, tolyl groups, xylyl groups and other aryl groups , 3-glycidoxypropyl group, 3-methacryloxypropyl group, 3-aminopropyl group, N-2 (aminoethyl) -3-aminopropyl group, N-phenyl-3-aminopropyl group, etc. An epoxy-substituted alkyl group having 1 to 10 carbon atoms having a substituent such as an epoxy group, a (meth) acryloxy group, an amino group, or an N-substituted amino group, (meth) Kurirokishi substituted alkyl group, an amino-substituted alkyl group, (N-substituted amino) substituted monovalent hydrocarbon group, a substituted alkyl group, R 3 is a methyl group, an ethyl group, a propyl group, an isopropyl group, butyl group, isobutyl group, tert -It is a C1-C4 alkyl group, such as a butyl group.

また、上記式(3)のアルコキシシランの部分加水分解縮合物(即ち、該アルコキシシランから誘導される、残存アルコキシ基を分子中に少なくとも1個、好ましくは2個以上有するオルガノシロキサンオリゴマー)を使用することもできる。   Also, a partially hydrolyzed condensate of the alkoxysilane of the above formula (3) (that is, an organosiloxane oligomer derived from the alkoxysilane and having at least one, preferably two or more residual alkoxy groups in the molecule) is used. You can also

式(3)のアルコキシシランとしては、例えば、テトラメトキシシラン、テトラエトキシシラン、ジメチルジメトキシシラン、メチルフェニルジメトキシシラン、メチルフェニルジエトキシシラン、フェニルトリメトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、ビニルトリメトキシシラン、アリルトリメトキシシラン、アリルトリエトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−メタクリロキシプロピルトリメトキシシラン等のアルコキシシラン化合物が挙げられ、またその部分加水分解縮合物を使用し得る。   Examples of the alkoxysilane of the formula (3) include tetramethoxysilane, tetraethoxysilane, dimethyldimethoxysilane, methylphenyldimethoxysilane, methylphenyldiethoxysilane, phenyltrimethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, Examples include alkoxysilane compounds such as vinyltrimethoxysilane, allyltrimethoxysilane, allyltriethoxysilane, 3-glycidoxypropyltrimethoxysilane, and 3-methacryloxypropyltrimethoxysilane, and partial hydrolysis condensates thereof. Can be used.

更に下記式で示される、通常、ケイ素原子数4〜30、特には4〜20程度の、直鎖状又は環状構造のケイ素原子結合アルコキシ基含有シロキサン化合物(オルガノシロキサンオリゴマー)を使用することができる。   Furthermore, a silicon atom-bonded alkoxy group-containing siloxane compound (organosiloxane oligomer) having a linear or cyclic structure, usually having 4 to 30 silicon atoms, particularly about 4 to 20 silicon atoms, represented by the following formula can be used. .

Figure 0004766222

(式中、m,nは1以上で、かつ一分子中のケイ素原子数を4〜30とする整数である。)
Figure 0004766222

(In the formula, m and n are integers of 1 or more and 4 to 30 silicon atoms in one molecule .)

Figure 0004766222
Figure 0004766222

このような(D)成分の有機ケイ素化合物の内、得られる硬化物の接着性が特に優れていることから、(D)成分の有機ケイ素化合物としては、1分子中にケイ素原子結合アルコキシ基とケイ素原子結合アルケニル基もしくはケイ素原子結合水素原子(SiH基)を有する有機ケイ素化合物であることが好ましい。   Among such organosilicon compounds of component (D), the adhesiveness of the resulting cured product is particularly excellent. Therefore, as the organosilicon compound of component (D), a silicon atom-bonded alkoxy group in one molecule An organosilicon compound having a silicon atom-bonded alkenyl group or a silicon atom-bonded hydrogen atom (SiH group) is preferred.

(D)成分の配合量は、(A)成分100質量部に対して0〜10質量部の範囲内であることが好ましく、更に0.5〜10質量部、特に0.5〜3質量部の範囲内であることが好ましい。これは、(D)成分の配合量が(A)成分100質量部に対して10質量部を超えると、得られる硬化物が硬くなりすぎ、かえって接着性が低下するためである。   The blending amount of component (D) is preferably in the range of 0 to 10 parts by weight, more preferably 0.5 to 10 parts by weight, especially 0.5 to 3 parts by weight with respect to 100 parts by weight of component (A). It is preferable to be within the range. This is because when the blending amount of the component (D) exceeds 10 parts by mass with respect to 100 parts by mass of the component (A), the obtained cured product becomes too hard, and the adhesiveness is lowered.

なお、(D)成分がケイ素原子結合アルケニル基又はケイ素原子結合水素原子(SiH基)を有する場合、(A)、(B)成分を含む組成物中の全アルケニル基量Xに対する全SiH基量Yの比率(モル比)Y/Xは、0.7〜10モル/モル、特には0.8〜5モル/モル程度であることが好ましい。   In addition, when (D) component has a silicon atom bond alkenyl group or a silicon atom bond hydrogen atom (SiH group), the total SiH group amount with respect to the total alkenyl group amount X in the composition containing (A) and (B) components The ratio (molar ratio) Y / X of Y is preferably about 0.7 to 10 mol / mol, particularly about 0.8 to 5 mol / mol.

本発明の被覆保護材(シリコーン樹脂組成物)を硬化して得られるシリコーン樹脂の屈折率は、MODEL 2010 PRISM COUPLER(メトリコン社製)やゴニオメーター(MOLLERWEDEL社製)を用いれば、発光素子が発光する波長で測定することができる。しかし、シリコーン樹脂の各波長での屈折率については、Sellmeierの式に従うため、589nmでの屈折率を測定することにより、使用する波長での屈折率は計算される(Cooper P.R. 1982 Refractive index measurements of paraffin, a silicone elastomer, and an epoxy resin over the 500−1,500nm spectral range Appl. Opt. 21 3413−15)。   The refractive index of the silicone resin obtained by curing the coating protective material (silicone resin composition) of the present invention is such that the light emitting element emits light when a MODEL 2010 PRISM COUPLER (made by Metricon) or a goniometer (made by MOLLERWEDEL) is used. It can be measured at the wavelength to be. However, since the refractive index at each wavelength of the silicone resin follows the Sellmeier equation, the refractive index at the wavelength used is calculated by measuring the refractive index at 589 nm (Cooper PR 1982 Refractive). index measurements of paraffin, a silicon elastomer, and an epoxy resin over the 500-1,500 nm spectral range Appl. Opt. 21 3413-15).

そのため、本発明の硬化して得られるシリコーン樹脂の屈折率は、589nm(ナトリウムのD線)での屈折率で管理することができる。本発明の硬化して得られるシリコーン樹脂の25℃,589nmでの屈折率は、1.41〜1.56であることが好ましい。屈折率が1.41未満では界面で反射して発光効率が低下する。また、屈折率が1.56を超えるとシリコーン樹脂の結晶性が増加し、複屈折が増えるため、発光率がかえって低下する。好ましくは1.43〜1.55である。なお、屈折率の調整は(A)成分、(B)成分の組成、特に(A)成分、(B)成分中のフェニル基含有量などによって行うことができる。   Therefore, the refractive index of the silicone resin obtained by curing of the present invention can be managed by the refractive index at 589 nm (sodium D line). The refractive index at 25 ° C. and 589 nm of the silicone resin obtained by curing of the present invention is preferably 1.41-1.56. If the refractive index is less than 1.41, the light is reflected at the interface and the luminous efficiency is lowered. On the other hand, when the refractive index exceeds 1.56, the crystallinity of the silicone resin increases and birefringence increases, so that the light emission rate decreases. Preferably it is 1.43-1.55. The refractive index can be adjusted by the composition of the component (A) and the component (B), particularly the phenyl group content in the component (A) and the component (B).

本発明のシリコーン樹脂は、接着力が強いため樹脂硬化や実装時のIRリフローによる剥離を起こすことはない。また、その硬化した樹脂は低弾性であり、通常デュロメータ・タイプAで75以下の硬さ範囲になるので、セラミックやプラスチックの筐体との熱膨張係数の違いによる応力を吸収できるため、低温側−40℃、高温側120℃の熱衝撃試験を1,000サイクル行ってもクラックが発生することはない。なお、デュロメータ・タイプAの硬度は、通常75以下であるが、好ましくは5〜75、より好ましくは10〜70、更に好ましくは20〜65である。なお、硬度の調整は、組成物中のケイ素原子結合アルケニル基量に対するSiH基量のモル比(Y/X)を尺度として評価される組成物の架橋密度や、組成物中に配合され得るSiO2単位を含有する三次元網状構造(レジン構造)のメチルポリシロキサン、ビニルメチルポリシロキサン、メチルハイドロジェンポリシロキサン等のオルガノポリシロキサンの配合量、補強性充填材等の配合量などによって行うことができる。 Since the silicone resin of the present invention has a strong adhesive force, it does not cause peeling due to resin curing or IR reflow during mounting. The cured resin has low elasticity and usually has a hardness range of 75 or less in durometer type A, so it can absorb stress due to the difference in thermal expansion coefficient from the ceramic or plastic casing, so the low temperature side Cracks do not occur even when the thermal shock test at −40 ° C. and 120 ° C. on the high temperature side is performed for 1,000 cycles. The durometer type A hardness is usually 75 or less, preferably 5 to 75, more preferably 10 to 70, and still more preferably 20 to 65. The hardness is adjusted by adjusting the crosslink density of the composition evaluated by using the molar ratio (Y / X) of the amount of SiH groups to the amount of silicon-bonded alkenyl groups in the composition, and SiO that can be blended in the composition. methylpolysiloxane three dimensional network structure containing 2 units (resin structure), vinyl methyl polysiloxane, amount of the organopolysiloxane such as methyl hydrogen polysiloxane, it may be performed by such amount, such as a reinforcing filler it can.

本発明のシリコーン樹脂は、(A)、(B)、(C)及び(D)の4成分を混合し、加熱することによって容易に製造することができる。この4成分を混合すると室温でも硬化が進行するので、作業可能時間を長くするためにアセチレンアルコール系化合物、トリアゾール類、ニトリル化合物、リン化合物などの反応抑制剤を微量添加することが好ましい。また、本発明のシリコーン樹脂をに波長変更するための蛍光体や酸化チタン微粉末(TiO2)などのような光散乱剤等を添加することもできる。 The silicone resin of the present invention can be easily produced by mixing and heating the four components (A), (B), (C) and (D). When these four components are mixed, curing proceeds even at room temperature. Therefore, it is preferable to add a trace amount of a reaction inhibitor such as an acetylene alcohol compound, a triazole, a nitrile compound, or a phosphorus compound in order to increase the workable time. In addition, a phosphor for changing the wavelength of the silicone resin of the present invention, a light scattering agent such as titanium oxide fine powder (TiO 2 ), or the like can also be added.

更に、本発明の目的を逸脱しない範囲で、ヒュームドシリカや沈降性シリカなどの補強性充填材、難燃性向上剤、有機溶剤などを添加してもよい。   Furthermore, reinforcing fillers such as fumed silica and precipitated silica, flame retardants, organic solvents and the like may be added without departing from the object of the present invention.

なお、本発明の被覆保護材は液状であることが好ましく、23℃の粘度は10〜1,000,000mPa・s、特には100〜1,000,000mPa・s程度が好ましい。   In addition, it is preferable that the coating protective material of this invention is a liquid, and the viscosity of 23 degreeC is 10-1,000,000 mPa * s, Especially about 100-1,000,000 mPa * s is preferable.

本発明の被覆保護材は、発光半導体を被覆保護するために使用される。この場合、発光半導体としては、発光ダイオード(LED)、有機電界発光素子(有機EL)、レーザーダイオード、LEDアレイ等を挙げることができる。発光半導体を被覆保護する態様は特に制限されるものではないが、図1,2に示されるように、開口部を有する筐体内に配置された発光半導体を覆って筐体内に被覆保護材を充填し、これを硬化させる等の方法を採用し得る。   The coating protective material of the present invention is used for coating protection of a light emitting semiconductor. In this case, examples of the light emitting semiconductor include a light emitting diode (LED), an organic electroluminescent element (organic EL), a laser diode, and an LED array. The mode of covering and protecting the light emitting semiconductor is not particularly limited, but as shown in FIGS. 1 and 2, the casing is filled with a covering protective material covering the light emitting semiconductor disposed in the housing having an opening. Then, a method such as curing it can be adopted.

なお、本発明の被覆保護材の硬化条件は、室温(25℃)で72時間から200℃で3分間と、その作業条件に合わせて任意であり、生産性と発光素子や筐体耐熱性とのバランスから適宜選定することができる。   In addition, the curing conditions of the coating protective material of the present invention are arbitrary depending on the working conditions from 72 hours to 200 ° C. for 3 minutes at room temperature (25 ° C.). It is possible to select appropriately from the balance.

以下、実施例及び比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。なお、下記例において、部は質量部を示す。また、粘度は23℃の値である。まず、実施例、比較例の被覆保護材の評価方法を示す。
[評価方法]
シリコーン系ダイボンド材の調製
下記式(I)

Figure 0004766222
で表される末端ビニルジメチルジフェニルポリシロキサン(粘度3Pa・s)100部、下記式(II)
Figure 0004766222
で表されるメチルハイドロジェンポリシロキサン(粘度15mPa・s)2.5部、塩化白金酸2−エチルヘキシルアルコール変性溶液(Pt濃度2wt%)0.03部、エチニルシクロヘキシルアルコール0.05部、3−グリシドキシプロピルトリメトキシシラン7部及び平均粒径9μmの球状アルミナ微粉末400部を均一混合してシリコーンダイボンド材を調製した。 EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated concretely, this invention is not restrict | limited to the following Example. In addition, in the following example, a part shows a mass part. Moreover, a viscosity is a value of 23 degreeC. First, the evaluation method of the coating protective material of an Example and a comparative example is shown.
[Evaluation methods]
Preparation of silicone die bond material
Figure 0004766222
100 parts of terminal vinyldimethyldiphenylpolysiloxane (viscosity 3 Pa · s) represented by the following formula (II)
Figure 0004766222
Methyl hydrogen polysiloxane (viscosity 15 mPa · s) 2.5 parts, chloroplatinic acid 2-ethylhexyl alcohol modified solution (Pt concentration 2 wt%) 0.03 parts, ethynyl cyclohexyl alcohol 0.05 parts, 3- A silicone die bond material was prepared by uniformly mixing 7 parts of glycidoxypropyltrimethoxysilane and 400 parts of spherical alumina fine powder having an average particle size of 9 μm.

発光半導体装置の作製方法
発光素子として、InGaNからなる発光層を有し、主発光ピークが470nmのLEDチップを用いて、図1に示すような発光半導体装置を作製した。発光素子2を一対のリード電極3,4を有するガラス繊維強化エポキシ樹脂製筐体1にシリコーン系ダイボンド材5を用い、180℃で10分間加熱して固定した。発光素子2とリード電極3,4を金線6にて接続させた後、被覆保護材7をポッティングし、180℃で1時間硬化し、発光半導体装置を作製した。
発光半導体装置の輝度の測定方法
上記保護方法で作製した発光半導体装置に定電流を流し、輝度として電流印加後5秒後の受光素子の出力電流値を求め輝度を測定した(実施例1の発光半導体装置の輝度を1.00とした比較値で求めた)。
発光半導体装置の高温での通電輝度劣化の測定方法
更に、その半導体装置を150℃雰囲気下において、20mA通電を1,000時間行った後、室温に戻し、発光半導体装置に定電流を流し、電流印加後5秒後の受光素子の出力電流値を求め、高温通電前の出力電流値との比較を行い、加熱劣化時の輝度劣化を求めた(実施例1の発光半導体装置の初期の輝度を1.00とした比較値で求めた)。
耐熱衝撃性の試験方法
作製した発光半導体装置を、低温側−40℃、高温側120℃の熱衝撃試験を1,000サイクル行って外観のクラックが発生した数を観察した。
Method for Manufacturing Light-Emitting Semiconductor Device A light-emitting semiconductor device as shown in FIG. 1 was manufactured using an LED chip having a light-emitting layer made of InGaN and having a main light emission peak of 470 nm as a light-emitting element. The light emitting element 2 was fixed to a glass fiber reinforced epoxy resin casing 1 having a pair of lead electrodes 3 and 4 by using a silicone die bond material 5 and heated at 180 ° C. for 10 minutes. After the light emitting element 2 and the lead electrodes 3 and 4 were connected by the gold wire 6, the covering protective material 7 was potted and cured at 180 ° C. for 1 hour to produce a light emitting semiconductor device.
Method of Measuring Luminance of Light-Emitting Semiconductor Device A constant current was passed through the light-emitting semiconductor device manufactured by the above-described protection method, and the luminance was measured by obtaining the output current value of the light receiving element 5 seconds after the current application as the luminance (the light emission of Example 1). It was obtained by a comparative value where the luminance of the semiconductor device was 1.00).
Method of measuring deterioration of current-carrying luminance of light-emitting semiconductor device at high temperature Further, after the semiconductor device was energized for 20 hours at 150 ° C. for 1,000 hours, it was returned to room temperature, and a constant current was passed through the light-emitting semiconductor device The output current value of the light receiving element 5 seconds after the application was obtained and compared with the output current value before energization at high temperature, and the luminance deterioration during heating deterioration was obtained (the initial luminance of the light emitting semiconductor device of Example 1 was determined). It was determined with a comparative value of 1.00).
Thermal Shock Resistance Test Method The manufactured light-emitting semiconductor device was subjected to 1,000 cycles of thermal shock tests at a low temperature side of −40 ° C. and a high temperature side of 120 ° C., and the number of appearance cracks was observed.

[実施例1]
下記式(I)

Figure 0004766222
で表される末端ビニルジメチルジフェニルポリシロキサン(粘度3Pa・s)100部、下記式(II)
Figure 0004766222
で表されるメチルハイドロジェンポリシロキサン(粘度15mPa・s)2.5部、塩化白金酸2−エチルヘキシルアルコール変性溶液(Pt濃度2wt%)0.03部、エチニルシクロヘキシルアルコール0.05部及び下記式(III)
Figure 0004766222
で表されるアルコキシ基含有シリコーン化合物2部を均一混合して、シリコーン被覆保護材を調製した。
このシリコーン被覆保護材硬化物の硬さはデュロメータ・タイプAで33、25℃,589nmでの屈折率は1.48であった。この樹脂を用いて発光半導体装置を作製した。 [Example 1]
Formula (I)
Figure 0004766222
100 parts of terminal vinyldimethyldiphenylpolysiloxane (viscosity 3 Pa · s) represented by the following formula (II)
Figure 0004766222
Methyl hydrogen polysiloxane (viscosity 15 mPa · s) 2.5 parts, chloroplatinic acid 2-ethylhexyl alcohol modified solution (Pt concentration 2 wt%) 0.03 parts, ethynyl cyclohexyl alcohol 0.05 parts and the following formula (III)
Figure 0004766222
A silicone coating protective material was prepared by uniformly mixing 2 parts of an alkoxy group-containing silicone compound represented by the formula:
The cured silicone-coated protective material had a durometer type A hardness of 33, a refractive index of 1.48 at 25 ° C. and 589 nm. A light emitting semiconductor device was manufactured using this resin.

参考例1
下記式(IV)

Figure 0004766222
で表される末端ビニルジメチルジフェニルポリシロキサン(粘度5Pa・s)100部、下記式(V)
Figure 0004766222
で表されるメチルハイドロジェンポリシロキサン(粘度90mPa・s)7.0部、塩化白金酸2−エチルヘキシルアルコール変性溶液(Pt濃度2wt%)0.03部、エチニルシクロヘキシルアルコール0.05部及び3−メタクリロキシプロピルトリメトキシシラン3部を均一混合して、シリコーン被覆保護材を調製した。
このシリコーン被覆保護材硬化物の硬さはデュロメータ・タイプAで24、25℃,589nmでの屈折率は1.45であった。この樹脂を用いて発光半導体装置を作製した。 [ Reference Example 1 ]
Formula (IV) below
Figure 0004766222
100 parts of terminal vinyldimethyldiphenylpolysiloxane (viscosity 5 Pa · s) represented by the following formula (V)
Figure 0004766222
7.0 parts of methyl hydrogen polysiloxane (viscosity 90 mPa · s), 0.03 part of chloroplatinic acid 2-ethylhexyl alcohol modified solution (Pt concentration 2 wt%), 0.05 part of ethynylcyclohexyl alcohol and 3-part A silicone coating protective material was prepared by uniformly mixing 3 parts of methacryloxypropyltrimethoxysilane.
The cured silicone-coated protective material had a durometer type A hardness of 24, 25 ° C., and a refractive index of 1.45 at 589 nm. A light emitting semiconductor device was manufactured using this resin.

[実施例
下記式(VI)

Figure 0004766222
で表される末端ビニルジメチルジフェニルポリシロキサン(粘度2Pa・s)100部、下記式(VII)
Figure 0004766222
で表されるフェニルメチルハイドロジェンポリシロキサン(粘度30mPa・s)4.1部、塩化白金酸2−エチルヘキシルアルコール変性溶液(Pt濃度2wt%)0.03部、エチニルシクロヘキシルアルコール0.05部及び下記式(VIII)
Figure 0004766222
で表されるアルコキシ基含有シリコーン化合物2部を均一混合して、シリコーン被覆保護材を調製した。
このシリコーン被覆保護材硬化物の硬さはデュロメータ・タイプAで62、25℃,589nmでの屈折率は1.53であった。この樹脂を用いて発光半導体装置を作製した。 [Example 2 ]
The following formula (VI)
Figure 0004766222
Terminal vinyldimethyldiphenylpolysiloxane (viscosity 2 Pa · s) represented by the following formula (VII)
Figure 0004766222
Phenylmethylhydrogenpolysiloxane (viscosity 30 mPa · s) 4.1 parts, chloroplatinic acid 2-ethylhexyl alcohol modified solution (Pt concentration 2 wt%) 0.03 parts, ethynylcyclohexyl alcohol 0.05 parts and the following Formula (VIII)
Figure 0004766222
A silicone coating protective material was prepared by uniformly mixing 2 parts of an alkoxy group-containing silicone compound represented by the formula:
The cured silicone-coated protective material had a durometer type A hardness of 62, a refractive index of 1.53 at 25 ° C. and 589 nm. A light emitting semiconductor device was manufactured using this resin.

[比較例1]
有機溶媒(キシレン)中にビスフェノールA型エポキシ樹脂(EP827、油化シェルエポキシ社製)100部と分子量1,680のアミノ基を2つ持つポリジメチルシロキサン20部とを配合し、150℃で熱処理した後、上記有機溶媒を揮散除去することにより、変性ビスフェノールA型エポキシ樹脂を作製した。この変性ビスフェノールA型エポキシ樹脂120部、4−メチルヘキサヒドロ無水フタル酸100部、2−エチル−4−メチルイミダゾール0.4部を配合し、均一混合してエポキシ被覆保護材を調製した。
このエポキシ被覆保護材硬化物の硬さはデュロメータ・タイプAで92、25℃,589nmでの屈折率は1.56であった。この樹脂を用いて発光半導体装置を作製した。
[Comparative Example 1]
100 parts of bisphenol A type epoxy resin (EP827, manufactured by Yuka Shell Epoxy Co., Ltd.) and 20 parts of polydimethylsiloxane having two amino groups with a molecular weight of 1,680 are blended in an organic solvent (xylene) and heat-treated at 150 ° C. Then, a modified bisphenol A type epoxy resin was produced by volatilizing and removing the organic solvent. 120 parts of this modified bisphenol A type epoxy resin, 100 parts of 4-methylhexahydrophthalic anhydride, and 0.4 parts of 2-ethyl-4-methylimidazole were blended and mixed uniformly to prepare an epoxy coating protective material.
The cured epoxy-coated protective material had a durometer type A hardness of 92, a refractive index of 1.56 at 25 ° C. and 589 nm. A light emitting semiconductor device was manufactured using this resin.

[比較例2]
下記式(IX)

Figure 0004766222
で表される末端ビニルジメチルポリシロキサン(粘度3Pa・s)100部、下記式(II)
Figure 0004766222
で表されるメチルハイドロジェンポリシロキサン(粘度15mPa・s)2.0部、塩化白金酸2−エチルヘキシルアルコール変性溶液(Pt濃度2wt%)0.03部及びエチニルシクロヘキシルアルコール0.05部を均一混合して、シリコーン被覆保護材を調製した。
このシリコーン被覆保護材硬化物の硬さはデュロメータ・タイプAで58、25℃,589nmでの屈折率は1.40であった。この樹脂を用いて発光半導体装置を作製した。 [Comparative Example 2]
Formula (IX) below
Figure 0004766222
100 parts of a terminal vinyldimethylpolysiloxane (viscosity 3 Pa · s) represented by the following formula (II)
Figure 0004766222
A homogeneous mixture of 2.0 parts of methylhydrogenpolysiloxane (viscosity 15 mPa · s), 0.03 part of chloroplatinic acid 2-ethylhexyl alcohol modified solution (Pt concentration 2 wt%) and 0.05 part of ethynylcyclohexyl alcohol Thus, a silicone coating protective material was prepared.
The cured silicone-coated protective material had a durometer type A hardness of 58, a refractive index at 25 ° C. and 589 nm of 1.40. A light emitting semiconductor device was manufactured using this resin.

[比較例3]
SiO2単位50mol%、(CH33SiO0.5単位42.5mol%及びVi(CH32SiO0.5単位(Viはビニル基を表す)7.5mol%からなるレジン構造のビニルメチルポリシロキサン50部、下記式(IX)

Figure 0004766222
で表される末端ビニルジメチルポリシロキサン(粘度3Pa・s)50部、下記式(II)
Figure 0004766222
で表されるメチルハイドロジェンポリシロキサン(粘度15mPa・s)4.0部、塩化白金酸2−エチルヘキシルアルコール変性溶液(Pt濃度2wt%)0.03部及びエチニルシクロヘキシルアルコール0.05部を均一混合して、シリコーン被覆保護材を調製した。
このシリコーン被覆保護材硬化物の硬さはデュロメータ・タイプAで80、25℃,589nmでの屈折率は1.41であった。この樹脂を用いて発光半導体装置を作製した。 [Comparative Example 3]
Resin-structured vinylmethylpolysiloxane 50 composed of 50 mol% of SiO 2 units, 42.5 mol% of (CH 3 ) 3 SiO 0.5 units and 7.5 mol% of Vi (CH 3 ) 2 SiO 0.5 units (Vi represents a vinyl group). Part, the following formula (IX)
Figure 0004766222
50 parts of a terminal vinyldimethylpolysiloxane (viscosity 3 Pa · s) represented by the following formula (II)
Figure 0004766222
A homogeneous mixture of 4.0 parts of methylhydrogenpolysiloxane (viscosity 15 mPa · s), 0.03 part of chloroplatinic acid 2-ethylhexyl alcohol modified solution (Pt concentration 2 wt%) and 0.05 part of ethynylcyclohexyl alcohol Thus, a silicone coating protective material was prepared.
The cured silicone-coated protective material had a durometer type A hardness of 80, a refractive index of 1.41 at 25 ° C. and 589 nm. A light emitting semiconductor device was manufactured using this resin.

上記実施例、比較例の被覆保護材の評価結果を表1に示す。

Figure 0004766222
*実施例1の発光半導体装置の初期の輝度を1.00とした比較値で表す。
Table 1 shows the evaluation results of the coating protective materials of the above Examples and Comparative Examples.
Figure 0004766222
* Represented by a comparative value where the initial luminance of the light emitting semiconductor device of Example 1 is 1.00.

表面実装型半導体発光装置の一例(発光素子が絶縁性の筐体上にダイボンドされたもの)を示す発光ダイオードの断面図である。It is sectional drawing of the light emitting diode which shows an example (thing by which the light emitting element was die-bonded on the insulating housing | casing) of a surface mount type semiconductor light-emitting device. 表面実装型半導体発光装置の他の例(発光素子が筐体に挿入されたリード電極上にダイボンドされたもの)を示す発光ダイオードの断面図である。It is sectional drawing of the light emitting diode which shows the other example (The thing by which the light emitting element was die-bonded on the lead electrode inserted in the housing | casing). 砲弾型半導体発光装置を示す発光ダイオードの断面図である。It is sectional drawing of the light emitting diode which shows a shell-type semiconductor light-emitting device.

符号の説明Explanation of symbols

1 筐体
2 発光素子
3,4 リード電極
5 ダイボンド材
6 金線
7 被覆保護材
DESCRIPTION OF SYMBOLS 1 Case 2 Light emitting element 3, 4 Lead electrode 5 Die-bonding material 6 Gold wire 7 Covering protective material

Claims (5)

(A)分子鎖末端にビニル基を有する下記平均組成式(1)
aSiO(4-a)/2 (1)
(式中、Rは一価有機基を表し、その少なくとも5mol%以上80mol%以下がフェニル基である。aは1.5〜3.0の数である。)
で示されるオルガノポリシロキサン 100質量部、
(B)1分子中に少なくとも2個のケイ素原子に直結した水素原子を有する下記平均組成式(2)
1 bcSiO{4-(b+c)}/2 (2)
(式中、R1は一価有機基を表す。bは0.7≦b≦2.1であり、cは0.001≦c≦1.0であり、0.8≦b+c≦3の正数である。)
で示されるオルガノハイドロジェンポリシロキサン
(A)成分中のビニル基1個に対して、(B)成分中のケイ素原子に直結した水素原子が0.7〜10個になる量、
(C)白金族金属系触媒
白金族金属として(A)成分と(B)成分との合計質量の1〜1,000ppm、
(D)下記式で示されるオルガノシロキサンから選ばれるケイ素原子結合アルコキシ基を有する有機ケイ素化合物 0.5〜10質量部
Figure 0004766222

(式中、m,nは1以上で、かつ一分子中のケイ素原子数を4〜30とする整数である。)
Figure 0004766222
を含有してなり、その硬化物の25℃,589nm(ナトリウムのD線)での屈折率が1.41〜1.56であるとともにデュロメータ・タイプAの硬度が5〜75であることを特徴とする発光半導体被覆保護材。
(A) The following average composition formula (1) having a vinyl group at the molecular chain terminal
R a SiO (4-a) / 2 (1)
(In the formula, R represents a monovalent organic group, and at least 5 mol% to 80 mol% is a phenyl group. A is a number of 1.5 to 3.0.)
100 parts by mass of an organopolysiloxane represented by
(B) The following average composition formula (2) having hydrogen atoms directly bonded to at least two silicon atoms in one molecule
R 1 b H c SiO {4- (b + c)} / 2 (2)
(Wherein R 1 represents a monovalent organic group, b is 0.7 ≦ b ≦ 2.1, c is 0.001 ≦ c ≦ 1.0, and 0.8 ≦ b + c ≦ 3) (It is a positive number.)
An amount of 0.7 to 10 hydrogen atoms directly connected to silicon atoms in the component (B), with respect to one vinyl group in the component (A),
(C) Platinum group metal catalyst 1 to 1,000 ppm of the total mass of the component (A) and the component (B) as a platinum group metal,
(D) an organosilicon compound having silicon-bonded alkoxy group selected from an organosiloxane represented by the following formula from 0.5 to 10 parts by weight
Figure 0004766222

(In the formula, m and n are integers of 1 or more and 4 to 30 silicon atoms in one molecule.)
Figure 0004766222
The cured product has a refractive index of 1.41 to 1.56 at 25 ° C. and 589 nm (sodium D line) and a durometer type A hardness of 5 to 75. A light-emitting semiconductor coating protective material.
硬化物の25℃,589nmでの屈折率が1.43〜1.55である請求項1記載の発光半導体被覆保護材。   The light emitting semiconductor coating protective material according to claim 1, wherein the cured product has a refractive index of 1.43 to 1.55 at 25 ° C. and 589 nm. 開口部を有する筐体内に配置された発光半導体を覆って筐体内に充填され、硬化される発光半導体被覆用である請求項1又は2記載の発光半導体被覆保護材。   The light-emitting semiconductor coating protective material according to claim 1 or 2, wherein the light-emitting semiconductor coating protective material is for covering a light-emitting semiconductor disposed in a housing having an opening and filling and curing the housing. 発光半導体素子が、開口部を有するセラミック及び/又はプラスチック筐体内に配置された発光半導体装置で、その筐体内部が請求項1又は2記載の被覆保護材の硬化物で被覆保護された発光半導体装置。   3. A light emitting semiconductor device, wherein the light emitting semiconductor element is disposed in a ceramic and / or plastic housing having an opening, and the inside of the housing is covered and protected with a cured product of the covering protective material according to claim 1 or 2. apparatus. 発光半導体素子が、開口部を有するセラミック及び/又はプラスチック筐体内のリード電極上に配置された発光半導体装置で、その筐体内部が請求項1又は2記載の被覆保護材の硬化物で被覆保護された発光半導体装置。   3. A light emitting semiconductor device in which a light emitting semiconductor element is disposed on a lead electrode in a ceramic and / or plastic housing having an opening, and the inside of the housing is covered and protected with a cured product of the covering protective material according to claim 1 or 2. Light emitting semiconductor device.
JP2004062047A 2003-03-12 2004-03-05 Light emitting semiconductor coating protective material and light emitting semiconductor device Expired - Fee Related JP4766222B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004062047A JP4766222B2 (en) 2003-03-12 2004-03-05 Light emitting semiconductor coating protective material and light emitting semiconductor device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003066304 2003-03-12
JP2003066304 2003-03-12
JP2004062047A JP4766222B2 (en) 2003-03-12 2004-03-05 Light emitting semiconductor coating protective material and light emitting semiconductor device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010064144A Division JP2010174250A (en) 2003-03-12 2010-03-19 Protective coating material for light-emitting semiconductor and light-emitting semiconductor device

Publications (2)

Publication Number Publication Date
JP2004292807A JP2004292807A (en) 2004-10-21
JP4766222B2 true JP4766222B2 (en) 2011-09-07

Family

ID=33421577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004062047A Expired - Fee Related JP4766222B2 (en) 2003-03-12 2004-03-05 Light emitting semiconductor coating protective material and light emitting semiconductor device

Country Status (1)

Country Link
JP (1) JP4766222B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010174250A (en) * 2003-03-12 2010-08-12 Shin-Etsu Chemical Co Ltd Protective coating material for light-emitting semiconductor and light-emitting semiconductor device
EP2641929A2 (en) 2012-03-22 2013-09-25 Shin-Etsu Chemical Co., Ltd. Novel organopolysiloxane, cosmetic containing thereof, and method for preparing organopolysiloxane

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101158955B1 (en) * 2005-01-24 2012-06-21 모멘티브 파포만스 마테리아루즈 쟈판 고도가이샤 Silicone composition for encapsulating luminescent element and luminescent device
JP4614075B2 (en) * 2005-03-22 2011-01-19 信越化学工業株式会社 Epoxy / silicone hybrid resin composition, method for producing the same, and light emitting semiconductor device
JP4636242B2 (en) * 2005-04-21 2011-02-23 信越化学工業株式会社 Optical semiconductor element sealing material and optical semiconductor element
TW200732382A (en) * 2005-12-22 2007-09-01 Rohm & Haas Siloxane encapsulants
JP4822008B2 (en) * 2006-02-20 2011-11-24 信越化学工業株式会社 Heat curable silicone composition
TWI428396B (en) * 2006-06-14 2014-03-01 Shinetsu Chemical Co Phosphor-filled curable silicone resin composition and cured product thereof
JP2008218610A (en) * 2007-03-02 2008-09-18 Citizen Electronics Co Ltd Light-emitting diode
JP2008222828A (en) * 2007-03-12 2008-09-25 Momentive Performance Materials Japan Kk Silicone rubber composition for forming convex lens, and optical semiconductor apparatus obtained using the same
DE102008025491A1 (en) * 2008-05-28 2009-12-03 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor component and printed circuit board
JP5469874B2 (en) 2008-09-05 2014-04-16 東レ・ダウコーニング株式会社 Curable organopolysiloxane composition, optical semiconductor element sealant, and optical semiconductor device
KR101632593B1 (en) 2008-10-31 2016-06-22 다우 코닝 도레이 캄파니 리미티드 Curable organopolysiloxane composition, optical semiconductor element sealant, and optical semiconductor device
JP4862032B2 (en) 2008-12-05 2012-01-25 信越化学工業株式会社 Addition-curable silicone composition that provides a cured product having a high refractive index, and an optical element sealing material comprising the composition
JP5619383B2 (en) * 2009-07-10 2014-11-05 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 Composition for sealing organic light emitting device and organic light emitting device
JP5971835B2 (en) * 2010-08-23 2016-08-17 信越化学工業株式会社 Curable silicone resin composition and light emitting diode device using the same
JP5575820B2 (en) 2012-01-31 2014-08-20 信越化学工業株式会社 Curable organopolysiloxane composition, optical element sealing material, and optical element
JP6006632B2 (en) 2012-12-18 2016-10-12 信越化学工業株式会社 Addition-curing silicone composition and optical element
JP5819866B2 (en) 2013-01-10 2015-11-24 信越化学工業株式会社 Addition-curable silicone composition, optical element sealing material, and optical element
JP6100717B2 (en) 2014-03-05 2017-03-22 信越化学工業株式会社 Addition-curing silicone composition and optical element
JP6707369B2 (en) * 2015-03-30 2020-06-10 ダウ・東レ株式会社 Silicone material, curable silicone composition, and optical device
JP6307470B2 (en) * 2015-04-15 2018-04-04 信越化学工業株式会社 Addition-curing silicone composition and semiconductor device

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62240360A (en) * 1986-04-02 1987-10-21 Shin Etsu Chem Co Ltd Curable organopolysiloxane composition
JPH03766A (en) * 1989-05-30 1991-01-07 Toshiba Silicone Co Ltd Polyorganosiloxane composition
JP2882823B2 (en) * 1989-11-15 1999-04-12 東レ・ダウコーニング・シリコーン株式会社 adhesive
JP3519779B2 (en) * 1994-04-27 2004-04-19 東レ・ダウコーニング・シリコーン株式会社 Adhesive and semiconductor device
JP3406702B2 (en) * 1994-08-24 2003-05-12 東レ・ダウコーニング・シリコーン株式会社 Method of sealing electronic components with resin
JP3950490B2 (en) * 1995-08-04 2007-08-01 東レ・ダウコーニング株式会社 Conductive silicone rubber composition and semiconductor device
JP3922785B2 (en) * 1998-02-09 2007-05-30 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 Optical semiconductor insulation coating protective agent
JP3523098B2 (en) * 1998-12-28 2004-04-26 信越化学工業株式会社 Addition-curable silicone composition
JP3705343B2 (en) * 2000-07-19 2005-10-12 信越化学工業株式会社 Addition reaction curable silicone rubber composition and method for producing the same
JP2002252375A (en) * 2001-02-23 2002-09-06 Kanegafuchi Chem Ind Co Ltd Light-emitting diode and its manufacturing method
JP4409160B2 (en) * 2002-10-28 2010-02-03 東レ・ダウコーニング株式会社 Curable organopolysiloxane composition and semiconductor device
JP2004186168A (en) * 2002-11-29 2004-07-02 Shin Etsu Chem Co Ltd Silicone resin composition for light emitting diode element
JP4071639B2 (en) * 2003-01-15 2008-04-02 信越化学工業株式会社 Silicone resin composition for light emitting diode element

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010174250A (en) * 2003-03-12 2010-08-12 Shin-Etsu Chemical Co Ltd Protective coating material for light-emitting semiconductor and light-emitting semiconductor device
EP2641929A2 (en) 2012-03-22 2013-09-25 Shin-Etsu Chemical Co., Ltd. Novel organopolysiloxane, cosmetic containing thereof, and method for preparing organopolysiloxane
KR20130108150A (en) 2012-03-22 2013-10-02 신에쓰 가가꾸 고교 가부시끼가이샤 Novel organopolysiloxane, cosmetics comprising the same and method for producing organopolysiloxane
US9107855B2 (en) 2012-03-22 2015-08-18 Shin-Etsu Chemical Co., Ltd. Organopolysiloxane, cosmetic containing thereof, and method for preparing organopolysiloxane

Also Published As

Publication number Publication date
JP2004292807A (en) 2004-10-21

Similar Documents

Publication Publication Date Title
US6806509B2 (en) Light-emitting semiconductor potting composition and light-emitting semiconductor device
JP4766222B2 (en) Light emitting semiconductor coating protective material and light emitting semiconductor device
JP4586967B2 (en) Light emitting semiconductor coating protective material and light emitting semiconductor device
KR100848861B1 (en) Silicone rubber composition, light-emitting semiconductor embedding/protecting material and light-emitting semiconductor device
JP4300418B2 (en) Epoxy / silicone hybrid resin composition and light emitting semiconductor device
JP5638714B2 (en) Silicone composition for sealing light emitting device and light emitting device
JP4803339B2 (en) Epoxy / silicone hybrid resin composition and light emitting semiconductor device
KR101939408B1 (en) Heat curable silicone resin composition for reflector of led, and reflector for led and optical semiconductor device using the same
JP4933179B2 (en) Curable silicone rubber composition and cured product thereof
JP6096087B2 (en) Curable silicone resin composition, cured product thereof and optical semiconductor device
KR101789828B1 (en) Highly adhesive silicone resin composition and optical semiconductor device using said composition
JP4636242B2 (en) Optical semiconductor element sealing material and optical semiconductor element
JP5534977B2 (en) Curable organopolysiloxane composition and optical semiconductor device
JP5136963B2 (en) Curable silicone rubber composition and semiconductor device
JP4614075B2 (en) Epoxy / silicone hybrid resin composition, method for producing the same, and light emitting semiconductor device
JP4479882B2 (en) Cannonball type light emitting semiconductor device
JP2004186168A (en) Silicone resin composition for light emitting diode element
EP2479206A1 (en) A silicone resin composition and an optical semiconductor device making use of the composition
JP2009117833A (en) Silicone resin for protecting light transmitting surface of optoelectronic device
JP2009256400A (en) Silicone adhesive for semiconductor element
KR20190075058A (en) Curable silicone composition, its cured product and optical semiconductor device
TWI767988B (en) Curable organopolysiloxane composition and semiconductor device
JP4479883B2 (en) Light emitting semiconductor device
TW201910432A (en) Curable organic polyoxane composition and optical semiconductor device
JP2007180284A (en) Light emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110518

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110531

R150 Certificate of patent or registration of utility model

Ref document number: 4766222

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees